
Advisors:

Arsenii Rudich
Prof. Dr. Peter Müller

Master’s Thesis

Implementing Uniqueness and Ownership

Transfer in the Universe Type System

Yoshimi Takano
ytakano@ethz.ch

Software Component Technology Group
Department of Computer Science

ETH Zurich

http://sct.inf.ethz.ch/

September 2006 – March 2007

mailto:ytakano@ethz.ch
http://sct.inf.ethz.ch/

Ownership is a powerful concept to structure the object store and to control aliasing
and modifications of objects. Most extant ownership models do not support dynamic own-
ership transfers, which renders some object oriented-programming idioms inexpressible.
Examples include the Abstract Factory design pattern and merging the representations of
two linked lists. This report presents a solution to extend the Universe type system with
ownership transfers and describes an implementation thereof.

Contents

1 Introduction 9

1.1 Setting the Scene . 9
1.1.1 Ownership Type Systems . 9
1.1.2 Ownership Transfer . 10
1.1.3 Project Goals . 10
1.1.4 Overview . 10

1.2 The Universe Type System . 11
1.2.1 List Example . 12

2 Approach 15

2.1 Uniqueness and its Variants . 15
2.1.1 Unique Variables . 16
2.1.2 Working with Unique Variables . 16
2.1.3 External Uniqueness . 17

2.2 Universes Blending in . 18
2.2.1 Controlled Clusters . 19
2.2.2 Ownership Transfer . 21
2.2.3 Cluster Alias Controlling . 22

2.3 Example Ownership Transfer . 23
2.4 Summary . 23

3 Formalization 27

3.1 Toy Language Syntax . 27
3.2 Clusters . 31
3.3 Universe Modifier Translation . 32

Contents

3.4 Lookup Functions . 34
3.4.1 Type Projection Functions . 35

3.5 Type Combinator . 35
3.6 Assignable-To Relation . 36
3.7 Ternary Logic . 37
3.8 Static Data Flow Analysis – Introduction . 39

3.8.1 Analysis Values and Queries . 39
3.8.2 Analysis Transition Functions . 40

3.9 Analysis Value Transition Rules . 41
3.10 Type Rules . 45

4 Data Flow Analysis 49

4.1 Syntax of the Analysis Language . 50
4.2 Flow Graphs . 52
4.3 Analysis Variables of Interest . 62
4.4 Partition Sets and Analysis Definition . 64

4.4.1 Set Partitions . 64
4.4.2 Analysis Values . 68
4.4.3 Queries . 69
4.4.4 Partition Invariants . 71
4.4.5 Transition Functions . 72
4.4.6 Analysis Definition . 74
4.4.7 Preconditions and Early Type Checking 75

4.5 Abstract Analysis Definition . 77
4.5.1 Abstract Analysis Values . 77
4.5.2 Abstract Transition Functions . 78
4.5.3 Abstract Analysis Definition . 79

4.6 Partition Sets Revisited . 80
4.7 Analysis Solver Algorithms . 80

4.7.1 Standard Worklist . 81
4.7.2 Reverse Postorder Worklist . 84
4.7.3 Strongly Connected Components Worklist 86

4.8 Alias Matrices . 88
4.8.1 Alias Matrices as Monotone Framework 92
4.8.2 Alias Matrices as Conservative Approximation of Partition Sets . . . 93

4.9 Minimized Partition Sets . 97
4.10 Three Different Kinds of Analyses – Summary 101

6

Contents

4.10.1 Hierarchical Solver Approach . 102
4.11 Benchmarks . 103
4.12 Existing Points-To Analyses . 108

5 Implementation and Examples 113

5.1 MultiJava and JML . 113
5.2 New Command Line Options . 114
5.3 Type Checking . 114

5.3.1 Parsing . 116
5.3.2 Clusters . 116
5.3.3 Universe Modifier Translation . 116
5.3.4 Java Type Checking and Expression Flattening 117
5.3.5 Checking Uniqueness . 118
5.3.6 Purity . 121
5.3.7 Miscellaneous . 122

5.4 Static Data Flow Analysis . 122
5.4.1 Partitions . 123
5.4.2 Partition Sets . 124
5.4.3 Alias Matrices . 125
5.4.4 Analysis Solver . 125
5.4.5 Package Organization . 126

5.5 Testing . 126
5.6 Code Examples . 126

5.6.1 Abstract Factory Pattern . 126
5.6.2 List Representation Merging . 128
5.6.3 Construction and Traversal of a rep Tree 128
5.6.4 Decorator Design Pattern . 129
5.6.5 Visitor Design Pattern . 129

6 Conclusion and Future Work 131

6.1 Conclusion . 131
6.2 Future Work . 132

A Code Examples 135

A.1 Abstract Factory Design Pattern . 135
A.2 Merging List Representations . 138
A.3 rep Tree Construction and Traversal . 142

7

Contents

A.4 Decorator Design Pattern . 145

8

1
Introduction

1.1 Setting the Scene

1.1.1 Ownership Type Systems

The concept of object ownership allows programmers to structure the object store hier-
archically and to control aliasing and access between objects. Existing ownership models
share fundamental concepts: Each object has at most one owner object. The set of all
objects with the same owner is called a context. The root context is the set of objects with
no owner. The ownership relation constitutes a tree order. The set of all object owned by
an object (directly or indirectly) is called the object’s representation.

1.1 Setting the Scene

1.1.2 Ownership Transfer

As part of a recent Master’s Thesis [19], three ownership type systems (the Universe type
system [17, 11], Ownership Types [4] and Ownership Domains [1]) have been evaluated
for compatibility with object-oriented design patterns. One of the conclusions arrived at
was that many design patterns require changing the owner of certain objects after their
creation. This feature is missing in all of the reviewed ownership type systems. For
instance, in the Abstract Factory pattern, it is desirable for the client to be the owner
of the created product but not of the factory, since the factory, usually serving multiple
clients, should be globally accessible from any ownership context. Other design patterns
that may benefit from ownership transfers include the Composite pattern, the Decorator
pattern and the Visitor pattern.

Another common application of ownership transfer is the combination of the repre-
sentations of different objects. A prominent example, often attributed as a challenge for
ownership type systems, is the concatenation of the encapsulated nodes of two linked
lists.

In summary, it can be concluded that ownership transfer greatly enhances the expres-
siveness of ownership type systems.

1.1.3 Project Goals

The aim of this project is the implementation of a smooth ownership transfer model for the
Universe type system. The solution should be intuitive and avoid additional annotation
overheads, while still being expressive enough to handle the usual examples, such as the
Abstract Factory design pattern and the merging of list representations.

1.1.4 Overview

After continuing this chapter with the necessary background on the Universe type system,
Chapter 2 introduces the chosen ownership transfer model in an informal way. In Chap-
ter 3, the type system is formalized for a simplistic toy language, making use of a static
data flow analysis, which is then described in detail in Chapter 4. Chapter 5 is dedicated
to the implementation of the proposed type system as part of the MultiJava compiler and
the demonstration of some actual code examples. Finally, we present our conclusions in
Chapter 6.

10

1 Introduction

1.2 The Universe Type System

The Universe type system [17, 11] is an ownership type system that enforces the owner-
as-modifier discipline: An object o may be referenced by any other object, but reference
chains that do not pass through o’s owner must not be used to modify o. This allows
owner objects to control state changes of owned objects and thus maintain invariants.
The owner-as-modifier discipline imposes weaker restrictions than the alternative owner-
as-dominator discipline, which requires that all reference chains from an object in the root
context to an object o in a different context go through o’s owner. The owner-as-modifier
discipline enables the Universe type system to handle common implementations where
objects are shared between objects, such as collections with iterators.

Ownership Modifiers. A type in the Universe type system consist of an ownership mod-
ifier and a class name. The ownership modifier expresses object ownership relative to the
current receiver object this. A program may contain the ownership modifiers peer, rep
and any1.

� peer expresses that an object has the same owner as this,

� rep expresses that an object is owned by this and

� any expresses that an object may have any owner.

The owner-as-modifier discipline is enforced by disallowing modifications of objects through
any references. I.e., an expression of an any type may be used as receiver of field reads
and calls to side-effect free (pure) methods, but not of field updates or calls to non-pure
methods.To check this property, side-effect free methods are required to be annotated with
the keyword pure. Due to the usage restrictions, any references can also be perceived as
read-only references.

Type Combinator. The ownership modifier combinator outlined in Table 1.1 is used to
determine the resulting ownership modifier of transitive accesses such as field accesses,
method parameters/results and array element accesses. The special ownership modifier
this acts as ownership modifier of the this reference. The this modifier cannot be
accessed directly by a user, but it is used to simplify the formalization.

1In earlier descriptions and in currently implemented tools, any is called readonly

11

1.2 The Universe Type System

ÂU any peer rep

this any peer rep

any any any any

peer any peer any

rep any rep any

Table 1.1: Universe modifier combinator. The left-hand side argument is given in the
left column, the right-hand side argument is given in the top row.

Subtype Relation. Since the peer and rep modifier are more specific than the any

modifier, they are both defined to be a subtype of any. However, they are unrelated to
each other. A type is a subtype of another type iff both the class components and the
ownership modifier components are respective subtypes.

Object Creation. The owner of an object is to be specified at creation time by either a
peer (the object will have the same owner as this) or a rep modifier (the object will be
owned by this).

1.2.1 List Example

As an example, a linked list with an associated iterator in the Universe type system is typ-
ically typed according to the skeleton in Listing 1.1. Figure 1.1 depicts the corresponding
ownership contexts.

12

1 Introduction

1 class LinkedList {

2 rep Node first, last;

3 }

4

5 class Node {

6 any Object element;

7 peer Node next, prev;

8 }

9

10 class Iterator {

11 peer LinkedList list;

12 readonly Node current;

13 }

Listing 1.1: Linked list with iterator in the Universe type system.

`

n1 n2 n3 n4

o1 o2 o3

i

Figure 1.1: Linked list with iterator in the Universe type system. The nodes ni are owned
by the list object `. The iterator object i is in the same context as the list ob-
ject and maintains a read-only reference (dashed) into the list representation
(solid rectangle).

13

2
Approach

This chapter begins with brief reviews of some extant concepts related to the notion of
unique variables. Subsequently, an informal description of the approach taken to integrate
ownership transfers into the Universe type system is presented. The techniques used are
based on the idea of (external) uniqueness and the concept of alias burying and make use
of a static, intra-procedural program analysis.

2.1 Uniqueness and its Variants

The following subsections present a short review of existing concepts related to alias
management with unique variables and sets them in context with the list representation
merging problem.

2.1 Uniqueness and its Variants

2.1.1 Unique Variables

The concept of unique variables (also known as linear variables) has been proposed by
many researchers [22, 13, 3, 16] as an approach to managing aliasing in object-oriented
programs. In its purest form, the uniqueness invariant requires that a unique variable is
either null or else its value is the sole reference to an object, which is then referred to as
an unshared object. The term “unique reference” is used alongside “unique variable” to
emphasize the pointer value of a unique variable.

Note that in the Universe type system, any references do not need to be restricted, as
they may not be used for modifications.

Clearly, an unshared object can be safely transfered into another ownership context,
since we can be sure that there are no other references pointing to the object that might
end up being ill-typed after the transfer. Consequently, an object to be transfered should
be referenced by a unique variable.

In relation with the list merge example, however, plain unique variables would be of
no big help, since the first node may not only be referenced by the list object, but also
by its successor node (cf. Figure 1.1). This aliasing complicates the maintenance of the
uniqueness invariant.

2.1.2 Working with Unique Variables

Once having described the uniqueness invariant, we naturally would like to maintain it
when working with unique references.

Destructive Reads. One possible way to achieve this is to employ destructive reads:
A unique variable is atomically nullified (set to null) whenever it is read. Consider
Figure 2.1(a) for an example, where we suppose that u is a unique variable. Right after
the value of u is obtained to perform the method call, its value becomes null.

It is immediate that this strategy is sufficient to prevent a unique variable from ever
being aliased, since creating an alias necessarily involves reading the unique variable.
Though being an easy concept both to understand and implement, destructive reads are
unintuitive for a programmer and, even worse, the semantics of the programming lan-
guage is changed. Moreover, destructive reads may cause the source code to get more
complicated when it comes to restore nullified variables.

16

2 Approach

Alias Burying. Another approach for maintaining uniqueness is the notion of alias bury-
ing [5], which can do without destructive reads. The underlying idea is that aliases of a
unique variable do not harm if they are not used anymore to access the referenced object
at the moment the unique variable is read again.

Have a look at the code fragment in Figure 2.1(b) for an example, where u is supposed
to be a unique variable. On line 2, an alias of the unique variable u is created, which in
fact violates the uniqueness invariant. On line 4, the unique variable u is read again. The
crucial observation is that if we are sure that the alias o is not used anymore to access the
object again, then this has the same effect as though o did not exist at all. In consequence,
if o is dead before line 4 in the example, then it might as well be “buried” to enforce that
it will not be read again. This explains the term “alias burying”, the intuition being that
dead aliases can safely be buried.

Another way one can imagine the concept of alias burying is related to access rights:
instead of having destructive reads, each alias of a unique variable is stripped off the
right to access the unshared object. In other words, the alias is still there, but it cannot
be used it anymore to access the unshared object (the variable is marked as unusable).
The uniqueness invariant may be violated – but only in a safe way, in the sense that the
invariant holds up whenever it is interesting, namely when a unique variable is read.

In summary, we need to make sure that all existing aliases of a unique variable are not
used anymore to access the unshared object, or, equivalently, no buried variable (or no
variable marked as unusable) must be read. To statically ensure this property, some extra
annotations in method signatures and a data flow analysis are used. Among others, each
method needs an annotation that indicates which variables it may read.

The benefit of the alias burying approach is the fact that there is no need for destructive
reads. On the other hand, as alias burying relies on program analysis, the strength of this
approach is sensitive to the precision and the efficiency of the underlying data flow anal-
ysis. Moreover, apart from being an overhead per se, the effect annotations on methods
may introduce an abstraction problem in case of improper information hiding.

2.1.3 External Uniqueness

External uniqueness [7] loosens the conventional uniqueness constraint, requiring that
there be only one reference to an aggregate of objects from the outside of the aggregate.
Within the aggregate, arbitrary aliasing is allowed. In conjunction with ownership type

17

2.2 Universes Blending in

...

u.m();

// u is null here

...

(a) Desctructive reads.

...

2 o = u; // uniqueness invariant violated

...

4 u.m(); // ok if o is dead here (o is ’buried’)

...

(b) Alias burying.

Figure 2.1: Destructive reads vs. alias burying.

systems, an ownership context can be regarded as defining an externally unique object
aggregate. I.e., the following uniqueness invariant is formulated: An externally unique
reference is the only (read-write) reference crossing an ownership context boundary from
the outside to the inside. Note that this contrasts rep references in the Universe type sys-
tem, where the owner might have more than one rep reference into its representation.

Applying the idea of external uniqueness to the list merging example, the list object
would simply maintain an externally unique reference into its representation.

In summary, external uniqueness allows us to deal with object aggregates as opposed
to only single objects. However, the solution proposed in the external uniqueness publi-
cation relies on ownership type systems that enforce the owner-as-dominator discipline.
Moreover, it still resorts to destructive reads and additional annotations so as to maintain
the (external) uniqueness invariant.

2.2 Universes Blending in

This section describes how the concepts of externally unique clusters of objects and alias
burying can be applied in conjunction with the Universe type system to achieve a flexible

18

2 Approach

o

Figure 2.2: The representation of object o (solid rectangle) partitioned into two clusters
(dotted rectangles). Dashed arrows represent read-only references, solid
arrows denote read-write references.

ownership transfer model without the need for destructive reads and without the down-
sides of the original alias burying proposal. The presented approach is based on work by
Arsenii Rudich and Peter Müller.

2.2.1 Controlled Clusters

As with external uniqueness, the basic idea is still to regard the representation of an object
as an externally unique aggregate. However, to support the quite natural case where only
a part of the object representation is meant to be transfered (think of, e.g., a factory that
maintains encapsulated internal state objects), we partition an ownership context into
so-called clusters.

Clusters act as the units of an ownership transfer: they are transfered always as a
whole. There is one special cluster, the this-cluster, that may not be transfered. Thus, the
this-cluster corresponds to the usual representation of the owner object, which renders
the model is backward compatible to the original Universe type system in case there are
no transferable clusters.

Clusters basically correspond to externally unique aggregates: there may be arbitrary
aliasing within a cluster, but external references into a cluster should be controlled. Ul-
timately, we need to make sure that there are no remaining external references pointing
into a cluster that may end up ill-typed when a cluster is transfered. Thus, in contrast to
external uniqueness, multiple read-write references into a cluster are allowed, as long as

19

2.2 Universes Blending in

it is guaranteed that at the moment of a transfer, there is indeed only a single reference
pointing into the transfered cluster. In any case, any references are not restricted.

Cluster Declaration. There is a new ownership modifier, uniq, that may only be used
in field declarations. A field declared uniq can be seen as a special kind of rep reference
that additionally defines a transferable cluster. Moreover, the field points into the cluster
it defines. In contrast, a field declared rep is interpreted as pointing into the this-cluster.
Furthermore, the refined modifier syntax rep[f] is used to declare a field that points into
the cluster defined by the field f. f must be declared uniq in the enclosing class (and
not in a superclass). Simply put, this is motivated by the desire for modular checking, as
a class needs to be aware of all fields that point into a certain cluster (this will become
clearer in later sections).

Method Parameters and Return Values. The refined modifier syntax rep[f] can
also be used in method signatures to denote references into a cluster defined by the field
f, which, again, must be declared uniq in the enclosing class. As for fields, a plain
rep modifier in a method signature is interpreted as a reference into the this-cluster.
In anticipation, there will be an additional modifier, free, that can be used in method
signatures. This is explained below.

Subtyping and Assignment Compatibility. Subtyping and assignment compatibility1

among rep references that point into clusters is defined as follows: a reference pointing
into a cluster C f is a subtype of and assignable to a reference pointing into a cluster Cg iff
C f = Cg .

Cluster Inference for Local Variables. Local variables that point into the representa-
tion of this are to be declared solely with a plain rep modifier (as opposed to a rep[f]

modifier). The actual cluster the variable may point into is statically inferred (by the
data flow analysis described later). Consequently, a local rep variable can be seen as
pointing into a “wildcard” cluster. Note that this contrasts a plain rep modifier in field
declarations and method signatures, where it is interpreted as denoting a reference into
the this-cluster. The cluster inference for local variables frees the user from the burden

1Refer to Section 3.6 for a more detailed explanation of the differences between the subtype relation and
the assignable-to relation.

20

2 Approach

of unnecessary cluster details in conjunction with local variables. What is more, clus-
ter inference for local variables leads to a higher expressiveness, as demonstrated by the
fragment

if (...) x = f; else x = g;

where x is a local variable and f and g are fields pointing into distinct clusters.

2.2.2 Ownership Transfer

Capture and Release. An ownership transfer of a cluster happens in two steps: first,
the cluster is released by the current owner, making it an unowned, a or free cluster. A
free cluster may then be captured into an ownership context to complete the ownership
transfer.

free Modifier. There is another new Universe modifier, free, which may solely be used
in declarations of formal method parameters and return types. The free modifier denotes
a reference to a released (or free) cluster, with the additional property that it is the only
read-write reference to the free cluster whatsoever. Thus, a free reference is “really
unique”, as opposed to a reference into a transferable cluster, where there could be other
references (from the stack of from the heap) pointing into it. This could be confusing
since transferable clusters are declared with the keyword uniq.

The Universe modifier combinator for the free modifier is defined as follows:

x ÂU free := free

freeÂU x := any,

where x stands for any Universe modifier and free ÂU free is defined to yield free.
Combining x with a free modifier can be seen as passing on an already released cluster.
Hence, the resulting modifier is again free.

Implicit Transfers. To keep the notational overhead small, the capture and release op-
erations will take place implicitly. It has yet to be decided as future work at which point
exactly implicit capturings, releasing and ownership transfers happen. To give an exam-
ple, an implicit ownership transfer (including both a releasing and a capturing) certainly
happens in the following two cases:

21

2.2 Universes Blending in

� An assignment x = y; where y is of a rep type and x is of a peer type releases the
cluster pointed into by y and captures it into the peer context of this.

� An assignment x.f = y; where x is of a rep[g] type, f is a peer field and y is of
a rep[g] type (where g 6= h) releases the cluster pointed into by y and captures it
into the cluster pointed into by x, thereby merging the clusters.

2.2.3 Cluster Alias Controlling

As hinted at above, to safely transfer a cluster, we must be able to control external refer-
ences that point into it, in particular at the moment the cluster is released.

Unusable Variables. In analogy to the concept of alias burying, we maintain a set of
unusable variables that must not be read. The following set of rules describes the manip-
ulation of the set of unusable variables:

� Whenever a (possible) release operation is inferred, all variables that point into the
released cluster are marked as unusable. This makes sure that no aliases are used
to access the released cluster again, corresponding to the state of a really externally
unique cluster at the moment of the release operation.

� Before a non-pure peer method call, all local variable pointing into a non-free clus-
ter are marked as unusable. The reason for this is to ensure that there be no ref-
erences from the caller’s stack frame into any cluster that might be released during
the called method.

� Reading a free variable marks it as unusable.

� Assigning to a variable marks it as not unusable (anymore).

Note that rep method calls are of no concern, since, by virtue of the owner-as-modifier
discipline, there cannot be any “upgoing” read-write references.

Section 3.9 formalizes the above rules, using a conservative approximation as to when
a release operation takes place (i.e., there may be more variables marked as unusable
than would actually be necessary).

22

2 Approach

Static Data Flow Analysis. As with alias burying, a static, intra-procedural data flow
analysis is employed to check the alias constraints. In contrast to alias burying, there
will be no need for extra effect annotations on methods. Simply put, the reason for
this lies in the additional assurances guaranteed by owner-as-modifier property, e.g., as
mentioned above, “upgoing” reads during a rep method call can only be made through
any references. The data flow analysis performs the following checks:

� No unusable variables must be read.

� No fields must be unusable before a non-pure peer method call and upon method
termination.

The second check ensures a valid field state in the sense that every field is usable in the
pre and post state of a non-pure peer method invocation.

2.3 Example Ownership Transfer

Figure 2.3 outlines the single steps of an ownership transfer, resulting from an assignment
of the rep variable x to a the field g. Note that without line 9, field f would be unusable
upon the termination of method m, which would be illegal.

2.4 Summary

The notion of external uniqueness and the ideas from alias burying are integrated into
the Universe type system. An object representation is partitioned into clusters, which act
as the units of (implicit) ownership transfers. External references into clusters are con-
trolled using a static, intra-procedural data flow analysis. There is no need for destructive
reads or additional ownership transfer annotations (i.e., explicit release and capture state-
ments). Moreover, on the strength of the owner-as-modifier discipline, no method effects
need to be declared either.

The following itemization summarizes the possible usages of Universe modifiers that
denote references pointing into the representation of this (as opposed to peer and any

references):

� uniq C f: Defines a new transferable cluster associated with the field f. May only
be used in field declarations.

23

2.4 Summary

1 class C {

2 uniq C f;

3 peer C g;

4

5 void m() {

6 rep C x = f;

7 rep C y = f.g;

8 g = x; // transfer!

9 f = new rep C();

10 }

11 }

(a) Source code.

o
f

g

x

y

(b) State before line 8.

o

f

g

x

y

(c) The cluster is released.

g

f
x

y

o

(d) All references pointing into the re-
leased cluster are made unusable,
depicted by dashed arrows.

g

f
x

y

o

(e) State after line 8. The cluster is
captured into the peer context of
o, thereby merged. This completes
the ownership transfer.

f
g

x

y

o

(f) State after line 9, with field f

re-assigned and not unusable any-
more.

Figure 2.3: Example ownership transfer. Ownership contexts are depicted by solid rect-
angles, transferable clusters by dotted rectangles. The rectangle to the right
symbolizes the stack. o is the receiver object.

24

2 Approach

� rep[f]: Denotes a reference pointing into the cluster defined by the field f. Field f

must be declared uniq in the enclosing class. May only be used in field declarations
and method signatures.

