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Abstract

TouchDevelop is a novel programming language and environment developed by Microsoft Re-
search that aims at writing scripts on mobile devices. An integral part of the TouchDevelop
standard library are collections like lists or maps. The faulty use of collections (e.g. accessing
a map at an invalid key) can give rise to errors. We want to help developers avoid such errors
by presenting them accurate warnings about potential bugs in their scripts. To achieve this, we
introduce an approach to statically track the elements of collections in TouchDevelop scripts.

Because of the unbounded nature of collections, it is not feasible to track individual elements of
a collection. We need to abstract the properties of collection elements that we are interested in.
We present two complementary abstractions: The first abstraction, the May Analysis, captures
whether an element might be in a collection and the second abstraction, the Must Analysis,
captures whether an element must be in a collection. To solve the problem of unboundedness,
we summarize all elements that were added to a collection at the same program point.

By specifying a high-level representation for collections and defining the semantics of collection
operations based on this representation, we are able to handle a wide range of different collection
types. Particularly we can handle all collection types defined by the TouchDevelop standard
library. Our analysis distinguishes between the shape of the collection and the values of the
collection elements. To abstract the values of collection elements we use an exchangeable value
domain that can handle object references as well as primitive values.

We show that the implemented Must Analysis improves the precision of hand-constructed as
well as real world programs and that for 95% of the 4635 examined scripts we needed less than
a minute to analyze each.
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Chapter 1
Introduction

TouchDevelop [19], [11] is a novel programming language developed by Microsoft Research. It
is geared toward development on mobile devices and targets lay programmers with only little
experience in programming. Under these circumstances it is important that the programming
environment supports the user during the development process (e.g. by pointing out possible
errors in the source code).

The TouchBoost project aims to improve the programming experience of TouchDevelop by
statically analyzing the performance and correctness of scripts. This thesis has been written
in the context of the TouchBoost project and its goal is to design, formalize and implement a
technique to statically track the contents of collections in TouchDevelop scripts. The technique
is implemented as an extension to the static analyzer Sample [6], [7].

1.1 Motivation

Collections such as lists or maps are an integral part of the TouchDevelop standard library. The
songs stored on a mobile device for example are represented as a collection of Song objects,
the fields of a JSON object are represented as a map and games use sets to store obstacles.
Almost every non-trivial script uses collections. When handling collections, the developer has
to be cautious. If he for example accesses a map at an invalid key, or a list at an invalid index,
it can cause his script to crash. We want to develop a static analysis that accurately warns
the developer of potential run time errors caused by such invalid collection accesses or other
potential errors that occur in scripts using collections. Our analysis determines all possible
collections that can exist at each program point. Since a collection can potentially have an
unbounded number of elements, we need to abstract away from individual elements. One simple
approach to do this, is to abstract all elements of a collection by a single summary element.
For arrays this approach is known as ’array smashing’ [1]. In TouchDevelop, this often does not
provide enough precision to prove the desired property and therefore leads to false warnings. To
illustrate this, we are going to look at an example.

The TouchDevelop script in listing 1.1 shows a procedure that takes a String Map, which maps
the name of a country to the name of its current president, as a parameter. In this example we
want to print the name of the current president of the USA. But since the collection is passed
as an argument, we don’t know anything about its content. To ensure that no runtime error
can occur, we first have to check that the key USA is contained in the map before we access it.

Our analysis should be able to prove that the collection access presented in this example is
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Listing 1.1: Motivation example

1 action p r i n t p r e s i d e n t s ( p r e s i d e n t s : String Map ) {
2 i f ( $pre s ident s−>keys−>conta in s ( ”USA” ) ) then {
3 $pre s ident s−>at ( ”USA”)−>p o s t t o w a l l ( ) ;
4 } else {
5 ”unknwon”−>pos t t o wa l ( ) ;
6 }
7 }

safe. The collection smashing approach over-approximates the elements in a collection. In other
words, it captures whether an element can be in a collection or not. If a collection at some
program point might either contain the elements a and b or the elements b and c, then an
approximation that uses smashing captures only that a, b or c can be in the collection. But it
does not capture that b must be in the collection. For the presented example this means that
the analysis is never able to say that the key USA must be in the map. Hence, it is also not
able to prove that a collection access at that key is safe.

