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1. Introduction 
 

Viper. Viper (verification infrastructure for permission-based reasoning) [1] is a language and suite 

of tools, providing an architecture that supports the expressive separation logic and its automatic 

verification natively. This common architecture simplifies the development of new verifiers and 

verification techniques via translation of the source language to Viper. The current verifiers based 

on this include Gobra [2] for Go, Nagini [3] for Python, and Prusti [4] for Rust. Viper has two 

kinds of verification backends: symbolic execution and verification condition generation 

translating Viper programs to Boogie [5]. 

Separation Logic. The separation logic in Viper describing the properties of the program is 

separation logic [6], which is an extension of Hoare logic that permits local reasoning about low-

level heap-manipulating imperative programs that use shared mutable data structures. Traditionally, 

the program state contains two components: a stack, mapping variables to values as in Hoare logic, 

and a heap, mapping addresses to values with permission amounts of mutable data structure. The 

permission amount controls the accessibility of addresses. 1 represents the exclusive write 

permission and larger than 0 a shared read permission. This can frame heap-dependent information 

and prove the absence of aliasing and data racing. 

Quantified Permissions. The access pattern of the data structure consisting of a set of heap 

locations is orderly or random. For example, in the case of a linked list, the accessibility of the 

current node must be acquired before that of the next node. Recursive predicates specify this 

orderly relation between accessibility of heap locations in the data structure via information hiding. 

For data structures with random access like arrays, quantified permissions embody their 

unbounded sets of accessibility of heap locations. 

Magic Wand. The magic wand (separating implication) A --∗ B expresses the “minimal sufficient” 

difference between all the pairs of the states that satisfy A and B respectively. In other words, an 

assertion C is a sufficient difference, or footprint we call it later, if all states 𝜎 which can be split 

into two compatible states  𝜎𝐴 and  𝜎𝐶 such that A and C hold in  𝜎𝐴 and  𝜎𝐶 respectively, B holds 

in 𝜎; A--*B represents one such C which can be inferred from any of them. It is worth noting that 

the “the minimum sufficient” difference is not always possible in the case of disjunction. This logic 

connective is useful for representing part of data structures. 

Package Operation. Due to the quantification over states in the semantics of the magic wand, its 

fully automatic verification is undecidable in the presence of variables and other logical features 

[7]. Thus, we need to provide user guidance to direct the verifier’s proof search by ghost operations 

[8], which rewrite the verification state but don’t change the program state. The footprint of A--*B 

is part of the current state and satisfies B combined with any state satisfying A; the package 

operation calculates a footprint, removes it from the current state, keeps it from any modification, 

and records the wand instance; the apply operation removes the recorded wand instance, combines 

the current state with the footprint, and gets the assertion B if A holds in the current state. 

Current state of implementation. The current package algorithm in Viper corresponds to the 

package logic in [9]. The logic provides a sound and complete framework for describing the 



package algorithm. Every package algorithm corresponds to a proof search strategy in the package 

logic. However, the implementation has not been combined with other advanced features in Viper 

now, including in particular quantified permissions on the left- and right-side of the magic wand. 

 

2. Tasks 
 

The aim of this project is to improve the support for magic wands in Viper. More precisely, it 

focuses on supporting the combination of the magic wand with other separation logic features and 

improving its implementation or documentation in Carbon. The stated goals can be achieved by 

the following steps: 

 

Core Goals 

1. Combine with quantified permissions [10]: Quantified permissions on the right or left side of 

the magic wand will require nested quantification inside the implementation of the magic wand. 

The fact that the footprint possibly takes the part or whole quantified permissions of one or 

more quantified permissions makes the algorithm harder. 

2. Combine with abstract predicates [11]: The package algorithm should keep track of known-

folded permissions recording the previously known heap locations even if its corresponding 

permission is packaged into the footprint.  

3. Improve implementation and documentation of the magic wand. 

 

Extension Goals 

Improve the package algorithm with one or more of the following: 

a) Fractional magic wands [12]: This requires the extension of the state to support more than 

full permission in the heap. 

b) Combine with different strategies for packaging: We should provide different choice 

functions when taking permission from the current remaining state. 

c) Nested package operation: To guarantee that the combination of magic wand A --∗ B with 

any state satisfying A satisfies B, we need to consider a set of all states satisfying A. The 

nested package operation requires that the algorithm considers a set of sets of states 

satisfying A.   
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