
Computing Fine-grained Type
Information for Rust Programs

Master Thesis

William Seddon

September 8, 2020

Advisors: Prof. Dr. Peter Müller, Vytautas Astrauskas, Federico Poli

Department of Computer Science, ETH Zürich

Abstract

Understanding why variable uses are valid or invalid in Rust programs
requires more information than currently exposed by the Rust compiler.
Previous works in this field introduced appropriate notation but use un-
suitable, unstable internal Rust compiler information as an oracle. The
previous implementation does not support some common Rust cases
such as function calls. This thesis describes techniques to support com-
mon Rust cases, such as loops and function calls, without relying on
an external oracle. The theory successfully supports non-trivial cases
such as function calls with traits, and the accompanying implementa-
tion is between 2× and 3× faster than the previous implementation
while supporting a larger subset of Rust programs.

i

Acknowledgements

I am eternally grateful for the patient advice and guidance of both Federico
and Vytautas, without both of whom this would not have been possible. I
am also grateful to Prof. Müller for allowing me to write my master thesis
in the Programming Methodology group, and to the ETH for two great
exchange semesters. I would also like to thank my aunt and uncle for being
such gracious hosts and putting up with me, as well as both of my parents
for their loving and unwavering support.

ii

Contents

Contents iii

1 Introduction 1
1.1 Problem . 1
1.2 High Level Hints . 2
1.3 Contributions . 2
1.4 Structure . 2

2 Approach 5
2.1 Fix Point Iteration . 5
2.2 Refs Notation . 10
2.3 Function Reference Annotations 18

2.3.1 Background . 18
2.3.2 Framework . 18
2.3.3 Rules . 21
2.3.4 Applying function reference annotations to the EPCS . 26
2.3.5 Extension of function reference annotations with traits 28

3 Implementation 35
3.1 Introduction . 35
3.2 The rust-epcs library . 36

3.2.1 Core Design . 36
3.3 Theory and Implementation Comparison 39

3.3.1 Black Boxes and Wildcards 39
3.3.2 Compiler lifetime information 40
3.3.3 Unimplemented theory 41

3.4 Extension VSCode . 41

4 Evaluation 43
4.1 Theory Design . 43

iii

Contents

4.2 Completeness . 44
4.3 Implementation . 45

4.3.1 Design . 45
4.3.2 Comparison to previous implementation 46

4.4 Performance . 47
4.5 Future Work . 53

5 Conclusion 55

Bibliography 57

iv

Chapter 1

Introduction

1.1 Problem

Rust is an increasingly popular programming language designed at Mozilla
Research. It attempts to improve on existing programming languages such
as C and C++ by introducing new rules that give safety guarantees. These
rules stem from Rust’s ownership type system [2], where each variable has
one owner. This ownership can be transferred, either temporarily by bor-
rowing, or permanently by moving. The type system imposes rules, one
example being that only one mutable borrow of a variable can exist at any
point in time.

These rules mean that, for Rust tooling, it is no longer enough to know the
types of variable to be able to deduce whether variables are allowed to be
used. Tools such as Prusti, a formal verification tool for Rust developed
at the ETH Zürich, need access to more fine-grained type information that
takes into account the rules of the ownership type system.

The previous work in this field by Wolff in the report Extended Place Capa-
bilities Summaries for Rust Programs [6] described a format for the required
fine-grained type information. The format was called an Extended Place
Capability Summary (EPCS), which contains a Place Capability Summary
(PCS) and a Reference Capability Summary (RCS). The PCS was initially de-
scribed in the Prusti paper [1] as a set of places a program is allowed to use
at any one point. The previous work [6] introduces the RCS which describes
the state of borrows at any one point. The report by Wolff [6] describes the
methods to generate these extended place capability summaries from MIR,
an intermediate form of Rust exposed by the compiler [4]. However these
methods rely on information from a ”borrow oracle”, which is an oracle that
explains the current state of the borrows, especially for complex situations
such as loops. In the implementation of Wolff [6] the borrow oracle used is
Polonius [3], the next generation Rust borrow checker. Using information

1

1. Introduction

from Polonius however has drawbacks, including the need to fork Polonius
code to expose needed data structures. The implementation also doesn’t
support some common Rust cases such as function calls.

1.2 High Level Hints

The information gleaned from the borrow oracle needs to be replaced with
some techniques that handle cases previously outsourced to Polonius. Com-
mon Rust cases that need to be covered include loops, enumerations, slices
and function calls. To cover some of these cases approximations will need to
be developed. To develop these techniques a deeper understanding of how
the compiler treats borrows in certain situations is required. This deeper
understanding was developed by testing the behaviour of the Rust compiler
by building Rust programs especially designed to discover the limits of the
compiler and the information it stores about borrows.

1.3 Contributions

This thesis describes some new techniques for describing the approxima-
tion required to support loops in the control flow graph. Function calls,
where the arguments or the return value contain references, introduce con-
straints between these references. This thesis introduces a format to express
these constraints, called function reference annotations, as well as a set of
rules that generate these constraints. The format of function reference an-
notations has been extended to introduce support for traits with lifetimes.
The Rust compiler approximates references in certain data structures such
as enumerations and slices. This thesis introduces a form expressing this
approximation.

Along with the theory this thesis introduces an implementation which does
not use any information from Polonius or any other borrow oracle, but in-
stead calculates the information needed itself. The implementation supports
a larger subset of Rust code than the previous implementation, and in bench-
marks it is between 2× and 3× faster than the previous implementation.
The implementation also powers a Visual Studio Code extension that dis-
plays human readable EPCS information to end users when hovering over
Rust code. As an extension the implementation was extended to support
two-phase borrows, a more complicated

1.4 Structure

The first chapter, approach, introduces the theoretical elements that under-
pin the implementation. The second chapter describes the implementation,

2

1.4. Structure

and the third chapter evaluates the suitability of the theory and the imple-
mentation.

3

Chapter 2

Approach

2.1 Fix Point Iteration

The task of traversing the MIR control flow graph to generate EPCSs for all
the CFG blocks lends itself well to the ”data-flow analysis” technique. As
part of the data-flow analysis each CFG block has an input EPCS and an out-
put EPCS: the input EPCS is used as the initial EPCS which the statements
in the block modify, and the block output EPCS is the EPCS of the last state-
ment in the block. The algorithm then iterates through the CFG, following
the edges between blocks, and using the output EPCS of predecessor blocks
as the input EPCS of the current block. For example in figure 2.1, the input
EPCS for Block 2 will be the output EPCS of Block 1.

One question is what to do when a block has multiple predecessor blocks,
as seen in 2.1 with Block 4. Through a small experiment in figure 2.2 it

Block 1

Block 2 Block 3

Block 4

Figure 2.1: A simple control flow graph with a branch

5

2. Approach

1 fn takes_bool(discrim: bool) {

2 let x = "Cry Havoc! And let slip the dogs of

war".to_string();↪→

3 if discrim {

4 // Do nothing

5 // {x} ()

6 } else {

7 drop(x);

8 // {} ()

9 }

10

11 drop(x); // Error as x could be moved out in the else

branch↪→

12 // Must take into account both EPCSs. {x} () is NOT the

correct EPCS here.↪→

13 }

Figure 2.2: Iterating through a linked list

is clear that simply ignoring one of the predecessor blocks EPCSs is wrong,
they must be merged together.

The previous work in this field introduced two simple rules for merging two
incoming EPCSs:

1. Take the intersection of the allowed places.

2. Take the intersection of the references. However if the EPCSs both have
a reference that points to different places then the merged reference
points to the union of those places.

For example merging {x, y, z} (z -> a) and {z} (z -> b) will result in
{z} (z -> {a, b}).

For simple branching control flows this technique works well, however when
dealing with more complex cases where the control flow graph has cycles
such as in figure 2.3 it is insufficient. The cyclical nature of the CFG means
that calculating the output EPCS for Loop Body changes the input, and there-
fore output EPCSs of Loop Head, which in turn changes the input and out-
put of Loop Body, which changes the input to Loop Head which continues
ad infinitum. As part of the data-flow analysis the algorithm will continue to
iterate through the CFG, following edges and calculating input and output
EPCSs, until the input and output EPCSs of all blocks no longer change: i.e.
we have converged to an equilibrium or fix-point. As the code in figure 2.4
shows, without some changes it is clear that there are cases where a fix-point
is not reached. The previous implementation skirted around this problem
as Polonius successfully handled the calculation of borrows in loops.

6

2.1. Fix Point Iteration

Before Loop

Loop Head

Loop Body After Loop

Figure 2.3: A control flow graph with a cyclical loop

Looking at the EPCSs generated in figure 2.4 it is clear that the problem
lies with the fact that cur could point to any node in the linked list, which
is potentially infinitely long. The infinite list of potential nodes isn’t very
useful, despite being accurate, as it is impossible to compute. It also it
doesn’t matter to the type system exactly which node cur points to, but it
does matter that it points to root or a node further on from root. Rather
than let cur point to an infinite set, by observing that cur will always point
to something ”reachable” from root it is possible to approximate the infinite
set as cur -> reachable(root).

In this context reachable(x) is an over-approximation, as we define it to be
the set of memory locations accessible by applying a projection to x. The
previous example has been modified in figure 2.5 to show how the EPCSs
in a loop converge to a fix-point when approximating using reachable.

reachable(x) ::= x | reachable(*x) | reachable(x.field) |

reachable(x as Variant.field)↪→

The Rust compiler uses a very similar method to the reachable approxima-
tion internally when borrow checking.

The reachable form is entered when merging two EPCSs, if a reference
points to two different things, but these targets of the references share a
common prefix. In that case we approximate to something reachable from
that common prefix.

It is important to note that, once the EPCS holds a reference in the reachable
form, it is impossible to leave the reachable approximation and point to
something concrete again.

7

2. Approach

1 struct LinkedListNode {

2 next: Option<Box<LinkedListNode>>,

3 }

4

5 fn append(root: Option<Box<LinkedListNode>>) {

6 let mut cur = root;

7 // {cur} (cur -> root)

8

9 // EPCS for block which decides if to enter loop

10 // Before 1st iteration: {cur} (cur -> root)

11 // Before 2nd iteration: {cur} (cur -> {root, root as

Some.0.next})↪→

12 // Before 3rd iteration: {cur} (cur -> {root, root as

Some.0.next, root as Some.0.next as Some.0.next})↪→

13 // ...

