Computing Fine-grained Type
Information for Rust Programs

Project Description
William Seddon

Supervisors: Federico Poli, Vytautas Astrauskas, Prof. Peter Miiller

30 March 2020

1 Introduction

Rust is a rapidly maturing programming language which improves upon sys-
tems languages such as C and C++ by introducing new safety guarantees and
features. It uses an innovative ownership type system which provides exten-
sive safety guarantees, protecting against common issues such as data races and
dangling pointers. To achieve these safety guarantees the type system imposes
extra rules which languages such as C++ do not have. For a tool to leverage
Rust’s powerful type system when reasoning about Rust programs, it requires
more information than the Rust compiler currently exposes. The scope of this
project is to develop techniques and implement a library to provide this addi-
tional fine-grained type information to third-party tools.

2 Problem

In an ownership type system every value has an owner [2|, which in Rust is a
variable. The ownership of a value can be temporarily transferred by borrowing,
permanently transferred by moving, or the value can be duplicated by cloning it.
To provide Rust’s safety guarantees the type system imposes rules, for instance
only one mutable borrow, also known as a mutable reference, to a certain value
can exist at any one time. These rules are checked by the compiler’s type
checker and borrow checker. These restrictions cause syntactically valid, visually
correctly typed, in-scope use of variables to be invalid, an example of this is
shown in figure In Rust the type used in the definition of a variable is no
longer enough to be sure that a variable access is allowed. Rust tooling requires
more fine-grained type information which keeps track throughout the program
of which variables are allowed to be accessed in accordance with the rules of the
type system.

One such tool is Prusti, a tool developed at the ETH Ziirich to formally
verify Rust programs using the Viper verification infrastructure. To address the



1 let a = String::from("Friends, Romans, countrymen, lend me
— your ears");

2 2 let b = a; // a moved out

3 3

4+ // more code .. 4 // more code ..

5 5

¢ // a is of type String 6 // a is of type String

7 println! ("Anthony: {}", a); 7 println! ("Anthony: {}", a);
8 8

9 // OK 9 // Error!

Figure 1: Rust code comparison showing how context affects if variables can be
accessed

problem of lacking information the Prusti paper |1] proposes a novel fine-grained
type information concept: place capabilities and place capability sets which
track exactly which variables can be accessed throughout a Rust program. A
place capability is the ability to access a certain variable, and the place capability
set is the set of place capabilities at a certain point in the program. An example
program annotated with the appropriate place capability sets can be found
in figure While the Prusti paper introduces the notion of place capability
sets, their exact semantics and how they are generated is left undefined. The
scope of this thesis is to provide a specification for place capability sets and an
implementation of a useful library for Rust tools. The use of place capability
sets is necessary for Prusti to be sure if an access to a variable at a certain point
is allowed.

3 Project Approach

Any tools reasoning about Rust programs, not just Prusti, need a library which
calculates and exposes the fine-grained type information. In this case the library
will build place capability sets and allow tools to access the information. The
library needs to extract information from the Rust compiler, utilising both type
checker and borrow checker state [4] to calculate and build place capability sets.
It should then expose the place capability sets in a standard format to a variety
of tools.

Wolff [5] worked on an extension of place capability sets called extended place
capability sets (EPCS) in the report Fxtended Place Capabilities Summaries for
Rust Programs. The extension to place capability summaries lay in devising a
method to keep track of references. The approach outlined in the report gives
a definition of EPCS and includes the small-step semantics for the generation
of these extended place capability sets from the Rust control flow graph. There
are however areas that are left unexplored, for example when dealing with loops
an oracle is required to give the loop invariant. The EPCS implementation also
only supports a small subset of the Rust language, handling assignments, which
makes it difficult to use on real-life code. Areas such as the description of the



let a = String::from("Cowards die many times before their
<~ deaths"); // {a}

// Move
let mut b = a; // {b}

// Mutable Borrow
{
let ¢ = &mut b; // {c}
c.push_str("; The valiant never taste of death but once");

} // {b}

// Immutable Borrow
let d = &b; // {b, d}

// Clone
let e = d.clone(); // {b, d, e}

println! ("Caesar: {}", e); // {b, d, e}
// Caesar: Cowards die many times before their deaths; The
— valiant never taste of death but once

Figure 2: Example Rust code showing the place capability sets as comments

interaction with and the requirements of the borrow checker and Polonius |3]
could be improved.