To be able to prove this property, we need an abstraction that under-approximates the elements
contained in a collection. This means that the abstraction captures whether an element must
be contained in a collection or not. If a collection at some program point can either contain the
elements a and b or the elements b and c, the analysis needs to track that b certainly must be
contained in the collection. We call such an analysis Must Analysis. In the presented example a
Must Analysis would work as follow: At the beginning of the procedure we don’t know anything
about the content of the map. This means that we do not know about any key that it must
be in the map. Hence, the abstraction of the map in the Must Analysis is empty. When the
then branch is entered, we can assume that the key USA must be present in the list and we can
add it to the abstraction. Since the collection access happens inside the then branch, the Must
Analysis is able to prove that the key USA must be in the map and therefore that the collection
access is safe.

The smashing approach also has other disadvantages. Since it is a very coarse abstraction, it
is not able to distinguish individual collection elements. A script that accesses an individual
element suffers from that imprecision. For our analysis we therefore use a more fine grained
abstraction. Namely we summarize all collection elements that are added to a collection at the
same allocation site and represent them with one abstract element. This abstraction has already
been used in other analyses to abstract heap allocated structures [2].

Beside the Must Analysis we still want to be able to track which elements might be contained in
a collection. This can for example be useful if we want to determine whether it is impossible that
an element is contained in a collection. We therefore also present a second analysis called May
Analysis which captures whether an element may be in a collection and summarizes collection
elements based on the allocation site.

The TouchDevelop standard library offers a variety of different collections such as lists, maps
or sets. Our technique shall be able to handle all these types of collections. We therefore use
a high-level representation of collections for which we define basic semantic operations such as
add or remove. The semantics of the different collection types (e.g. replacing the value of a key
in a map) are then represented as a composition of these basic operations.
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1.2 Outline

The rest of this thesis is structured as follow: In Chapter 2 we give an overview of TouchDevelop,
Sample and the abstract interpretation framework. Chapter 3 introduces collections as they are
provided by the TouchDevelop standard library, describes a high-level representation for these
collections and formally defines the concrete domain of our analysis. In Chapter 4 we describe
two abstractions for collection elements: The May Analysis that is able to tell which elements
may be in a collection and the Must Analysis that can tell which elements must be contained in a
collection. We define the concrete and the abstract semantics of collection operations and prove
their soundness in Chapter 5. Chapter 6 gives an overview of how the analyses were implemented
in Sample. To show how the analyses work we evaluated it on a set of hand constructed and
real world TouchDevelop scripts. We also examine the precision and performance of the analysis
when it is applied to a large number of real world scripts. This is described in Chapter 7.
Finally, we provide our conclusion, present related work and describe how the analysis can be
further improved in Chapter 8. Appendix A gives an overview of the mathematical expressions
and notations used in this thesis.
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Chapter 2
Preliminary Knowledge

2.1 TouchDevelop

TouchDevelop [11] is an application creation environment developed by Microsoft Research. It
is centered around the idea to create mobile applications directly on the mobile device where it
shall be used. Typically TouchDevelop scripts are written by students or hobbyist programmers
who want to script their mobile devices but fear the effort of installing a complete programming
environment. TouchDevelop scripts are usually rather short and often have less than 100 lines
of code.

TouchDevelop comes with its own typed, structured programming language and a standard
library. The standard library is designed to easily execute tasks typical to mobile applications.
If for example offers interfaces to easily access the music library stored on the device or painlessly
communicate with web services.

Developers can share their scripts using the TouchDevelop cloud. A developer can publish the
source code of a script. The initially published version of a script is called a root script. Since
a user can download a root script, modify it and re-publish it, there exist a lot of variations of
the same root script. We use the TouchDevelop cloud to gain access to real world scripts. We
can use those script to test our analysis. To ensure that we are not analyzing a lot of similar
scripts, we only use root scripts.

2.1.1 Structure of a TouchDevelop Script

The logic of a TouchDevelop script is split among in actions and events. Actions are ordinary
methods that can either be public or private. Events are event handlers that are called by the
TouchDevelop runtime environment when for example a button has been pressed. Every public
action can be the entry point of a script. This means that it is possible to directly run every
public method of a script.