14

15 while let Some(ref mut node) = cur {

16 // 1st iteration: {node} (node -> root as Some)

17 // 2nd iteration: {node} (node -> {root as Some, root

as Some.0.next as Some})↪→

18 // 3rd iteration: {node} (node -> {root as Some, root

as Some.0.next as Some, root as Some.0.next as Some.0.next

as Some})

↪→

↪→

19 cur = &mut node.next;

20 // 1st iteration: {cur} (cur -> root as Some.0.next)

21 // 2nd iteration: {cur} (cur -> {root as Some.0.next,

root as Some.0.next as Some.0.next, root as Some.0.next as

Some.0.next as Some.0.next})

↪→

↪→

22

23 // Control flow graph points back to the start

24 }

25 }

Figure 2.4: Iterating through a linked list without approximations

8

2.1. Fix Point Iteration

1 struct LinkedListNode {

2 next: Option<Box<LinkedListNode>>,

3 }

4

5 fn append(root: Option<Box<LinkedListNode>>) {

6 let mut cur = root;

7 // {cur} (cur -> root)

8

9 // EPCS for block which decides if to enter loop

10 // Before 1st iteration: {cur} (cur -> root)

11 // After 1st iteration: {cur} (cur -> root as

Some.0.next})↪→

12 // Merged/2nd iteration: {cur} (cur -> reachable(root))

13 // ...

14

15 while let Some(ref mut node) = cur {

16 // 1st iteration: {node} (node -> root as Some)

17 // 2nd iteration: {node} (node -> reachable(root))

18 cur = &mut node.next;

19 // 1st iteration: {cur} (cur -> root as Some.0.next)

20 // 2nd iteration: {cur} (cur -> reachable(root))

21

22 // Here our control flow loops back to the start

23 }

24 }

Figure 2.5: Iterating through a linked list with the reachable approximation

1 // {a} (a -> reachable(root))

2 b = &mut a.next;

3 // {b} (b -> reachable(root))

Figure 2.6: Excerpt from a Rust program showing how borrowing a field of a struct behind a
reference in the reachable approximation also results in a borrow with a reachable approxima-
tion

1 PCS 1: x -> root

2 PCS 2: x -> root as Some.0

3 Merged EPCS: x -> reachable(root)

Figure 2.7: Example of two EPCSs being merged into one EPCS with a reachable approxima-
tion

9

2. Approach

Left Right Merged
x x.y reachable(x)

x.y reachable(x) reachable(x)

x y {x, y}
x reachable(x) reachable(x)

reachable(x) reachable(x) reachable(x)

x reachable(y) {x, reachable(y)}
x.z reachable(y) {x.z, reachable(y)}
reachable(x) reachable(y) {reachable(x), reachable(y)}
{x, y} {y, z} {x, y, z}

Figure 2.8: Informal table of rules for merging EPCSs with reachable

2.2 Refs Notation

In Rust programs that use certain data structures it becomes unclear which
references in the structures point to which places. One such case is with data
structures, such as enums, that do not support split borrows. For a data
structure to support split borrows the Rust compiler has to be intelligent
enough to see that it is possible to simultaneously borrow disjoint fields.
Figure 2.2 shows an example of the compiler supporting split borrows on a
struct. The notable data structures which do not support split borrows are

1 struct S<'a, 'b, 'c> {

2 one: String,

3 two: String,

4 three: String,

5 }

6

7 fn main() {

8 let mut t = S{

9 one: "tomorrow, and tomorrow, and tomorrow".to_string(),

10 two: "creeps in this petty pace".to_string(),

11 three: "from day to day".to_string(),

12 };

13

14 let x = &mut t.one;

15 let y = &mut t.two;

16 // This is allowed!

17 }

Figure 2.9: Rust program showing how the compiler supports split borrowing of distinct struct
fields

10

2.2. Refs Notation

enumerations, slices and arrays. In the case of enumerations this is partly
because at a Rust level individual enumeration fields cannot be accessed,
so pattern matching must be used to extract data. There is however an
important distinction to be made between the levels of Rust and MIR: while
in Rust enumerations can only be accessed by pattern matching, at the MIR
level enumerations are accessed using fields in a similar way to tuples or
anonymous structures in the form variable as Variant.field. Despite
being accessed in a similar way to structures at the MIR level there is no
support for split borrows on enumerations.

This lack of split borrowing affects the EPCS in a rather subtle way. Fig-
ure 2.10 shows how the intelligent borrow checker knows the use of t.two
is still valid because only a use that includes the field t.one is invalid. How-
ever, as figure 2.2 shows, the compiler is not able to reason about enumer-
ations in the same way. The compiler takes an approximation and forgets
exactly what each enumeration field points to. The fact that the code snip-
pet in figure 2.12 passes the borrow checker shows that the approximation
is lifetime dependent; the compiler groups the borrows together by lifetime.
The lifetimes for a data structure are defined at the same time a data struc-
ture is defined, for example struct T<'a, 'b> defines a structure T with
two lifetimes ’a and ’b which have no relationship.

It is not just the case that the compiler groups this approximation by lifetime,
but it also takes into account which lifetimes outlive others. A lifetime can be
defined to outlive another one: for example struct T<'a, 'b: 'a> states
that lifetime ’b outlives ’a, which means all references in T with lifetime ’b

will ”live” or be usable at least as long as all references with lifetime ’a. The
relation, outlives, is transitive: for

struct T<'a, 'b: 'a, 'c: 'b>

’c outlives ’a because ’c: ’b and ’b: ’a.

∀a.b.c. ’c : ’b∧ ’b : ’a =⇒ ’c : ’a

To simplify matters a lifetime is also defined to outlive itself. The Rust
program in figure 2.17 shows that the compiler takes into account the rela-
tionship between lifetimes when approximating non-split borrow data struc-
tures.

A simple option to represent this situation would be to approximate each
field or index of the place individually, as shown in figure 2.13. This ap-
proach is however incorrect as it implies that it is possible to escape the
approximate form by reassigning an individual field or element. Figure 2.13
provides a counter example that would compile if this approach were cor-
rect, but it does not compile.

11

2. Approach

1 struct T<'a> {

2 one: &'a String,

3 two: &'a String,

4 three: &'a String,

5 }

6

7 fn main() {

8 let str_1 = "tomorrow, and tomorrow, and

tomorrow".to_string();↪→

9 let str_2 = "creeps in this petty pace".to_string();

10 let str_3 = "from day to day".to_string();

11

12 let mut t = T{one: &str_1, two: &str_2, three: &str_3};

13 // {t, str_1, str_2, str_3} (t.one -> str_1, t.two -> str_2,

t.three -> str_3)↪→

14

15 drop(str_1);

16 // {t.two, t.three, str_2, str_3} (t.two -> str_2, t.three

-> str_3)↪→

17

18 drop(t.two); // Works!

19

20 // drop(t.one) would fail because str_1 has been moved out

21 }

Figure 2.10: Rust program showing how a structure that supports split-borrows allows access
to non-moved out fields while other fields have been moved out

Therefore the notation to describe the approximation should be more gen-
eral to show that it is impossible to escape the approximate form. In light of
these experiments a new form of EPCS statement is required. Instead of rea-
soning about each field or index individually it makes more sense to reason
about references on a lifetime level, being able to express ”all references in
a structure with a lifetime that outlives ’a”.

To this end the notation refs(x, ’a) is introduced, which is a notation for
the set of all references in x (including x itself if x is a reference) which have
a lifetime of ’a or outlive lifetime ’a. To give some intuition as to how this
new EPCS approximation works figure 2.14 gives an annotated example of
the state of the references in the EPCS using this refs approximation.

If in a type definition lifetime ’b is defined to outlive ’a then refs(x, ’a)

is a superset of refs(x, ’b) for any variable x of that type.

∀a.b.x. ’b : ’a =⇒ refs(x, ’a) ⊃ refs(x, ’b)

12

2.2. Refs Notation

1 enum E<'a> {

2 Inner(&'a String, &'a String, &String),

3 }

4

5 fn main() {

6 let str_1 = "tomorrow, and tomorrow, and

tomorrow".to_string();↪→

7 let str_2 = "creeps in this petty pace".to_string();

8 let str_3 = "from day to day".to_string();

9

10 let mut e = E::Inner(&str_1, &str_2, &str_3);

11

12 if let E::Inner(a, b, c) = e {

13 drop(str_1);

14 drop(b); // Error! Value behind borrow moved out

15 // The compiler has forgotten that e.0 -> str_1 and e.1

-> str_2↪→

16 }

17 }

Figure 2.11: Rust program, when compared to figure 2.2 shows how an enumeration that does
not support split-borrows doesn’t allow access to non-moved out fields when the borrows of fields
have been moved out

1 enum E<'a, 'b> {

2 Inner(&'a String, &'a String, &'b String),

3 }

4

5 fn main() {

6 let str_1 = "tomorrow, and tomorrow, and

tomorrow".to_string();↪→

7 let str_2 = "creeps in this petty pace".to_string();

8 let str_3 = "to the last syllable of recorded

time".to_string();↪→

9

10 let mut e = E::Inner(&str_1, &str_2, &str_3);

11

12 if let E::Inner(a, b, c) = e {

13 drop(str_1);

14 drop(c); // Works!

15 drop(b); // Error! Value behind borrow moved out

16 }

17 }

Figure 2.12: Rust program showing how which fields on an enumeration can be used after
moving out a borrow depends on the lifetime of the field

13

2. Approach

1 fn main() {

2 let str_1 = "tomorrow, and tomorrow, and

tomorrow".to_string();↪→

3 let str_2 = "creeps in this petty pace".to_string();

4 let str_3 = "to the last syllable of recorded

time".to_string();↪→

5

6 let mut x = [&str_1, &str_2, &str_3];

7 // x[0] -> {str_1, str_2, str_3}, x[1] -> {str_1, str_2,

str_3}, x[2] -> {str_1, str_2, str_3}↪→

8

9 x[0] = &str_3;

10 // x[0] -> str_3, x[1] -> {str_1, str_2, str_3}, x[2] ->

{str_1, str_2, str_3}↪→

11

12 drop(str_1);

13 // If the notation above is correct then this statement

should be fine↪→

14 // as we know x[0] -> str_3

15 drop(x[0]); // Error!