� free: Denotes a released (free, unowned) cluster. May only be used in method
signatures.

� rep: The interpretation depends on context of usage. For fields and in method
signatures, the modifier denotes a reference pointing into the this-cluster. For local
variables, it denotes a reference pointing into a “wildcard” cluster, where the actual
cluster will be inferred by the data flow analysis.

25

3
Formalization

This chapter formalizes the presented type system for a simplistic toy language, while
introducing the static data flow analysis on a high level. The analysis in turn is fully
covered in the subsequent chapter.

3.1 Toy Language Syntax

To give a formalization of the type system, we employ a simple, minimalistic toy language.
We will describe the following syntactic categories:

3.1 Toy Language Syntax

P ∈ TProg programs

CDecl ∈ TCDecl class declarations

MDecl ∈ TMDecl method declarations

W ∈ TPure purity modifiers

S ∈ TStmt statements

T f , Tp, Tr , Tl , Tn, Tc ∈ TType field types, formal parameter types, re-
turn value types, local variable types, ob-
ject creation types, types in cast state-
ments

m f , mp, mr , ml , mn, mc ∈ TMod Universe modifiers for field types, formal
parameter types, return value types, local
variable types, object creation types and
types in cast statements

Further, we make use of the following meta variables:

C , D ∈ TClass class names (including Object)

m ∈ TMethod method names

f ∈ TField field names

x , y, z ∈ TLoc local variable names (including this and
result) and formal parameter names

We use X as shortcut for X1 · · · Xk, where X stands for CDecl or MDecl. Similarly, X Y is
to be read as X1 Y1; . . .; Xk Yk; (note the semicolons), where X ∈ TType and Y ∈ TLoc
or Y ∈ TField. The syntax is given in Table 3.1

Let us further remark and comment some aspects:

� Except for the sequential composition, we only consider elementary statements. I.e.,
there are neither loops, nor branches, nor any other control flow constructs.

28

3 Formalization

P ::= CDecl

CDecl ::= class C extends D { T f f MDecl }

MDecl ::= W Tr m(Tp x) { Tl y S }

W ::= pure

| nonpure

S ::= x = y

| x = null

| x = new Tn

| x = y. f

| y. f = x

| x = y.m(z)

| x = (Tn) y

| S1; S2

Ti ::= mi C , for i ∈
�

f , p, r, l, n, c
	

m f ::= any | peer | rep[f] | uniq

mp ::= any | peer | rep[f] | free

mr ::= mp

ml ::= any | peer | rep

mn ::= peer | rep

mc ::= any | peer | rep[f] | rep

Table 3.1: Syntax of the toy language.

29

3.1 Toy Language Syntax

� There are no nested expressions. Any program can be transformed to this form via
introducing additional local variables which represent temporary values.

� We suppose that any method has exactly one parameter. It is not hard to generalize
this case for an arbitrary number of parameters.

� We impose the rule that all fields be declared at the beginning of a class and, like-
wise, all local variables be declared at the beginning of a method. A program can
be transformed to this form by collecting and rearranging the declarations.

� For each method call, the special variable this ∈ TLoc denotes a reference to the
current receiver object, as in Java. Note that there are no static methods in the toy
language.

� Instead of using a return statement to return the result of a method invocation, we
use a distinguished variable result ∈ TLoc to which the return value is assigned.
This also means that a method cannot terminate prematurely.

� We assume a special class Object ∈ TClass marking the root of the class hierarchy.

� We suppose that all classes, fields and local variables have globally unique names.
In particular, the sets TClass, TMethod, TField and TLoc are pairwise disjoint.

� If methods have equal names, then they have equal signatures. In other words,
there is no method overloading.

� For simplicity, method overriding is ignored.

� A new statement is just concerned with the creation of a new object; no initializer
method (constructor) is called.

� The syntax draws a distinction between Universe modifiers and types used in differ-
ent places, namely:

– field declarations (m f and T f),

– formal method parameters return values (mp and Tp, mr and Tr , respectively),

– local variable declarations (ml and Tl),

– new statements (mn and Tn), and

– cast statements (mc and Tc).

30

3 Formalization

This way, the allowed usages of Universe modifiers are already enforced by the syn-
tax definition. As a presumably more concise alternative, the possible occurrences
of Universe modifiers are summarized in Table 3.2. Note that the uniq and free

modifiers can exclusively be used in field declarations and for method parameters
and return values, respectively.

any peer rep rep[f] uniq free

Field declarations Ø Ø Ø Ø Ø ×
Formal parameters and return values Ø Ø Ø Ø × Ø
Local variable declarations Ø Ø Ø × × ×
new statements × Ø Ø × × ×
Cast statements Ø Ø Ø Ø × ×

Table 3.2: Universe modifiers in the toy language.

3.2 Clusters

Let the set TClust represent the domain for possible cluster names to identify clusters. We
assume TClust to be disjoint from each of TClass, TMethod, TField and TLoc so as to
guarantee globally unique identifiers.Further, let the special cluster name Clthis ∈ TClust
denote the this-cluster.

As mentioned above, each field that is declared uniq defines one distinguished cluster.
We assume an injective function

definedCl: TField→ TClust

which returns the name of cluster that is defined by a given field name. The result is
undefined if the field is not declared uniq.

The function definedCls: TClass→ 2TClust then yields the clusters defined by a class C
or a superclass (where the symbol denotes a “don’t care” placeholder):

definedCls(Object) =
�

Clthis
	

class C extends D { . . .; uniq f ; . . . }

definedCls(C)⊇
�

definedCl
�

f
�	

∪ definedCls(D)

31

3.3 Universe Modifier Translation

Note that the this-cluster Clthis is contained in definedCls(C) for every class C .

3.3 Universe Modifier Translation

In the toy language, there are the following Universe modifiers:

TMod= {this,any,peer,rep,uniq,free} ∪
�

rep[f]: f ∈ TField
	

,

where this corresponds to the Universe modifier of the this reference. I.e., the this

reference has type T = this C , where C is the class declaring the method. A user cannot
access the this modifier directly, but it will be used to simplify the formalization.

To represent the target clusters that are associated with each occurrence of a rep,
rep[f], uniq and free modifier in a program in the toy language, we perform a transla-
tion of each Universe modifier in TMod to a Universe modifier in the following set:

CMod :=
�

this, any, peer, rep

?
�	

∪
�

rep

Cl
�

: Cl ∈ TClust
	

.

This can be viewed as a translation of the program from a surface syntax to a core syntax
(CMod is supposed to stand for “core modifiers”). The core modifiers are distinguished
from the surface syntax modifiers in that each rep modifier explicitly denotes its target
cluster. This is either a named cluster Cl ∈ TClust, denoted by rep

Cl
�

, or the wildcard
cluster, denoted by rep

?
�

. The translation is defined as follows:

this 7→ this

any 7→ any

peer 7→ peer

rep 7→

rep

Clthis
�

, for field declarations, formal

parameters and return values

rep

?
�

, otherwise

rep[f] 7→ rep

definedCl
�

f
��

, where f must be declared uniq

in the enclosing class

uniq 7→ rep

definedCl
�

f
��

, where f is the declared field

free 7→ rep

?
�

32

3 Formalization

As explained above, we require that the field f in a rep[f] modifier must be declared
uniq in the enclosing class. The wildcard cluster captures the idea that the actual cluster
of a local variable is unknown and will be inferred. Observe that the free modifier is also
mapped to be pointing into the wildcard cluster ?. This can be interpreted by the fact that
having a reference to a free cluster essentially corresponds to owning the cluster. Hence, it
is of no concern what particular cluster is referenced by a free variable. Furthermore, we
define rep

?
�

6= rep

Cl
�

for any Cl ∈ TClust (which would correspond to ? /∈ TClust).

Note that each field f has one of the type modifiers any, peer or rep

Cl
�

, where Cl ∈
TClust (i.e., a field can never have the type modifier rep

?
�

). In case of a rep

Cl
�

modifier,
the named cluster Cl is also referred to as the cluster associated with the field f .

Once the Universe modifiers have been translated, we will continue to work only with
core Universe modifiers from this point on.

Example 3.1 Assuming Cg to be the cluster defined by field g (i.e., definedCl(g) = Cg),
the following program on the left is translated to the program on the right:

class C extends Object {

rep C f;

uniq C g;

rep[g] h;

free C m(rep C p,

rep[g] C q,

free C r) {

rep C l;

l = new rep C;

result = l;

}

}

class C extends Object {

rep

Clthis
�

C f;

rep

Cg
�

C g;

rep

Cg
�

h;

rep

?
�

C m(rep

Clthis
�

C p,

rep

Cg
�

C q,

rep

?
�

C r) {

rep

?
�

C l;

l = new rep

?
�

C;

result = l;

}

}
�

For a modifier m ∈ CMod, we write m = rep as shortcut for m = rep

?
�

∨m = rep

Cl
�

,
where Cl ∈ TClust. In other words, all we care about is that m is a rep modifier, regardless
of whether m’s cluster is unknown or a named cluster. Conversely though, as noted above,
when we write m= rep

Cl
�

, we always mean that Cl ∈ TClust and m 6= rep

?
�

.

33

3.4 Lookup Functions

3.4 Lookup Functions

This section introduces a couple of lookup functions to access pieces of static information.
The functions are defined by inference rules, and we use the symbol to denote a “don’t
care” placeholder for a syntactic category.

� The function fields: TClass→ 2TField yields the identifiers of all fields that are de-
clared in or inherited by a class C .

fields(Object) = ;

class C extends D { T f f }

fields(C) =
�

f1, . . . , fk
	

∪ fields(D)

� The function fType: TClass×TField→ TType yields the type of a field f as declared
in class C . The result is undefined if f is not declared in C . Since identifiers are
assumed to be globally unique, there is only one declaration for each field identifier.

class C extends { . . .; T f f ; . . . }

fType
�

C , f
�

= T f

� The function mType: TClass× TMethod→ TPure× TType× TType yields the sig-
nature of a method m as declared in class C . The result is undefined if m is not
declared in C . As we do not allow overloading of methods, the method identifier is
sufficient to uniquely identify a method.

class C extends { · · · W Tr m(Tp) { } · · · }

mType(C , m) =
�

W, Tp, Tr

�

� The function mLoc: TClass× TMethod→ 2TLoc yields the names of the local vari-
ables and formal parameters of a method m as declared in class C . The result is
undefined if m is not declared in C .

class C extends { · · · m(x) { Tl y } · · · }

mLoc(C , m) =
�

y1, . . . , yk
	

∪ {x}

� The function ∆: TClass× TMethod→ TLoc→ TType yields the static declaration
environment for a method m as declared in class C . The result is undefined if m is
not declared in C . We use the “maps-to” notation to describe the resulting function.

class C extends { · · · Tr m(Tp x) { Tl y } · · · }

∆(C , m) = {x 7→ Tp, y1 7→ Tl,1, . . . , yk 7→ Tl,k,this 7→ this C,result 7→ Tr}

34

3 Formalization

3.4.1 Type Projection Functions

To access the modifier and class name components of a type T = m C we use the projec-
tion functions mod: TType→ CMod and class: TType→ TClass, respectively:

mod(m C) := m

class(m C) := C

Furthermore, let us introduce the following shortcut given a static declaration environ-
ment Γ: TLoc→ TType and x ∈ TLoc:

Γm(x) :=mod(Γ(x)) .

3.5 Type Combinator

Table 3.3 displays the type combinator ÂU : CMod×CMod→ CMod

ÂU any peer rep

Cl
�

rep

?
�

this any peer rep

Cl
�

rep

?
�

any any any any rep

?
�

peer any peer any rep

?
�

rep

Cl
�

any rep

Cl
�

any rep

?
�

rep

?
�

any rep

?
�

any rep

?
�

Table 3.3: Core Universe modifier combinator.

In a more programmatic view, Table 3.3 can be summarized as follows, where x and y
are to be seen as placeholders for Universe modifiers (the top-down order matters):

thisÂU x = x

peerÂU peer = peer

rep

Cl
�

ÂU peer = rep

Cl
�

rep

?
�

ÂU peer = rep

?
�

x ÂU rep

?
�

= rep

?
�

(3.1)

x ÂU y = any

35

3.6 Assignable-To Relation

The interesting line is (3.1): an arbitrary modifier combined with rep

?
�

returns rep

?
�

again, which corresponds to the free modifier combination described in Subsection 2.2.2.
All other combinations agree with the standard Universe type system

We further introduce an overloaded version of the combinator operator for types (as
opposed to Universe type modifiers), i.e., ÂU : TMod× TMod → TMod. For types T1 =
m1 C1 and T2 = m2 C2, where m1, m2 ∈ CMod and C1, C2 ∈ TClass, it is defined by

T1 ÂU T2 =
�

m1 C1
�

ÂU
�

m2 C2
�

:=
�

m1 ÂU m2
�

C2,

which means that the class part of the resulting type is the class part of the right-hand type
(as in Java) and the Universe modifier of the resulting type is the combined modifier.

3.6 Assignable-To Relation

The subtype relation describes a is-a relation, in the sense that if type A is a subtype of
type B, then the set of all variables of type A is contained in the set of all variables of type
B. In contrast, the assignable-to relation regulates the expression types on the left and
right side of an assignment operation. In conventional type systems, the subtype relation
corresponds to the assignable-to relation. With ownership transfer, however, it does not,
the reason being the fact that ownership transfers causes types to change.

Figure 3.1(a) displays the subtype relation among ownership modifiers. The hierar-
chy follows immediately by taking a being-less-specific-than point of view. The subtype
relation will not be used any further in this formalization.

The assignable-to relation on types is defined by

m1 <:A m2 C1 <:A C2

m1 C1 <:A m2 C2

where the the assignable-to relation on classes is given by

C <:A C

C <:A D D <:A E

C <:A E
class C extends D { }

C <:A D

(as in Java) and the assignable-to relation on type modifiers is outlined in Figure 3.1(b).
This needs some explaining: For Cl ∈ TClust, rep

Cl
�

is defined to be a assignable-to peer
to enable assignments from rep

Cl
�

to peer to allow for (implicit) ownership transfers.
Note that, however, this is only valid if Cl 6= Clthis, since the this-cluster must not be

36

3 Formalization

transfered. This would correspond to an additional condition Cl 6= Clthis on the edges
marked ∗. In the formalization, however, a rep

Cl
�

is defined to be always assignable-
to peer and the check for the condition Cl 6= Clthis is delegated to the static data flow
analysis. This amounts to the view that the assignable-to relation consists of a static part
as depicted in the figure, and of a dynamic part made up of information provided by the
data flow analysis, for each point in the program. Moreover, a wildcard cluster type can be
assigned to and from any non-wildcard cluster type, but two distinct non-wildcard cluster
types are not assignable to each other (Cl f 6= Clg is supposed in the figure).

any

peer

this

rep

?
�

rep

Clg
�

rep

Cl f
�

(a) Subtype relation.

any

peer

this rep

Cl f
�

rep

Clg
�

rep

?
�

∗ ∗

(b) Assignable-to relation.

Figure 3.1: Subtype and assignable-to relation among core Universe modifiers.

3.7 Ternary Logic

To interface with the static data flow analysis, we will make use of a ternary logic with
value set

T := {0,½, 1} .

Whenever we query the data flow analysis whether a certain property holds at a cer-
tain point in the program, the analysis will deliver an answer a ∈ T with the following

37

3.7 Ternary Logic

interpretation:

a = 0 ⇒ “The property does definitely not hold,

in all possible executions of the program.”

a = 1 ⇒ “The property definitely holds,

in all possible executions of the program.”

a =½ ⇒ “The property holds in some executions,

but does not hold in other executions of the program.”

Accordingly, the values 0 and 1 represent precise answers (“no” and “yes”), while ½ stands
for an unknown state (“I don’t know”). This way, we combine a “must” analysis with a
“may” analysis. Note that a trivial implementation of the data flow analysis would be
to answer every query with ½. However, this approach would of course have the least
possible precision.

Using a ternary logic has two major benefits over the standard binary logic:

� The type checker can give more accurate error messages to the user (e.g., “Variable
x is unusable” vs. “Variable x may be unusable”).

� As will be explained in the subsequent chapter, there will in fact propose several
data flow analyses – each one of a different precision (and of a different time com-
plexity). The distinction between precise answers and “I don’t know” answers en-
ables us to use the analyses in the following way: We can start with the least precise
analysis and switch to an analysis of higher precision in case the current analysis
reports an imprecise answer. We do not need to increase the precision level if a
precise answer is returned. Refer to Subsection 4.10.1 for more detail on such a
hierarchical analysis solving method.

On the other hand, the apparent downside of the ternary logic approach is an increased
complexity when dealing with analysis values.

Logical Operators. Table 3.4 displays the truth tables of logical operators that will be
used in the following. As in conventional binary logic, the “and” operator ∧T has 0 as
controlling value (i.e., x ∧T 0 = 0) and 1 as non-controlling value (i.e., x ∧T 1 = x). The
“or” operator ∨T is the dual of ∧T . The “join” operator tT reflects the intuition that we
can only obtain a precise answer if we join two precise answers of the same kind.

38

3 Formalization

∧T 0 ½ 1

0 0 0 0
½ 0 ½ ½
1 0 ½ 1

(a) Trivalent “and”.

∨T 0 ½ 1

0 0 ½ 1
½ ½ ½ 1
1 1 1 1

(b) Trivalent “or”.

tT 0 ½ 1

0 0 ½ ½
½ ½ ½ ½
1 ½ ½ 1

(c) Trivalent “join”.

Table 3.4: Ternary logic operators.

3.8 Static Data Flow Analysis – Introduction

In the most abstract view, the static data flow analysis tracks which variables point into
which cluster and which variables are unusable. The analysis is intra-procedural. I.e., a
single analysis run is executed for a fixed method m in class C and a static declaration
environment Γ = ∆(C , m). In the following, free occurrences of m and C are meant to
stand for this fixed method m in class C .

3.8.1 Analysis Values and Queries

An analysis value represents the property we are interested in. Together, the analysis
values form the property space L or the analysis universe. Viewed abstractly, for each
program point, the analysis computes an analysis value L ∈ L which holds before (at the
entry to) the program point. The analysis value the offers two query functions for clients
to obtain the analysis information. First, the predicate

isUnusable: L ×mLoc(C , m)∪ fields(C)→ T

returns whether a given field or local variable x is unusable. Referring to Section 3.7, we
can interpret the function values as follows:

isUnusable(L, x) = 0 ⇒ “No, x is definitely not unusable,

in all possible executions of the program.”

isUnusable(L, x) = 1 ⇒ “Yes, x is definitely unusable,

in all possible executions of the program.”

isUnusable(L, x) =½ ⇒ “I don’t know.”

39

3.8 Static Data Flow Analysis – Introduction

Furthermore, the function

pointsInto: L ×mLoc(C , m)∪ fields(C)× definedCls(C)→ T

checks whether a given field or local variable x points into a given cluster Cl. The result
values are interpreted accordingly.

There is a special analysis value ı ∈ L standing for the value that holds at the beginning
of the analysis. It can be described as follows:

� Each field points into its associated cluster.

� Each local variable points into a new cluster of its own.

3.8.2 Analysis Transition Functions

An analysis transition function operates on the analysis property space L and representing
the effect a certain entity has on an analysis value L ∈ L . Note that the conventional
name for such a function would be a transfer function. However, so as to avoid possible
confusion with the notion of ownership transfer, we will stick to the term “transition
function”.

For an analysis value L ∈ L , variables x , y ∈ mLoc(C , m)∪ fields(C) and a cluster Cl ∈
definedCls(C), the following compilation gives an informal description of the transition
functions that will be used:

� Consume(L, x) – x and all locals and fields that point into the same cluster
as x are marked as unusable.

� Consume(L, Cl) – All locals and fields that point into cluster Cl are marked as
unusable.

� Merge
�

L, x , y
�

– x and all locals and fields that point into the same cluster
as x are marked as pointing into the same cluster as y .

� Merge(L, x , Cl) – x and all locals and fields that point into the same cluster
as x are marked as pointing into cluster Cl.

� Move
�

L, x , y
�

– x is marked as pointing into the same cluster as y .

� Move(L, x , Cl) – x is marked as pointing into cluster Cl.

40

3 Formalization

� New(L, x) – x is marked as not unusable and all other variables and
fields are marked as not pointing into the same cluster as x .

� ConsumeLocals(L) – All locals pointing into cluster Cl are marked as unusable,
for all clusters Cl ∈ definedCls(C) \

�

Clthis
	

.

The Consume and ConsumeLocals operations are used to make variables unusable. The
Merge operation represents merging two clusters in case a reference between them is
created. The Move operation marks a single variable as pointing to a certain cluster.
Finally, the New operation makes a variable point into a new cluster of its own.

The transition functions will be defined formally in Chapter 4.

Implicit Consume Precondition. In order to keep the type rules (described below)
simple, we assume an implicit precondition

pointsInto
�

L, x , Clthis
�

= 0

for a Consume(L, x) transition function. This ensures that the this-cluster Clthis is never
transfered.

3.9 Analysis Value Transition Rules

The following set of rules describes the effect that each statement of the toy language
has in terms of the analysis values. I.e., each statement of the toy language is translated
into a (or possibly a sequence of) analysis transition functions. This can equivalently be
seen as a translation of a statement of the toy language into a (or possibly a sequence
of) statements in an abstract analysis language, where each such statement corresponds
to a transition function. In fact, this is exactly what is done in the implementation (cf.
Chapter 5, or more specifically Subsection 5.3.5).

To begin with, let us introduce a function handleArg: L × CMod× CMod× CMod→
L that describes the handling of a method call argument z of type modifier mz in a
method call with a formal parameter of type modifier mp on a receiver object y of type

41

3.9 Analysis Value Transition Rules

modifier my . It is defined as follows:

handleArg
�

L, y, z, my , mz , mp

�

:=

Merge
�

L, y, z
�

, if mz = rep∧my = rep

?
�

∧mp = peer;

Consume(L, z) , if mz = rep∧my 6= rep

?
�

∧my ÂU mp ∈
�

peer, rep

?
�	

;

Merge(L, Cl, z) , if mz = rep∧my ÂU mp = rep

Cl
�

;

L , otherwise.

The first case corresponds to a possible capturing of the wildcard cluster. The second
case corresponds to a releasing of the cluster pointed into by z. Finally, the third case
corresponds to a possible capturing of the cluster Cl. If z is not of a rep type, the analysis
value does not change. The handleArg function is extracted in order to be able to reuse
it in both the rules [L-Pre-Invk] and [T-Pre-Invk] (described below). In the rule [T-Pre-
Invk], we need to get a reference to the analysis value after a method call argument is
handled.

The rules are expressed using judgments of the form Γ; L L̀ S : L′, which expresses that
the statement S causes the analysis value changes from L to L′ in a given static declaration
environment Γ: TLoc→ TType.