To persist data, the developer can use global variables. When a script terminates the values
stored in global variables are persisted and restored the next time the script is started. If a
script is executed for the first time, all global variables are initialized with invalid. The invalid
value is a particularity of the TouchDevelop programming language. An object or a primitive
value can be valid or invalid. Invalid objects and values can not be passed to library methods
or stored in collections. Furthermore, it is not possible to call a method or to access a field of
an invalid object. If a developer erroneously tries to do this, the script crashes.
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2.2 Abstract Interpretation

A program can have infinitely many possible executions. If we want to make statements that
hold for all possible executions (e.g. an element must be in a collection), we need to abstract
away from all these executions and focus only on the properties that we are interested in (e.g.
which elements must be in a collection). Abstract interpretation provides a generic framework
to build sound abstractions. For this we need to define a concrete and an abstract domain, which
both need to be complete lattices. We can abstract an element from the concrete domain with
an element from the abstract domain. An abstract element can be concretized to an element in
the concrete domain. In our case an element in the concrete domain is a set of concrete states
and an element in the abstract domain is an abstract state.

For each statement in a programming language, the semantics for both the concrete and the
abstract domain have to be defined. The concrete semantics transfers a set of concrete states to
another set of concrete states. This is not computable, since in a program execution there can
be infinitely many possible concrete states. The abstract semantics transfers an abstract state
into another abstract state. The abstraction must be defined such that the abstract semantics
is computable. The coarser the abstraction is the better an analysis performs since the abstract
semantics is easier to compute but also the less properties can be shown, since more information
is lost through the abstraction.

Multiple abstract domains can be combined with the cartesian product, where all operators are
applied to both domains individually. The concretization of such a combined domain is the
intersection of the concretizations of the two domains. We assume that the reader has a basic
understanding of abstract interpretation. More information about abstract information can be
found in [4], [5].

2.3 Sample

Sample [6], [7] is a generic static analyzer that has been developed at the Chair of Programming
Methodology. It is based on the abstract interpretation framework [4], [5].

The analyzer is designed in a generic fashion which allows extensions for new domains and
programming languages. Multiple analyses have already been implemented with Sample such
as string [3], access permissions [8] or information leaking [16] analysis.

To get an overview of how Sample works we are going to show how the source code of a method
is analyzed with Sample. The analysis process is depicted in figure 2.1.

Since Sample supports multiple programming languages, the source code of the method first
has to be transformed into an intermediate format. This intermediate format is called Simple
and represents the Control Flow Graph of the program. The transformation logic has to be
implemented for each programming language individually. Currently translations for Scala and
TouchDevelop exist. Based on the Control Flow Graph and the entry state of the method a
least fixpoint computation is executed. The result of this computation is an annotated Control
Flow Graph that contains for each statement the entry and the exit state at which the fixpoint
was reached. Based on this the properties that shall be shown can be checked and warnings are
created if a property could not be proven.
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Figure 2.1: Overview of analysis process in Sample

2.3.1 Domains in Sample

An analysis is parameterized with a heap domain and a value domain. The heap domain
abstracts the runtime heap structures of the analyzed script. The value domain abstracts the
values in the program and is used to infer the desired property.

For the analysis of TouchDevelop scripts we use a value domain that is further decomposed into
multiple domains to capture different value types.

• Invalid Domain: Captures whether an identifier is valid or invalid.

• String Domain: Captures the possible values of identifiers that are of type String. The
currently used abstraction for strings is a k-set. This means that we track up to k different
values for an identifier. If an identifier has more than k possible values, the value of that
identifier is top (meaning it could have any possible string).

• Numerical Domain: Captures the possible values of identifiers that are of type Number or
Boolean. Sample makes use of the APRON library [17] [12] to support relational numeric
domains such as Octagons [15].

Figure 2.2 gives an overview of how the used domains are composed.
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Figure 2.2: Domains used for TouchDevelop Analysis

2.3.2 Analysis of TouchDevelop Scripts

We are now going to look at how a TouchDevelop script is analyzed using Sample’s least fix
point computation engine.

Remember that TouchDevelop initializes all global variables with invalid, the first time a script
is executed. Therefore we use an entry state for the analysis where all global variables are equal
to invalid. Since all public actions can be an entry point of a script they are analyzed in parallel
(meaning that all actions are analyzed with the same entry state). Since we don’t know which
action actually gets executed when a script is started, we have to take the least upper bound
of all the exit states calculated for the individual actions. After an action has been executed,
any of the events in a TouchDevelop script could be triggered. Therefore we have to analyze all
the events in parallel as well and take the least upper bound of all their exit states. Because
global variables are persisted and thus can have a different value every time a script is started,
we need to repeat the analysis and use the retrieved state as the new entry state until until the
global variable have reached a fix point. Once this fix point is reached the analysis is completed.
Figure 2.3 gives an overview of the analysis process.