16 }

Figure 2.13: Rust code showing how reassigning does not allow escape from the approximation

1 fn main() {

2 let str_1 = "tomorrow, and tomorrow, and

tomorrow".to_string();↪→

3 let str_2 = "creeps in this petty pace".to_string();

4 let str_3 = "to the last syllable of recorded

time".to_string();↪→

5

6 let mut x: [&String; 3] = [&str_1, &str_2, &str_3];

7 // There is an anonymous lifetime associated with x

8 // Really the type looks like [&'1 String; 3]

9

10 // refs(x, '1) -> {str_1, str_2, str_3}

11

12 drop(str_1);

13 drop(x[1]); // Error! Use of moved out value

14 }

Figure 2.14: Annotated Rust program showcasing the refs approximation for slices

14

2.2. Refs Notation

1 enum E<'a> {

2 Inner(&'a String, &'a String),

3 }

4

5 fn main() {

6 let str_1 = "tomorrow, and tomorrow, and

tomorrow".to_string();↪→

7 // {str_1} ()

8 let str_2 = "creeps in this petty pace".to_string();

9 // {str_2, str_1} ()

10

11 let e = E::Inner(&str_1, &str_2);

12 // {e, str_1, str_2} (refs(e, 'a) -> {str_1, str_2})

13

14 if let E::Inner(a, b) = e {

15 // {a, b, str_1, str_2} (refs(a, 'a) -> {str_1, str_2},

refs(b, 'a) -> {str_1, str_2})↪→

16 // this is equiv to (a -> {str_1, str_2}, b -> {str_1,

str_2})↪→

17 // as a: &'a String, and b: &'a String

18 drop(str_1);

19 // {str_2} ()

20 drop(b); // Error! Value behind borrow moved out

21 }

22 }

Figure 2.15: Annotated Rust program showing the approximation of references in an enumera-
tion with only one lifetime

15

2. Approach

1 enum E<'a, 'b> {

2 Inner(&'a String, &'a String, &'b String),

3 }

4

5 fn main() {

6 let str_1 = "tomorrow, and tomorrow, and

tomorrow".to_string();↪→

7 let str_2 = "creeps in this petty pace".to_string();

8 let str_3 = "to the last syllable of recorded

time".to_string();↪→

9

10 // {str_3, str_2, str_1} ()

11

12 let e = E::Inner(&str_1, &str_2, &str_3);

13 // {e, str_1, str_2, str_3} (refs(e, 'a) -> {str_1, str_2},

refs(e, 'b) -> str_3)↪→

14

15 if let E::Inner(a, b, c) = e {

16 // {a, b, c, str_1, str_2, str_3} (refs(a, 'a) ->

{str_1, str_2}, refs(b, 'a) -> {str_1, str_2}, refs(c, 'b)
-> str_3)

↪→

↪→

17 // this is equiv to (a -> {str_1, str_2}, b -> {str_1,

str_2}, c -> str_3)↪→

18 // as a: &'a String, and b: &'a String and c: &'b
String↪→

19

20 // {a, b, c, str_1, str_2, str_3} (a -> {str_1, str_2},

b -> {str_1, str_2}, c -> str_3)↪→

21 drop(str_1);

22 // {c, str_2, str_3} (c -> str_3)

23 drop(c); // Works!

24 drop(b); // Error! Value behind borrow moved out

25 }

26 }

Figure 2.16: Annotated Rust program showing the approximation of references in an enumera-
tion with two unrelated lifetimes

16

2.2. Refs Notation

1 enum E<'a: 'b, 'b> {

2 Inner(&'a String, &'a String, &'b String),

3 }

4

5 fn main() {

6 let str_1 = "tomorrow, and tomorrow, and

tomorrow".to_string();↪→

7 let str_2 = "creeps in this petty pace".to_string();

8 let str_3 = "to the last syllable of recorded

time".to_string();↪→

9

10 // {str_3, str_2, str_1} ()

11

12 let e = E::Inner(&str_1, &str_2, &str_3);

13 // {e, str_1, str_2, str_3} (refs(e, 'a) -> {str_1, str_2},

refs(e, 'b) -> {str_1, str_2, str_3})↪→

14

15 if let E::Inner(a, b, c) = e {

16 // refs(a, 'a) -> {str_1, str_2}, refs(b, 'a) -> {str_1,

str_2}, refs(c, 'b) -> {str_1, str_2, str_3}↪→

17 // this is equiv to (a -> {str_1, str_2}, b -> {str_1,

str_2}, c -> {str_1, str_2, str_3})↪→

18 // as a: &'a String, and b: &'a String and c: &'b
String↪→

19

20 // {a, b, c, str_1, str_2, str_3} (a -> {str_1, str_2},

b -> {str_1, str_2}, c -> {str_1, str_2, str_3})↪→

21 drop(str_1);

22 // {str_2, str_3} ()

23 drop(c); // Error! Value behind borrow moved out

24 }

25 }

Figure 2.17: Annotated Rust program showing how the lifetime relationship ’a: ’b means
that if any borrows with lifetime ’a are moved out then borrows with lifetime ’b are invalid

17

2. Approach

2.3 Function Reference Annotations

2.3.1 Background

The reason for the introduction of the refs(x, ’a) approximation is that
there are cases where it is no longer possible to be precise about where
each borrow points to. Apart from the already stated case of non split bor-
row data structures the main source of reference uncertainty is function
calls. Consider the situation in figure 2.18; what exactly left.inner and
right.inner point to after the call to swap depends on the implementation
of the function swap. It is however infeasible for a tool to check the imple-
mentation of every function called, not only would it be incredibly inefficient
but if linked libraries are used the compiler may not have the source code
or even the machine code of the implementation available at compile time.

Rather than process every function call body the only remaining possibility
is to infer the possible effects of the function through analysis of its function
signature alone. This is exactly what the Rust compiler does, it uses the
function signature to over-approximate what the function could do to the
references in its arguments and then enforces these constraints. The exam-
ple code in figure 2.19 shows that even if the swap function is a no-op the
compiler still enforces the constraints that it has derived from the function
signature. This proves that it is the function signature, not the function body,
that the Rust compiler uses when borrow checking function calls.

Rust function signatures, like other Rust statements that define lifetimes
such as struct definitions, can define lifetimes which are used in the signa-
ture. They can also define constraints between the lifetimes, for example in
signature

fn foo<'a: 'b, 'b>(left: &'a i32, right: &'a i32) -> &'b i32

the lifetime ’a outlives the lifetime ’b, which in this example means the
return value could point to either *left or *right.

2.3.2 Framework

Function signatures in Rust can range from the very simple, as seen in pre-
vious examples, to incredibly complex signatures with traits that require a
logic solver, such as Chalk, to resolve. Functions create constraints and rela-
tionships between the references in their arguments and their return value,
and as seen before these relationships must be calculated from the function
signature. The principle behind function reference annotations (FRA) is to
specify a format for expressing these relationships and a set of rules to cal-
culate the relationships from a function signature.

18

2.3. Function Reference Annotations

1 struct T<'a> {

2 inner: &'a String,

3 }

4

5 fn swap<'a>(left: &mut T<'a>, right: &mut T<'a>) {

6 left.inner = right.inner;

7 }

8

9 fn main() {

10 let str_1 = "The noble Brutus".to_string();

11 let str_2 = "Hath told you Caesar was

ambitious".to_string();↪→

12

13 let mut left = T{inner: &str_1};

14 // left.inner -> str_1

15 let mut right = T{inner: &str_2};

16 // right.inner -> str_2

17

18 swap(&mut left, &mut right);

19 // What left and right point to depends on the

20 // implementation of swap. It could also validly be

21 // fn swap<'a>(left: &mut T<'a>, right: &mut T<'a>) {}

22

23 drop(str_2);

24 drop(left.inner); // Error! Borrowed value moved out

25 }

Figure 2.18: Rust program with annotations showing how calling a simple function affects the
compilers knowledge of references

Informally a function can have between none and many individual annota-
tions. An annotation takes the form of:

refs after(x,′ a) := refs before(y,′ b) [∪ refs before(z,′ c)]∗

Similar to refs(x, ’a), refs before(x, ’a) represents the set of refer-
ences in x that outlive ’a, refs before however reflects the state of these
references just before the function call. refs after(x, ’a), again similar to
refs(x, ’a) represents the set of references in x with a lifetime that outlives
’a, the refs after statement represents the state of these references imme-
diately after the function call has returned. The annotation shows how the
references in variables after the function call could come from references be-
fore the function call. The Rust compiler occasionally references the ”flow”
of references in borrow checker error messages, and it may be helpful to

19

2. Approach

1 struct T<'a> {

2 inner: &'a String,

3 }

4

5 fn swap<'a>(left: &mut T<'a>, right: &mut T<'a>) {}

6

7 fn main() {

8 let str_1 = "The noble Brutus".to_string();

9 let str_2 = "Hath told you Caesar was

ambitious".to_string();↪→

10

11 let mut left = T{inner: &str_1};

12 // left.inner -> str_1

13 let mut right = T{inner: &str_2};

14 // right.inner -> str_2

15

16 swap(&mut left, &mut right);

17 // A human knows: left.inner -> str_1, right.inner -> str_2

18 // Tooling knows: left.inner -> {str_1, str_2}, right.inner

-> {str_1, str_2}↪→

19

20 drop(str_1);

21 drop(right.inner); // Error! Borrowed value moved out

22 }

Figure 2.19: Rust program with annotations showing how even a no-op function imposes con-
straints on the arguments, proving it is the function signature that is analysed, not the function
body

1 // refs_after(return value, 'a) := refs_before(input, 'a)
2 fn identity<'a>(input: &'a i32) -> &'a i32

Figure 2.20: Function reference annotation for a simple identity function

1 // refs_after(return value, 'a) := refs_before(left, 'a) ∪
refs_before(right, 'a)↪→

2 fn choose(left: &'a i32, right: &'a i32) -> &'a i32

Figure 2.21: Function reference annotation for a function which returns one of two arguments

think that references can flow from the references on the right hand side of
an annotation to the left hand side due to the function.

20

2.3. Function Reference Annotations

1 // refs_after(return value, 'a) := refs_before(left, 'a)
2 fn choose_left<'a, 'b>(left: &'a i32, right: &'b i32) -> &'a i32

Figure 2.22: Function reference annotation for a function which, due to the defined lifetimes,
can only return the first argument

2.3.3 Rules

To generate the annotations a number of rules are defined. The rules given
here are not exhaustive, there are complex cases that were deemed out of
scope.