[L-Assign]

L′ =

Consume
�

L, y
�

, if Γm(x) = peer∧Γm
�

y
�

= rep

Move
�

L, x , y
�

, if Γm(x) = rep∧Γm
�

y
�

= rep

L , otherwise

Γ; L L̀ x = y : L′

[L-Null]

L′ =

(

New(L, x) , if Γm(x) = rep

L , otherwise

Γ; L L̀ x = null : L′

[L-New]

L′ =

(

New(L, x) , if Γm(x) = rep

L , otherwise

Γ; L L̀ x = new T : L′

42

3 Formalization

[L-Field-Read]

m f =mod
�

fType
�

class
�

Γ
�

y
��

, f
��

L′ =

Consume(L, Cl) , if Γm(x) = peer∧Γm
�

y
�

= this∧m f = rep

Cl
�

Consume
�

L, y
�

, if Γm(x) = peer∧Γm
�

y
�

= rep∧m f = peer

Move(L, x , Cl) , if Γm(x) = rep∧Γm
�

y
�

= this∧m f = rep

Cl
�

Move
�

L, x , y
�

, if Γm(x) = rep∧Γm
�

y
�

= rep∧m f = peer

L , otherwise

Γ; L L̀ x = y. f : L′

[L-Field-Write]

m f =mod
�

fType
�

class
�

Γ
�

y
��

, f
��

L′ =

Consume(L, x) , if Γm(x) = rep

∧ Γm
�

y
�

ÂU m f = peer

Move
�

Merge(L, Cl, x) , f , Cl
�

, if Γm(x) = rep

∧ Γm
�

y
�

= this∧m f = rep

Cl
�

Merge
�

L, x , y
�

, if Γm(x) = rep

∧ Γm
�

y
�

= rep∧m f = peer

L , otherwise

Γ; L L̀ y. f = x : L′

[L-Pre-Invk]

C = class(Γ(this))
�

W, Tp, Tr

�

=mType(C , m)

L′ = handleArg
�

L, y, z,Γm
�

y
�

,Γm(z) ,mod
�

Tp

��

L′′ =

(

ConsumeLocals
�

L′
�

, if Γm(z) ∈
�

peer, this
	

∧W = nonpure

L′ , otherwise

Γ; L L̀ y.m(z) : L′′

43

3.9 Analysis Value Transition Rules

[L-Invk]

C = class(Γ(this))
�

W, Tp, Tr

�

=mType(C , m)

Γ; L L̀ y.m(z) : L′

L′′ =

Move
�

L′, x , Cl
�

, if Γm(x) = rep∧Γm
�

y
�

ÂU mod
�

Tr
�

= rep

Cl
�

New
�

L′, x
�

, if Γm(x) = rep∧Γm
�

y
�

ÂU mod
�

Tr
�

= rep

?
�

L′ , otherwise

Γ; L L̀ x = y.m(z) : L′′

[L-Cast]

L′ =

Consume
�

L, y
�

, if mod(T) = peer∧Γm
�

y
�

= rep

Merge
�

L, Cl, y
�

, if mod(T) = rep

Cl
�

∧Γm
�

y
�

= rep

L , otherwise

L′′ =

Move
�

L′, x , Cl
�

, if Γm(x) = rep∧mod(T) = rep

Cl
�

Move
�

L′, x , y
�

, if Γm(x) =mod(T) = rep

?
�

∧Γm
�

y
�

= rep

L′ , otherwise

Γ; L L̀ x = (T) y : L′′

[L-Seq]
Γ; L L̀ S1 : L′ Γ; L′ L̀ S2 : L′′

Γ; L L̀ S1; S2 : L′′

Let us discuss some aspects.

� The Consume operation in the [L-Assign] rule corresponds to an implicit ownership
transfer.

� The [L-Null] and the [L-New] rules have the same effect.

� Note the ConsumeLocals operation in case of a non-pure peer (or this) call in the
rule [L-Pre-Invk] to mark all local variables that point into a non-free cluster as
unusable.

44

3 Formalization

3.10 Type Rules

This section describes the rules to type check the toy language. Let us begin with the rules
for statements. A judgment has the form Γ; L ` S and expresses that the statement S is
well-typed in a static declaration environment Γ: TLoc→ TType, where L is the analysis
value before type checking the statement S.

[T-Assign]
Γ(x) :>A Γ
�

y
�

isUnusable
�

L, y
�

= 0

Γ; L ` x = y

[T-Null]
Γ; L ` x = null

[T-New]
Γ(x) :>A T

Γ; L ` x = new T

[T-Field-Read]

T f = fType
�

class
�

Γ
�

y
��

, f
�

Γ(x) :>A

�

Γ
�

y
�

ÂU T f

�

isUnusable
�

L, y
�

= 0

Γm
�

y
�

= this⇒ isUnusable
�

L, f
�

= 0

Γ; L ` x = y. f

[T-Field-Write]

T f = fType
�

class
�

Γ
�

y
��

, f
�

�

Γ
�

y
�

ÂU T f

�

:>A Γ(x)

Γm
�

y
�

6= any

mod
�

T f

�

= rep

Cl
�

⇒ Γm
�

y
�

= this

isUnusable(L, x) = 0

isUnusable
�

L, y
�

= 0

Γ; L ` y. f = x

45

3.10 Type Rules

[T-Pre-Invk]

C = class(Γ(this))
�

W, Tp, Tr

�

=mType(C , m)
�

Γ
�

y
�

ÂU Tp

�

:>A Γ(z)

W = nonpure⇒ Γm
�

y
�

6= any
isUnusable(L, z) = 0

L′ = handleArg
�

L, y, z,Γm
�

y
�

,Γm(z) , mod
�

Tp

��

isUnusable
�

L′, y
�

= 0

Γm
�

y
�

∈
�

peer, this
	

∧W = nonpure⇒∀ f ∈ fields(C) : isUnusable
�

L′, f
�

= 0

Γ; L ` y.m(z)

[T-Invk]

C = class(Γ(this))
�

w, Tp, Tr

�

=mType(C , m)

Γ(x) :>A
�

Γ
�

y
�

ÂU Tr
�

Γ; L ` y.m(z)

Γ; L ` x = y.m(z)

[T-Cast]

Γ(x) :>A T
my = Γm
�

y
�

mT =mod(T)

mT :>A my ∨
�

mT ∈
�

peer, rep

Cl
�	

∧my = any
�

isUnusable
�

L, y
�

= 0

Γ; L ` x = (T) y

[T-Seq]
Γ; L ` S1 Γ; L L̀ S2 : L′ Γ; L′ ` S2

Γ; L ` S1; S2

Let us again point out some details.

� The type rules perform the usual Java checks (e.g., if the right-hand side in an
assignment is assignable to the left-hand side) but also check with the help of the
analysis values that no unusable variable is read.

46

3 Formalization

� The [T-Pre-Invk] rule enforces the check that no field be unusable before a non-
pure peer (or this) call. Note that the check is carried out after the argument of the
method call is handled. The same holds for the check that the receiver object y is
not unusable. The reason for the latter are such cases as z.m(z), which should yield
an error if z is consumed.

� The [T-Cast] rule forbids casts from peer to rep.

The following type rule describes how a method declaration is type checked. A judg-
ment of the form C M̀ W Tr m(Tp x) { Tl y S } expresses that the method declara-
tion in class C is well-formed. Note in particular the check that no field is unusable after
the method, starting out with the initial analysis value ı, has terminated yielding analysis
value L.

[T-MDecl]

W = pure⇒mod
�

Tr
�

,mod
�

Tp

�

∈
�

any, rep

?
�	

∆(C , m) ; ı ` S
∆(C , m) ; ı L̀ S : L

∀ f ∈ fields(C) : isUnusable
�

L, f
�

= 0

isUnusable(L,result) = 0

C M̀ W Tr m(Tp x) { Tl y S }

Finally, we present the type rules for class declarations and programs. They should be
self-explanatory.

[T-CDecl]
C M̀ M1 · · · C M̀ Mk

C̀ class C extends D { T f f M }

[T-Program]
C̀ CDecl1 · · · C̀ CDeclk

P̀ CDecl

47

4
Data Flow Analysis

This chapter describes in detail the techniques used in conjunction with the static data
flow analysis. Much of the contents is based on material exhibited in the book “Prin-
ciples of Program Analysis” [18], with some adaptations applied so as to better fit our
purposes.

After introducing an abstract analysis language and describing the construction of a
control flow graph, we will present multiple analyses, defined both concretely and ab-
stractly using the notion of a Monotone Framework. Each analysis variant leads to a
different precision level and time and space complexity. We continue by presenting vari-
ous worklist algorithms for solving data flow equations and conclude with a presentation
of some benchmarks to evaluate the practical performance of the analyses.

4.1 Syntax of the Analysis Language

4.1 Syntax of the Analysis Language

The static data flow analysis does neither operate directly on the Java source, nor on the
toy language presented in Chapter 3. Instead, its target language is an abstract language,
hereafter referred to as the “analysis language”, especially designed for the analysis. This
separation facilitates the design of solver algorithms as well as testing and debugging.
Since all operations not relevant to the analysis are removed during the abstraction, this
has the further advantage of a reduced amount of code to deal with, thus improving the
speed and the scalability of the analysis. However, in order to seamlessly support as many
common Java constructs as possible, the analysis language is rather rich, featuring, e.g.,
switch statements and try/catch/finally clauses.

There is only one syntactic category in the analysis language, namely AStmt describing
the analysis statements:

S ∈ AStmt analysis statements.

Further, we assume some countable set AVar of variable names as well as some countable
set ALab of labels for labeled statements are given to use the following meta variables:

x , y ∈ AVar analysis variable names

` ∈ ALab analysis statement labels.

In the following we shall describe the abstract syntax for a statement the analysis lan-
guage. The syntax is abstract in the sense that it specifies the abstract syntax trees of
the language; the presented grammar, however, does contain ambiguities. We shall use
indenting in textual representations of abstract syntax trees to disambiguate it.

First of all, there are elementary statements that perform a certain operation on the
analysis values:

S ::= skip

| merge(x, y)

| new(x)

| move(x, y)

| consume(x)

| consumeLocals

| . . .

50

4 Data Flow Analysis

These are the statements that correspond to the transition functions used in the rules
that describe the effect a statement in the toy language given in Section 3.9. The exact
semantics of the operations will be formally defined further below.

Secondly, there are elementary statements which do not actually represent an operation
on analysis values but some change in the control flow:

S ::= . . .

| break | break ` (unlabeled and labeled break)

| continue | continue ` (unlabeled and labeled continue)

| exit (method termination)

| . . .

The unlabeled and labeled break and continue statements have the same meaning and
usage restrictions as in Java. The exit statement is used to mark an immediate method
termination, just like the return statement in Java.

Finally, there are composite statements with other statements as children, defining var-
ious control flow constructs:

S ::= . . .

| S1; S2

| if S1 then S2 else S3

| while S1 do S2 (while loop)

| do S1 while S2 (do loop)

| `: S (labeled statement)

| switch S1 case S2

| · · ·

| case Sk

| try S1 catch S2

| · · ·

| catch Sk

| finally Sk+1

where k ≥ 2. These statements directly correspond to their counterparts in Java. It should
be pointed out, however, that the conditions in if, while, do and switch statements are

51

4.2 Flow Graphs

ordinary analysis statements and there is no notion of an expression. Hence, a while loop
in the analysis language might look like this:

while merge(x, y); consume(x) do

new(x);

move(z, x)

The reason for this design is the desire to support Java expressions whose evaluations
have side effects that are relevant for the analysis, such as (x.f = y) == (z = x). The
ultimate boolean value of such a condition expression, however, is of no relevance to the
analysis.

As another remark, the while and do loops are treated separately since the common
translation of a do loop

do S1 while S2

into a while loop

S1; while S2 do S1

is inaccurate if S1 contains break or continue statements. (Note that, in contrast, a Java
for loop can be equivalently expressed by a while loop.)

4.2 Flow Graphs

The data flow analysis operates on a graph representation of a given analysis statement
(or analysis program), the flow graph. This section describes in a formal way how such a
flow graph is constructed.

The nodes or elementary blocks in a flow graph correspond to elementary analysis state-
ments. We shall thus use the terms “elementary statement”, “node” and “elementary
block” as synonyms. Edges in the flow graph represent possible control flow transi-
tions from one node to another. Most of these edges are straight-forward and agree
with what a programmer would expect. However, care has to be taken when modeling
the transition edges associated with “unusual” statements such as break, switch and
try/catch/finally statements.

52

4 Data Flow Analysis

Indexed Elementary Statements. For convenience in both the formalization and im-
plementation, we assume that each elementary statement (node or elementary block,
respectively) is labeled by an index i ∈ AIndex which uniquely identifies the elementary
statement. The index set AIndex does not need to be further defined, but can be thought
of as being equal to N. In what follows, we will use the terms “elementary statement i”
and “elementary statement with index i” interchangeably. Furthermore, the notation [S]i

is used to denote a particular elementary statement S with index i, for instance,

[skip]i , [merge(x, y)]i or [break]i .

To define the construction of the flow graph out of an analysis statement, we will make
use of a number of functions operating on analysis statements. They are all inductively
defined over the structure of a statement.

Initial Index. The first one of those functions is

init: AStmt→ AIndex

which returns the initial index (the index of the initial node) of a statement. The definition
should contain no surprises:

init
�

[S]i
�

:= i , for any elem. statement S

init
�

S1; S2
�

:= init
�

S1
�

init
�

if S1 then S2 else S3
�

:= init
�

S1
�

init
�

while S1 do S2
�

:= init
�

S1
�

init
�

do S1 while S2
�

:= init
�

S1
�

init(`: S) := init(S)

init
�

switch S1 case S2 · · ·

case Sk
�

:= init
�

S1
�

init
�

try S1 catch S2 · · ·

catch Sk finally Sk+1
�

:= init
�

S1
�

Final Indices. We also need a function

final: AStmt→ 2AIndex

53

4.2 Flow Graphs

to return the set of final indices (the indices of the final nodes) of a statement. While
a statement has only a single entry, it may have multiple exits (as, e.g., in the condi-
tional):

final
�

[skip]i
�

:= {i}

final
�

[merge(x, y)]i
�

:= {i}

final
�

[new(x)]i
�

:= {i}

final
�

[move(x, y)]i
�

:= {i}

final
�

[consume(x)]i
�

:= {i}

final
�

[consumeLocals]i
�

:= {i}

final
�

[break]i
�

:= ;

final
�

[break `]i
�

:= ;

final
�

[continue]i
�

:= ;

final
�

[continue `]i
�

:= ;

final
�

[exit]i
�

:= ;

final
�

S1; S2
�

:= final
�

S2
�

final
�

if S1 then S2 else S3
�

:= final
�

S2
�

∪ final
�

S3
�

final
�

while S1 do S2
�

:= final
�

S1
�

final
�

do S1 while S2
�

:= final
�

S2
�

final(`: S) := final(S)

final
�

switch S1 case S2 · · ·

case Sk
�

:= final
�

Sk
�

final
�

try S1 catch S2 · · ·

catch Sk finally Sk+1
�

:= final
�

Sk+1
�

(4.1)

A few things to note here: Firstly, the final indices are used to describe the connecting
control flow edges between the child statements of composite statements. Consequently,
break, continue and exit statements do not count as final nodes in this formalization
and thus have no final indices, as their successor statements are unreachable. The control
flow edges given rise to by break and continue statements are accounted for separately.
Secondly, the final indices of the loop statements are the final indices of the loop condition
statements, since the loops terminate immediately after the condition has evaluated to
false.

54

4 Data Flow Analysis

Nodes. Let us now turn to a function that extracts the elementary statements out of
a given analysis statement. These elementary statements will incorporate the nodes of
our flow graph. The function is called “nodes” (rather than “elemStmt” or similar) to
emphasize the graph domain. Since we represent the nodes by their indices, the function
returns a set of indices:

nodes: AStmt→ 2AIndex.

An elementary statement amounts to a single node having the same index. The node set
of a composite statement is simply the union of the nodes of the child statements:

nodes
�

[S]i
�

:= {i} , for any elem. statement S

nodes
�

S1; S2
�

:= nodes
�

S1
�

∪ nodes
�

S2
�

nodes
�

if S1 then S2 else S3
�

:= nodes
�

S1
�

∪ nodes
�

S2
�

∪ nodes
�

S3
�

nodes
�

while S1 do S2
�

:= nodes
�

S1
�

∪ nodes
�

S2
�

nodes
�

do S1 while S2
�

:= nodes
�

S1
�

∪ nodes
�

S2
�

nodes(`: S) := nodes(S)

nodes
�

switch S1 case S2 · · ·

case Sk
�

:= nodes
�

S1
�

∪ · · · ∪ nodes
�

Sk
�

nodes
�

try S1 catch S2 · · ·

catch Sk finally Sk+1
�

:= nodes
�

S1
�

∪ · · · ∪ nodes
�

Sk+1
�

Edges. We are now ready to define the (directed) edges between nodes (or node indices,
to be more precise) in the flow graph corresponding to a analysis statement:

edges: AStmt→ 2AIndex×AIndex.

The following abbreviations come in handy to succinctly describe a set of edges: For sets
I , J ⊆ AIndex of indices and an index j ∈ AIndex,

�

I , j
�

:=

(

��

i, j
�

: i ∈ I
	

, if I 6= ;;

; , otherwise;

(I , J) :=
⋃

j∈J

�

I , j
�

.

55

4.2 Flow Graphs

We first give the definition of the edges function and discuss it below:

edges
�

[break]i
�

:= {breakEdge(i)}

edges
�

[break `]i
�

:= {labeledBreakEdge(`, i)}

edges
�

[continue]i
�

:= {continueEdge(i)}

edges
�

[continue `]i
�

:= {labeledContinueEdge(`, i)}

edges
�

[S]i
�

:= ; , for any other elem. statement S

edges
�

S1; S2
�

:= edges
�

S1
�

∪ edges
�

S2
�

∪
�

final
�

S1
�

, init
�

S2
��

edges
�

if S1 then S2 else S3
�

:= edges
�

S1
�

∪ edges
�

S2
�

∪ edges
�

S3
�

∪
�

final
�

S1
�

, init
�

S2
��

∪
�

final
�

S1
�

, init
�

S3
��

edges
�

while S1 do S2
�

:= edges
�

S1
�

∪ edges
�

S2
�

∪
�

final
�

S1
�

, init
�

S2
��

∪
�

final
�

S2
�

, init
�

S1
��

edges
�

do S1 while S2
�

:= edges
�

S1
�

∪ edges
�

S2
�

∪
�

final
�

S1
�

, init
�

S2
��

∪
�

final
�

S2
�

, init
�

S1
��

edges(`: S) := edges(S)

edges
�

switch S1 case S2 · · ·

case Sk
�

:= edges
�

S1
�

∪ · · · ∪ edges
�

Sk
�

∪
⋃k

i=2

�

final
�

S1
�

, init
�

Si
��

∪
⋃k−1

i=2

�

final
�

Si
�

, init
�

Si+1
��

edges
�

try S1 catch S2 · · ·

catch Sk finally Sk+1
�

:= edges
�

S1
�

∪ · · · ∪ edges
�

Sk+1
�

∪
⋃k

i=2

�

nodes
�

S1
�

\ final
�

S1
�

, init
�

Si
��

∪
�

nodes
�

S1
�

, init
�

Sk+1
��

∪
�

final
�

Sk+1
�

, nodes
�

S1
�

\
�

init
�

S1
�	�

∪
⋃k

i=2

�

final
�

Si
�

, init
�

Sk+1
��

(4.2)

56

4 Data Flow Analysis

break Statements

To compute the edge corresponding to a unlabeled or labeled break statement, the break
target statement needs to be resolved first. The only possible breakable statements that
can act as break targets are

� a labeled statement,

� while and do loops,

� a switch statement.

Once the break target statement has been determined, the break destination node then is
the node to which the control flow transfers immediately after the break target statement
terminates (if there is such a node).

The function

breakEdge: AIndex→ AIndex×AIndex

takes the index i of an unlabeled break statement and returns the edge from the break

statement to the break destination node. Informally, starting at node i, it traverses the
parent hierarchy in the abstract syntax tree until a breakable statement is encountered.
This innermost breakable statement will be the break target statement.

Similarly to the case of unlabeled breaks, the function

labeledBreakEdge: AIndex×ALab→ AIndex×AIndex

takes the index i and the label ` of a labeled break statement and returns the edge from
the break statement to the break destination node. Informally, starting at i, it traverses
the parent hierarchy in the abstract syntax tree until a labeled statement with label ` is
encountered. This labeled statement will be the break target.

The formal definitions of the functions breakEdge and labeledBreakEdge are omitted
here.

In the implementation, so as to (i) make sure that every breakable statement has in fact
a successor node acting as break destination node and (ii) simplify resolving this break
destination node, any breakable statement S is actually regarded as a sequence statement
S; skip, where an additionally inserted skip statement acts as break destination node
of S.

57

4.2 Flow Graphs

Example 4.1 For the statement

while [move(x, y)]0 do

if [skip]1 then

[break]2

else

[new(x)]3;
[skip]4;
[consume(y)]5

we have breakEdge(2) = (2, 4), whereas the statement

while [skip]0 do

while [move(x, y)]1 do

if [skip]2 then

[break]3

else

[new(x)]4;
[skip]5;

[skip]6;

yields breakEdge(3) = (3,5). The planted skip statements are italicized. �

continue Statements

continue statements are handled similarly to break statements. First, the continue target
statement needs to be resolved. As in Java, only loop statements (while or do loops) can
act as continue targets. Once the continue target statement has been determined, the
continue destination node then is the initial node of the loop condition statement, which
corresponds to starting a new iteration.

The function

continueEdge: AIndex→ AIndex×AIndex

returns the edge from an unlabeled continue statement with index i to the continue
destination node. Informally, starting at node i, it traverses the parent hierarchy in the
abstract syntax tree until a loop statement is encountered. This innermost loop statement
will be the continue target statement.

58

4 Data Flow Analysis

Likewise, the function

labeledContinueEdge: AIndex×ALab→ AIndex×AIndex

returns the edge from an labeled continue statement with index i and label ` to the
continue destination node. Informally, starting at node i, it traverses the parent hierarchy
in the abstract syntax tree until a labeled statement with label ` is encountered. The
immediate child of the labeled statement, which must be a loop statement, will be the
continue target statement.

The formal definitions of the functions continueEdge and labeledContinueEdge are
omitted here.

In contrast to break statments, there always exists a continue destination node in a loop
and, what is more, can be resolved without having to add any extra helper statements.

switch Statement

As for the switch statement, the end of the statement representing the switch expression
is linked to the beginnings of all case group statements. Furthermore, there is an edge
from the end of each case group to the beginning of the next case group, which models
“fall-throughs”. Note that if a case group ends in a break statement the “fall-through”
edge is prevented, since a break statement has no final indices, as defined in (4.1).

try/catch/finally Statement

The edges induced by a try/catch/finally statement are slightly more involved than
the ones for the other statements.

The event of a statement throwing an exception which is caught by one of the catch

clauses is modeled by flow graph edge that leads from the node that was executed imme-
diately before the current statement to the beginning of the catch clause in question. Note
that we cannot simply add an edge from the current statement to the beginning of the
catch clause, because this edge would mean a successful termination of the statement.
Since there is no predecessor node for the initial node of the try clause, we add an artifi-
cial skip statement right at the beginning of the try clause. I.e., we treat the try clause
as skip; S, where S is the original try clause. Since in the abstract analysis language
we have no knowledge whatsoever about which statements may throw an exception, we
conservatively assume that every statement may do so. Moreover, we neither are aware of

59

4.2 Flow Graphs

what kind of exceptions are caught in which catch clauses. Consequently, we add a cor-
responding edge to the beginning of every catch clause. Thus, the first category of edges
go from every statement in the try clause – except for the inserted skip statement – to
the beginning of each catch clause, corresponding to the case an exception is thrown
by a node in the try body and caught by a catch clause.

Moreover, there needs to be an edge to the beginning of the finally clause in case a
statement terminates abruptly without being caught by a catch clause. It is important
to note that the finally clause may not solely be “invoked” by an uncaught exception,
but also by a break statement (which always terminates abruptly) enclosed in the try

clause. In order to perform a possible transfer of control (e.g., the jump out of the loop
for a break statement) after the execution of the finally clause, we additionally need a
back edge leading from the end of the finally clause to the node which caused control
to transfer to the finally clause. Consider Example 4.2 to illustrate the need for such a
kind of edges. To approximate these contingencies conservatively, we add an edge from
every node in the try clause to the beginning of the finally clause and an edge from
the end of the finally clause back to every node in the try clause except the inserted
skip statement.

Finally, we need to link the end of every catch clause to the beginning of the finally

clause.

In summary, a try/catch/finally statement produces

� an edge from every non-final node in the try clause to the beginning of each catch

clause;

� an edge from every node in the try clause to the beginning of the finally clause;

� a back edge from the end of the finally clause to every non-initial node in the try

clause; and

� an edge from the end of every catch clause to the beginning of the finally clause;

The edges are described in this order in the definition of the edges function, (4.2).

Undoubtedly, this amounts to a very crude exception handling model and remains to
be refined as future work, e.g., by taking into account what kind of exceptions are caught
or may be thrown.