Figure 2.3: Overview of the analysis process for a TouchDevelop script



Chapter 3
Concrete Domain

This Chapter describes how the state of a TouchDevelop script is represented in our analysis.
We will first give an overview of the available collection types in TouchDevelop such that we
can then define a high-level representation for all these collection types. Finally we will formally
define the concrete domain of our analysis based on this high-level representation.

3.1 Collections in TouchDevelop

This Section gives an overview of the collections available in TouchDevelop according to the API
version 2.11 [20]. Furthermore we are going to show a few particularities about TouchDevelop
that are important for our analysis. Notice that for simplicity we do not show all collection
operations defined by the TouchDevelop but rather focus on the most important ones.

In TouchDevelop each collection has a specific type. A list of Songs for example is a SongCol-
lection and a list of Messages is a MessageCollection. TouchDevelop does not support generic
collections. All collections in TouchDevelop can be accessed by a key. Collections that don’t
naturally have a key (e.g. lists) can be accessed with an index, where the index represents the
position of the element in the collection. For our analysis it is particularly important that an
access to an invalid key or an out of bounds index does not lead to a runtime error. Instead
an invalid object is returned. A runtime error only occurs if this invalid object is used wrongly
(e.g. passed as an argument to another method).

Since we later want to define a high-level representation for all collections, we do not consider
how exactly the collection operations are implemented. We rather focus on the contracts that
a collection operation has to fulfill. This section serves as an overview, we will formally define
the concrete semantics of the collection operations in chapter 5.

3.1.1 Categories of Collections

If we categorize collections based on the operations they offer and the contracts that these
operations need to fulfill, we can distinguish three different categories of collections:

• Lists : Ordered sequences of elements. The same element can occur multiple times. A list
can can either be mutable or read-only. Example: String collection

• Sets : Ordered collection of elements. The same element can occur only once. Sets in
TouchDevelop are always mutable. Example: Sprite Set

11



12 CHAPTER 3. CONCRETE DOMAIN

• Maps : A map from keys to values. Maps in TouchDevelop are mutable. Example: String
Map

Additionally there exist some objects like the JSON Object that are not collections in the
classical sense but support collection like operations.

We will now analyze each of these categories more thoroughly.

Read-only Lists

The collections with the narrowest interface are read-only lists. Usually these collections are
used to represent entities of the system (e.g. Song Collection, Contact Collection). Collections
of this category can be accessed with a numeric linear index that starts at 0 and represents the
position of an element in the list.

Notice that an access to an index that is out of bounds does not trigger a runtime error but
rather returns an invalid object. Listing 3.1 shows a collection access which may return an
invalid object.

Listing 3.1: List accesses that might return an invalid object

1 media−>songs−>at ( 0 ) ;

If the returned object is handled correctly as shown in listing 3.2, the program never triggers a
run time error.

Listing 3.2: Invalid list access with check

1 $song := media−>songs−>at ( 0 ) ;
2 i f ( not $song−> i s i n v a l i d ( ) ) then {
3 $song−>play ( ) ;
4 }

However, if the returned object is accessed unchecked as shown in listing 3.3 a runtime error
occurs, if the collection access has returned an invalid object.

Listing 3.3: Potential runtime error

1 media−>songs−>at(0)−>play ( ) ;

Simple read-only lists can not be created by the developer but are obtained through library
calls.

We can summarize the methods that are offered by this category of collections as follows:

• at(index:Number):V - Returns the element at the given index or invalid, if the index is
out of bounds.

• count:Number - Returns the number of elements in the collection.

V denotes the type of the collection elements (e.g. for a SongCollection: V = Song)

Mutable Lists

As read-only lists, mutable list can also be accessed by a numeric linear index but additionally
offer methods to alter the list’s content.
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The developer can instantiate mutable lists with the aid of the collections module. Listing 3.4
shows how a new empty Link Collection can be instantiated.

Listing 3.4: Create a Link collection

1 c o l l e c t i o n s−>c r e a t e l i n k c o l l e c t i o n ( )

Some mutable lists such as the String and the Number Collection also offer the possibility to
check whether a value is contained in the list or not.

• createCollection():T - Creates a new list.

• at(index:Number):V - Returns the element at the given index or invalid, if the index is
out of bounds.

• count:Number - Returns the number of elements in the collection.

• add(item:V):Nothing - Appends an item to the end of the list.

• clear:Nothing - Removes all elements from the list.