Each rule will generate one or many annotations. If a rule generates an
annotation which shares a left hand side (refs after(x, ’a)) with another
generated annotation the two are simply merged by taking a union of the
two right hand sides. In practice merging

refs after(x, ’a) := refs before(y, ’b)

and

refs after(x, ’a) := refs before(z, ’c) ∪ refs before(zy, ’d)

makes

refs after(x, ’a) := refs before(y, ’b) ∪ refs before(z, ’c) ∪ refs before(zy, ’d)

When encountering refs before statements with related lifetimes, because
of the shared heritage from refs,

’a: ’b =⇒ refs before(x, ’b) ⊂ refs before(x, ’a)

the refs before with the longer lifetime can be left out.

The Rust compiler allows lifetimes to be left out of the function signatures
in cases where it can infer the correct lifetimes. Rules should be generated
on function signatures with the lifetimes elided by lifetime elision explicitly
in the function signature.

Relations between between references in the function arguments or return
values do not depend on the types of these references, only the lifetimes.
Take the example in figure 2.23, the reason why the Rust compiler supports
cases such as imm to mut is that the function may be implemented with
unsafe code, so these relationships could still be created by the function.

Rule 1: Arguments with mutable references

It is possible for a function to change the references in the arguments passed
to it, through the use of mutable borrows. Any reference that is ”after” or

21

2. Approach

1 // Impossible to do in completely safe Rust

2 fn imm_to_mut<'a>(one: &'a String) -> Option<&'a mut i32> { None

}↪→

3

4 fn main() {

5 let x = "Ill met by moonlight, proud Titania".to_string();

6 let y = imm_to_mut(&a);

7 drop(x);

8 drop(y); // Error! Use of borrow after moving out

9 }

Figure 2.23: Rust counterexample showing how only the lifetimes of references are important
to create function reference annotations

1 // refs_after(what, 'a) := refs_before(what, 'a)
2 fn mutate<'a>(what: &mut T<'a>)
3

4 // refs_after(left, 'a) := refs_before(left, 'a) |∪|
refs_before(right, 'a)↪→

5 fn swap<'a>(left: &mut &'a T, right: &'a T)

6

7 // refs_after(left, 'a) := refs_before(left, 'a) |∪|
refs_before(right, 'a)↪→

8 fn swap<'a>(left: &mut T<'a>, right: &T<'a>)
9

10 // refs_after(one, 'b) := refs_before(one, 'b) U

refs_before(two, 'd)↪→

11 fn swap<'a, 'b, 'c, 'd: 'c>(one: &'a mut S<'b>, two &'c S<'d>)

Figure 2.24: Examples of some of the cases handled by Rule 1

behind a mutable borrow in the type of an argument could be changed by
the function.

Figure 2.24 shows some examples of Rust function signatures and the appro-
priate function annotations to give some intuition as to the cases covered by
rule 1.

Figure 2.25 gives some Python-esque pseudocode that generates rule 1 func-
tion annotations.

Rule 2: Return arguments

The return value of a function may be one or more references. In this case a
reference in the return value may point to the same place a reference in an
argument points to. This could be the case if the lifetime of an argument ref-

22

2.3. Function Reference Annotations

1 # Returns a list of lifetimes which occur after the first

mutable reference in an arg↪→

2 # lifetimes_after_mutable(&'a &'b mut &'c &'d T<'e>) = ['c, 'd,
'e]↪→

3 def lifetimes_after_mutable(arg):

4 def recurs(type, past_mutable):

5 if type is MutRef and not past_mutable:

6 return recurs(type.inner, True)

7 if type is Struct and not past_mutable:

8 return []

9 if type is Struct:

10 return type.lifetimes

11

12 if past_mutable:

13 return type.lifetimes + type.inner_types.map(inner

recurs(inner, past_mutable))↪→

14 else:

15 return type.inner_types.map(inner recurs(inner,

past_mutable))↪→

16

17 recurs(arg.type, False)

18

19 # Returns list of all lifetimes in a argument

20 # lifetimes(&'a &'b T<'c, 'd>) = ['a, 'b, 'c, 'd]
21 def lifetimes(arg):

22 if arg is Struct:

23 return arg.lifetimes

24 return arg.lifetimes + lifetimes(arg.inner)

25

26 def generate_rule_1_fra():

27 for arg in all_args:

28 for other_arg in all_args:

29 for arg_mut_lifetime in

lifetimes_after_mutable(arg):↪→

30 for other_lifetime in lifetimes(other_arg):

31 if outlives(other_lifetime,

arg_mut_lifetimes):↪→

32 refs_after(arg, arg_mut_lifetime) ∪ =

refs_before(other, other_lifetime)↪→

Figure 2.25: Rule 1 Python-esque pseudocode

23

2. Approach

1 # Returns list of all lifetimes in a argument

2 # lifetimes(&'a &'b T<'c, 'd>) = ['a, 'b, 'c, 'd]
3 def lifetimes(arg):

4 if arg is Struct:

5 return arg.lifetimes

6 return arg.lifetimes + lifetimes(arg.inner)

7

8 def generate_rule_2_fra():

9 return_lifetimes = lifetimes(return_type)

10 for arg in all_args:

11 for arg_lifetime in lifetimes(arg):

12 for return_lifetime in return_lifetimes:

13 if outlives(arg_lifetime, return_lifetime):

14 refs_after(return_value,

return_lifetime) ∪ = refs(arg,

arg_lifetime)

↪→

↪→

Figure 2.26: Rule 2 Python-esque pseudocode

erence outlives the lifetime of the return value reference. A simple example
is

fn choose<'a>(l: &'a i32, r: &'a i32) -> &'a i32

where the return value could point to either *left or *right.

Rule 2 will generate the annotation

refs_after(return value, 'a) := refs_before(l, 'a) U

refs_before(r, 'a)↪→

for the choose function.

Rule 3: Returning references that could flow from arguments with generic
types

When functions accept arguments with generic types, for example fn foo<'a,
T: 'a>(left: &T) -> &'a String, the generic type may be defined to out-
live a lifetime, T: ’a. This means that all the references in T will outlive the
lifetime ’a, and for the function foo the return value may point to something
that is reachable from whatever the generic type T becomes monomorphised
to. It does not matter that, in this example, there is no way for the function
foo to extract a &’a String from a generic type which implements no traits,
the relationship between the return value and the argument is still made. .

Due to T: ’a meaning that all lifetimes in generic type T outlive ’a a way
to express ”all references in a generic type T” is needed. To this end a spe-
cial lifetime signifier is used: ’* in T. Using ’* in T means that ”all refer-

24

2.3. Function Reference Annotations

1 # Returns list of all lifetimes in a argument

2 # lifetimes(&'a &'b T<'c, 'd>) = ['a, 'b, 'c, 'd]
3 def lifetimes(arg):

4 if arg is Struct:

5 return arg.lifetimes

6 return arg.lifetimes + lifetimes(arg.inner)

7

8 # Returns the generic types in an argument

9 # generic_types(&'a &'b (&'c T, &'d U)) = [T, U]

10 def generic_types(arg):

11 if arg is GenericType:

12 return arg.generic_type()

13 if arg.has_inner_types():

14 return arg.inner_types.map(type generic_types(type))

15 return []

16

17 def generate_rule_3_fra():

18 return_lifetimes = lifetimes(return_type)

19 for arg in all_args:

20 for arg_generic_type in generic_types(arg):

21 for return_lifetime in return_lifetimes:

22 if outlives(arg_generic_type,

return_lifetime):↪→

23 refs_after(return_value,

return_lifetime) ∪ = refs(arg, '*
in arg_generic_type)

↪→

↪→

Figure 2.27: Rule 3 Python-esque pseudocode

ences in generic type T” can be expressed as refs(x, ’* in T), although
so far no need has been found for using this in any expression other than
refs before(x, ’* in T).

// refs_after(return_value, 'b) := refs_before(left, '* in U) U

refs_before(right, '* in U)↪→

fn foo<'a, 'b, U: 'b>(left: &'a U, right: &'a U) -> &'b i32

Rule 4: Generic arguments behind mutable references

In a similar vein to how the principle behind rule 2 was extended to support
returning references which could flow from arguments with generic types
rule 1 is now built upon. Rule 4 aims to support arguments with mutable
borrows where references could flow from arguments with generic types.

Figure 2.31 gives an example of a function rule 4 supports.

25

2. Approach

// refs_after(right, 'b) := refs_before(left, '* in U)

fn foo<'a, 'b, U: 'b>(left: &'a U, right: &'a mut T<'b>)

Figure 2.28: Rust program showing that the compiler imposes constraints on the arguments of
functions when using traits

Figure 2.29 provides Python-esque pseduocode for rule 4.

Rule 5: Static catch-all

It is possible to have functions return references which did not originate
from any function arguments. There are two main ways that this occurs,
the first being the returning of a reference with a special lifetime ’static,
as shown in figure 2.30. The ’static lifetime is a lifetime that lasts for the
entire length of the program, and therefore outlives all other lifetimes. The
other way is through the use of unsafe code, a prime example being the
Box::leak function which turns a Box<T> struct into &’static mut T.

To this end a new type of catch-all syntax is introduced: black box(static).
This represents the fact that after a function call a reference could point to
something leaked from a heap-allocated pointer, called a Box in Rust, or a
static constant.

2.3.4 Applying function reference annotations to the EPCS

To go from

refs_after(x, 'a) := refs_before(x, 'a) ∪ refs_before(y, 'b)

to a concrete reference capability summary (RCS) borrow statement such as
refs(x, ’a) -> a, b, c there are one or two intermediate steps. refs before(x,

’a) gets transformed to reachable(*refs(x, ’a)), when in turn the *refs(x,
’a) gets expanded using the information in the EPCS immediately before
the function call, if the expansion of reachable() is ”small” then that could
be expanded too, this is however a personal preference. The := gets trans-
formed into a ->. The refs after(x, ’a) gets transformed into refs(x,

’a). This can now be inserted into the RCS.

For function reference annotations that are in a generic form, such as refs before(x,

’* in T), require information about the concrete type of x at the call site.
With this concrete type information refs before(x, ’* in T) can be monomor-
phised to the union of multiple refs before(x, ’a) statements for each
lifetime in the concrete type of x.

