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1 Background

The Viper verification infrastructure [MSS15] provides an intermediate verification
language and two back-end verifiers for this language. Various existing automatic
verifiers for programming languages such as Python, Rust, Go, and Java verify
programs by translation to Viper. At the heart of Viper is a permission model that
is useful to reason about heap-manipulating programs and thread interactions
in concurrent software. Viper uses permissions to express ownership of heap
locations.

These are represented as fractions (rational numbers). That is, a permission
to a heap location x.f (where x is a reference and f a field) is a rational number
p between 0 and 1. If p = 0 (no permission), then the program cannot read the
value of x.f . If p = 1 (exclusive permission), then the program can read and
modify x.f . However, exclusive permissions are often too restrictive. Typically, it
is safe for multiple threads to concurrently access the same heap location, as long
as they only read this heap location (and do not modify it). Therefore, when the
permission p is such that 0 < p < 1, the program can read the value of x.f , but
not write it.

To allow specifying read permissions, Viper provides wildcard permissions.
A wildcard permission is a permission amount that is unspecified, but known
to be greater than zero. Viper currently automates it as an existential fraction.
That is, a Viper program owns a wildcard permission to x.f if and only if there
exists a fraction p > 0 such that the program has at least permission p to x.f .
The wildcard permission amount provides a convenient way to encode read-only
resources that can be shared among threads.

2 Our Approach

The aim of this project is to explore and implement a different representation
for wildcards, inspired by the VeriFast verifier [JSP+11] (a verifier for C and
Java programs), that we refer to as symbolic wildcards and describe below. The
motivation for this project is twofold. First, we want to understand how this
representation can be integrated with other advanced Viper features. Secondly, we
expect that a symbolic encoding of wildcards will be more reliable and yield better
performances than the current encoding with existential permissions, mainly
because it will not have to deal with arithmetic.

The VeriFast verifier represents wildcard permissions (referred to as dummy
fractions) symbolically. Exhaling (giving away) a dummy fraction in VeriFast
amounts to converting a concrete fractional permission to a dummy fraction
(which is infinitely duplicable). Thus, once a dummy fraction has been given away,
write permission cannot be regained.
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Such an implementation of wildcards seems more natural as the following
example shows. It is possible to hold a fraction of a predicate in Viper, for example
to allow several threads to concurrently read the same data structure. When a
fraction of a predicate is unfolded, all permissions it contains are multiplied by the
corresponding fraction, as we illustrate on Listing 1. In this example, unfolding a
wildcard amount of the read predicate should result in a multiplication of two
wildcard permissions. To avoid non-linear arithmetic issues with the underlying
SMT solver, the Viper back-end verifier Carbon simplifies this multiplication to
a wildcard permission. Such an ad hoc optimization will not be necessary with
symbolic wildcards, where the multiplication of a symbolic wildcard with any
non-zero permission simply results in a symbolic wildcard.

Listing 1: Example of permission multiplication for predicates
0 f i e ld f : Int
1

2 predicate read (x : Ref )
3 {
4 acc ( x . f , wildcard )
5 }
6

7 method main (x : Ref )
8 requires acc ( read (x ) , wildcard )
9 {

10 // This unfo ld mu l t i p l i e s two wi ldcard permiss ions ,
11 // r e s u l t i n g in another wi ldcard permis s ion to x . f ,
12 // which a l l ows read ing the value o f x . f
13 unfold acc ( read (x ) , wildcard )
14 var x : Int := x . f
15 }

One caveat symbolic wildcards bring with them, as written above, is that write
permission cannot be regained once a wildcard has been exhaled. On the other
hand, Viper currently represents wildcards as existential fractions, which makes
it possible to inspect the fractional permission owned, and thus to regain write
permission to a heap location after a wildcard permission amount has been exhaled.
Listing 2 illustrates this. The program state begins with write permission, and
then exhales a wildcard permission amount. Permission introspection (perm(x.f))
allows the currently held permission amount to be stored into the variable p.
Using this variable we can calculate the missing permission amount we require to
be able to write the heap location, and inhale it, which is something one cannot
achieve in VeriFast. It is not clear, however, how useful this feature is in practice.
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Listing 2: Example wildcard permission reversal
0 f i e ld f : Int
1

2 method recover_wi ldcard (x : Ref )
3 requires acc ( x . f )
4 {
5 // remove a wi ldcard permis s ion amount
6 exhale acc ( x . f , wildcard )
7 // Permiss ion i n t r o s p e c t i o n
8 var p : Perm := perm( x . f )
9 // rega in f u l l wr i t e permis s ion

10 inhale acc ( x . f , write − p)
11 // wr i t e to the heap l o c a t i o n
12 x . f := 5
13 }

With this in mind, we will implement symbolic wildcards by modifying the
Viper back-end Carbon, which translates Viper programs to Boogie [Lei08] pro-
grams, which are then verified using an SMT solver. We will first consider a naive
implementation of wildcard permissions that uses a map from heap locations to
Boolean values that encode the property of holding a wildcard. Reading from a
heap location is permitted if either a fractional permission p : 0 < p or a symbolic
wildcard is held for this location.

Our naive implementation could result in an exponential blowup of the number
of branches the SMT solver has to explore, because of the use of disjunctions
to check heap accessibility (each disjunction potentially multiplies by two the
number of branches to explore). We will take special care to avoid such issues,
since our aim is to find a viable encoding of symbolic wildcards that satisfies both
performance and reliability. Nonetheless, symbolically representing wildcards
could yield a performance increase since the underlying SMT solver would not
need to work with existential fractions but Boolean values, and thus would avoid
arithmetic.

A further challenge will be the exploration of the interaction of the new
wildcard representation with other Viper features such as predicates folding and
unfolding, quantified permissions, or known-folded permissions [HKMS13]. These
are key for this representation to be usable in practice.
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3 Core Goals

The goal of this thesis is to explore and implement a symbolic representation of
wildcard permissions for Viper. The core milestones of this project are:

1. Explore and formally define a semantics for this symbolic representation of
wildcard permissions.

2. Implement symbolic wildcards in the Viper back-end verifier Carbon for a
subset of Viper. This subset should include predicate (un)folding, quantified
permissions, and known-folded permissions.

3. Evaluate the implementation of symbolic wildcards in terms of expressiveness,
performance, and reliability, by comparing it to the current implementation
of wildcards.

4 Extension Goals

1. Extend the implementation to other advanced features, such as magic wands
or permission introspection.

2. Extend the implementation of symbolic wildcards to do permission count-
ing [BCOP05].

3. Explore a reverse conversion of symbolic wildcards back to concrete fractions.
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