
Automating Magic Wands with Advanced Features
Practical Work Project Description

YIQUN LIU

Supervisor: Thibault Dardinier

1. Introduction

Viper. Viper (verification infrastructure for permission-based reasoning) [1] is a language and suite

of tools, providing an architecture that supports the expressive separation logic and its automatic

verification natively. This common architecture simplifies the development of new verifiers and

verification techniques via translation of the source language to Viper. The current verifiers based

on this include Gobra [2] for Go, Nagini [3] for Python, and Prusti [4] for Rust. Viper has two

kinds of verification backends: symbolic execution and verification condition generation

translating Viper programs to Boogie [5].

Separation Logic. The separation logic in Viper describing the properties of the program is

separation logic [6], which is an extension of Hoare logic that permits local reasoning about low-

level heap-manipulating imperative programs that use shared mutable data structures. Traditionally,

the program state contains two components: a stack, mapping variables to values as in Hoare logic,

and a heap, mapping addresses to values with permission amounts of mutable data structure. The

permission amount controls the accessibility of addresses. 1 represents the exclusive write

permission and larger than 0 a shared read permission. This can frame heap-dependent information

and prove the absence of aliasing and data racing.

Quantified Permissions. The access pattern of the data structure consisting of a set of heap

locations is orderly or random. For example, in the case of a linked list, the accessibility of the

current node must be acquired before that of the next node. Recursive predicates specify this

orderly relation between accessibility of heap locations in the data structure via information hiding.

For data structures with random access like arrays, quantified permissions embody their

unbounded sets of accessibility of heap locations.

Magic Wand. The magic wand (separating implication) A --∗ B expresses the “minimal sufficient”

difference between all the pairs of the states that satisfy A and B respectively. In other words, an

assertion C is a sufficient difference, or footprint we call it later, if all states 𝜎 which can be split

into two compatible states 𝜎𝐴 and 𝜎𝐶 such that A and C hold in 𝜎𝐴 and 𝜎𝐶 respectively, B holds

in 𝜎; A--*B represents one such C which can be inferred from any of them. It is worth noting that

the “the minimum sufficient” difference is not always possible in the case of disjunction. This logic

connective is useful for representing part of data structures.

Package Operation. Due to the quantification over states in the semantics of the magic wand, its

fully automatic verification is undecidable in the presence of variables and other logical features

[7]. Thus, we need to provide user guidance to direct the verifier’s proof search by ghost operations

[8], which rewrite the verification state but don’t change the program state. The footprint of A--*B

is part of the current state and satisfies B combined with any state satisfying A; the package

operation calculates a footprint, removes it from the current state, keeps it from any modification,

and records the wand instance; the apply operation removes the recorded wand instance, combines

the current state with the footprint, and gets the assertion B if A holds in the current state.

Current state of implementation. The current package algorithm in Viper corresponds to the

package logic in [9]. The logic provides a sound and complete framework for describing the

package algorithm. Every package algorithm corresponds to a proof search strategy in the package

logic. However, the implementation has not been combined with other advanced features in Viper

now, including in particular quantified permissions on the left- and right-side of the magic wand.

2. Tasks

The aim of this project is to improve the support for magic wands in Viper. More precisely, it

focuses on supporting the combination of the magic wand with other separation logic features and

improving its implementation or documentation in Carbon. The stated goals can be achieved by

the following steps:

Core Goals

1. Combine with quantified permissions [10]: Quantified permissions on the right or left side of

the magic wand will require nested quantification inside the implementation of the magic wand.

The fact that the footprint possibly takes the part or whole quantified permissions of one or

more quantified permissions makes the algorithm harder.

2. Combine with abstract predicates [11]: The package algorithm should keep track of known-

folded permissions recording the previously known heap locations even if its corresponding

permission is packaged into the footprint.

3. Improve implementation and documentation of the magic wand.

Extension Goals

Improve the package algorithm with one or more of the following:

a) Fractional magic wands [12]: This requires the extension of the state to support more than

full permission in the heap.

b) Combine with different strategies for packaging: We should provide different choice

functions when taking permission from the current remaining state.

c) Nested package operation: To guarantee that the combination of magic wand A --∗ B with

any state satisfying A satisfies B, we need to consider a set of all states satisfying A. The

nested package operation requires that the algorithm considers a set of sets of states

satisfying A.

References

[1] Müller, P., Schwerhoff, M. and Summers, A.J. (2015) ‘Viper: A verification infrastructure for

permission-based reasoning’, Lecture Notes in Computer Science, pp. 41–62. doi:10.1007/978

-3-662-49122-5_2.

[2] Wolf, F.A. et al. (2021) ‘Gobra: Modular Specification and verification of go programs’,

Computer Aided Verification, pp. 367–379. doi:10.1007/978-3-030-81685-8_17.

[3] Eilers, M. and Müller, P. (2018) ‘Nagini: A static verifier for python’, Computer Aided

Verification, pp. 596–603. doi:10.1007/978-3-319-96145-3_33.

[4] Astrauskas, V. et al. (2022) ‘The Prusti Project: Formal verification for rust’, Lecture Notes in

Computer Science, pp. 88–108. doi:10.1007/978-3-031-06773-0_5.

[5] Leino, K.R.M. (2018) This is Boogie 2, Microsoft Research. https://www.microsoft.com/en-

us/research/publication/this-is-boogie-2-2/

[6] Reynolds, J.C. (2002) ‘Separation logic: A logic for shared mutable data structures’,

Proceedings 17th Annual IEEE Symposium on Logic in Computer Science. doi:10.1109/lics.

2002.1029817.

[7] Brochenin, R., Demri, S. and Lozes, E. (2012) ‘On the almighty wand’, Information and

Computation, 211, pp. 106–137. doi:10.1016/j.ic.2011.12.003.

[8] Schwerhoff, M., Summers, A. J. (2015). ‘Lightweight suppoert for magic wands in an

automatic verifier’, In 29th European Conference on Object-Oriented Programming,Volume

37, pp. 614-638. doi: 10.4230/LIPIcs.ECOOP.2015.614

[9] Dardinier, T. et al. (2022) ‘Sound automation of magic wands’, Computer Aided

Verification, pp. 130–151. doi:10.1007/978-3-031-13188-2_7.

[10] Müller, P., Schwerhoff, M. and Summers, A.J. (2016) ‘Automatic verification of iterated

separating conjunctions using symbolic execution’, Computer Aided Verification, pp. 405-

425. doi:10.1007/978-3-319-41528-4_22.

[11] Heule, S. et al. (2013) ‘Verification condition generation for permission logics with abstract

predicates and abstraction functions’, ECOOP 2013 – Object-Oriented Programming, pp.

451–476. doi:10.1007/978-3-642-39038-8_19.

[12] Dardinier, T., Müller, P. and Summers, A.J. (2022) ‘Fractional Resources in unbounded

separation logic’, Proceedings of the ACM on Programming Languages, 6(OOPSLA2), pp.

1066–1092. doi:10.1145/3563326.