26

2.3. Function Reference Annotations

1 # Returns a list of lifetimes which occur after the first

mutable reference in an arg↪→

2 # lifetimes_after_mutable(&'a &'b mut &'c &'d T<'e>) = ['c, 'd,
'e]↪→

3 def lifetimes_after_mutable(arg):

4 def recurs(type, past_mutable):

5 if type is MutRef and not past_mutable:

6 return recurs(type.inner, True)

7 if type is Struct and not past_mutable:

8 return []

9 if type is Struct:

10 return type.lifetimes

11

12 if past_mutable:

13 return type.lifetimes + type.inner_types.map(inner

recurs(inner, past_mutable))↪→

14 else:

15 return type.inner_types.map(inner recurs(inner,

past_mutable))↪→

16

17 recurs(arg.type, False)

18

19 def generic_types(arg):

20 if arg is GenericType:

21 return arg.generic_type()

22 if arg.has_inner_types():

23 return arg.inner_types.map(type generic_types(type))

24 return []

25 def generate_rule_4_fra():

26 for arg in all_args:

27 for other_arg in all_args:

28 for arg_mut_lifetime in

lifetimes_after_mutable(arg):↪→

29 for other_generic_type in

generic_types(other_arg):↪→

30 if outlives(other_generic_type,

arg_mut_lifetimes):↪→

31 refs_after(arg, arg_mut_lifetime) ∪ =

refs_before(other, '* in

other_generic_type)

↪→

↪→

Figure 2.29: Rule 4 Python-esque pseudocode

27

2. Approach

1 const s: &'static str = "And swim to yonder point?";

2 // refs_after(return, 'a) := black_box(static)

3 fn return_static<'a>() -> &'a str {

4 s

5 }

6

7 // refs_after(return, 'a) := black_box(static)

8 fn return_leak<'a>() -> &'a String {

9 Box::leak(Box::new("Help me Cassius or I sink".to_string()))

10 }

Figure 2.30: Two Rust functions showing how in certain cases references can be created from
nothing

2.3.5 Extension of function reference annotations with traits

Rules 1 and 2 deal with most simple function cases where the argument
types are fully known at compile time, however once functions start accept-
ing generic types some more logic is required. The Rust language allows
the common functionality of types to be abstracted into well defined inter-
faces called traits. Traits can be implemented by types, being somewhat
analogous to interfaces in other programming languages such as Java or C#.

While being defined traits may also have lifetime arguments which can be
used in the functions of that trait. When a trait is being implemented by a
type a relationship between the trait lifetime and a lifetime in the type may
be defined. When functions are defined that take arguments with generic
types that implement a certain set of traits the relationship between the trait
lifetimes will also create constraints on the references in the concrete types.
The Rust program in figure 2.31 is a minimal example in a similar vein to
previous examples, but the arguments are references to generic types which
implement a trait. The comments explain the extra challenge in dealing with
generic arguments.

When looking at a function signature that contains generic arguments which
implement traits, the constraints imposed by the signature are in a generic
form. That is to say, when analysing the signature in isolation, without
knowledge of the concrete types at the call sites, the function annotation
references the traits. Figure 2.32 and figure 2.33 show two function signa-
tures with generic arguments, and give the appropriate function reference
annotation in a generic form.

To apply these generic function annotations to a EPCS they must first be
monomorphised. The generic arguments must be replaced with the con-
crete types of the arguments at the call site. The links between the concrete
type at the call site and the generic arguments are the trait implementation

28

2.3. Function Reference Annotations

1 struct S<'a> {

2 inner: &'a String,

3 }

4

5 trait TestTrait<'inner> {}

6

7 // This is the link between the trait lifetime and the struct

lifetime↪→

8 impl<'inner> TestTrait<'inner> for S<'inner> {}

9

10 // The constraints of this function signature involve generics

as it references traits.↪→

11 // To apply the constraints created by this function signature

to the EPCS first it needs to be monomorphised by replacing

the generic traits with

↪→

↪→

12 // the types and the lifetimes of the types at the call sites.

13 fn foo<'a, T: TestTrait<'a>, U: TestTrait<'a>>(left: &'a mut T,

right: &'a U) {}↪→

14

15 fn main() {

16 let s1 = "All hail, Macbeth".to_string();

17 let s2 = "hail to thee, thane of Cawdor".to_string();

18

19 let mut x = S{ inner: &s1 };

20 let y = S{ inner: &s2 };

21

22 foo(&mut x, &y);

23 // To apply constraints here we need to know the link

between S<'a> (the type of x) and TestTrait<'inner> (the

type in the function signature)

↪→

↪→

24 // It is the implementation of TestTrait<'inner> for

S<'inner> that shows that 'inner == 'a↪→

25 // So any constraint imposed by the function signature on

'inner (for TestTrait<'inner>) will actually impose

constraints on 'a (for S<'a>)
↪→

↪→

26

27 drop(s2);

28 drop(x); // Error!

29 }

Figure 2.31: Rust program showing that the compiler imposes constraints on the arguments of
functions when using traits

29

2. Approach

// refs_after(left as TestTrait<’b>, 'b) = refs_before(left as

TestTrait<’b>, 'b) U refs_before(right as TestTrait<’b>,

'b)
↪→

↪→

fn foo<'a, 'b, T: TestTrait<'b>, U: TestTrait<'b>>(left: &'a mut

T, right: &'b U) {}↪→

Figure 2.32: Rust function signature with the function annotation in a generic form

// refs_after(left as TestTrait<’c>, 'c) = refs_before(left as

TestTrait<’c>, 'c) U refs_before(right as TestTrait2<’d>,

'd)
↪→

↪→

fn foo<'a, 'b, 'c, 'd: 'c, T: TestTrait<'c>, U:

TestTrait2<'d>>(left: &'a mut T, right: &'b U) {}↪→

Figure 2.33: A more complex Rust function signature with the function annotation in a generic
form

definitions. In order to express these links the trait implementation defini-
tions are annotated to express how function reference annotations can be
monomorphised using the lifetime relationships in the implementation defi-
nition.

Trait implementation annotations are directional; depending on the defined
lifetime relationships there are three cases:

1. Trait functions can take a reference as an argument and put it into the
data structure. The implementation

impl<'struct, 'trait: 'struct> TestTrait<'trait> for

S<'struct>↪→

can have functions that take references with ’trait and can modify
S to make a reference in S with lifetime ’struct point to the same
place as the passed reference. In this case, because it is possible to
modify references in S using TestTrait refs_after(S<'struct> as

TestTrait<'trait>, 'trait) can be monomorphised as refs_after(S<'struct>,
'struct).

2. Trait functions can return a reference which comes from the data struc-
ture. The implementation

impl<'struct: 'trait, 'trait> TestTrait<'trait> for

S<'struct>↪→

can have functions that return a reference in S with lifetime ’struct,
the lifetime of the return reference is ’trait. In this case this in-
sight means that refs_before(S<'struct> as TestTrait<'trait>,
'trait) can be monomorphised as refs_before(S<'struct>, 'struct).

This is valid because ’struct outlives ’trait.

30

2.3. Function Reference Annotations

// refs_after(S<'a> as TestTrait<’inner>, 'inner) ->

refs_after(S<'struct>, 'struct)↪→

impl<'struct, 'inner: 'struct> TestTrait<'inner> for S<'struct>
{}↪→

// refs_before(S<'a> as TestTrait<’inner>, 'inner) ->

refs_before(S<'struct>, 'struct)↪→

impl<'struct: 'inner, 'inner> TestTrait<'inner> for S<'struct>
{}↪→

// refs_after(S<'struct> as TestTrait<’inner>, 'inner) ->

refs_after(S<'struct>, 'struct)↪→

// refs_before(S<'struct> as TestTrait<’inner>, 'inner) ->

refs_before(S<'struct>, 'struct)↪→

impl<'struct: 'inner, 'inner> TestTrait<'inner> for S<'struct>
{}↪→

Figure 2.34: Rust trait implementation with annotation stating that this implementation can
be used to monomorphise a generic function annotation

3. The third case combines both of the above. An example of a trait
implementation definition where references can flow both from trait
functions to the struct and from the struct to trait functions is

impl<'struct: 'trait, 'trait: 'struct> TestTrait<'trait>
for S<'struct>↪→

The form of implementation annotation is directional, showing how the
generic refs on the left which is defined in terms of traits can be converted
into a refs defined just in terms of concrete types: refs_after(S<'a> as

TestTrait<’inner>, 'inner) -> refs_after(S<'a>, 'a).

To monomorphise a function annotation that contains traits the process is
to use the directional annotations on the trait implementation blocks to re-
place the generic refs relationships with their concrete equivalents. There
is one edge case: it is possible for the function to not change any references,
hence the relationship refs_after(left as TestTrait<’trait>, ‘trait)

:= refs_before(left as TestTrait<’trait>, ‘trait) This is not
entirely accurate: refs_before(left as TestTrait<’c>, ‘c) implies that
the references come from the trait TestTrait, but this is not the case, the
references in left are simply unchanged. This inaccuracy becomes a prob-
lem if a trait only allows references to flow from a trait function to the data
structure, e.g. impl<'struct, 'inner: 'struct> TestTrait<'inner> for

S<'struct> has the annotation refs_after(S<'a> as TestTrait<’inner>,

'inner) -> refs_after(S<'struct>, 'struct) which means there is no
way to monomorphise refs_before(left as TestTrait<’trait>, ‘trait).

31

2. Approach

To overcome this issue, when encountering the case that states ”no refer-
ences have changed”, the rule used to convert the generic refs_after on
the left hand side should be used to convert this special case (except, in-
stead of refs_after it is refs_before).