60

4 Data Flow Analysis

Example 4.2 The statement

while [skip]0 do

try

[skip]1; (this is the planted node)
if [consume(x)]2 then

[break]3

else

[move(x, y)]4;
[merge(x, y)]5

catch

[new(x)]6

catch

[new(y)]7; [merge(x, y)]8

finally

[new(x)]9; [consume(x)]10;

[move(x, y)]11

leads to the following edges:

{(0,1)} edge from the while condition to the body

∪{(10,0)} loop edge from the while body to the cond.

∪{(3,11)} break edge

∪{(1,2) , (2,3) , (2,4) , (4,5)} edges within the try clause

∪{(7,8)} edges within the second catch clause

∪{(9,10)} edges within the finally clause

∪{(1,6) , (1,7) , (2,6) , (2,7) , edges from each non-final node in the try

(3,6) , (3, 7) , (4,6) , (4,7)} clause to the begin. of each catch clause

∪{(1,9) , (2,9) , (3, 9) , (4,9) , edges from each node in the try clause

(5,9)} to the beginning of the finally clause

∪{(6,9) , (8,9)} edges from the end of each catch clause

to the beginning of the finally clause

∪{(10,2) , (10,3) , (10,4) , (10,5)} back edges from the end of the finally

clause to every non-initial node of the

try clause �

61

4.3 Analysis Variables of Interest

Once the nodes and edges are ready, the flow graph of a program S is now defined by
the tuple (nodes(S) , edges(S)).

Example 4.3 Let S be the following program:

while [skip]0 do

[new(z)]1;
[merge(x, z)]2;
[move(y, z)]3;

[skip]4;
[consume(z)]5;
if [skip]6 then

while [skip]7 do

[new(y)]8;
[merge(x, w)]9;

[skip]10

else

[move(z, x)]11;

[new(y)]12

[move(x, w)]13;

[skip]14

We have init(S) = 0, final(S) = {14} and a representation of the corresponding flow
graph (nodes(S) , edges(S)) is shown in Figure 4.1. �

4.3 Analysis Variables of Interest

Recall from Chapters 2 and 3 that the analysis is intra-procedural and thus, for each run
of the analysis, we have a fixed method m ∈ TMethod in a class C ∈ TClass as well as a
static declaration environment Γ = ∆(C , m) of the toy language.

The following sets define the variables of interest for the analysis:

ALoc :=
�

x ∈mLoc(C , m) : Γm(x) = rep
	

AField :=
�

f ∈ fields(C) : fType
�

C , f
�

= rep

Cl
�	

AClust := definedCls(C) .

62

4 Data Flow Analysis

[skip]0

[new(z)]1

[merge(x, y)]2

[move(y, z)]3

[skip]4 [consume(z)]5

[skip]6

[skip]7

[new(z)]8

[merge(x, w)]9

[skip]10 [move(z, x)]11

[new(y)]12

[move(x, w)]13

[skip]14

Figure 4.1: Example flow graph (nodes(S) , edges(S)).

63

4.4 Partition Sets and Analysis Definition

The set ALoc includes all local variables and parameters of a rep type. Likewise, AField
is the set of all fields of type rep

Cl
�

visible in class C . Finally, the set AClust contains
all clusters defined by uniq fields of class C or of a superclass. Note that ALoc, AField
and AClust are pairwise disjoint (due to the assumption that all identifiers are globally
unique) and finite. The analysis only needs to consider the variables of interest since all
other variables may never get unusable.

Let us further define a function cluster: AField→ AClust that returns the cluster asso-
ciated with a given field:

fType
�

C , f
�

= rep

Cl
�

cluster
�

f
�

= Cl

Letting S denote the program (the “top-level” analysis statement) to analyze, the input
to the data flow analysis can be viewed as 4-tuple (S,ALoc,AField,AClust).

4.4 Partition Sets and Analysis Definition

We may embark on formalizing and defining the analysis.

4.4.1 Set Partitions

Before we continue, let us first intersperse a general section about set partitions so as to
fix some terminology and notation as well as to introduce a few concepts that are needed
hereafter.

Partitions and Blocks. As usual, a partition of a set A is a set of pairwise disjoint and
non-empty blocks1 Ai ⊆ A that together cover A, i.e.,

∀i : Ai 6= ;,

∀i, j : i 6= j⇒ Ai ∩ A j = ; and
⋃

i Ai = A.

(4.3)

1Some authors also use the terms partitioning and partition for what we call a partition and a block, respec-
tively. To avoid confusion, we shall use only the latter terminology throughout this document.

64

4 Data Flow Analysis

We use Part(A) to denote the set of all partitions of a set A. E.g.,

Part
��

x , y, z
	�

=
��

{x} ,
�

y
	

, {z}
	

,
�

{x} ,
�

y, z
		

,
��

y
	

, {x , z}
	

,
�

{z} ,
�

x , y
		

,
��

x , y, z
			

.

We shall also use the following, more readable notation for partitions, using “|” to separate
the blocks of a partition:

Part
��

x , y, z
	�

=
�

x | y | z,

x | yz,

y | xz,

z | x y,

xz y
	

.

For a set A, a partition P ∈ Part(A) and an element x ∈ A, we denote the block of P that
contains x with P[x] ⊆ A. It follows from the partition properties (4.3) that such a block
exists and is unique. Note that for any two variables x , y ∈ A, P[x] and P[y] are either
equal or disjoint.

The number of partitions for an n-element set is counted by the Bell number Bn, which
has an exponential asymptotic limit [20].

In what follows, we shall use Greek uppercase letters to denote sets of partitions of a
given set to clearly distinguish them from single partitions, which will be designated with
usual uppercase letters, as in, e.g.,

Φ=
�

x | yz
︸ ︷︷ ︸

=P

, x y | z
︸ ︷︷ ︸

=Q

	

∈ 2Part({x ,y,z}).

Exchanging Blocks. Let us further introduce two helper functions which allow as to
modify partitions by adding and removing blocks: For a set A, a partition P ∈ Part(A) and
a set V ⊆ A,

P + V :=

(

P , if V = ;;

P ∪ {V} , otherwise;

65

4.4 Partition Sets and Analysis Definition

P − V :=

(

P , if V = ;;

P \ {V} , otherwise.

It is immediate that these operations – viewed by themselves – may violate the partition
properties (4.3).

New. For a set A, a partition P ∈ Part(A) and an element x ∈ A, the function

new: Part(A)× A→ Part(A)

returns a partition in which x constitutes a singleton block:

new(P, x) := P − P[x]+ P[x] \ {x}+ {x} . (4.4)

It is not hard to see that new(P, x) indeed satisfies the partition properties (4.3).

Merge. For a set A, a partition P ∈ Part(A) and elements x , y ∈ A, the function

merge: Part(A)× A× A→ Part(A)

returns a partition in which the former blocks of x and y are unified:

merge
�

P, x , y
�

:= P − P[x]− P[y]+ P[x] ∪ P[y]. (4.5)

Note that merge
�

P, x , y
�

= P if P[x] = P[y]. As for the new operation, we note that
merge
�

P, x , y
�

preserves the partition properties (4.3).

Move. Finally, for a set A, a partition P ∈ Part(A) and elements x , y ∈ A, the function

move: Part(A)× A× A→ Part(A)

returns a partition in which x is removed from its former block added to the block of y:

move
�

P, x , y
�

:=

(

P , if P[x] = P[y];

P − P[x]− P[y]+ P[x] \ {x}+ P[y] ∪ {x} , otherwise.
(4.6)

The following simple lemma shows that the move operation can in fact be expressed by
a new and a merge operation. This allows us to transfer properties which hold for the
new and merge operations immediately to the move operation. E.g., since both new and
merge preserve the partition properties (4.3), so does move.

66

4 Data Flow Analysis

Lemma 4.4 For a set A, a partition P ∈ Part(A) and elements x , y ∈ A,

move
�

P, x , y
�

=merge
�

new(P, x) , x , y
�

.

Proof. Let P ′ := new(P, x). According to (4.4), this results in P ′[x] = {x}.

If P[x] 6= P[y], we have P ′[y] = P[y] and thus

merge
�

new(P, x) , x , y
�

=merge
�

P ′, x , y
�

=

= P ′− P ′[x]− P ′[y]+ P ′[x] ∪ P ′[y] =

= P − P[x]+ P[x] \ {x}+�
�{x} −�

�{x} − P[y]+
�

{x} ∪ P[y]
�

=

=move
�

P, x , y
�

Otherwise, if P[x] = P[y], it follows that P ′[y] = P[x] \ {x} and thus

merge
�

new(P, x) , x , y
�

=merge
�

P ′, x , y
�

=

= P ′− P ′[x]− P ′[y]+ P ′[x] ∪ P ′[y] =

= P −�
��HHHP[x]+

XXXXXX

�

P[x] \ {x}
�

+�
�{x} −�

�{x} −
XXXXXX

�

P[x] \ {x}
�

+
�

{x} ∪
�

P[x] \ {x}
��

︸ ︷︷ ︸

=��HHP[x]

=

= P =move
�

P, x , y
�

�

Example 4.5 For A :=
�

x , y, z
	

, we have

new
�

x y | z, x
�

= x | y | z

new
�

x | yz, x
�

= x | yz

merge
�

x y | z, x , y
�

= x y | z

merge
�

x | yz, x , y
�

= x yz

move
�

x y | z, x , y
�

= x | yz

move
�

x | yz, x , y
�

= x yz. �

67

4.4 Partition Sets and Analysis Definition

4.4.2 Analysis Values

As described in Section 3.8.1, the analysis values represent the property we are interested
in and together form the property space or the analysis universe.

In order to motivate the choice of the property space for the analysis, we have to
anticipate the general concept of the analysis. Broadly speaking, the analysis computes
two analysis values for each node in the flow graph: one that holds at the entry to the node
and one that holds at the exit from the node. The entry and exit value of a specific node
are related by the operation the node stands for (the transition function). Furthermore,
the entry value of a specific node is obtained by joining the exit values of the node’s
predecessor nodes into a new analysis value.

In our case, so as to implement the transition functions described in Subsection 3.8.2,
the analysis values should enable us to track

� which analysis variables point into a specific cluster,

� which analysis variables point into the same cluster as a specific analysis variable
and

� which analysis variables are unusable.

To this end, we will partition the set of variables such that two variables point into the
same cluster iff they are in the same block of the partition. To identify the clusters we
include the cluster variables as markers in the variable set. Similarly, we use another
special marker variable, unusable, to distinguish the unusable variables. In summary, we
let

PVar := ALoc∪AField∪AClust∪ {unusable}
︸ ︷︷ ︸

marker variables

and use partitions of PVar as analysis values to begin with.

Example 4.6 For ALoc :=
�

v, w, x , y, z
	

, AField :=
�

f
	

and AClust :=
¦

C f , Clthis

©

, the
partition

¦¦

v, f , C f

©

,
�

w, Clthis
	

,
�

x , y
	

, {z,unusable}
©

contains the information that, e.g.,

� v and f point into the same cluster C f ,

� neither v nor f are unusable,

68

4 Data Flow Analysis

� w points into the this-cluster Clthis,

� w is not unusable,

� x and y point into the same cluster different from C f and Clthis,

� neither x nor y are unusable,

� z is unusable. �

Remains the question as to how to join the predecessor nodes’ exit analysis values to
compute the entry value for nodes where multiple paths of execution come together (i.e.,
nodes with multiple incoming edges). In order to achieve a high level of precision, one
approach is not to work with single partitions as analysis values, but with sets of partitions.
This allows us to unify the partitions at the exit of the predecessor nodes using the usual
set union operator. Consequently, each path of execution reaching a node corresponds to
a partition in the set of partitions associated with the node in question. Of course, this is
no bijection, since the same partition may be obtained through multiple paths. However,
every path is represented by a partition in the partition set.

Alternatively, we could think of a way to combine the predecessor partitions into one
single partition. This compact representation would certainly be more efficient than the
approach with sets of partitions, which may grow exponentially in the size of the program
(consider Benchmark 1 in Section 4.11 for such an example). However, the inevitable
loss in precision turned out to be too large for our needs. Consequently, this approach
was abandoned. We will nevertheless present some more suitable alternatives to sets of
partitions as analysis values in Sections 4.8 and 4.9.

In conclusion, we use sets of partitions of PVar as analysis values and our analysis
property space is

2Part(PVar).

4.4.3 Queries

To implement the isUnusable and pointsInto query functions introduced in Section 3.8
for partition sets, we will make use of the following basic predicate that checks whether
two given variables x , y ∈ PVar are in the same block of partitions contained in a given
partition set Φ:

areInSameBlock: 2Part(A)× A× A→ T

69

4.4 Partition Sets and Analysis Definition

(for an arbitrary set A). Its definition is

areInSameBlock
�

Φ, x , y
�

:=

0 , if ∀P ∈ Φ: x /∈ P[y];

1 , if ∀P ∈ Φ: x ∈ P[y];

½ , otherwise.

In other words, the function returns 1 if x and y are in the same block in all partitions
in the partition set and 0 if x and y are in different blocks in all partition sets. In any
other case, i.e., if x and y are in the same block in some partition and in different blocks
in another partition, the function returns ½.

Example 4.7 Let A :=
�

w, x , y, z
	

and Φ :=
�

wx y | z, wx | yz, wx y | z
	

. Then, we have

areInSameBlock(Φ, w, x) = 1

areInSameBlock
�

Φ, w, y
�

=½

areInSameBlock(Φ, w, z) = 0. �

Since the analysis value obtained through each path of execution leading to the node
at hand is represented by a partition in the partition set Φ, the function values have the
desired interpretation described in Section 3.8, i.e.,

areInSameBlock
�

Φ, x , y
�

= 0 ⇒ “No, x and y are definitely in different blocks,

in all possible executions of the program.”

areInSameBlock
�

Φ, x , y
�

= 1 ⇒ “Yes, x and y are definitely in the same block,

in all possible executions of the program.”

areInSameBlock
�

Φ, x , y
�

=½ ⇒ “I don’t know.”

With the help of the areInSameBlock primitive we can now easily formulate the above
mentioned query functions, which will merely be more readable wrapper functions:

isUnusable(Φ, x) := areInSameBlock(Φ, x ,unusable)

pointsInto(Φ, x , Cl) := areInSameBlock(Φ, x , Cl) ,

for Φ ∈ 2Part(PVar), x ∈ ALoc ∪ AField and Cl ∈ AClust. As a concluding remark, we note
that the domain of the second argument of the function isUnusable as given in Section 3.8
is in actual fact mLoc(C , m)∪fields(C) (for the method m in class C being analyzed), and
not just the subset ALoc ∪ AField. This is because the function is used in the type rules,

70

4 Data Flow Analysis

where it needs to be defined for all locals and fields of the method, not only for the
locals and fields which are of interest to the analysis. In order not to complicate the
function definition, we just let the function implicitly return 0 for a second argument x ∈
(mLoc(C , m)∪ fields(C)) \ (ALoc∪AField). A similar discussion goes for the pointsInto
predicate.

4.4.4 Partition Invariants

During the analysis, we maintain the following invariant for a partition set Φ:

∀Cl ∈ AClust: areInSameBlock(Φ, Cl,unusable) = 0,

meaning that a cluster variable is never unusable. This is motivated by statements which
lead to a Merge operation of a cluster, such the cast statement

x = (rep[f] C) y;

where f is a field declared uniq and y is a variable of a rep type. According to the
analysis value transition rules given in Section 3.9, the above cast statement amounts to
a Merge
�

Φ, C f , y
�

operation, where C f is the cluster variable associated with the field f.
In such a case, the cluster variable C f should not be unusable.

Moreover, we disallow two different cluster variables marking the same variable. In
other words,

∀x ∈ PVar, C1, C2 ∈ AClust:
�

pointsInto
�

Φ, x , C1
�

6= 0∧ pointsInto
�

Φ, x , C2
�

6= 0

⇒ C1 = C2
�

should hold as additional invariant. This corresponds to the limitation that we cannot
have a reference from inside a cluster to a different cluster. This appears not to be a
severe restriction for practical applications.

As a side-effect, both invariants also result in a simplification in the analysis implemen-
tation.

71

4.4 Partition Sets and Analysis Definition

4.4.5 Transition Functions

The transition function

Transi : 2Part(PVar)→ 2Part(PVar)

associated with a node i describes the effect (the semantics) of node i in terms of analysis
values. We would now like to formulate the transition functions in conjunction with
partition sets as analysis values to achieve the effects that are informally described in
Subsection 3.8.2.

Merge and New as Building Blocks. The Merge and New transition functions are
defined as application of the corresponding partition operations to each partition P in the
input partition set Φ:

Merge
�

Φ, x , y
�

:=
�

merge
�

P, x , y
�

: P ∈ Φ
	

(4.7)

New(Φ, x) := {new(P, x) : P ∈ Φ} , (4.8)

for x , y ∈ PVar. We shall also use the following shortcut to apply the New operation
repeatedly for a set X =

�

x1, x2, . . . , xk
	

⊆ PVar of variables:

New(Φ, X) := New
�

. . . New
�

New
�

Φ, x1
�

, x2
�

. . . , xk
�

. (4.9)

By virtue of our partition set up, the definition of the Merge operation amounts to the
desired effect of taking into account all “aliases” of the arguments that point into the
same respective cluster. Moreover, we verify that the New operation corresponds to the
high-level description given in Subsection 3.8.2, too.

Note that the arguments of both functions are general analysis variables in PVar. In
particular, they may also stand for cluster variables. This is because our formalization,
using marker variables, allows us to make no difference between, e.g., Merge

�

Φ, x , y
�

and Merge(Φ, x , Cl) for x , y ∈ ALoc and Cl ∈ AClust.

Move and Consume. All further transition functions can now be expressed using Merge
and New as building blocks (possibly indirectly, as for the ConsumeLocals operation de-

72

4 Data Flow Analysis

scribed below):

Move
�

Φ, x , y
�

:=
�

move
�

P, x , y
�

: P ∈ Φ
	

=

=
�

merge
�

new(P, x) , x , y
�

: P ∈ Φ
	

=

=Merge
�

New(Φ, x) , x , y
�

(4.10)

Consume(Φ, x) := New
�

Merge(Φ, x ,unusable) , (4.11)

{Cl ∈ AClust: pointsInto(Φ, x , Cl) 6= 0}
�

. (4.12)

The derivation steps in (4.10) are immediate consequences of Lemma 4.4. Consuming a
variable x is carried out by merging x with the marker variable unusable. This guaranties
that all variables that point into the same cluster are as marked unusable as well. In
addition, all cluster variables possibly marking a block of x in any partition P ∈ Φ are
renewed. This is to ensure that the cluster variables that might possibly have become
unusable as result of the merging are restored, as required by the first partition invariant
defined in Subsection 4.4.4.

ConsumeLocals. To specify the ConsumeLocals operation, we need two more helper
functions operating on partition sets. First, similarly to (4.9), we introduce an abbrevi-
ation to iteratively apply a Consume operation for a set X =

�

x1, x2, . . . , xk
	

⊆ PVar of
variables:

Consume(Φ, X) := Consume
�

. . . Consume
�

Consume
�

Φ, x1
�

, x2
�

. . . , xk
�

.

Moreover, let us enumerate the field analysis variables by AField =
�

f1, . . . , fk
	

(remem-
ber that AField is finite). The function RestoreFields: 2Part(PVar) → 2Part(PVar) is then de-
fined by

RestoreFields(P) :=

Move
�

. . . Move
�

Move
�

Φ, f1, cluster
�

f1
��

, f2, cluster
�

f2
��

. . . , fk, cluster
�

fk
��

.

This looks more complicated than it is – it simply moves each field variable fi to its
associated cluster cluster

�

fi
�

. At last, we can give the definition of the ConsumeLocals
operation:

ConsumeLocals(Φ) := RestoreFields
�

Consume
�

Φ,AClust \
�

Clthis
	��

. (4.13)

This definition has the desired effect of consuming all variables that point into a named
cluster (other than the this-cluster). The RestoreFields operation is used for reasons of

73

4.4 Partition Sets and Analysis Definition

simplicity and to avoid introducing a new basic function besides Merge and New. Note
that the partition invariants are maintained, since the cluster variables are restored as
part of the Consume operations.

Transition Function Definition. In conclusion, the transition function Transi(Φ) for a
node i is trivially defined according to the node’s type:

[merge(x, y)]i ⇒ Transi(Φ) :=Merge
�

Φ, x , y
�

[new(x)]i ⇒ Transi(Φ) := New(Φ, x)

[move(x, y)]i ⇒ Transi(Φ) :=Move
�

Φ, x , y
�

[consume(x)]i ⇒ Transi(Φ) := Consume(Φ, x)

[consumeLocals]i ⇒ Transi(Φ) := ConsumeLocals(Φ) .

For the remaining types of nodes, the transition function is defined to be the identity on
partition sets:

[skip]i , [break]i , [break `]i , [continue]i , [continue `]i , [exit]i

⇒ Transi(Φ) := Φ.

4.4.6 Analysis Definition

Having fixed the analysis property space and the transition functions, we will now for-
mally define the analysis in terms of data flow equations to be solved, along the lines
already suggested in Subsection 4.4.2.

For an analysis program S, let us denote the analysis values computed by the analysis
by the following functions:

Φentry,Φexit : nodes(S)→ 2Part(PVar).

That is, Φentry maps a node to the analysis value at its entry, and Φexit maps a node to the
an the analysis value at its exit, respectively.

Φentry(i) =
⋃

(i′,i) ∈
edges (S)

Φexit
�

i′
�

∪ ıi
init (S) (4.14)

Φexit(i) = Transi

�

Φentry(i)
�

(4.15)

74

4 Data Flow Analysis

where

ıi
j :=

¨

RestoreFields({{{x} : x ∈ PVar}}) , if i = j; (4.16a)

; , otherwise.

Equation (4.14) means that the entry value of a node is computed by joining the exit
values of all predecessor nodes and joining the initial value for the initial node of the
program. Equation (4.15) describes the effect of a single node, linking the entry value to
the exit value with the node’s transition function.

The initial value represents the information available at the start of the program. In our
case, (4.16a) defines it to be a partition set containing a single partition in which every
element is in its own block and, by virtue of the RestoreFields operation, every field is in
the same block as its associated cluster.

Example 4.8 Let ALoc :=
�

x , y, z
	

, AField :=
�

f , g, h
	

and AClust :=
¦

C f , Clthis

©

.
Moreover, let cluster

�

f
�

= cluster
�

g
�

= C f and cluster
�

g
�

= Clthis. Then, the initial
analysis value is

¦

x | y | z | f gC f | hClthis

©

. �

We note that we are interested in the least solution (the least fixed point) to the data
flow equations, the intuition being that we do not want to have unnecessarily big par-
tition sets. The analysis is a forward analysis in the sense that it determines the values
of successor nodes by joining the values of predecessor nodes. Furthermore, the analysis
is flow-sensitive, since it calculates one analysis value for each node in the flow graph,
as opposed to ignoring control flow information and computing a solution for the whole
method/program. Finally, as already mentioned before, the analysis is intra-procedural.

4.4.7 Preconditions and Early Type Checking

So as to maintain the partition invariants described in Subsection 4.4.4, we have to check
some special preconditions before the transition functions of certain node types may be
applied during the analysis. If the required preconditions are not satisfied, the analysis
immediately terminates with an appropriate error message.

As an optimization (and in order to make sure that propagated errors do not lead to
unsound results), we also check already during the analysis that no unusable variables
are read. This can be seen as an early type checking and has the advantage that some

75

4.4 Partition Sets and Analysis Definition

type errors may be recognized early during the analysis and the analysis does not need
to to be run for the entire program in case such an error is encountered. It should be
noted, however, that a special kind of analysis solving method is needed in conjunction
with such an anticipated type checking (cf. Subsection 4.7.1 for more detail on this).

The compilation coming next describes the checks that are performed as preconditions
before the transition functions of certain node types is executed.

Merge. For a [merge(x, y)]i node, the following two preconditions are checked be-
fore applying the transition function:

∀C1, C2 ∈ AClust:
�

pointsInto
�

Φ, x , C1
�

6= 0∧ pointsInto
�

Φ, y, C2
�

6= 0

⇒ C1 = C2
�

and

isUnusable(Φ, x) = 0∧ isUnusable
�

Φ, y
�

= 0,

where Φ := Φentry(i). The first precondition assures that no different clusters are merged,
hence enforcing the second partition invariant. Further, the second precondition checks
that neither of the involved variables is unusable. As mentioned above, this is to check that
no unusable variable is read as part of the Merge operation and corresponds to an early
type checking. Note that a Merge operation can indeed only be generated by a statement
in the toy language that requires reading both arguments of the Merge operation.