This is a big field with a lot of different cases; this project should improve

upon some common cases not explored by this previous work.

4

Core Goals

The aim of this project is to create a prototype reusable library which provides
this needed fine-grained type information to tools and applications. How the
place capability sets are generated and defined must rest upon solid theoretical
foundations and definitions. From this come the four core goals:

1. To understand the current information given by the various parts of the
Rust compiler such as the type-checker and borrow-checker, while docu-
menting what information is exposed as well as documenting any improve-
ments that could be made at the Rust compiler level.

2. To design an algorithm which takes the information gleaned from the Rust
compiler and processes it into a place capability set. This involves defining
the semantics of a place capability set that is designed for common Rust
code cases, as well as various algorithmic steps to convert the compiler
information into the place capability set format. The Rust cases that the
algorithm should cover includes comparatively complex language features
not explored by the previous work such as method calls with lifetime
arguments and loops of varying degrees of complexity.



3. To implement a library which implements these algorithms and exposes
the more fine-grained type information of Rust programs to users of the
library. Where appropriate the library should be based upon the previous
extended place capability implementation. The library should work with
a wide range of Rust code, meaning the library should support language
features the previous implementation does not. These features, for exam-
ple, include branches, the creation of types, method calls and common
loop cases.

4. To evaluate the implementation of the library by creating a simple command-
line front-end which clearly displays the extra type information gleaned
from the algorithm.

5 Extension Goals

The aim of the extension goals is to provide examples of how useful this extra
fine-grained type information is by developing tools that depend on this new
information. As such the extension goals are:

e To develop a code completion tools for IDEs to have the code completion
suggest variables that are valid when used at that current location.

e To implement an IDE plug-in which integrates the fine-grained type in-
formation into the programmer’s view of the IDE.

e To integrate the library into Prusti. Currently Prusti uses a sub-optimal
implementation of place capability sets which would be improved by inte-
grating this new library.

e To create a type-checker-checker tool which creates a checkable step-by-
step representation of what the type-checker checks, as well as a small
prover tool which checks this proof tree.

e To extend or implement a fuzzer which utilises the knowledge of which
variable fields can be accessed at any point to generate correct Rust pro-
grams which can be used to test tools such as Prusti.

e To create a tool which analyses Rust code to calculate which types defi-
nitions are needed to reason about a function.

References

[1] V. Astrauskas et al. “Leveraging Rust Types for Modular Specification and
Verification”. In: ACM Program. Lang., Vol. 8, No. OOPSLA, Article 147
(2019). http://pm.inf.ethz.ch/publications/getpdf . php?bibname=
Own&id=AstrauskasMuellerPoliSummers19b.pdf.

[2] The Rust Book Contributors. Rust Book Chapter 4. URL: https://doc.
rust-lang.org/book/ch04-00-understanding-ownership.html.

[3] N. Matsakis. An alias-based formulation of the borrow checker. 2018. URL:
http://smallcultfollowing.com/babysteps/blog/2018/04/27/an-
alias-based-formulation-of-the-borrow-checker/,


http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=AstrauskasMuellerPoliSummers19b.pdf
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=AstrauskasMuellerPoliSummers19b.pdf
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
http://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/
http://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/

[4] N. Matsakis. Introducing MIR. 2016. URL: https://blog.rust- lang.
org/2016/04/19/MIR.html.

[5] D. Wolff. Extended Place Capabilities Summaries for Rust Programs. 2019.
URL: https://ethz.ch/content/dam/ethz/special-interest/infk/
chair - program - method / pm/ documents / Education / Theses /Dylan _
Wolff_RICS_Report.pdf.


https://blog.rust-lang.org/2016/04/19/MIR.html
https://blog.rust-lang.org/2016/04/19/MIR.html
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Dylan_Wolff_RICS_Report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Dylan_Wolff_RICS_Report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Dylan_Wolff_RICS_Report.pdf

	Introduction
	Problem
	Project Approach
	Core Goals
	Extension Goals