32

2.3. Function Reference Annotations

// refs_after(S<‘a> as TestTrait<’inner>, ‘inner) ->

refs_after(S<‘a>, ‘a)↪→

impl<'a, 'inner: 'a> TestTrait<'inner> for S<'a> {}

// refs_before(S<‘a>, ‘a) -> refs_before(S as

TestTrait2<’inner>, ‘inner)↪→

impl<'a: 'inner, 'inner> TestTrait2<'inner> for S<'a> {}

// refs_after(left as TestTrait<’c>, ‘c) = refs_before(left as

TestTrait<’c>, ‘c) U refs_before(right as TestTrait2<’d>,

‘d)

↪→

↪→

fn foo<'a, 'b, 'c, 'd: 'c, T: TestTrait<'c>, U:

TestTrait2<'d>>(left: &'a mut T, right: &'b U) {}↪→

/* Calling foo with arguments so T is the concrete type S<'left>
and U is of type S<'right>↪→

refs_after(left as TestTrait<’c>, ‘c) := refs_before(left as

TestTrait<’c>, ‘c) U refs_before(right as TestTrait2<’d>,

‘d)

↪→

↪→

apply refs_before(S<‘a>, ‘a) -> refs_before(S as

TestTrait2<’inner>, ‘inner)↪→

refs_after(left as TestTrait<’c>, ‘c) = refs_before(left as

TestTrait<’c>, ‘c) U refs_before(right, ‘right)↪→

apply the special case (refs_before version of the LHS) of no

references changing↪→

refs_after(S<‘a> as TestTrait<’inner>, ‘inner) ->

refs_after(S<‘a>, ‘a) with s/after/before/g↪→

refs_after(left as TestTrait<’c>, ‘c) = refs_before(left, ‘left)

U refs_before(right, ‘a)↪→

apply refs_after(S<‘a> as TestTrait<’inner>, ‘inner) ->

refs_after(S<‘a>, ‘a) with left: S<'left>↪→

refs_after(left, ‘left) = refs_before(left, ‘left) U

refs_before(right, ‘a)↪→

Monomorphised

*/

Figure 2.35: Full example monomorphising a generic function annotation using trait implemen-
tation annotations

33

Chapter 3

Implementation

3.1 Introduction

The project is split into 5 parts:

1. dump-mir-optimised: a tool to display the optimized MIR code for
a program either in text format or as in the Graphviz dot language.
Used to help development.

2. rust-epcs: the core library that calculates the EPCS from a MIR body

3. rust-epcs-cli: a simple tool to display the optimized MIR code to-
gether with the EPCS for each MIR statement calculated using the
rust-epcs library. The output is either text or in the Graphviz dot
language.

4. lsp-epcs-hover: a program that implements a small subset of the
language server protocol (LSP) to respond to hover requests with the
EPCS for that line in human readable format.

5. vscode-epcs-hover: a small Visual Studio Code extension to show
the EPCS information of a certain line when the user hovers on it. This
extension uses the lsp-ecps-hover application as the LSP server.

The meat of the thesis is contained in the rust-epcs library; the rest of the
tools exist to aid development or to showcase how the EPCS information
from the rust-epcs library can be used. All the programs, except for the
vscode-epcs-hover extension, are written in Rust as they require access to
internal Rust compiler data structures that cannot easily be accessed from
any other language.

35

3. Implementation

3.2 The rust-epcs library

3.2.1 Core Design

The principle of the rust-epcs library is that it takes a MIR body, which is
the compiled MIR for a function body consisting of basic blocks and form-
ing a control flow graph, and for each MIR statement in every basic block
calculates the appropriate EPCS. The core principle that differentiates this
implementation from the previous works in this field is that this implemen-
tation only uses Rust data structures that are deemed by the compiler team
to be more stable, in this case optimized MIR. Previous implementations de-
pended on unstable, and often changing, internal Rust data structures that
are not meant to be used by external tools. While in theory based upon the
previous standalone implementation[6] that accompanied the EPCS report ,
the vast majority of code has been written from scratch, with some core data
structures being heavily modified rather than replaced.

The library has to iterate through the control flow graph, and for each MIR
statement generate the resulting EPCS based upon the EPCS from the pre-
vious statement. Each basic block in the control flow graph has an EPCS
before the block, and an EPCS after the block. The EPCS before a block is
either empty, as for the first block, or is the result of merging all the EPCSs
after every predecessor basic block. The EPCS after a block is the EPCS after
the terminator statement of the block, or if there is no terminator, the EPCS
after the final statement. To process a basic block the library calculates the
EPCS before the block, uses this as the basis for calculating the EPCSs for all
the statements in the basic block, and then sets the EPCS after the block to
be the appropriate EPCS.

rust-epcs uses the data-flow analysis technique to iterate through the con-
trol flow graph. This technique means that the library iterates through the
control flow graph, calculating EPCSs and following the edges, until the
EPCSs calculated no longer change, i.e. a fix-point has been reached. If
merging the EPCSs of the predecessor blocks has no effect on the EPCS be-
fore a block, then the block has reached a fix-point. Intuitively this is true
because if the EPCS before the block has not changed compared to the previ-
ous iteration, then the EPCSs after each statement will not change as neither
the EPCS before each statement has changed, nor have the statements them-
selves.

The use of approximations detailed in the theory chapter of this thesis means
that iterating over cycles in the control flow graph will reach a fix-point.

To calculate the EPCSs for a MIR body the library uses a work queue, which
is a queue of tasks that the library must perform. The calculation is only
finished when the queue is empty.

36

3.2. The rust-epcs library

Out EPCS

In EPCS

Statement n

EPCS Transform Step

Statement n+1

There are three types of tasks that can be performed:

1. Process a statement.

2. Process a terminator of a basic block, this is the last statement that
defines the successor blocks.

3. Merge the incoming EPCSs for a basic block to calculate the merged
EPCS before the block.

Initially the library schedules all statements in the first block to be processed,
as well as the terminator of the first block.

To process a statement the library takes the output EPCS of the previous
statement, applies a transformation to the EPCS, and uses this transformed
EPCS to calculate the EPCS after the statement.

Processing a terminator is much the same as processing a statement, except
that it schedules work items to merge the incoming EPCSs for all successor
blocks of this block. To calculate the new EPCS before a block the library
merges all the incoming EPCSs. The library then compares the new EPCS
before the block to the previous EPCS before the block, from the previous it-
eration. If the two EPCSs are the same then the block has reached a fix-point
and nothing more is done. If the merged EPCS differs from the previous
EPCS then the library schedules work items to process all the statements of
this block and also schedules the terminator to be processed.

This use of the work queue allows the iteration over the control flow graph
to be represented by three simple functions. It uses one central loop which
fetches work from the work queue, rather than using complicated nested
loops to iterate over all blocks and all statements.

37

3. Implementation

The aforementioned transformation step is used to support cases where the
format of the EPCS from the previous statement is different to the format
required for the to-be-processed statement. A simple example is when ac-
cessing fields: if variable x is in the PCS but the next statement accesses
x.field1 there is the question about what the correct behaviour is. While
it can be argued that having x in the PCS implies that all fields of x can
also be accessed and no transformation need be applied, the decision was
made to make this ”unpacking” of fields explicit. In this context x will be
removed from the PCS and replaced with all the fields of x (e.g x.field1,
x.field2, etc). This decision to be strict regarding the variables in the PCS
was partially taken to mirror the behaviour when ”packing”, which occurs
in the opposite case. When the PCS includes all fields of a variable (e.g
{x.field1, x.field2, x.field3}), but the current statement requires the
use of the variable itself (e.g x), the library must make sure that all fields of
x are in the PCS. To make it explicit that the requirement that all fields of
x must be in the PCS to be allowed to use x is fulfilled, the transformation
step ”packs” the fields of the variable into the variable itself and replaces the
fields of x in the PCS with x itself. Being strict and explicitly packing and
unpacking also makes both manual and automatic checks that the imple-
mentation and EPCS is correct easier. The implementation currently asserts
that every place that occurs in a MIR statement is also in the PCS in the exact
same form.

Supporting more esoteric Rust cases, such as two-phase borrows, is made
much easier through the use of the transformation step. Two-phase borrows
occur in certain cases where there are conflicting overlapping borrows that
don’t lead to crashes but instead should be supported. A prime example is
v.push(v.len())[5]. Figure 3.1 shows the MIR code generated by the com-
piler and that the mutable borrow of tmp0 and tmp1 overlap. . As a solution
the developers of the Rust compiler introduced a special class of mutable
borrows: sleeping mutable borrows. These sleeping mutable borrows do
not impose their exclusivity constraints until they are used, when they are
”woken up” and become normal mutable borrows. In figure 3.1 tmp0 would
be deemed a sleeping borrow that only enforces the mutable borrow con-
straints when used on line 4. Supporting these sleeping mutable borrows
involves changing the transformation step to check if a sleeping borrow is
used in the next statement, and to reflect the ”waking up” of the sleeping
borrow in the transformed PCS by changing the reference type to mutable.

38

3.3. Theory and Implementation Comparison

1 tmp0 = &mut vec; // mutable borrow starts here.. -+

2 tmp1 = &vec; // <-- shared borrow overlaps here |

3 tmp2 = Vec::len(tmp1); // |

4 Vec::push(tmp0, tmp2); // <--.. and ends here-----------+

Figure 3.1: v.push(v.len()) lowered to MIR showing how the borrows overlap.[5]

3.3 Theory and Implementation Comparison

3.3.1 Black Boxes and Wildcards

When calculating the EPCSs for a function body it is necessary to reason
about what the function arguments, that are references, point to. With the
example fn foo(left: &mut T) it is difficult to express what left points
to, and therefore it is difficult to express the EPCSs for statements in the
body of foo. At compile time it is known that left points to something
of type T, and as it is a mutable reference left has exclusive access to
whatever it points to. As the value of *left is unknown a way of express-
ing the case ”we know it points to something, and has exclusive access,
but we don’t know, and don’t care exactly what” is needed. To this end
some more theory is required, and so black boxes are introduced: left ->

BlackBoxArgument(1). BlackBoxArgument(#argument index) is a place-
holder in the PCS to represent this case. .

Where BlackBoxArgument is used for arguments that are mutable references
a different approach is needed for shared references. This is because shared
borrows do not guarantee exclusive access to what they point to, and the
possibility of aliasing needs to be represented. Aliasing allows the possi-
bility that for fn bar(one: &T, two: &T), one and two could point to the
same instance of T. A new piece of notation is needed to represent alias-
ing, to represent that ”the shared borrow points to something but it does
not have exclusive access”. To this end both left and right point to a
”wildcard”, e.g left -> WildcardArg, right -> WildcardArg. The use of
WildcardArg encodes the fact that left and right could point to anything,
including the same memory location.

There are also other cases where references point to things that are not vari-
ables in the program. One such case is the use of promoted constants, which
occurs in MIR code when the block that calculates a constant has been ”pro-
moted”, or elevated from the surrounding code and put into its own block.
In the cases when promoted blocks return references or when the result is
immediately borrowed before being assigned to a variable, the RCS must be
able to express that a variable points to the result of a promoted constant
block.

Rather than treat a promoted block as a function, which would create diffi-

39

3. Implementation

culties as the promoted block has no function signature, a new notation is
needed to express ”the result of a promoted block number #id”: BlackBoxPromotedConst(#id).
This means that for x = &mut PromotedConst[1], the RCS would include:
x -> BlackBoxPromotedConst(1). In the case where the promoted block
returns references the type of the variable that the result is assigned to is
used to apply the appropiate BlackBoxPromotedConst to the RCS.