Move. A [move(x, y)]i has the following precondition:

isUnusable
�

Φ, y
�

= 0,

where Φ := Φentry(i). Similarly to the Merge operation, this anticipatorily checks that the
second argument is not unusable when read. Note that a Move operation corresponds
to reading the second argument and assigning it to the first argument in the source code
(turn back to the analysis value transition rules in Section 3.9 the to verify this).

76

4 Data Flow Analysis

Consume. A [consume(x)]i node takes the following two preconditions:

pointsInto
�

Φ, x , Clthis
�

= 0 and

isUnusable(Φ, x) = 0,

where Φ := Φentry(i). The first precondition prevents consuming the this-cluster Clthis, as
described in Subsection 3.8.2 (there referred to as “implicit precondition”). The second
precondition is another instance of an early type checking strategy, ensuring that the
variable to be consumed is not unusable.

4.5 Abstract Analysis Definition

In view of general analysis solver algorithms and to facilitate the introduction of alter-
native analysis values, we would now like to generalize the analysis and define abstract
requirements the property space and the transition functions have to fulfill.

4.5.1 Abstract Analysis Values

The following definition describes an abstract analysis property space.

Definition 4.9 A bounded join-semilattice is an algebraic structure (L ,t,⊥) satisfying
the following conditions:

� L is a non-empty set.

� t: L ×L → L is a binary operator (the join operator) which is

– idempotent: ∀L ∈ L : L t L = L,

– commutative: ∀L1, L2 ∈ L : L1 t L2 = L2 t L1,

– associative: ∀L1, L2, L3 ∈ L :
�

L1 t L2
�

t L3 = L1 t
�

L2 t L3
�

.

� ⊥ ∈ L is a distinguished element (the least element) such that

∀L ∈ L : L t⊥= L. �

77

4.5 Abstract Analysis Definition

In summary, a join-semilattice fixes the property space L and defines the least lattice
value ⊥, which will be used in the solver algorithm described later. Moreover, the semi-
lattice’s join operator t defines how analysis values are combined in control flow joins.
Intuitively, the commutativity and associativity of the operation mean that it does not
matter in which order we combine information from different paths.

For a join-semilattice (L ,t,⊥) we can establish a partial ordering v on L by setting,
for L1, L2 ∈ L ,

L1 v L2 :⇔ L2 t L2 = L2.

It is easy to verify that this defines indeed a partial ordering on L . When we discuss
a join-semilattice in the following, we will take the liberty of referring to this induced
partial ordering without explicitly introducing it.

In addition to be a bounded join-semilattice, the abstract analysis values need to satisfy
the so-called Ascending Chain condition.

Definition 4.10 A partially ordered set (L ,v) satisfies the Ascending Chain condition iff
each ascending chain L1 v L2 v L3 · · · eventually stabilizes. I.e., ∃ k : Lk = Lk+1. �

This simply means that there are no infinite ascending chains of elements of the join-
semilattice.

4.5.2 Abstract Transition Functions

The abstract transition function

Transi : L → L

associated with a node i describes the effect (the semantics) of node i in terms of analysis
values. It is natural to demand that each transition function Fi is monotone, i.e.,

∀L1, L2 ∈ L : L1 v L2 ⇒ Transi
�

L1
�

v Transi
�

L2
�

.

Intuitively, this says that an increase in our knowledge about the input must give rise to
an increase in out knowledge about the output (or at least that we know the same as
before).

78

4 Data Flow Analysis

4.5.3 Abstract Analysis Definition

We can now introduce the well-established notion of a Monotone Framework [18, 14].

Definition 4.11 Given a program S to analyze, a Monotone Framework consists of

� a join-semilattice (L ,t,⊥) satisfying the Ascending Chain condition2;

� a monotone transition function Transi for each i ∈ nodes(S); �

So as to define the analysis as instance of a Monotone Framework, we additionally
require a distinguished value ı ∈ L , the initial value, defining the value the initial node of
the program S starts out with. Note that the initial value is not necessarily equal to the
least value.

Having all ingredients together, let us denote the analysis values computed by the anal-
ysis by the functions

Lentry, Lexit : nodes(S)→ L

which mapping a node to the analysis value at its entry and exit, respectively. The Mono-
tone Framework instance then gives rise to a set of equations whose form should be
familiar from Subsection 4.4.6:

Lentry(i) =
⊔

(i′,i) ∈
edges (S)

Lexit
�

i′
�

t ıi
init (S) (4.17)

Lexit(i) = Transi

�

Lentry(i)
�

(4.18)

where

ıi
j :=

(

ı , if i = j;

⊥ , otherwise.

2As an aside, requiring that L be a complete lattice satisfying the Ascending Chain condition is equivalent
to demanding that L be a bounded join-semilattice satisfying the Ascending Chain condition [18]. We
use the latter definition as it fits better with the adoption of alias matrices as analysis values, as will be
seen later.

79

4.7 Analysis Solver Algorithms

4.6 Partition Sets Revisited

Let us now return to partition sets and quickly verify that the analysis formalization indeed
gives rise to a Monotone Framework to make sure the above described solver algorithms
terminate with the correct result.

Lemma 4.12 The partition set analysis formalization constitutes a Monotone Framework.

Proof. We have P := 2Part(PVar) as property space with the set union operator ∪ as join
operator and the empty set ; in the role of the least value. P being a power set, (P ,∪,;)
is clearly a bounded join-semilattice. Moreover, the satisfaction of the Ascending Chain
condition follows because Part(PVar) is finite.

What is left to confirm is the monotonicity of the transition functions. According to
Subsection 4.4.5, all transition functions can be reduced to a sequence of Merge and New
operations. Hence, it suffices to demonstrate that the latter two functions are monotone.
For this purpose, let Φ,Ψ ∈ P and Φ ⊆ Ψ . Enumerating the elements in both partition
sets, we arrive at the following picture (note that both Φ and Ψ are finite):

Φ=
�

P1, . . . , Pk
	

⊆
�

P1, . . . , Pk,Q1, . . . ,Q l
	

= Ψ .

Since, by (4.7) and (4.8), the Merge and New operations are defined as an element-wise
application of merge or new, respectively, the monotonicity follows immediately:

F(Φ) =
�

f
�

P1
�

, . . . , f
�

Pk
�	

⊆
�

f
�

P1
�

, . . . , f
�

Pk
�

, f
�

Q1
�

, . . . , f
�

Q l
�	

= F(Ψ) .

where the functions F and f stand for Merge and merge or New and new, respectively. �

4.7 Analysis Solver Algorithms

To solve the data flow equations (4.17) and (4.18) we focus on iterative algorithms [18,
14]. The underlying principle is simple: Starting with an appropriate initialization, the
analysis values are iteratively updated for each node by (i) joining the analysis values
from predecessor nodes (Equation (4.17)) and (ii) applying transition functions until all
values are stable (Equation (4.18)).

So as to organize this iteration in a less chaotic way, we employ a worklist which con-
tains edges (as opposed to nodes). The presence of an edge

�

i, i′
�

in the worklist indicates

80

4 Data Flow Analysis

that the analysis value has changed at the entry to (and therefore also at the exit of) node i
and so must be recomputed at the entry to the successor node i′. Keeping edges instead
of nodes in the worklist has the advantage that the entry analysis value of a node can be
selectively updated by joining the exit values from single predecessor nodes, as opposed
to having to join the exit values from all predecessor nodes for each update.

To enable different worklist organizations, let us introduce an abstraction of a worklist
providing the following iterator-like interface:

� operation initialize(S) – initialize the worklist using a given program S

� operation isEmpty() – return true iff there are no more edges in the worklist,
meaning that the iteration is done

� operation next() – return the next edge to be treated

� operation update(e) – update the worklist to record that edge e was affected
by the last iteration

Algorithm 4.1, adapted from [18], outlines a basic worklist solver. Making use of the
monotonicity property and the Ascending Chain condition guaranteed by the Monotone
Framework, it computes the desired least solution (the least fixed point) to the data flow
equations. For a complete proof of this fact, the reader is kindly referred to [18].

Time Complexity. Regardless of the concrete worklist implementation, the worklist
algorithm has a worst-case time complexity of O(|edges(S)| · h · a), where S is the program
to analyze, h the length of the longest ascending chain in the join-semilattice L and a the
cost needed to perform a basic operation (an application of a transition function or an
application of a join operation) during the iteration. Consider [18] for more detail on this.
Note that for programs written using standard constructs (including goto statements) the
number of edges in the flow graph is O

�

number of nodes in the flow graph
�

[14].

4.7.1 Standard Worklist

A straight-forward implementaiton of a worklist is given in Algorithm 4.2. It maintains
a usual linked list and simply delegates all calls to the list. For the initialization, all flow
graph edges are added to the list. It does not matter whether the elements are added in a
LIFO or FIFO manner.

81

4.7 Analysis Solver Algorithms

Algorithm 4.1: Worklist Solver
Input : a program S and analysis equations defined by an instance of a Monotone

Framework
Output: the least analysis solution in form of Lentry(i) for each i ∈ nodes(S)

for each i ∈ nodes(S) \ {init(S)}1

Lentry(i) :=⊥ // initialize all nodes except the initial one to the least value2

Lentry(init(S)) := ı // initialize the initial node to the initial value3

W.initialize(S) // initialize the worklist and begin the iteration4

while ¬W.isEmpty()5
�

i, i′
�

:=W.next()6

new := Transi

�

Lentry(i)
�

// new= Lexit(i)7

if new 6v Lentry
�

i′
�

// newÁ Lentry
�

i′
�

⇔ Lentry
�

i′
�

will change8

Lentry
�

i′
�

:= Lentry
�

i′
�

t new // update the analysis value9

for each
�

i′, i′′
�

∈ edges(S)10

W.update
�

i′, i′′
�

// update the worklist with each outgoing edge11

However, this simple approach bares a fatal flaw in association with the preconditions
and early type checks that no unusable variable is read that are performed before applying
certain transition functions during the analysis (cf. Subsection 4.4.5) and the fact that
the edges are in no particular order in the worklist: Consider the flow graph G from
Figure 4.2(a). Suppose that node f is a [consume(x)]i node and we retrieve edge

�

f , g
�

from the worklist. This means that, as part of the preconditions for a consume node, a
check is performed whether the variable x is unusable. If isUnusable

�

Lentry
�

f
�

, x
�

= 1,
then the solver emits a precise error message and the analysis terminates. However, it
may be that one of the incoming edges

�

c, f
�

and
�

e, f
�

has not yet been retrieved from
the worklist, but would have caused the value at the entry to node f to become imprecise,
i.e., isUnusable

�

Lentry
�

f
�

, x
�

= ½. This means that the solver would report a spurious
precise error.

To solve this problem we have to organize the edges in the worklist in some kind of
order that makes sure that, coming back to our example, the edges

�

c, f
�

and
�

e, f
�

are
retrieved before the edge

�

f , g
�

.

82

4 Data Flow Analysis

a

b

c

d

e

f

g

(a) G

a

b

c

d

e

f

g

(b) G with highlighted DFS edge kinds:
tree edges (thick), forward edges
(dotted), back edges (dashed) and
cross edges (dot-dash pattern)

root

(a, b)(a, d)

(a, e)

(b, c)(c, b)

�

c, f
�

(d, e)

�

e, f
�

�

f , d
�

�

f , g
�

(c) L(G) with an additional “root”

root

(a, b)(a, d)

(a, e)

(b, c)(c, b)

�

c, f
�

(d, e)

�

e, f
�

�

f , d
�

�

f , g
�

(d) L(G) with an additional “root” and highlighted
strongly connected components

root (a, d) (a, e)

(d, e)
�

e, f
� �

f , d
�

(a, b)

(b, c) (b, c)

�

c, f
� �

f , g
�

(e) Loop tree of L(G) with an additional “root”

Figure 4.2: Example graph, line graph and loop tree.

83

4.7 Analysis Solver Algorithms

Algorithm 4.2: Standard Worklist
State variables: list

operation initialize(S)1

list := emtpy list2

for each e ∈ edges(S)3

add e to list4

operation isEmpty()5

return true iff list is empty6

operation next()7

e := remove next edge from list8

return e9

operation update(e)10

add e to list11

4.7.2 Reverse Postorder Worklist

Before we try to tackle the problem described in the previous subsection, let us first briefly
review two common concepts.

DFS Graph Traversals. A depth-first search (DFS) traversal visits all nodes of a graph
by recursively visiting all not yet visited successor nodes. Thereby, it constructs a spanning
tree (or forest, if the graph is not connected) consisting of those edges that led to a
successor that had not yet been visited. We can categorize the edges in the original graph
as follows:

� Tree edges are present in the DFS spanning tree (or forest). As explained above, this
signifies that the destination node of the graph was first visited via this edge.

� Forward edges go from a node to a proper descendant in the tree, but are no tree
edges.

� Back edges go from descendants to ancestors in the tree.

84

4 Data Flow Analysis

� Cross edges go between nodes that are unrelated by the ancestor and descendant
relations.

Consider Figure 4.2(b) for an example DFS run using a “leftmost successor first” strategy
to visit the successor nodes.

While traversing the tree, the encountered nodes can be numbered (or printed) either
in preorder or in postorder. A preorder numbering means that a node is numbered (or
printed) as soon as it is visited, before the successor nodes are recursed into. In contrast,
a postorder numbering numbers (or prints) a node only after all of its successor nodes
have been recursed into. Finally, a reverse postorder numbering is, expectedly, the reverse
of a postorder numbering.

One important property of a reverse postorder numbering is the fact that it topologically
sorts the nodes by all edges except back edges. In particular, it also takes cross edges into
account. The following itemization displays possible node orderings of the graph G given
in Figure 4.2(a), again using a “leftmost successor first” strategy to visit the successor
nodes. This makes plain that the preorder and the breadth-first search (BFS) discipline
do not necessarily sort the nodes according to cross edges, as the end nodes c and f of
the cross edge
�

c, f
�

are in the wrong order:

� DFS postorder : g, f , e, d, c, b, a

� DFS reverse postorder : a, b, c, d, e, f , g

� DFS preorder : a, d, e, f , g, b, c

� BFS : a, d, e, b, f , c, g

Line Graphs. Given a (simple) directed graph G = (V (G), E(G)), the line graph L(G) of
G is the graph whose vertices are the edges of G. There is an edge between two nodes in
L(G) iff the corresponding edges in G share an endpoint:

V (L(G)) := E(G)

E(L(G)) :=
��

(u, v) ,
�

u′, v′
��

∈ E(G)× E(G): v = u′
	

.

Line graphs are often used to translate properties about edges in the original graph into
properties about vertices in the line graph. When dealing with a flow graph G that corre-
sponds to a program S in the analysis language, G has a single initial node init(S) from
which there is a path to every other node in the graph (assuming there are no unreachable

85

4.7 Analysis Solver Algorithms

statements). However, the line graph L(G) of G does not have this property if init(S) has
multiple successors. To overcome this, we can simply add an artificial “root” node to L(G)
and connect it to the nodes in L(G) that correspond to the outgoing edges of init(S) in G.
Figure 4.2(c) shows an example of a line graph with such an added “root” node.

Coming back to the problem of a better organization of the worklist, we observe that
all we need to do is to make sure that for every node, all incoming edges – excluding
back edges – are retrieved prior to the outgoing edges. But this is exactly the property
of a reverse postorder numbering. Hence, we can compute the line graph of the original
flow graph, keep the edges sorted in reverse postorder and retrieve them in this order
from the worklist. Note that an edge in a line graph captures the same idea as an edge in
the original flow graph, namely that updating the source node influences the destination
node.

We can achieve the same effect if we number the nodes in reverse postorder and impose
a total order on edges by comparing them alphabetically by the reverse postorder numbers
of the source and destination node of the edge, in this order. This way, we can avoid using
a line graph.

Example 4.13 For the example graph G of Figure 4.2(a), we have already seen a valid
reverse postorder of the nodes: a, b, c, d, e, f , g. Ordering the edges of G alphabetically
by the reverse postorder numbers of the source and destination node then yields:

(a, b) , (a, d) , (a, e) , (b, c) , (c, b) ,
�

c, f
�

, (d, e) ,
�

e, f
�

,
�

f , g
�

. �

In consequence, the implementation of a reverse postorder worklist looks just like the
standard worklist of Algorithm 4.2, except that the edges in the aggregated list are re-
trieved in reverse postorder.

4.7.3 Strongly Connected Components Worklist

An even more advanced organization of the worklist is based on the structure of the
strongly connected components of a graph. Recall that a strongly connected component
(SCC or strong component in short) of a directed graph G is a maximal subgraph S ⊆ G
such that every node in S is reachable from every other node in S. Being the equivalence
classes of an equivalence relation, the SCCs partition the nodes in the graph. Further,
viewing the SCCs as supernodes produces a DAG and hence, the SCCs are topologically
sortable.

86

4 Data Flow Analysis

The basic idea is now to organize the worklist in such a way that we iterate over loops
until they are stabilized, stabilize inner loops before their outer loops and visit the nodes
in reverse postorder within each loop [18, 14, 15]. To accomplish this, we employ the
same techniques as described in [15], with the difference that we want the worklist to
return edges instead of nodes. This can be achieved by simply applying the procedures to
the line graph (enriched with an artificial “root” node) of the flow graph instead of using
the flow graph directly.

The entry node to a loop is referred to as the loop head. A loop head in the line graph of
a flow graph corresponds to an edge whose source node is a loop head in the flow graph,
i.e., an edge leading into the loop in the flow graph. Such a kind of edge will be referred
to as a loop head edge.

Example 4.14 Consider once more Figure 4.2. The nodes d and b are loop heads in the
graph G. The corresponding line graph L(G) has the nodes (d, e) and (b, c) as loop heads.
Note that the latter edges indeed correspond to an edge leading into the loop in G. �

When the worklist is about to return such a loop head edge, we may either (i) return the
edge – corresponding to another iteration over the loop body – or, (ii) return the next edge
after the loop, which corresponds to jumping over the nodes of the loop body. To capture
such an update sequence, including the decision points at edges leading into a loop, the
so-called loop tree is calculated out of the SCCs of the line graph in a preprocessing step.
The loop tree is a tree with ordered children. Inner nodes represent loops (except for the
root node of the whole tree), while leaf nodes represent nodes of the original graph, in
our case, the line graph of the flow graph.

The construction of a loop tree given an arbitrary graph G is shown in the recursive
Algorithm 4.4, adapted from [15]. The algorithm terminates since removing all incoming
edges from a loop head of an SCC lets this component fall apart into at least two subcom-
ponents. In the implementation, the strongly connected components are computed using
Tarjan’s algorithm [21], which conveniently delivers them already in (reverse) topologi-
cal order. Figure 4.2(d) highlights the SCCs of the line graph L(G) (with an additional
“root” node) of the example graph G, and Figure 4.2(e) displays the corresponding loop
tree. Note that the first (leftmost) child of a sub loop tree is always a leaf and – except
for the additional “root” node – corresponds to a loop head in the line graph, or to a loop
head edge leading into a loop in the original graph.

The constructed loop tree then defines the following update sequence: the leaf nodes
are retrieved from left to right in tree order, jumping back to the first (leftmost) child

87

4.8 Alias Matrices

from the last (rightmost) node of a subtree. At loop heads (decision points), a check
is performed whether the loop is stable, indicating a fixed point for the loop. If so, the
ordinary evaluation sequence from left to right is broken and the iteration continues with
the first node after the loop.

Algorithm 4.3, adapted from [15], sketches the corresponding worklist iterator. The
loop tree of the line graph is created in the initialization method. During the iteration, the
helper function checkFirstChildStable(e) takes an edge e which must be the first child of a
subtree, meaning that it is a loop head edge leading into a loop. The function then checks
if the loop head (the source node of e) has changed since the last time it was encountered.
If so, then the loop is not stable and the worklist returns the edge e, meaning that one
more loop iteration is performed. Otherwise, the loop is stable and the next node of e’s
parent is calculated, which corresponds to jumping over the loop body.

In summary, the described update scheme has the benefit of a reduced number of
computations required to stabilize each loop. In the practical examples that have been
analyzed (including the benchmarks from Section 4.11), however, no overwhelming dif-
ference could be observed between the efficiency of an SCC worklist and a simpler reverse
postorder worklist from the previous section; the performances were similar. Nonetheless,
the analysis solver in the current implementation uses an SCC worklist.

4.8 Alias Matrices

Instead of tweaking the analysis solver algorithm for a better performance, we shall now
embark on some strategies to replace the bulky partition sets as analysis values with more
compact representations which, unlike partition sets, may not grow exponentially in size.
As it turns out, however, this results in a possible loss in precision.

Given a set of partitions Φ, all analysis queries can be reduced to the basic predicate
areInSameBlock (cf. Subsection 4.4.3). This leads to the idea that we may just store the
values of the latter relation (for each pair of variables) instead of maintaining a full set of
partitions. Thus, we will only have to deal with a quadratic matrix and so, the required
space is quadratically bounded. Since the areInSameBlock relation tracks if variables
point into the same cluster, or, more broadly speaking, are aliases, we call such a matrix
an alias matrix A.

88

4 Data Flow Analysis

Algorithm 4.3: Loop Tree Worklist
State variables: loopTree, current

operation initialize(S)1

G := (nodes(S) , edges(S))2

LG := L(G)3

add a node root to LG // dummy root4

for each e = (init(S) , i) ∈ edges(S)5

add an edge (root, e) to LG // connect the dummy root6

loopTree := createLoopTree(LG)7

current := first child of loopTree // this is the dummy root8

operation isEmpty()9

return true iff next(current) = first child of loopTree10

operation next()11

current := calculateNext(current)12

return current13

operation calculateNext(e)14

if e is last child of e.parent15

return checkFirstChildStable(first child of e. parent)16

if next sibling of e is a leaf17

return next sibling of e18

// e’s next sibling is an inner node19

return checkFirstChildStable(leftmost leaf of e’s next sibling)20

operation checkFirstChildStable(e)21

if the source node of e has changed since last time22

return e // remain in the loop23

else24

return calculateNext(e.parent) // jump out of the loop25

operation update(e)26

// nothing to do27

89

4.8 Alias Matrices

Algorithm 4.4: createLoopTree
Input : a graph G
Output: the loop tree of G

r := new root node1

SCC := strongly connected components of G2

for each S ∈ SCC in topological order3

if S contains a single node n4

add n as the next leaf to the root r5

else6

h := a loop head of S7

remove all incoming edges of h8

add createLoopTree(S) as next child to the root r // recursion9

return r10

More formally, we introduce a function

proj: 2Part(PVar)→ PVar× PVar→ T

that projects a set of partitions Φ ∈ 2Part(PVar) to an alias matrix A: PVar× PVar→ T such
that

A
�

i, j
�

= proj(Φ)
�

i, j
�

:= areInSameBlock
�

Φ, i, j
�

. (4.19)

Note that, for technical reasons, we regard A as a function rather than an actual matrix
as element of Tn×n. It is immediate that A is symmetric, i.e., A

�

i, j
�

= A
�

j, i
�

and that its
diagonal consists of ones, i.e., A(i, i) = 1.

Queries. Using an alias matrix A= proj(Φ), the query predicates on analysis values can
be expressed just as described in Subsection 4.4.3, substituting A(i, j) for every occurrence
of areInSameBlock

�

Φ, i, j
�

.

Transition Functions. Since all transition functions with partition sets can be reduced
to (possibly a sequence of) New and Merge operations (cf. Subsection 4.4.5), it suffices to
define (overloaded versions) the two latter operations for alias matrices. To begin with,

90

4 Data Flow Analysis

the New operation is defined by

A′
�

i, j
�

= New(A, x)
�

i, j
�

:=

1 , if i = j = x;

0 , if i = x xor j = x;

A
�

i, j
�

, otherwise.

(4.20)

This captures the intuition that x is in its own block in every partition of the resulting
partition set.