Constants are not just promoted, they may also reside inline in the MIR. The
most common example of this is the string literal str, which is usually imme-
diately borrowed to make the type &str. To be able to express what the bor-
row &str points to another new notation is introduced: BlackBoxInlineConst(#id),
where the id must be unique for that inline constant (a simple counter
is enough to satisfy the uniqueness requirement). Used in context, if x =

&"Neither a borrower nor a lender be", then the RCS will include x ->

BlackBoxInlineConst(1).

3.3.2 Compiler lifetime information

When designing the theory it was assumed that there would be easy ac-
cess to the lifetime information and lifetime relationship information in the
places where these relationships are defined. Examples include function sig-
natures (fn foo<'a: 'b, 'b>) or structure definitions (struct T<'a: 'b,
'b). This information is easily accessible at the higher HIR level: the abstract
syntax tree first gets lowered to HIR, then lowered again down to MIR. How-
ever in the process of lowering the HIR the lifetime relationship information
- the outlives information - is not put into the MIR but is converted into a
format appropriate for the borrow checker.

It does not appear to be easily possible to extract the precise lifetime infor-
mation needed from the borrow checker data structures. This is because
the borrow checker deals with many implicit lifetime relationships, as well
as the explicit lifetime relationships that the theory uses, mixing these two
types of lifetime relationship together. At the point in the Rust compiler
pipeline where optimised MIR is generated, the borrow checker has erased
the lifetime information from variable type information.

When analysing function signatures to generate function reference annota-
tions the lifetime information of the argument types has not been erased,
however it is still not possible to easily access outlives information. The
lack of outlives information means that currently function signatures with
lifetime relationships, such as

fn foo<'a: 'b, 'b>(left: &'a T, right: &'a T) -> &'b T}

are unsupported, but functions that only use one lifetime are supported

fn foo<'a>(left: &'a T, right: &'a T) -> &'a T

40

3.4. Extension VSCode

The lack of lifetime information in types means that if the RCS includes a
refs(x, ’a) statement, and x has more than one lifetime parameter it is
impossible to determine which references in x refs(x, ’a) actually refers
to. This makes it difficult to support references in data types that do not sup-
port split borrows, such as enumerations and slices, as the theory requires
this lifetime information. A workaround implemented by the rust-epcs li-
brary exploits the fact that lifetime information for types is available when
processing function signatures. This makes it possible, when applying a
FRA to a PCS, to replace refs(x, ’a) with a definite set of all fields in x

with a lifetime outliving ’a.

3.3.3 Unimplemented theory

The rust-epcs library implements the reachable approximation in order to
make sure that the EPCSs calculated by iterating over the control flow graph
reach a fix-point.

The refs(x, ’a) approximation, as mentioned before, is only used after the
application of a function reference annotation to the EPCS. Approximating
references in non-split borrow types, such as enumerations and slices, the
use of refs is not currently supported in the implementation due to the
aforementioned erasure of lifetimes.

The implementation of function reference annotation rules is limited by the
lack of lifetime outlives information. However the rust-epcs currently im-
plements a limited version of rule 1 and 2, which only support functions that
use one lifetime instead of relating lifetimes. Rules 3, 4 and 5 are currently
not implemented, nor are traits.

3.4 Extension VSCode

To help demonstrate the real world use of the rust-epcs library a Visual
Studio Code extension was developed. The extension, consisting of the
lsp-epcs-hover and vscode-epcs-hover, shows a human readable EPCS
when hovering over a line of Rust code. It uses a mapping between MIR
statements and file line numbers to find the most appropriate MIR state-
ment and accompanying EPCS, and then turns the EPCS into a more human
readable form. This involves looking up the Rust variable names for MIR lo-
cal places, and converting field indexes and variant indexes to their human
readable names.

41

Chapter 4

Evaluation

4.1 Theory Design

Developing the additional theory in the thesis allowed the implementation
to move away from using internal Rust compiler information. This move
has several benefits, first of all it means that upgrading the compiler version
is much easier as the theory relies on a more stable interface rather than the
unstable and often changing nll-facts.

Part of the reason for using the more stable optimized MIR was to see if op-
timized MIR exposed enough information to be able to calculate the EPCS
information. The conclusion is that easy access to some important lifetime
information is missing, as stated above in subsection 3.3.2, however the vast
majority of required information is available. Basing the theory underpin-
ning the implementation only on the MIR output, and not relying on in-
ternal Polonius information, would allow, if the compiler exposed a stable
form of MIR without borrow checking it, for rust-epcs to explain why pro-
grams that do not borrow check are incorrect. Therefore the theory enables
the implementation to no longer have to write and read the internal com-
piler borrow checking information to and from disk, resulting in a more
performant implementation.

The approximations reachable and refs are successful because they follow
the approximations that the compiler uses. This was expressly done to avoid
inconsistencies between rust-epcs and the compiler. Especially with the
refs on types that do not support split borrows, it is possible to be more
precise than the compiler. However this would mean that the EPCS could
explain why a program is correct but the compiler rejects the program. If the
compiler decides to support split borrowing on slices or enumerations then
they can be treated in the same way as types that do support split borrows.
.

43

4. Evaluation

The function reference annotations were designed as framework for describ-
ing relations, and a list of rules which create these relations. The reason
for this design was that it was assumed that not all function cases would be
covered, so a way to easily add new rules, and allow the implementation
to cleanly implement a subset of theory was needed. To simplify the imple-
mentation not all rules need to be implemented, as rules can be added at a
later date without having to modify existing code.

As function reference annotations can be expressed in a human readable
form, they can be used to educate newer Rust users as to the effects of
functions on references.

The notation used for function annotations was validated by the ease of
extending the theory to generics and traits, which were not considered when
first designing the notation.

4.2 Completeness

There are two ways in which the implementation lacks support for Rust
code. The first is where the implementation panics when encountering an
unsupported type, the second is where the implementation requires some
extra logic to identify and handle cases. Many of the unsupported Rust
cases are not particularly interesting from a theory standpoint, and hence
were not prioritised. For example MIR repeat statements are the equivalent
of just assigning each field, which is supported.

A non-exhaustive list of unsupported Rust cases:

• External crates

• Processing function bodies where the arguments are data structures
with references inside

• Slices

• Ascribed user types

• MIR aggregate statements

• Asynchronous MIR terminators

• Repeat MIR statements

• Raw pointers

• Unique and shallow borrows

• drop replace terminators

• Function arguments that are functions

44

4.3. Implementation

• MIR nullary operands

• References in types that do not support split borrows

• Lifetime relations, e.g. ’a: ’b

• Function reference annotations rule 3, 4 and 5

• Function reference annotations for traits

• Some uses of Box

4.3 Implementation

4.3.1 Design

The data-flow analysis technique used to iterate through the control flow
graph is perfectly suited to the task of calculating EPCSs, as it addresses
the fact that cycles in the control flow graph make it necessary to calculate
the EPCSs for a block multiple times until the input EPCSs of a block have
stabilised to a fix-point.

Using a work queue to represent the tasks required for the data-flow anal-
ysis greatly simplified the EPCS builder; the alternative would be many
nested loops to iterate over all blocks and statements multiple times, or an
implementation that uses recursion to visit the control flow graph nodes.
Both of these alternative techniques would lead to suboptimal code and
complicate debugging, especially with the complicated stack traces of a re-
cursive implementation.

The results of the rust-epcs library are exposed in a format similar to the
format used by Prusti for its MIR analysis steps, which will simplify the in-
tegration of the rust-epcs library with Prusti. This result format is simple,
yet contains all the EPCS information for before and after every MIR block
and MIR statement. This allows tools such as the Visual Studio Code exten-
sion to easily process the EPCSs for a MIR body and transform them into a
human readable format.

The result format uses only one very simple MIR data structure to link an
EPCS with its location in the MIR body. This allows tools to quickly give the
EPCS result context with the correct MIR statement. All other data types
are defined by the rust-epcs library. This makes the result format, and
therefore tools that use rust-epcs less affected by any potential changes in
Rust compiler data structures.

The library also offers a simple external interface for tools, with only one
method call required to calculate the EPCS on a MIR body and type context
(TyCtxt) object. Apart from this simple external interface the rust-epcs of-
fers a number of helpful functions for tools, including the pretty-printing

45

4. Evaluation

of EPCS statements where variable names, field indices and variants are re-
placed by their human readable names. The Visual Studio Code extension
demonstrates how these helper functions allow a useful tool to be imple-
mented in very few lines of code.

Using a transformation step in between the output EPCS of one statement
and the input of another greatly simplifies adding support for two-phase
borrows to the rust-epcs library. Despite the fact that the implementation
was not consciously designed to support sleeping mutable borrows, it is a
testament to the flexibility of the implementation and the principle of an
intermediate transformation step that adding two-phase borrows required
changing very few existing lines of code.

To increase confidence that the output of the library is correct the implemen-
tation includes numerous assert statements. For example, before a place is
used, it is asserted that it exists in the EPCS. Developing the implementation
with these assertions helped uncover numerous bugs and inconsistencies
without needing to manually check the resulting EPCSs. This saved time
and was less error prone then solely relying on manual comparing.

As the theory for function reference annotations does not cover every single
case, such as passing closures to functions, the decision was made to have
a list of rules that are run to calculate the function reference annotations.
These hot-pluggable rules mean that the implementation can very easily
extended to cover these more complex function signatures. When the theory
takes a leap forward it will be painless to implement these new function
annotation rules. The framework that runs all the rules and merges the
results into one function annotation already exists.

4.3.2 Comparison to previous implementation

The current implementation, like the previous implementation, provides a
simple command line application to give an example of how the library is
used. The previous implementation does not output any results at all. In
stark contrast the current implementation outputs a colourful Graphviz rep-
resentation of the control flow graph with MIR statements and terminators
annotated with the relevant EPCS before and after. This Graphviz represen-
tation not only serves as an example for how to interact with rust-epcs

results but also aids development by providing a very intuitive representa-
tion of the library output, making it easier to manually check that the EPCSs
are correct.