The Merge operation is given by:

A′
�

i, j
�

=Merge
�

A, x , y
��

i, j
�

:= A
�

i, j
�

(4.21a)

∨T
�

A(i, x)∧T A
�

j, y
��

(4.21b)

∨T
�

A
�

j, x
�

∧T A
�

i, y
��

. (4.21c)

Alternatively, by writing out the ternary logic constructs in (4.21b) and (4.21c), it can be
expressed as follows:

A′
�

i, j
�

:=

max
�

A
�

i, j
�

, 0
�

, if
�

A(i, x) = 0∨ A
�

j, y
�

= 0
�

(4.22a)

∧
�

A
�

i, y
�

= 0∨ A
�

j, x
�

= 0
�

;

max
�

A
�

i, j
�

, 1
�

, if
�

A(i, x) = 1∧ A
�

j, y
�

= 1
�

(4.22b)

∨
�

A
�

i, y
�

= 1∧ A
�

j, x
�

= 1
�

;

max
�

A
�

i, j
�

,½
�

, otherwise. (4.22c)

As in binary logic, the maximum operator is equivalent to the “or” connective, where
the elements of T = {0,½, 1} are interpreted as real numbers. We used the maximum
operator so as to emphasize that a value cannot be decreased by a Merge operation. This
corresponds to the fact that a Merge operation only unifies blocks of partitions and never
separates two variables that are in the same block. Case 4.22b signifies that i and j will
certainly end up in the same block if i is in the same block as x and j is in the same block
as y (or in the symmetric case). Case 4.22a is the dual to case 4.22b. Otherwise, we
cannot give a precise answer.

Note that the preconditions and early type checks (cf. Subsection 4.4.7) can also be
easily translated for alias matrices.

91

4.8 Alias Matrices

4.8.1 Alias Matrices as Monotone Framework

Let A be the set of all alias matrices A: PVar× PVar → T that are symmetric and have
a diagonal consisting of ones. A will act as analysis property space. Moreover, we de-
fine a join operator tM : A → A as component-wise application of the ternary logic join
operator tT specified in Table 3.4(c):

�

AtM B
��

i, j
�

:= A
�

i, j
�

tT B
�

i, j
�

for i, j ∈ PVar. As described at the end of Section 3.7, this expresses the intuition that the
resulting value is unknown unless both of the joined values are precise.

Finally, we add an “artificial” least value ⊥M and define it to have the desired property
that

AtM ⊥M = A

for all A ∈ A [14]. This is legitimate due to the fact that the least value ⊥M can only be
the result of a join operation if both operands are equal to the least value.

Now we can prove that this amounts in fact to a Monotone Framework, which enables
us to use the analysis solver algorithms outlined in Section 4.7.

Lemma 4.15 The alias matrix analysis formalization constitutes a Monotone Framework.

Proof. The tM operator clearly is idempotent, commutative and associative, as required
by Definition 4.9. Since, in addition, there is a least element ⊥M ,

�

A ,tM ,⊥M
�

is a
bounded join-semilattice. Moreover, the satisfaction of the Ascending Chain condition
follows because PVar × PVar is finite. As mentioned in Subsection 4.5.1, the bounded
join-semilattice gives rise to a partial order vM such that, for A, B ∈ A ,

AvM B⇔ AtM B = B.

What is left to confirm is the monotonicity of the transition functions (with respect
to vM). According to Subsection 4.4.5, all transition functions can be reduced to a se-
quence of Merge and New operations. Hence, it suffices to demonstrate that the latter
two functions are monotone. For this purpose, let A, B ∈ A and AvM B or, equivalently,
AtM B = B.

For the New operation and a variable x ∈ PVar, let us write A′ := New(A, x) and B′ :=
New(B, x). From the definition of the New operation, (4.20), it follows that the operation

92

4 Data Flow Analysis

affects only the x-column and the x-row in the input matrix: all entries in the x-column
and the x row are set to 0 except for the entry (x , x), which is set to 1. All other entries
are unchanged by the New operation. Since it holds that A′

�

i, j
�

tT B′
�

i, j
�

= B′
�

i, j
�

for
entries in the x-column and x-row as well as for all remaining entries (by the assumption
AtM B = B), we have A′ vM B′, as desired.

The corresponding proof for the Merge operation will require some case splits. For vari-
ables x , y ∈ PVar, let us write A′ :=Merge

�

A, x , y
�

and B′ :=Merge
�

B, x , y
�

. Suppose for
a contradiction that A′tM B′ 6= B′, i.e., there is an entry

�

i, j
�

such that A′
�

i, j
�

tT B′
�

i, j
�

6=
B′
�

i, j
�

. By looking at the definition of the tT operator, Table 3.4(c), it follows that this
case can only occur if either

B′
�

i, j
�

= 1∧ A′
�

i, j
�

6= 1 or, likewise, (4.23)

B′
�

i, j
�

= 0∧ A′
�

i, j
�

6= 0. (4.24)

Via the definition of the Merge operation, (4.22b), case B′
�

i, j
�

= 1 implies that either

B
�

i, j
�

= 1 or
�

B(i, x) = 1∧ B
�

j, y
�

= 1
�

∨
�

B
�

i, y
�

= 1∧ B
�

j, x
�

= 1
�

.

Using the assumption AtM B = B, it follows that A must have a 1 entry wherever B has
a 1 entry. I.e., it holds that either

A
�

i, j
�

= 1 or
�

A(i, x) = 1∧ A
�

j, y
�

= 1
�

∨
�

A
�

i, y
�

= 1∧ A
�

j, x
�

= 1
�

.

But this means, again by definition of the Merge operation, that A′
�

i, j
�

= 1, which con-
tradicts (4.23).

Case B′
�

i, j
�

= 0 can be handled in a dual way. �

4.8.2 Alias Matrices as Conservative Approximation of Partition Sets

In this subsection we will demonstrate that using alias matrices instead of partition sets
is a conservative approximation. In other words, if we start off with projecting a partition
set to an alias matrix and perform the same sequence of transition functions and join
operations with the original partition set and the projected alias matrix, then we may

93

4.8 Alias Matrices

incur a loss in precision, but, on the other hand, no spurious precise answers can be
produced by the alias matrices.

The following lemma is even stronger: it is to say that under a New operation, an alias
matrix is as precise as a partition set.

Lemma 4.16 For a partition set Φ ∈ 2Part(PVar) and a variable x ∈ PVar,

proj(New(Φ, x)) = New
�

proj(Φ) , x
�

.

In other words, the following diagram is commutative:

Φ
proj(.)
−−−→ A

New (.,x)

y

y
New (.,x)

Φ′ −−−→
proj(.)

A′

Proof. Having Φ′ := New(Φ, x), it follows from (4.4) that for a partition P ′ ∈ Φ′ and a
variable i ∈ PVar

P ′[i] =

(

{x} , if i = x;

P[i] \ {x} , otherwise,

meaning that in P ′, i is in its own block and, consequently, no other variable is in the
same block as i. Now let A := proj(Φ) and A′ := New(A, x). For variables i, j ∈ PVar, the
above observation leads to

areInSameBlock
�

Φ′, i, j
�

=

1 , if i = j = x;

0 , if i = x xor j = x;

areInSameBlock
�

Φ, i, j
�

, otherwise.

(4.25)

Comparing (4.25) with (4.20) immediately yields proj
�

Φ′
��

i, j
�

= A′
�

i, j
�

. �

For the Merge operation, the analogous correspondance

proj
�

Merge
�

Φ, x , y
�� ?
=Merge
�

proj
�

Φ, x , y
��

turns out to be invalid and thus, the following diagram is not commutative:

Φ
proj(.)
−−−→ A

Merge (.,x ,y)

y

y
Merge (.,x ,y)

Φ −−−→
proj(.)

A′

94

4 Data Flow Analysis

Consider the diagrams in Figure 4.3 for a counter example, where the partition sets in the
top-left and top-right corner have the same projection to an alias matrix, but a different
projection after a Merge transition function has been applied. Since the corresponding
transition function in the alias matrix domain naturally needs to be deterministic, there is
no way we could define such an operation without a loss in precision (indicated by ‘?’ in
the figure).

�

x b | y | a,
x | b | ya
	

x y a b
x 1 0 0 ½
y 1 ½ 0
a 1 0
b 1

�

x | y | a | b,
x b | ya
	

�

x y b | a,
x ya | b
	

x y a b
x 1 1 ½ ½
y 1 ½ ½
a 1 0
b 1

x y a b
x 1 1 ½ ½
y 1 ½ ½
a 1 ½
b 1

�

x y | a | b,
x yab
	

proj(.) proj(.)

Merge (.,x ,y)

proj(.)

Merge (.,x ,y)

proj(.)

? ?

Figure 4.3: Precision loss with alias matrices: the projections of both partition sets result
in the same alias matrix, but the projections of the respective partition sets
after applying the Merge operation are different3.

Nevertheless, the following lemma states that under a Merge operation, an alias matrix
is a conservative approximation of a partition set, in the sense that a precise value in the
alias matrix implies the same precise value in the partition set.

Lemma 4.17 For a partition set Φ ∈ 2Part(PVar) and variables x , y ∈ PVar, let Φ′ :=
Merge
�

Φ, x , y
�

, A := proj(Φ) and A′ :=Merge
�

A, x , y
�

. Then, for variables i, j ∈ PVar,

(i) A′
�

i, j
�

= 1⇒ areInSameBlock
�

Φ′, i, j
�

= 1

(ii) A′
�

i, j
�

= 0⇒ areInSameBlock
�

Φ′, i, j
�

= 0

3It may be argued that this example is a special case since the partition set in the top-right corner is mini-
mizable in the sense of Section 4.9. However, it has been verified that examples without this property can
be constructed as well.

95

4.8 Alias Matrices

Proof.

(i) Similarly to demonstrating the monotonicity of a Merge operation in the proof of
Lemma 4.15, it follows from the definition of the Merge operation that A′

�

i, j
�

= 1
requires either

A
�

i, j
�

= 1 or
�

A(i, x) = 1∧ A
�

j, y
�

= 1
�

∨
�

A
�

i, y
�

= 1∧ A
�

j, x
�

= 1
�

.

Case A
�

i, j
�

= 1 implies areInSameBlock
�

Φ, i, j
�

= 1. Since the Merge operation
does not separate blocks, we have areInSameBlock

�

Φ′, i, j
�

= 1.

Case A(i, x) = 1∧ A
�

j, y
�

= 1 implies

areInSameBlock(Φ, i, x) = 1∧ areInSameBlock
�

Φ, j, y
�

= 1.

In other words, for every partition P ∈ Φ, we have P[i] = P[x] and P[j] = P[y].
But then, for every partition, i and j will end up in the same block after the
blocks of x and y have been unified by the Merge operation. This results in
areInSameBlock

�

Φ′, i, j
�

= 1.

Likewise, case A
�

i, y
�

= 1∧ A
�

j, x
�

= 1 implies

areInSameBlock
�

Φ, i, y
�

= 1∧ areInSameBlock
�

Φ, j, x
�

= 1.

Using the same argument as in the previous case immediately leads to the desired
areInSameBlock

�

Φ′, i, j
�

= 1.

(ii) Once more, the proof of the second part of the lemma is completely dual to the
proof of the first part and therefore omitted here. �

Combining the two of the previous lemmas and the conservative nature of the tM op-
eration, we conclude with the main theorem of this subsection.

Theorem 4.18 Alias matrices are a conservative approximation of partition sets as analy-
sis values: there may be a loss in precision (an alias matrix may signal an unknown answer,
while the corresponding partition set reports a precise answer), but precise answers given by
alias matrices are always sound.

96

4 Data Flow Analysis

Proof. The tT operation clearly cannot introduce spurious precise answers, since the
joined value is only precise if both operands are precise. Consequently, the same holds for
the tM operation.

Furthermore, since every sequence of transition functions can be expressed as a se-
quence of New and Merge operations and since the analysis terminates after applying
a finite sequence of transition functions and join operations, the above observation and
Lemmas 4.16 and 4.17 can be inductively applied to obtain the statement of the lemma.�

For reference, the Listing 4.1 displays a program4 that corresponds to the settings in
the example incurring a precision loss given in Figure 4.3: An analysis solver using alias
matrices reports the that on line 21, the variable b may be unusable, whereas a solver
using partition sets accepts the program.

4.9 Minimized Partition Sets

Another way to possibly overcome the potentially exponential size of a partition set uses
the notion of finer and coarser partitions.

Finer and Coarser Partitions. For a set A and partitions P,Q ∈ Part(A), P is finer than
or equal to Q, P ≤P Q, iff all blocks of P are contained in a block of Q:

P ≤P Q :⇔ ∀p ∈ P : ∃q ∈Q : p ⊆ q.

Conversely, Q is said to be coarser than or equal to P.

Example 4.19 For A :=
�

w, x , y, z
	

, the following partitions in Part(A) are examples
related by ≤P :

wx | y | z ≤P wx | yz

wx y | z ≤P wx yz

wz | x | y ≤P wxz | y .

4The source file can be found at org/multijava/mjc/testcase/universes/uniqueness/Analysis_

Precision.java in the MultiJava source tree.

97

4.9 Minimized Partition Sets

1 class C extends Object {

2

3 peer C f;

4

5 void m() {

6 rep C x = null;

7 rep C y = null;

8 rep C a = null;

9 rep C b = null;

10 peer C z;

11

12 if (x == null) {

13 x.f = b; // merge(x, b)

14 } else {

15 y.f = a; // merge(y, a)

16 }

17

18 x.f = y; // merge(x, y)

19

20 z = a; // consume(a);

21 z = b; // consume(b);

22 }

23

24 }

Listing 4.1: Precision loss with alias matrices.

98

4 Data Flow Analysis

In contrast, the following partitions are not related by ≤P :

wx | y | z, w | x | yz

wx y | z, wx | yz

wz | x | y , wx | y | z. �

As an aside, we remark that
�

Part(A),≤P
�

in fact constitutes a complete lattice, for any
set A.

Minimize Operation. The idea is now to reduce (minimize) the size of a given partition
set by throwing away all partitions which are finer than another partition contained in the
set. Thus, for a set A, we now define a minimize operation on partition sets

minimize: 2Part(A)→ 2Part(A)

which removes all partitions that are finer than another partition in the set:

minimize(Φ) := “remove all partitions P ∈ Φ if

there is a partition Q ∈ Φ such that P <P Q”

Example 4.20 For A :=
�

w, x , y, z
	

, we have

minimize
��

wx | y | z, wx | yz
	�

=
�

wx | yz
	

. (4.26)
�

Note that the trivial upper bound for the cost of minimizing a partition set Φ is O
�

|Φ|2
�

,
since every pair of partitions has to be examined.

Adapted Query Functions. It clearly holds that

areInSameBlock
�

Φ, x , y
�

= 0 ⇒ areInSameBlock
�

minimize(Φ) , x , y
�

= 0.

However, the analogous statement for a positive answer,

areInSameBlock
�

Φ, x , y
�

= 1
?
⇒ areInSameBlock

�

minimize(Φ) , x , y
�

= 1,

99

4.9 Minimized Partition Sets

is invalid, as seen in (4.26), where

areInSameBlock
��

wx | yz
	

, y, z
�

= 1

would be a spurious precise answser. Thus, we define a new conservative version of the
areInSameBlock predicate:

areInSameBlock ′
�

Φ, x , y
�

:=

(

0 , if areInSameBlock
�

Φ, x , y
�

= 0;

½ , otherwise.

Since the value 1 is never returned, this function actually has only a two valued logic
range5. The query predicates for minimized partition sets are then expressed just as
described in Subsection 4.4.3, substituting areInSameBlock ′

�

Φ, x , y
�

for every occurrence
of areInSameBlock

�

Φ, x , y
�

.

Compared with the (unminimized) partition set formalization, the only operation that
needs to be modified is the join operation, which now additionally performs the minimiza-
tion of the resulting partition set. The transition functions (including the preconditions
and the early type checks) and the analysis property space do not change. Thus, it follows
that minimized partition sets still define a Monotone Framework.

Minimized partition sets may require exponentially less time and space than partition
sets without loosing precision (as in Benchmark 1, cf. Section 4.11). However, there
are cases of partition sets that are not minimizable, even exponentially big ones (see
Example 4.21 below). Thus, minimized partition sets have an even larger worst-case
time complexity than partition sets due to the additional cost of the minimize operation.
Furthermore, since only a two valued logic is used in analysis queries, the precision may
suffer substantially.

Example 4.21 For n ∈ N, consider a variable set A :=
�

x1, . . . , x2n
	

of size 2n. We define
a partition set Φ ∈ 2Part(A) to be

Φ :=
�

{V, A\ V} : V ∈
�

A

n

��

.

In other words, a partition P ∈ Φ consists of the blocks V and A \ V , where V is an n-
element subset of A. Since each partition P ∈ Φ has different blocks, it follows that Φ

5This reflects the development process of the project, where the ternary logic versions of the query functions
were added later.

100

4 Data Flow Analysis

cannot be minimized. For reasons of symmetry, each V will also occur exactly once as
A\ V . Thus, we have

|Φ|=
1

2

�

�

�

�

�

A

n

�
�

�

�

�

=
1

2

�

2n

n

�

=
(2n)!

2 (n!)2
∼

4n

2
p
πn

,

using Stirling’s formula. This proves that there are exponentially large partition sets that
cannot be minimized. �

4.10 Three Different Kinds of Analyses – Summary

This section summarizes the pro and cons of the three different analysis values we have
seen: partition sets, alias matrices and minimized partition sets. Moreover, we present a
way of combining them to form a meta analysis solver.

Partition sets have the highest precision, but may require exponential time and space.
The time and space requirements for alias matrices are bounded quadratically, but they
may suffer from a loss in precision as compared with partition sets. Finally, minimized
partition sets even have a larger worst-case time complexity than partition sets, but they
may be exponentially faster than partition sets without loosing precision. Furthermore,
as they use only a two valued logic, the precision may suffer substantially.

It should be noted that both alias matrices and minimized partition sets are conservative
approximations to partition sets, but there is no such relation between alias matrices and
minimized partition sets, as there are examples where alias matrices are more precise
than minimized partition sets and vice versa.

Integrating the quadratic bound for the cost of a basic operation (an application of a
transition function or an application of a join operation) into the worst-case cost equation
for a general worklist solver (cf. Section 4.7), the overall worst-case bound for a run of
an alias matrix solver for an analysis program S is O

�

|nodes(S)|3 · h
�

, where we used
O(|edges(S)|) = O(|nodes(S)|) and h stands for the length of the longest ascending chain
in the alias matrix join-semilattice. The value of h may be be accurately analyzed as future
work.

A partition set solver and a minimized partition set solver both have an exponential
worst-case time complexity.

It is yet to be determined whether minimized partition sets provide a useful alternative
to partition sets and alias matrices for practical examples.

101

4.10 Three Different Kinds of Analyses – Summary

4.10.1 Hierarchical Solver Approach

As hinted at above, we can construct a meta analysis solver that contains a set of solvers,
each with an associated priority. A smaller priority means that the solver is run first. Then,
as long as there is an imprecise answer to a query (or as long as the analysis is imprecisely
terminated due to an unsatisfied precondition), the solver of the next higher priority is
run, if there is any. This corresponds to Algorithm 4.5.

Algorithm 4.5: Hierarchical Solver (Sketch)

solve the analysis with solver of currentPriority1

answer := getAnswer()2

while answer is imprecise ∧ currentPriority< highestPriority3

increase currentPriority4

solve the analysis with solver of currentPriority5

answer := getAnswer()6

In the current implementation, the following solvers and priority assignments are used:

Solver Priority

Alias matrix solver 1
Minimized partition set solver 2
Partition set solver 3

In other words, the alias matrix solver is run first, which makes sense, as it is the only
solver that has a non-exponential worst-case bound. Should there be an imprecise an-
swer, the minimized partition set solver follows to be executed. Finally, if there is still
an imprecise answer, the partition set worklist solver is invoked. Note that even though
there is no “is more precise than” relation between the alias matrix solver and the mini-
mized partition set solver, there will eventually be a solver of higher priority, namely the
partition set solver, which is at least as precise as any of the alias matrix solver and the
minimized partition set solver.

102

4 Data Flow Analysis

4.11 Benchmarks

This section presents some benchmarks for contrived worst-case examples where the data
flow analysis is expected to perform badly. The data structures used in the implementa-
tions are described in Section 5.4.

All benchmarks are measured on a 2.8 GHz Pentium-4 CPU with 1024 MB of physical
RAM and 512 MB of VM heap space. The given times are for the solution only, meaning
that, e.g., the time to build up the test flow graph is not taken into account. All time
measurements are averaged over 3 runs. “oom” denotes an out of memory error, “PS”
stands for partition sets, “Min. PS” for minimized partition sets, “AM” for alias matrices.

It should be pointed out that all solvers acquire the same level of precision for all
presented benchmarks. I.e., the alias matrix solver and the minimized partition solver do
not incur a precision loss in comparison with the partition set worklist solver.

Benchmark 1. The purpose of this benchmark is to test a worst-case example where
the partition sets grow exponentially. The test program uses of a sequence of k branches,
such that there is one unique partition for every possible execution path taken. Since
there are exponentially many such paths, we obtain the desired exponential (in k) size of
the partition sets. The flow graph consists of

� 2k local variables
��

x0, . . . , xk−1, y0, . . . , yk−1
	�

,

� 3k+ 1 flow graph nodes and

� 4k flow graph edges.

Due to their special form, the resulting partition sets can be minimized to size one. I.e.,
when using a minimized partition set solver there will be only one partition in the partition
sets, instead of exponentially many.

Figure 4.4 displays the result of running Benchmark 1. As expected, the minimized
partition set solver performs substantially better than the partition set solver. The alias
matrix solver’s curve also corresponds to the expected growth, which is at least cubic.
Note that for k = 600, which amounts to 1200 variables and around 1800 flow graph
nodes, even the alias matrix solver runs out of memory.

103

4.11 Benchmarks

[skip]0

[skip]1 [merge(x0, y0)]2

[skip]3

[skip]4 [merge(x1, y1)]5

[skip]6

[skip]7 [merge(x2, y2)]8

[skip]9

(a) Flow graph for k = 3.

k PS Min. PS AM

5 0.05 0.00 0.00
10 0.47 0.01 0.01
11 1.12 0.01 0.01
12 2.46 0.01 0.01
13 5.22 0.01 0.02
14 oom 0.01 0.02
15 0.01 0.02
20 0.01 0.04

100 0.31 0.10
200 1.62 0.51
300 4.74 1.39
400 oom 2.59
500 5.20
600 oom

(b) Solving times in seconds against k.

k

So
lv

in
g

ti
m

e
[s

ec
]

10 100 200 300 400 500

5

10
Partition Sets
Minimized Partition Sets
Alias Matrices

(c) Solving times in seconds against k.

Figure 4.4: Benchmark 1.

104

4 Data Flow Analysis

Benchmark 2. Benchmark 2 consists of a loop of a sequence of k− 1 move operations
that needs k iterations to reach a fixed point. In total, we have

� 2k variables (as in Benchmark 1),

� 2k+ 1 flow graph nodes and

� 2k+ 1 flow graph edges.

In contrast to Benchmark 1, the partition sets cannot be minimized in this case. Con-
sequently, the minimized partition set worklist solver is expected to perform worse than
the partition set worklist solver, since it the quadratic minimize operation is performed in
vain. The results presented in Figure 4.5 confirm this. The alias matrix solver again is
clearly more efficient than both partition set solvers, though reaching its scalability limits
for high values of k.

Benchmark 2a. This is a variant of Benchmark 2 where we have ` nested loops of the
same type as in Benchmark 2. Each sub loop operates on a dedicated set of 2k variables.
Totally, this amounts to

� ` · 2k local variables,

� ` · (2k+ 1) flow graph nodes and

� ` · (2k+ 2)− 1 flow graph edges.

As presented in Figure 4.6, the performance of the partition set worklist solver is very poor,
resulting in an early out of memory error. Since the minimized partition set performs even
worse (as the partition sets still cannot be minimized), its measurements are not shown
in the figure. In similarity to the previous benchmarks, the alias matrix worklist solver is
acceptable.

Benchmark 2b. Another variant of Benchmark 2 with ` nested loops of the same type
as in Benchmark 2, plus conditional labeled break statements from each loop to the top
level. This gives rise to

� ` · 2k local variables,

� ` · (2k+ 4) + 1 flow graph nodes and

� ` · (2k+ 6) flow graph edges.

105

4.11 Benchmarks

[merge(x0, y0)]0

[merge(x1, y1)]1

[merge(x2, y2)]2

[merge(x3, y3)]3

[skip]4

[move(y0, y1)]5

[move(y1, y2)]6

[move(y2, y3)]7

(a) Flow graph for k = 4.

k PS Min. PS Alias Matrix

10 0.06 0.06 0.04
20 0.40 0.43 0.02
30 1.71 1.95 0.05
40 5.33 6.23 0.11
50 12.85 15.36 0.21
60 27.59 33.64 0.37
70 60.04 81.77 0.60
75 299.42 412.15 0.77

100 1.80
150 6.31
200 15.61
250 30.07
300 56.13
350 93.22
400 140.04
450 220.13

(b) Solving times in seconds against k.

k

So
lv

in
g

ti
m

e
[s

ec
]

50 100 200 300 400

50

100

150

Partition Sets
Minimized Partition Sets
Alias Matrices

(c) Solving times in seconds against k.

Figure 4.5: Benchmark 2.

106

4 Data Flow Analysis

k PS AM

5 4.20 0.05
10 11.34 0.14
15 oom 0.43
20 1.03
25 2.09
30 3.58
35 5.82
40 8.75
45 12.88

(a) Solving times in seconds
against k for `= 3.

k PS AM

5 102.14 0.04
10 249.54 0.27
15 oom 0.98
20 2.44
25 4.89
30 8.54
35 14.21
40 21.41
45 31.35

(b) Solving times in seconds
against k for `= 4.

k PS AM

5 oom 0.07
10 0.54
15 1.96
20 4.83
25 9.52
30 17.22
35 27.92
40 43.34
45 62.94

(c) Solving times in seconds
against k for `= 5.

k

So
lv

in
g

ti
m

e
[s

ec
]

10 20 30 35 40 45

10
20

40

60

80

100

120

`= 3

`= 4

`= 3

`= 4

`= 5

Partition Sets
Alias Matrices

(d) Solving times in seconds against k for `= 3,4, 5.

Figure 4.6: Benchmark 2a.

107

4.12 Existing Points-To Analyses

The results, displayed in Figure 4.7, resemble the ones of Benchmark 2a, though the
absolute timings are slightly lower.

Benchmark 3 Finally, the flow graph of Benchmark 3 consists of a a sequence of
�k

2

�

branches and

� k local variables
��

x0, . . . , xk−1
	�

,

� 3
�

k

2

�

+ 1 flow graph nodes and

� 4
�

k

2

�

flow graph edges.

Unlike Benchmark 1, the partition sets do not grow to an exponential, but only to a
quadratic size. Yet, as in Benchmark 1, they can be minimized. The results of the bench-
mark runs are depicted in Figure 4.6. For low values of k, all three solvers perform
efficiently. However, the partition set solver runs out of memory very early, for k = 15,
while the minimized partition set solver and the alias matrix solver prove a better scaling.

Conclusion. In conclusion, we recognize that the alias matrix solver clearly outperforms
both partition set solvers, as expected. There are examples where the minimizing the
partition sets leads to a remarkable efficiency improvement over unminimized partition
sets, but we also saw cases where futile minimizing causes the performance to decay. It is
to be analyzed as future work whether the precision loss pertaining to alias matrices is of
great hindrance for practical examples. Further, let us remark that worst-case behavior is
often not indicative of typical performance.

4.12 Existing Points-To Analyses

Let us conclude this chapter by briefly investigating into the question as to why there exists
no points-to analysis (also called pointer analysis) that we could use in an off-the-shelf
manner, given the long history of pointer analysis research.

First of all, it has to be remarked that there has been little work done in the area
of pointer analysis for object-oriented languages. What is more, most of the existing

108

4 Data Flow Analysis

k PS AM

5 2.72 0.06
10 5.63 0.13
15 oom 0.36
20 0.80
25 1.57
30 2.65
35 4.28
40 6.33
45 9.20

(a) Solving times in seconds
against k for `= 3.

k PS AM

5 68.77 0.04
10 132.21 0.28
15 oom 0.90
20 2.16
25 4.18
30 7.22
35 11.94
40 20.05
45 29.75

(b) Solving times in seconds
against k for `= 4.

k PS AM

5 oom 0.093
10 0.635
15 2.101
20 5.013
25 10.018
30 15.557
35 24.629
40 37.232
45 58.266

(c) Solving times in seconds
against k for `= 5.

k

So
lv

in
g

ti
m

e
[s

ec
]

10 20 30 35 40 45

10
20

40

60

80

100

`= 3

`= 4

`= 3

`= 4

`= 5

Partition Sets
Alias Matrices

(d) Solving times in seconds agains k for `= 3,4, 5.

Figure 4.7: Benchmark 2b.

109

4.12 Existing Points-To Analyses

[skip]0

[skip]1 [merge(x0, x1)]2

[skip]3

[skip]4 [merge(x0, x2)]5

[skip]6

[skip]7 [merge(x0, x3)]8

[skip]9

[skip]10 [merge(x1, x2)]11

[skip]12

[skip]13 [merge(x1, x3)]14

[skip]15

[skip]16 [merge(x2, x3)]17

[skip]18

(a) Flow graph for k = 4.

k PS PS (Min.) AM

5 0.08 0.03 0.01
10 0.27 0.04 0.02
15 oom 0.04 0.02
20 0.06 0.03
25 0.12 0.04
30 0.28 0.11
35 0.55 0.15
40 0.89 0.24
45 1.14 0.43
50 2.17 0.69
55 2.56 0.90
60 3.74 1.33
65 5.21 1.65
70 8.26 2.55

100 oom 22.16
125 51.72
150 100.12
200 oom

(b) Solving times in seconds against k.

k25 50 75 100 125 150

10

50

100

150
Partition Sets
Minimized Partition Sets
Alias Matrices

(c) Solving times in seconds against k.

Figure 4.8: Benchmark 3.

110

4 Data Flow Analysis

analysis are flow-insensitive, whereas our application seems to rely on the precision of a
flow-sensitive analysis.

Generally, the precision and efficiency requirements depend greatly on the client appli-
cation – there is no magic bullet analysis. Using partition sets as analysis values delivers
a high precision, but the scalability seems to be poor. On the other hand, alias matrices
scale better, but may suffer from a loss in precision. Using alias matrices as analysis values
goes into the direction of existing analyses that use points-to pairs (x points to y) or alias
pairs (x and y point to the same object) as analysis values. However, the Merge and New
operations, which are inherently different, still make our setting special.

Furthermore, it seems to be difficult to categorize existing pointer analysis into groups
that offer adequate precision and efficiency characteristics for the certain classes of client
problems.

Hind presents a survey of pointer analysis research issues and open problems with the
meaningful title “Pointer Analysis: Haven’t we solved this problem yet?” [12]. Therein,
Manuel Fähndrich is cited saying

“I think there are two distinct uses of pointer analysis, 1) optimizations,
and 2) error detection/program understanding. These two uses have vastly
different requirements on pointer analysis. For optimizations, there seems to
be some upper bound on how much precision is useful because taking advan-
tage of more precision usually translates into specializing more code, which
needs to be bounded. In my opinion, the spectrum of analyses mostly covers
the needs for optimizations. For error detection and program understand-
ing, the picture is different. For these applications, there seems to be a lower
bound on precision, below which, pointer information is pretty useless. Gear-
ing pointer analysis towards error detection requires more work on precision
and scaling issues.”

Clearly, our application falls in the second domain, which may be another reason why
there does not seem to be a suitable analysis for our needs.

111

5
Implementation and Examples

The proposed type system has been implemented as part of the MultiJava [8, 9] compiler
and the JML [6] tools. This chapter illuminates various aspects of the implementation
and concludes with the demonstration of some actual code examples.

5.1 MultiJava and JML

In previous works, the Universe type system has been integrated into the MultiJava com-
piler and the JML tools, featuring static type checking as well as runtime and byte code
generation support.

Since JML builds on top of the MultiJava compiler and its utility classes, the major part
of the uniqueness and ownership transfer extensions pertains to the MultiJava code, as
JML automatically benefits from them. Since, in fact, the modifications to JML merely

5.3 Type Checking

consisted of altering grammar definition files and delegation code to MultiJava, this chap-
ter is mainly concerned with the MultiJava implementation.

5.2 New Command Line Options

The existing --universesx command line switch of the MultiJava/JML compiler accepts
a list of comma separated options that control which part of the Universe type system
implementation are to be enabled. Two new options have been added:

� uniq: Enable the uniqueness and ownership extension, using an alias matrix solver
(cf. Section 4.8) to solve the data flow analysis.

� uniq-prec: Enable the uniqueness and ownership extension, using a hierarchical
analysis solver as described in Subsection 4.10.1. -prec is meant to stand for “pre-
cision” or “precise”.

Note that the uniqueness options are interpreted as “grading up” each given Universe
options to make them cope with uniqueness and ownership transfer. They do not have
an effect by themselves. I.e., --universesx parse,check parses the Universe keywords
and type checks the code without the uniqueness and ownership transfer extension, while
--universesx parse,check,uniq parses the Universe keywords taking the new unique-
ness keywords into account and performs type checks with the uniqueness and ownership
transfer extensions enabled.

5.3 Type Checking

The MultiJava compiler uses a number of separate passes to process an abstract syntax
tree (AST). A prominent pass is the type check pass, which performs the Java type check-
ing on the AST. To support the uniqueness extensions, two new compiler passes have been
added to surround the Java type checking pass, though the first one only walks a portion
of the AST. Figure 5.1 shows a high-level outline of the uniqueness type checking process
as implemented in MultiJava. The single steps are discussed in the following.

114

5 Implementation and Examples

Data

Operations/Algorithms

Input/Output

Surface AST

Universe
modifier

translation

Core AST

Java type
checking and

expression
flattening

Java type
checked AST

Translation
to analysis
AST and to
flow graph

Flow graph
Analysis
solver(s)

Analysis
values

Uniqueness
type checking

Accept/reject

Figure 5.1: Schematic of the uniqueness type checking process implemented in Multi-
Java. The dotted edge represents multiple analysis solver runs in conjunction
with a hierarchical solver.

115

5.3 Type Checking

5.3.1 Parsing

A first change to the code affects the ANTLR grammar definition files, where the definition
of possible Universe modifiers has been extended to include uniq and free (which are
also declared as new keywords), as well as to support an optional identifier enclosed in
brackets after a rep modifier. There are no additional checks related to the new Universe
modifiers during parsing, so they are accepted wherever a Universe modifier is. The
checks as to whether a certain use of a new Universe modifier is legal are performed after
the parsing pass, as explained below.

5.3.2 Clusters

A cluster is represented by the newly added class CUniverseRepCluster. There is one
CUniverseRepCluster instance per declared cluster (i.e., per field declared uniq), plus
two instances that represent the this-cluster Clthis and the wildcard cluster ?, respec-
tively.

The CUniverseRep class represents a rep modifier and used to be a class with a single-
ton instance in the original implementation. Now, each CUniverseRep object maintains
a reference to a CUniverseRepCluster object to represent a rep

Cl
�

modifier. Note that
two CUniverseRep instances are defined to be equal iff their associated clusters are equal.
This guarantees compatibility with the internal type cache mechanism of MultiJava (refer
to the class CTopLevel for more detail).

5.3.3 Universe Modifier Translation

A new compiler pass of the name InitUniverseUniquenessTask has been added to be
executed prior to the (Java) type checking pass. A general task name has been chosen to
allow for possible future extensions without having to rename the task. Currently though,
the only work performed by the task is resolving the clusters for rep modifiers for fields
and and in method signatures, corresponding to the translation of the surface Universe
modifiers to core modifiers as explained in Section 3.3. At the source level, this amounts
to setting a reference from any CUniverseRep object to a CUnverseRepCluster object.

Note that processing needs to be done before type checking, since there might be a
reference to a field or a call to a method that has not yet been type checked (e.g., if
declared textually posterior to the reference or the call).

116

5 Implementation and Examples

In case of illegal modifiers (e.g., a free modifier not in a method signature) or unresolv-
able clusters (e.g., a rep[f] modifier where field f is not declared uniq in the enclosing
class), a corresponding error message is emitted.

The functionality is implemented in initUniverseUniqueness(. . .) methods added
to the relevant Java AST classes.

5.3.4 Java Type Checking and Expression Flattening

Some work related to uniqueness type checking has been integrated into the Java type
check pass. To begin with, the clusters of the remaining rep modifiers (e.g., in local
variable declarations) are resolved and checked for legal usage, in the same way as for
fields and method signatures described in the previous subsection.

Expression Flattening. What is more, nested Java expressions are transformed into the
form of statements in the toy language1 (flattened) by introducing temporary variables.
It is needless to say that the actual Java expressions are not modified by the flattening
operation (this would be pointless), but the flattening is stored in association with the
original expression. The subsequent uniqueness type checking pass (see below) then in
fact works on the flattened expressions, and not on the original Java expressions (unless
they are already in flattened form).

The expression flattening needs to be done since evaluating a (sub)expression may
have side-effects on the analysis value. E.g., in the expression

m(x) == m(x)

the variable x might get unusable as result of the first, left-hand side method call (e.g.,
if the formal parameter is of type modifier free) and hence the read of x in the second,
right hand side method call is illegal. Other examples that need to be flattened include

if ((x = y) == z) ...

or, in general, rather bizarre expressions such as

x.m((x = y).f.m().g) == ((y.i++ == 0) ? (y = z) : (y = x)).

1To be precise, a flattened statement may also contain an if statement due to the flattening of a conditional
expression (b ? e1 : e2).

117

5.3 Type Checking

The base class of all classes representing Java expressions, JExpression, is extended
to include a method flatten(. . .) to perform the flattening. Let us further point out
that no techniques are employed so as to minimize the number of additional temporary
variables needed.

As a last remark, the expression flattening is integrated in the Java type checking pass
because the flattening statements also need to be type checked in order to resolve bindings
(i.e., the mapping from string names to nodes in the AST). To this end, the context objects
used in the Java type checking pass can be reused.

5.3.5 Checking Uniqueness

The remaining uniqueness type checks that use data flow analysis information (e.g.,
whether is a certain variable is unusable) are performed in another newly created com-
piler pass, namely CheckUniverseUniquenessTask, which is to be run after the Java type
checking pass. The functionality is implemented in checkUniverseUniqueness(. . .)

methods added to the relevant Java AST classes.

Translation to an Analysis AST

For each method declaration, the Java statement of the body is translated into a cor-
responding statement in the analysis language. This is accomplished by the method
getAnalysisStmt(. . .) that has been added to the relevant Java AST classes. Note
that this translation (as well as running the analysis) is not performed in a separate pass,
but within the CheckUniverseUniquenessTask pass before recursing into the method
body.

Toy Language Statements. The Java statements that correspond to the statements of
the toy language are translated into an elementary statement (or possibly a sequence of
elementary statements) of the analysis language according to the analysis value transition
rules given in Section 3.9. To give a concrete example, the translation of an assignment
statement x = y can be described as follows, where S stands for the resulting analysis

118

5 Implementation and Examples

statement:

S =

consume(y) , if Γm(x) = peer∧Γm
�

y
�

= rep

move(x, y) , if Γm(x) = rep∧Γm
�

y
�

= rep

skip , otherwise

Γ ` x = y : S

in perfect correspondance to the [L-Assing] rule. Note the latter rules also ensure that
each variable occurring as argument of a transition function or of a statement in the
analysis language, respectively, is indeed contained in ALoc∪AClust∪AField, as required
by the analysis interface (cf. Section 4.3).

Composite Java Statements. Composite Java statements, which are not formalized in
the toy language, are recursively mapped in a straight-forward way to the corresponding
statements in the analysis language, if such a statement exists. For instance, a Java if

statement is mapped to an analysis if statement, a Java while statement is mapped
to an analysis while statment, a Java switch statement is mapped to an analysis switch
statement and so on. As noted Section 4.1, a Java for loop is translated into an equivalent
while loop, in contrast to a Java do loop, which is translated to an equivalent analysis
do loop. Moreover, note that the Java expressions in conditions of if statements and the
like, which have been flattened in the previous pass, are mapped to analysis statements
(there is no such thing as an analysis expression), as mentioned in Section 4.1, too.

Break and Continue Statements. Labeled and unlabeled Java break and continue

statements and labeled Java statements are translated to their respective counterparts in
the analysis language.

Constructor Calls. A Java constructor call new C(z) is treated like o = new C; o.m(z);

o, where o is the newly created object and the method m corresponds to the constructor.
The void method call o.m(z); is handled according to the rules [L-Pre-Invk] and [T-Pre-
Invk].

Return Statement. The translation of a Java return z statement to an analysis state-
ment involves two steps. First the argument z is handled in the same way as for a
method call this.m(z), where the formal parameter of the imaginary method m has the

119

5.3 Type Checking

same type as the return type of the current method, with the exception that there is no
ConsumeLocals statement, as there is no actual method call. In addition to the handling
of the argument, an exit statement is added to ensure the premature method termination
is reflected in the flow graph.

To add a formal touch to the above explanation, the analysis transition rule for a
return z statement can be described as follows, where the setup corresponds the rules
described in Section 3.9:

[L-Return]

�

W, Tp, Tr

�

= “signature of the enclosing method”

L′ = handleArg
�

L,this, z, this,Γm(z) , mod
�

Tr
��

L′′ = “add an exit statement to L′”
Γ; L L̀ return z : L′′

Note that we need reference to the enclosing method to obtain its signature. The intention
to avoid such an unnecessary complication of the rules is in fact the reason why the
return statement was not included in the toy language.

Throw Statement. Finally, a Java throw statement is handled similarly to a return

statement, though the support for exceptions is still to be redesigned as future work (e.g.,
a desirable way would be to have the exceptions transferred into the context of the current
handling method during propagation [10].

Performing the Type Checks

Once the abstraction to a statement in the analysis language is carried out, the corre-
sponding flow graph is created in accordance to Section 4.2. Then, depending on the
command line option, either an alias matrix analysis solver or a hierarchical analysis
solver (cf. Subsection 4.10.1) is executed to solve the analysis.

If the analysis could successfully be solved (i.e., without being aborted due to an un-
satisfied precondition of a transition function), the body of the method is recursed into to
perform the type checks as described in Section 3.10, using the analysis values computed
by the solver. Note that if a hierarchical solver is used, the analysis may be rerun with
a solver of higher priority in case of an imprecise answer to a query. The dotted edge in
Figure 5.1 represents these feedback loops.

120

5 Implementation and Examples

Return Statement. For the sake of completeness, the following rule pseudo-formally
describes the handling of a return z statement, in analogy to the translation rule [L-
Return] given above:

[T-Return]

�

W, Tp, Tr

�

= “signature of the enclosing method”

Tr :>A Γ(z)
isUnusable(L, z) = 0

L′ = handleArg
�

L,this, z, this,Γm(z) , mod
�

Tr
��

W = nonpure⇒∀ f ∈ fields(C) : isUnusable
�

L′, f
�

= 0

Γ; L ` return z

Note that, in similarity to [L-Return], the rule can be seen as instance of the rule to type
check a method call this.m(z), where the formal parameter of the imaginary method
m has the same type as the return type of the current method. In particular, this entails
the required check as to whether the fields are unusable upon method termination (if the
method is non-pure). In summary, this means that, unlike in the toy language formaliza-
tion, the check whether the fields are unusable upon method termination is performed
when type checking a return z statement. This handling is necessary to support prema-
ture method terminations in conjunction with return z statements.

5.3.6 Purity

For the time being, the method purity checker has been modified to

� allow free formal parameters in pure methods,

� allow non-pure method calls on something other than this with a free formal
parameter and

� allow constructor calls with a free formal parameter.

These changes are motivated by the fact that, simply put, free parameters should be
accepted (or can be returned) by any method. The implementation of a method purity
checker in conjunction with ownership transfer is yet to be further investigated as future
work.

121

5.4 Static Data Flow Analysis

5.3.7 Miscellaneous

For a more convenient debugging and to facilitate seeing behind the curtain, the distri-
bution includes a graphical “analysis inspector” tool. The “analysis inspector” presents
information such as the translated statement in the analysis language, the performed flat-
tenings and the actually computed analysis values (i.e., the analysis solution) for each
program point of the method being analyzed (cf. Figure 5.2 for a screenshot).

Currently, the analysis inspector tool can only be accessed when manually stepping
through the code in debugging mode, since a MultiJava run always results in a call to
System.exit(. . .), which causes the whole application to be terminated.

Figure 5.2: Analysis inspector debugging tool.

5.4 Static Data Flow Analysis

In this section, some aspects regarding the implementation of the data flow analysis and,
in particular, the representations of the various analysis values are highlighted

122

5 Implementation and Examples

5.4.1 Partitions

In order to represent sets of partitions in regard of a partition set analysis solver, we
first have to come up with an adequate data structure for a single partition that supports
efficient implementations of the operations merge, new and move (cf. Section 4.4.1).
Moreover, we need to be able to efficiently decide whether two elements are in the same
block of the partition.

Union-Find Data Structures. A tried and trusted data structure to represent a single
set partition is the classic union-find data structure. As implied by its name, a union-find
structure offers two basic operations:

� Union: Unify two given blocks into a single block.

� Find: Return an identifier of the block a given element is contained in.

A union-find structure represents the elements of a block in a rooted tree, where the root
acts as identifier for the block. The union operation combines – in O(1) worst-case time
– two trees by attaching the root of the tree of lower height to the root of the tree of
larger height. This heuristic guarantees a logarithmic height of the resulting tree. The
find operation follows the parent pointers all the way up to the root and returns the
root as the identifier of the set. Applying one of various path compression techniques to
shorten the path from the element to the root yields an amortized cost per find operation
of O(α(n)) ≈ O(1) for a set of n elements and α representing the inverse Ackermann
function.

The union operation of a union-find data structure allows us to implement the merge
operation efficiently. Further, we can efficiently check whether two given elements are in
the same block with the help of the find operation. However, the new operation, which
takes a given element and makes it a singleton block, is not supported by a classic union-
find structure.

Union-Find-Delete Data Structures. To overcome this, we resort to an extension of a
union-find structure that offers a constant time delete operation [2]:

� Delete: Remove a given element from the block it is contained in.

123

5.4 Static Data Flow Analysis

The proposed data structure still maintains the elements of a block in a rooted tree. In
a standard union-find structure, each tree node corresponds to an element. In contrast,
a tree node in the new data structure is either occupied (i.e., containing an element) or
vacant (i.e., not containing an element). A delete operation marks the node that contains
the element as vacant. Note that the node cannot simply be removed from the tree, since
it may be the root of the tree, which acts as identifier of the block. To ensure that the
tree does not contain too many vacant nodes (which might cause the space needed to
store the tree and the time needed to process a find operation to become too large), the
data structure uses a simple collection of local operations to tidy up the tree after a delete
operation.

Using a union-find-delete structure, the new operation can be synthesized by deleting
the element from the containing block and adding it back as singleton block. Both of
these operations run in constant time. Since the move operation can be expressed by an
new and an merge operation, a union-find-delete structure fulfills all of our needs.

5.4.2 Partition Sets

To maintain sets of partitions we can use a dictionary (e.g., a binary tree or a sorted list)
or a hash set of single partitions (represented by union-find-delete structures). With a
sorted list, we can perform the set operations in time linear in the sizes of the operand
sets (à la merge sort). However, we naturally have to define a (total) order on union-find-
delete structures, respectively. For hash sets, we need to come up with an adequate hash
function.

Let us define a function that calculates the so-called block finger print of a given par-
tition. It is defined in the following way: We impose a total ordering on the elements
and for each unvisited element in order, we traverse all nodes of its tree in the union-
find-delete structure, marking the elements with an increasing number, starting with 0.
This corresponds to numbering the connected components of the forest in the union-
find-delete structure by a graph traversal. Hence, calculating the block finger print of a
partition can be done time linear in the number of elements.