Unlike the previous implementation, the current implementation does not
use any forked Polonius code, which was required to expose some internal
Polonius data structures. Not forking the Polonius code removes a mainte-
nance burden, and makes it much easier to update the implementation to

46

4.4. Performance

a newer compiler version, as the Polonius code must change in lock-step
with the compiler. The current implementation also uses the more stable
form of MIR: optimised MIR . Using this rarely changed form of MIR, and
no private internal data structures, means that there will be fewer issues
when updating the compiler version that rust-epcs supports. The previous
implementation supports the nightly compiler version from 2019-12-27, and
when updating to 2020-07-27 the format of the nll-facts and the MIR had
changed. This meant that the Polonius fork had to be updated and the code
that visited the MIR had to be changed too.

4.4 Performance

The previous works in this field used unstable internal Rust data structures,
non-lexical lifetime facts (nll-facts), to help calculate borrow information.
To access the nll-facts information the facts are first written to disk by the
Rust compiler and then immediately read by the previous implementations
fork of Polonius to calculate borrow information. Not only is the disk used
to transfer internal information, but the nll-facts written to disk contain
more information than needed, as the data is designed for a more general
use-case. This further reduces the efficiency of the previous implementa-
tion. Using the disk as a method for transferring internal data is inherently
slow and could lead to disk performance becoming a bottleneck in tools
such as Prusti when analysing complex programs. To avoid this bottleneck
the rust-epcs implementation in this thesis calculates the borrowing infor-
mation directly from the optimized MIR, with no intermediate reading or
writing to disk.

To show how these differing approaches affect run-time a series of bench-
marks were constructed. Care was taken to avoid common pitfalls:

• Each implementation was compiled using cargo build --release to
let the Rust compiler apply optimisations.

• Before each execution of an implementation the implementation exe-
cutable and benchmark case were copied to a new temporary directory.
This means that any data from the previous benchmark runs of that
benchmark case are not cached and do not skew the times. Especially
for the previous implementation where the nll-facts were written to
disk, it is important for the integrity of the times that it does not use a
cached version of the nll-facts but instead generates them again.

• Both implementations were modified to prevent the printing of inter-
mediate and final results. Printing information to stdout or stderr
takes a surprisingly long time, especially if the benchmark cases are
very long. In extreme cases the current implementation was 4× slower
than the previous implementation until it was noticed that this was

47

4. Evaluation

due to the current implementation printing intermediate and final re-
sults and the previous implementation was not.

• The previous implementation was modified to no longer panic when
it found Rust cases that it did not support, which occurred in many
of the benchmark cases. Instead the previous implementation skipped
over these cases; this will make the previous implementation score
slightly higher in the benchmarks than it would if it calculated the ex-
act same information as the current implementation. However it was
deemed that the difference would not be substantial enough to inval-
idate the benchmarks and fixing the previous implementation would
be a distraction from implementing the current implementation.

• The Rust compiler versions are different; the previous implementation
uses a nightly compiler from 2019-12-27 and the current implementa-
tion uses a nightly compiler from 2020-07-27. The compile times for
the benchmark programs have decreased in the newer compiler ver-
sion in comparison to the older version. To account for the decrease
in compile times figure 4.2 shows a graph which shows the median
benchmark time minus the median compile time for the appropriate
compiler version. Both compilers were run with the same compiler
flags

-Zalways-encode-mir -Zmir-opt-level=0 --cap-lints=allow

--crate-type=lib↪→

A noticeable absence is that -Znll-facts is not a given flag, because
passing it causes compile times to increase. As the nll-facts are only
required by the previous implementation and it contains some of the
information calculated by the current implementation it was deemed
generating the nll-facts should count towards the time taken to cal-
culate EPCSs.

• Before calculating the EPCS the Rust compiler must first compile the
code, this compile step introduces systematic error to the benchmark
timings. Compiling the Rust code also has its own random error. Due
to the random and systematic error introduced by first needing to com-
pile the benchmark cases, the benchmarking script took multiple sam-
ples to reduce the impact these errors had on the results.

First the test cases used by the rust-epcs library as integration tests were
run by the current implementation and the previous implementation. How-
ever, not much information was gleaned from these benchmark cases, as
the time to calculate the EPCSs paled in comparison to the time the Rust
compiler took to compile the benchmark cases, which was roughly the same
in both cases. Clearly small programs with a linear or almost linear con-

48

4.4. Performance

trol flow would not differentiate the implementations as the vast majority of
time was spent compiling.

To this end two benchmarks were designed which should test the worst-case
performance of the implementations, making them ideal as benchmarks.
Loops require fix-point iterations which, especially with nested loops, will
become very time intensive. The first benchmark involved nested while
loops that iterated through a linked list. The nested depth of these while
loops were varied from 0 to 550, in intervals of 50, and for each nest depth
500 samples were taken to help deal with systematic and random timing
errors introduced by the Rust compiler. As the graph in figure 4.1 shows,
as the number of nested loops increases, and the time taken to compile
contributes less to the overall time taken, it becomes clear that the current
implementation has significant performance benefits over the previous im-
plementation.

The second benchmark is similar to the first benchmark, except that it uses
nested for loops. In the same way as the first benchmark the depth of nested
for loops were varied from 0 to 200, in depth increments of 10, and for
each increment 100 samples were taken. As the graph in figure 4.3 shows,
as the number of nested loops increases, and the time taken to compile
contributes less to the overall time taken, it becomes clear that the current
implementation again has significant performance benefits over the previous
implementation.

The two graphs show that in the worst performance cases the current imple-
mentation is between 2× and 3× faster than the previous implementation.
However the current implementation was not created with performance as
the utmost priority and therefore there is still some low hanging fruit that
can be optimised in order to further improve the performance. One exam-
ple of this is that intermediate calculations are currently not cached. In
cases where the calculations change only slightly they should be cached and
modified rather than being calculated again from scratch as currently occurs.
The data structures that hold the EPCS information could be optimised for
certain cases by greater use of hash maps to avoid expensive lookups.

49

4. Evaluation

0 50 100 150 200 250 300 350 400 450 500 550

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

”Depth of loop nesting”

”T
im

e
ta

ke
n

(s
)”

Current Implementation
Previous Implementation

Figure 4.1: Graph showing the runtime of the current and previous implementation when calcu-
lating EPCSs for nested while loops of various depths

50

4.4. Performance

−50 0 50 100 150 200 250 300 350 400 450 500 550 600

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

”Depth of loop nesting”

”T
im

e
ta

ke
n

(s
)”

Previous Implementation
Current Implementation

Figure 4.2: Graph showing the runtime of the current and previous implementation minus the
median time taken to compile when calculating EPCSs for nested while loops of various depths

51

4. Evaluation

0
10

20
30

40
50

60
70

80
90

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

0102030405060

”D
ep

th
of

lo
op

ne
st

in
g”

”Timetaken(s)”

Pr
ev

io
us

Im
pl

em
en

ta
ti

on
C

ur
re

nt
Im

pl
em

en
ta

ti
on

F
ig

u
re

4
.3

:
G

ra
p

h
sh

ow
in

g
th

e
ru

n
ti

m
e

o
f

th
e

cu
rr

en
t

an
d

pr
ev

io
u

s
im

p
le

m
en

ta
ti

o
n

w
h

en
ca

lc
u

la
ti

n
g

E
P

C
S

s
fo

r
n

es
te

d
f
o
r

lo
o

p
s

o
f

va
ri

o
u

s
d

ep
th

s

52

4.5. Future Work

4.5 Future Work

There is scope for future work.

The function reference annotation intuition for traits should be expanded to
become rules. More complex trait cases and passing functions to functions
should be examined and rules for generating function reference annotations
for these cases should be developed.

The implementation would benefit from some refactoring and tidying up.
The core data structures, and the methods used to manipulate the core data
structures were designed before all uses of the data structures were clear.
Now that the access patterns and the data formats required for calculat-
ing EPCSs without using Polonius information are well known, there are
various changes that should be made to reduce code reuse and improve
performance.

Naturally the implementation should also be extended to cover the Rust
cases that it currently does not support.

To increase confidence that the output of the implementation is correct a
further project could be to compare the results from this implementation
to internal borrow checker information over a wide range of programs. If
combined with increasing the range of Rust code that the implementation
supports the wide range of open source Rust programs could be used as a
test set.

Another avenue for exploration would be to create tools that use this EPCS
information, such as a fuzzer that uses EPCS information to be able to more
intelligently generate correct or subtly incorrect Rust programs.

53

Chapter 5

Conclusion

In this thesis we designed theory to be able to calculate EPCSs over a variety
of Rust cases without relying on an external oracle. Much of this theory was
then implemented in a standalone tool that calculates the EPCSs for a bigger
subset of Rust programs than the previous implementation. Additionally,
the Visual Studio Code extension which displays human readable EPCSs,
demonstrated that the implementation was fit for purpose and made the
results more accessible. Also adding support for two-phase borrows showed
the flexibility of the implementation and the ability to quickly add support
for complex and unforeseen Rust cases.

As the evaluation states the theory enables the implementation to be be-
tween 2× and 3× faster, while not using unstable internal Polonius data.
Possible future work has been described, in order to improve the implemen-
tation and to extend the theory to cover complex function calls involving
traits and closures. This thesis and the accompanying implementation allow
the creation of next generation Rust tooling that uses fine-grained type infor-
mation to be able to reason about Rust programs in detail without the use
of internal borrow checker information.

55

Bibliography

[1] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. Leveraging Rust
types for modular specification and verification. In Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), volume 3,
pages 147:1–147:30. ACM, 2019.

[2] The Rust Book Contributors. Rust book chapter 4.

[3] The Rust Project Developers. Polonius, 2020. Accessed September 08,
2020.

[4] N. Matsakis. Introducing mir, 2016.

[5] N. Matsakis. Nested method calls via two-phase borrowing, 2017.

[6] Dylan Wolff. Extended place capabilities summaries for rust programs.
Research in Computer Science project, ETH Zürich, 2019.

57

	Contents
	Introduction
	Problem
	High Level Hints
	Contributions
	Structure

	Approach
	Fix Point Iteration
	Refs Notation
	Function Reference Annotations
	Background
	Framework
	Rules
	Applying function reference annotations to the EPCS
	Extension of function reference annotations with traits

	Implementation
	Introduction
	The rust-epcs library
	Core Design

	Theory and Implementation Comparison
	Black Boxes and Wildcards
	Compiler lifetime information
	Unimplemented theory

	Extension VSCode

	Evaluation
	Theory Design
	Completeness
	Implementation
	Design
	Comparison to previous implementation

	Performance
	Future Work

	Conclusion
	Bibliography