Example 5.1 For an alphabetical element order, the following table shows the block
finger prints for various partitions in Part({a, b, c, d, e}):

124

5 Implementation and Examples

Partition Block Finger print

{ac | be | d} [0,1, 0,2, 1]
{abcd | e} [0,0, 0,0, 1]
{ac | b | d | e} [0,1, 0,2, 3] �

The block finger print can be used to compare partitions by interpreting the values as
digits of a number. A hash function can be generated out of the block finger print by using
the hash function for int[] arrays provided by the Java utility class Arrays (since Java
1.5). As an additional optimization, the block finger print of a partition is cached in a
field and only updated when necessary.

Empirical test runs (including the benchmarks shown in Section 4.11) revealed that a
hash set implementation has a significantly better performance than an implementation
with a sorted list. As a result, the current implementation solely employs hash sets of
union-find-delete data structures.

As a concluding remark, in addition to the possible exponential size of a partition set to
begin with, the linear time required to compute the hash function of a partition seems to
be the most prominent factor that negatively impacts the performance of a partition set
backed by a hash set.

5.4.3 Alias Matrices

An alias matrix is implemented as a array of trit sets. A trit set represents a sequence
of values in T and is the analogue of a bit set, which represents a sequence of values in
{0,1}. In turn, a trit set is implemented by two bit sets, mapping T to {0,1}2. The bit
sets use 64 bit chunks to represent the bit values. For a fixed mapping of T to {0,1}2,
the trivalent “and”, “or” and “join” operations can be equivalently expressed by bivalent
“and” and “or” operations. What is more, the Merge operation on alias matrices can be
efficiently implemented by only one bivalent operation (as opposed to the equations given
in (4.21a)-(4.22c)). Please refer directly to the source code for more detail.

5.4.4 Analysis Solver

The implementations of the basic worklist solver and the various worklist models corre-
spond to a large extent to their descriptions given in Chapter 4. As mentioned in Subsec-

125

5.6 Code Examples

tion 4.7.3, the current implementation uses an SCC worklist, applying Tarjan’s algorithm
to compute the SCCs as part of the loop tree creation.

As an optimization in the worklist solver iteration, the test whether the resulting anal-
ysis value will change and the join operation t (cf. lines 9 and 8 of Algorithm 4.1) are
combined into one single operation, namely a join operation that returns true iff the value
changed as a result of the operation. This avoids some extra equality tests on analysis val-
ues.

5.4.5 Package Organization

For reference, Table 5.1 gives a summary of the package organization of the classes im-
plementing the static data flow analysis.

5.5 Testing

To emphasize robust code, there is a junit test case in the org.multijava.universes.

uniqueness.analysis.testing package for every newly added class that is to perform
some non-trivial operations . Moreover, the directory org/multijava/mjc/testcase/

universe/uniqueness contains a number of Java source test files that are integrated
into the MultiJava testing framework where each source file is compiled and the compiler
output is checked against an expected string.

5.6 Code Examples

Appendix A lists some examples making use of ownership transfers that can be success-
fully expressed in the presented type system.

5.6.1 Abstract Factory Pattern

The Abstract factory design pattern (A.1) can easily be type set in the model. Note the
readonly reference from the client to the factory (and so the purity modifier of the prod-
uct creation method) as well as the implicit release and capture operations.

126

5 Implementation and Examples

Package Name Description

analysis General interfaces and abstractions, includ-
ing exception classes

analysis.graph Flow graph related classes, including a loop
tree representation and an SSC computer
(implementing Tarjan’s algorithm)

analysis.solvers Abstract worklist solvers and worklist im-
plementations (standard worklist, reverse
postorder worklist, SSC worklist)

analysis.solvers.aliasmatrix Alias matrix solver, including trit set and bit
set representations

analysis.solvers.partitionset Partition set solver and minimized partition
set solver, including a union-find-delete im-
plementation

analysis.solvers.singlepartition Solver using a single partition set (aban-
doned approach)

analysis.statements AST nodes for analysis language statements

analysis.util Utility classes

analysis.testing Unit test cases (mirrors the above directory
structure) and benchmarks

Table 5.1: Package organization of the classes implementing the static data flow anal-
ysis. The package name is to be prefixed with org.multijava.universes.

uniqueness.

127

5.6 Code Examples

5.6.2 List Representation Merging

The list representation merging is demonstrated in A.2. The list implementation is mod-
eled after the one in the Java library, using a dummy node header and being cyclicly
arranged. The capture operation in the concatenation method corresponds to the Factory
pattern example.

Note that we need a special method release(. . .) to release the header node in the
getHeader() method. The reason for this lies in the fact that the type system enforces
a one-to-one correspondence between static clusters (a set of fields) and dynamic clusters
(a set of objects), which, in this example, is enforced by the additional Merge operation
in the rule [T-Field-Write]. In other words, the header field is always associated with the
cluster cluster(header). Consequently, if the commented assignment statement

rep Node result = header;

was used instead of the release method, the header field would still be marked as un-
usable, since the variable result, which points into the header cluster, is marked as
unusable due to the return statement. Moreover, note that the release method has to
be pure, for, otherwise, the unusability of the header field before the peer call to the
release method would trigger an error.

The release(. . .) method in the Decorator pattern example (A.4) has the same
raison-d’être.

While this minor limitation appears to be a little grain of salt, it will be lifted in the
future.

5.6.3 Construction and Traversal of a rep Tree

Thanks to ownership transfer mechanism, a rep tree (A.3) can be conveniently built up
using the constructor or the setter methods for the children, which may already have been
created. Without support for ownership transfer solely the parent node could create its
children.

Note that the linked list in the traverse method is accepted as argument, modified and
returned again. After a recursive call, we need to re-assign the returned list in order to
capture it back. The use of borrowed parameters [5] to only temporarily grant write access
rights to an argument may render this additional assignment unnecessary. The Composite

128

5 Implementation and Examples

design pattern (with a deep ownership structure) could be expressed according to the rep

tree example.

5.6.4 Decorator Design Pattern

The Decorator design pattern (A.4) combines the capture techniques from the rep tree
example (to add a responsibility to the decoree) and the release mechanisms from the
linked list example (to remove a responsibility from the decoree).

5.6.5 Visitor Design Pattern

The Visitor design pattern (with a deep ownership structure of the elements to be visited
and a modifying visitor) fails to be expressed in the type system, no matter if the traversal
order is determined by the visitor (a) or by the visited element (b), cf. the code fragments
below. In case (a), the resulting stack references can be perceived as mutual read-write
references between the visitor and the visited elements that essentially cause all elements
to be in the same ownership context. In case (b), the failure can be attributed to the peer

nature of the this reference that is passed as argument to the visitor callback method.

class ConcreteVisitor1 implements Visitor {

void visitConcreteElement1(free ConcreteElement1 e) {

// modify e

e.getChild().accept(this); // (a) traversal triggered by the

// visitor

}

...

}

class ConcreteElement1 implements Element {

void accept(free Visitor v) {

v.visitConcreteElement1(this); // callback

getChild().accept(v); // (b) traversal triggered by the element

}

...

}

129

5.6 Code Examples

As with the traversal methods in the rep tree example, support for borrowed parameters
might help solve the problem.

130

6
Conclusion and Future Work

6.1 Conclusion

A flexible ownership transfer model for the Universe type system has been implemented
that is able to express the usual examples, including the Abstract Factory design pattern,
the Composite design pattern and the Decorator design pattern, as well as the merging
of linked list representations. In particular, the solution involves no destructive reads and
no additional specification overhead. There are, however, some minor limitations in the
expressibility (e.g., in case of the list merge example or the Visitor design pattern). The
implementation handles the usual Java constructs.

6.2 Future Work

6.2 Future Work

The following compilation addresses possible extensions to the project to be carried out
as future work.

Arrays. Due to time constrains regarding this project, the support for arrays is yet to be
implemented. One way to achieve this is to treat array element accesses like field
accesses.

Performance Evaluation. Is the alias matrix data flow analysis solver precise enough for
practical examples? How about the performance? Case Studies?

Runtime Support. Design and implementation of a runtime model including, in par-
ticular, an ownership transfer function. Moreover, it has to be investigated when
implicit cluster releasings and capturings ought to happen.

Complete Type Inference for Local Variables. Design and implementation of a com-
plete type inference for local variables such that local variables do not need to be
annotated with a Universe modifier anymore.

Static vs. Dynamic Clusters. Investigate into the issue of a strict correspondence be-
tween static and dynamic clusters, aiming at getting rid of the additional release
methods, e.g., in the list merging example.

Borrowed Parameters. Investigate if a support for borrowed parameters would help ex-
press such cases as the Visitor design pattern.

Exception Handling Model. How should exceptions be handled? Should they be trans-
ferred into the context of the handler during propagation? What modifiers can be
used to declare exceptions?

At the moment of writing, the design and implementation of a runtime model as well as
the complete type inference for local variables are already being realized as part of other
master’s theses.

Acknowledgments. The author would like to thank Arsenii Rudich and Peter Müller
as well as the whole SCT group for their contributions, support and a very enjoyable
collaboration.

132

Bibliography

[1] Jonathan Aldrich and Craig Chambers. Ownership domains: Separating aliasing policy from
mechanism. pages 1–25.

[2] S. Alstrup, I. L. Gørtz, T. Rauhe, M. Thorup, and U. Zwick. Union-find with constant time
deletions. In Proc. 32nd International Colloquium on Automata, Languages and Program-
ming (ICALP 2005). Lecture Notes in Computer Science, volume 3580, pages 78–89. Springer-
Verlag, jul 2005.

[3] Henry G. Baker. üse-oncev̈ariables and linear objects: storage management, reflection and
multi-threading. SIGPLAN Not., 30(1):45–52, 1995.

[4] Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership types for object en-
capsulation. In ACM Symposium on Principles of Programming Languages (POPL), New Or-
leans, Louisiana, January 2003.

[5] John Boyland. Alias burying: Unique variables without destructive reads. Software—Practice
and Experience, 31(6):533–553, May 2001.

[6] Lilian Burdy, Yoonsik Cheon, David Cok, Michael D. Ernst, Joe Kiniry, Gary T. Leavens, K. Rus-
tan M. Leino, and Erik Poll. An overview of JML tools and applications. Software Tools for
Technology Transfer, 7(3):212–232, June 2005.

[7] D. Clarke and T. Wrigstad. External uniqueness is unique enough, 2003.

[8] Curtis Clifton. MultiJava: Design, implementation, and evaluation of a Java-compatible
language supporting modular open classes and symmetric multiple dispatch. Technical Re-
port 01-10, Department of Computer Science, Iowa State University, Ames, Iowa, 50011,
November 2001. Available from archives.cs.iastate.edu.

[9] Curtis Clifton, Todd Millstein, Gary T. Leavens, and Craig Chambers. MultiJava: Design
rationale, compiler implementation, and applications. ACM Transactions on Programming
Languages and Systems, 28(3), May 2006.

Bibliography

[10] W. Dietl and P. Müller. Exceptions in ownership type systems. In E. Poll, editor, Formal
Techniques for Java-like Programs, pages 49–54, 2004.

[11] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of Object Technol-
ogy (JOT), 4(8):5–32, October 2005.

[12] Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In 2001 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE’01),
Snowbird, UT, 2001.

[13] John Hogg. Islands: aliasing protection in object-oriented languages. 26(11):271–285,
November 1991.

[14] Susan Horwitz, Alan Demers, and Tim Teitebaum. An efficient general iterative algorithm
for dataflow analysis. Acta Inf., 24(6):679–694, 1987.

[15] Jonas Lundberg and Welf Löwe. A scalable flow-sensitive points-to analysis. In Compiler
Construction - Advances and Applications, Festschrift on the occasion of the retirement of Prof.
Dr. Dr. h.c. Gerhard Goos. Springer Verlag, 2007. accepted.

[16] Naftaly H. Minsky. Towards alias-free pointers. In ECCOP ’96: Proceedings of the 10th
European Conference on Object-Oriented Programming, pages 189–209, London, UK, 1996.
Springer-Verlag.

[17] P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias and dependency control.
Technical Report 279, Fernuniversität Hagen, 2001.

[18] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[19] Stefan Nägeli. Ownership in design patterns. Master’s thesis, ETH Zurich, 2006.

[20] N. J. A. Sloane. Sequence a000110—bell numbers. Available from http://www.research.

att.com/~njas/sequences/, 2007. On-Line Encyclopedia of Integer Sequences.

[21] R. E. Tarjan. Depth first search and linear graph algorithms. 1(2):146–160, June 1972.

[22] P. Wadler. Linear types can change the world! In M. Broy and C. Jones, editors, IFIP TC
2 Working Conference on Programming Concepts and Methods, Sea of Galilee, Israel, pages
347–359. North Holland, 1990.

134

http://www.research.att.com/~njas/sequences/
http://www.research.att.com/~njas/sequences/

A
Code Examples

A.1 Abstract Factory Design Pattern

The corresponding source file can be found at org/multijava/mjc/testcase/universes/
uniqueness/AbstractFactory.java in the MultiJava source tree.

1 /**
2 * Testing uniqueness and ownership transfer in the Universe type

3 * system: Abstract Factory design pattern example.

4 * <p>

5 * Expected result: no errors

6 *
7 * @author ytakano

8 */

9 abstract class AbstractFactory {

10

A.1 Abstract Factory Design Pattern

11 public static readonly AbstractFactory getFactory() {

12 if (true) {

13 return new peer Factory1();

14 } else {

15 return new peer Factory2();

16 }

17 }

18

19 public abstract pure free Product createProduct();

20

21 }

22

23 class Factory1 extends AbstractFactory {

24

25 public pure free Product createProduct() {

26 return new rep Product1(); // release

27 }

28

29 }

30

31 class Factory2 extends AbstractFactory {

32

33 public pure free Product createProduct() {

34 return new rep Product2(); // release

35 }

36

37 }

38

39 interface Product {

40

41 public int getId();

42

43 }

44

45 class Product1 implements Product {

46

136

A Code Examples

47 public pure Product1() {}

48

49 public int getId() { return 1; }

50

51 }

52

53 class Product2 implements Product {

54

55 public pure Product2() {}

56

57 public int getId() { return 2; }

58

59 }

60

61 class AbstractFactoryClient {

62

63 private rep Product product;

64

65 public AbstractFactoryClient() {

66 readonly AbstractFactory factory = AbstractFactory.getFactory();

67 product = factory.createProduct(); // capture

68 }

69

70 public void printProductId() {

71 System.out.println(product.getId());

72 }

73

74 public static void main(String[] args) {

75 AbstractFactoryClient client = new AbstractFactoryClient();

76 client.printProductId(); // 1

77 }

78

79 }

137

A.2 Merging List Representations

A.2 Merging List Representations

The corresponding source file can be found at org/multijava/mjc/testcase/universes/
uniqueness/LinkedList.java in the MultiJava source tree.

1 /**
2 * Testing uniqueness and ownership transfer in the Universe type

3 * system: linked list implementation.

4 * <p>

5 * Expected result: no errors

6 *
7 * @author ytakano

8 */

9

10 public class LinkedList {

11

12 protected uniq Node header;

13

14 public LinkedList() {

15 header = new rep Node(null, null, null);

16 header.next = header.prev = header;

17 }

18

19 public void addFirst(readonly Object o) {

20 addBefore(o, header.next);

21 }

22

23 public void addLast(readonly Object o) {

24 addBefore(o, header);

25 }

26

27 protected void addBefore(readonly Object o, rep[header] Node node) {

28 rep Node newNode = new rep Node(o, node, node.prev);

29 newNode.prev.next = newNode;

30 newNode.next.prev = newNode;

31 }

32

138

A Code Examples

33 public boolean isEmpty() {

34 return header.next == header;

35 }

36

37 protected pure free Node release(free Node x) { return x; }

38

39 protected free Node getHeader() {

40 // rep Node result = header;

41 rep Node result = release(header); // release

42

43 header = new rep Node(null, null, null);

44 header.next = header.prev = header;

45

46 return result;

47 }

48

49 public void concatenate(peer LinkedList other) {

50 if (other.isEmpty()) {

51 return;

52 }

53

54 rep Node otherHeader = other.getHeader();

55

56 header.prev.next = otherHeader.next;

57 otherHeader.prev.next = header;

58

59 otherHeader.next.prev = header.prev;

60 header.prev = otherHeader.prev;

61 }

62

63 public String toString() {

64 StringBuffer buffer = new StringBuffer();

65 buffer.append("[");

66

67 readonly Node current = header.next;

68 while (current != header) {

139

A.2 Merging List Representations

69 // the cast to peer is needed since there is no method

70 // StringBuffer#append(readonly Object)

71 buffer.append((peer Object) current.element).append(" ");

72 current = current.next;

73 }

74

75 buffer.append("]");

76 return buffer.toString();

77 }

78

79 private static class Node {

80

81 readonly Object element;

82

83 peer Node next;

84

85 peer Node prev;

86

87 Node(readonly Object element, peer Node next, peer Node prev) {

88 this.element = element;

89 this.next = next;

90 this.prev = prev;

91 }

92

93 }

94

95 public static void main(String[] args) {

96 LinkedList l1 = new LinkedList();

97 l1.addLast(new Integer(1));

98 l1.addLast(new Integer(2));

99 l1.addLast(new Integer(3));

100 System.out.println(l1); // [1 2 3]

101

102 LinkedList l2 = new LinkedList();

103 l2.addLast(new Integer(4));

104 l2.addLast(new Integer(5));

140

A Code Examples

105 System.out.println(l2); // [4 5]

106

107 l1.concatenate(l2);

108 System.out.println(l1); // [1 2 3 4 5]

109 System.out.println(l2); // []

110 }

111

112 }

141

A.3 rep Tree Construction and Traversal

A.3 rep Tree Construction and Traversal

The corresponding source file can be found at org/multijava/mjc/testcase/universes/
uniqueness/Tree.java in the MultiJava source tree.

1 /**
2 * Testing uniqueness and ownership transfer in the Universe type

3 * system: rep tree construction and traversal.

4 * <p>

5 * Expected result: no errors

6 *
7 * @author ytakano

8 */

9

10 class Tree {

11

12 private readonly Object element;

13

14 private rep Tree left;

15

16 private rep Tree right;

17

18 public Tree(readonly Object element) {

19 this(element, null, null);

20 }

21

22 public Tree(readonly Object element, free Tree left, free Tree right) {

23 this.element = element;

24 this.left = left; // capture

25 this.right = right; // capture

26 }

27

28 public void setLeft(free Tree left) {

29 this.left = left; // capture

30 }

31

32 public void setRight(free Tree right) {

142

A Code Examples

33 this.right = right; // capture

34 }

35

36 public readonly LinkedList getElements() {

37 rep LinkedList l = new rep LinkedList();

38 return collectElements(l);

39 }

40

41 // we use a LinkedList to support adding readonly Objects

42 free LinkedList collectElements(free LinkedList l) {

43 if (left != null) {

44 l = left.collectElements(l);

45 }

46

47 l.addLast(element); // inorder traversal

48

49 if (right != null) {

50 l = right.collectElements(l);

51 }

52

53 return l;

54 }

55

56 }

57

58 class TreeClient {

59

60 TreeClient() {

61 Tree t1 = new Tree(new Integer(2));

62 t1.setLeft(new rep Tree(new Integer(1)));

63 t1.setRight(new rep Tree(new Integer(3)));

64

65 readonly LinkedList l1 = t1.getElements();

66 System.out.println((peer LinkedList) l1); // [1 2 3]

67

68 Tree t2 = new Tree(new Integer(4),

143

A.3 rep Tree Construction and Traversal

69 new rep Tree(new Integer(2),

70 new rep Tree(new Integer(1)),

71 new rep Tree(new Integer(3))

72),

73 new rep Tree(new Integer(6),

74 new rep Tree(new Integer(5)),

75 null

76)

77);

78

79 readonly LinkedList l2 = t2.getElements();

80 System.out.println((peer LinkedList) l2); // [1 2 3 4 5 6]

81 }

82

83 public static void main(String[] args) {

84 new TreeClient();

85 }

86

87 }

144

A Code Examples

A.4 Decorator Design Pattern

The corresponding source file can be found at org/multijava/mjc/testcase/universes/
uniqueness/Decorator.java in the MultiJava source tree.

1 /**
2 * Testing uniqueness and ownership transfer in the Universe type

3 * system: Decorator design pattern example.

4 * <p>

5 * Expected result: no errors

6 *
7 * @author ytakano

8 */

9

10 class Component {

11

12 private int x;

13

14 public void setX(int x) { this.x = x; }

15

16 public pure int getX() {

17 return x;

18 }

19

20 }

21

22 class Decorator {

23

24 private uniq Component component;

25

26 public Decorator(free Component component) {

27 this.component = component; // capture

28 }

29

30 private pure free Component release(free Component x) { return x; }

31

32 public free Component getComponent() {

145

A.4 Decorator Design Pattern

33 rep Component result = release(component); // release

34 component = null;

35 return result;

36 }

37

38 public void clearX() {

39 component.setX(0);

40 }

41

42 public pure int getX() {

43 return component.getX();

44 }

45

46 }

47

48 class DecoratorClient {

49

50 DecoratorClient() {

51 rep Component c = new rep Component();

52 c.setX(18);

53 System.out.println(c.getX()); // 18

54

55 // add responsibility

56 Decorator d = new Decorator(c);

57 d.clearX();

58 System.out.println(d.getX()); // 0

59

60 // remove responsibility

61 c = d.getComponent();

62 c.setX(99);

63 System.out.println(c.getX()); // 99

64 }

65

66 public static void main(String[] args) {

67 new DecoratorClient();

68 }

146

A Code Examples

69

70 }

147

	Introduction
	Setting the Scene
	Ownership Type Systems
	Ownership Transfer
	Project Goals
	Overview

	The Universe Type System
	List Example

	Approach
	Uniqueness and its Variants
	Unique Variables
	Working with Unique Variables
	External Uniqueness

	Universes Blending in
	Controlled Clusters
	Ownership Transfer
	Cluster Alias Controlling

	Example Ownership Transfer
	Summary

	Formalization
	Toy Language Syntax
	Clusters
	Universe Modifier Translation
	Lookup Functions
	Type Projection Functions

	Type Combinator
	Assignable-To Relation
	Ternary Logic
	Static Data Flow Analysis -- Introduction
	Analysis Values and Queries
	Analysis Transition Functions

	Analysis Value Transition Rules
	Type Rules

	Data Flow Analysis
	Syntax of the Analysis Language
	Flow Graphs
	Analysis Variables of Interest
	Partition Sets and Analysis Definition
	Set Partitions
	Analysis Values
	Queries
	Partition Invariants
	Transition Functions
	Analysis Definition
	Preconditions and Early Type Checking

	Abstract Analysis Definition
	Abstract Analysis Values
	Abstract Transition Functions
	Abstract Analysis Definition

	Partition Sets Revisited
	Analysis Solver Algorithms
	Standard Worklist
	Reverse Postorder Worklist
	Strongly Connected Components Worklist

	Alias Matrices
	Alias Matrices as Monotone Framework
	Alias Matrices as Conservative Approximation of Partition Sets

	Minimized Partition Sets
	Three Different Kinds of Analyses -- Summary
	Hierarchical Solver Approach

	Benchmarks
	Existing Points-To Analyses

	Implementation and Examples
	MultiJava and JML
	New Command Line Options
	Type Checking
	Parsing
	Clusters
	Universe Modifier Translation
	Java Type Checking and Expression Flattening
	Checking Uniqueness
	Purity
	Miscellaneous

	Static Data Flow Analysis
	Partitions
	Partition Sets
	Alias Matrices
	Analysis Solver
	Package Organization

	Testing
	Code Examples
	Abstract Factory Pattern
	List Representation Merging
	Construction and Traversal of a rep Tree
	Decorator Design Pattern
	Visitor Design Pattern

	Conclusion and Future Work
	Conclusion
	Future Work

	Code Examples
	Abstract Factory Design Pattern
	Merging List Representations
	rep Tree Construction and Traversal
	Decorator Design Pattern