• remove at(index:Number):Nothing - Removes the element at the given index.

• contains(item:V):Boolean - Checks whether the given item is contained in the list or not.

V denotes the type of the list elements and T the type of the list itself (e.g. for a LinkCollection:
V = Link, T = LinkCollection)

Sets

Sets are very similar to mutable lists. Their elements are ordered by the time of insertion and
they offer the same operations as mutable lists. But in contrast to mutable lists, each element
can only occur once. The elements can be accessed by a numerical linear index that starts at 0
and represents the position of an element in the set.

We can summarize the operations offered by sets as follows:

• createCollection():T - Creates a new set.

• at(index:Number):V - Returns the element at the given index or invalid, if the index is
out of bounds.

• count:Number - Returns the number of elements in the collection.

• add(item:V):Boolean - Adds an element to the end of the set.

• remove first:V - Removes the first element from the set.

• contains(item:V):Boolean - Checks whether an element is contained in the list.

V denotes the type of the collection elements and T the type of the list itself (e.g. for a SpriteSet:
V = Sprite, T = SpriteSet)
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Maps

Maps are collections of key-value pairs where each key can only occur once. Since all maps are
mutable they offer operations to add and remove key-value pairs as well as operations to access
the value at a given key. Similar to mutable lists, new maps can be created by the developer
using TouchDevelop’s collections module.

As for lists, the access to a non-existing key does not raise a run-time error but rather returns
an invalid object. The Number Map, however, is an exception to that. Instead of an invalid
object it returns 0. For the formalization of the semantics we will ignore this special case, since
it can be handled analogously to the standard access operation for maps.

We can summarize the operations provided by maps as follows:

• createCollection():T - Creates a new map.

• at(key:K):V - Returns the value stored at the given key or invalid if the key is not in the
map.

• count:Number - Returns the number of elements in the map.

• set at(key:K, value:V):Nothing - Adds the value at the given key. If the provided key
already exists, the existing value is replaced with the provided value.

• remove(key:K):Nothing - Removes the element at the given key. If the provided key is not
in the map, the map is not altered.

K and V denote the types of the key and the value of the map and T denotes the type of the
map itself (e.g. for a StringMap: K = String, V = String, T= StringMap)

Special Collections

Special collections are objects which offer collection-like operations but are not collections in
the typical sense. An example of such an object is the JSON Object. It represents a JSON
(JavaScript Object Notation) data structure. The fields of a JSON Object can be accessed using
the at operation and the name of the field as a key. The result of this operation is another
JSON Object (or invalid if no field with the given name exists). A JSON Object thus can be
represented as a map from Strings to JSON Objects.

3.1.2 Foreach Loops

In TouchDevelop one can iterate over all elements in a collection using a foreach loop as shown
in figure 3.5.

Listing 3.5: Foreach-Loop

1 var l i n k s := . . .
2 l i n k s−>add (web−>l i n k u r l ( ”Link1” , ” http ://www. l i n k . ch” ) )
3 l i n k s−>add (web−>l i n k u r l ( ”Link2” , ” http ://www. l i n k . org ” ) )
4
5 foreach e in l i n k s
6 where t rue
7 do
8 e−>post to wa l l
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The semantics of the foreach loop are as follows: The collection that shall be iterated over is
cloned and then the cloned collection is traversed in the order specified by the collection. For
maps the list of keys, ordered by the time of insertion, is traversed.

Where Clause

Additionally TouchDevelop offers the possibility to specify a where clause for a foreach loop as
shown in Listing 3.6.

This is semantically the same as the code shown in listing 3.7.

Listing 3.6: Where clause

1 var l i n k s := . . .
2 l i n k s−>add (web−>l i n k u r l ( ”Link1” , ” http ://www. l i n k . ch” ) )
3 l i n k s−>add (web−>l i n k u r l ( ”Link2” , ” http ://www. l i n k . org ” ) )
4
5 foreach e in l i n k s
6 where e−>name−>equa l s ( ”Link1” )
7 do
8 e−>post to wa l l

Listing 3.7: Foreach-loop with if statement

1 var l i n k s := . . .
2 l i n k s−>add (web−>l i n k u r l ( ”Link1” , ” http ://www. l i n k . ch” ) )
3 l i n k s−>add (web−>l i n k u r l ( ”Link2” , ” http ://www. l i n k . org ” ) )
4
5 foreach e in l i n k s
6 where t rue
7 do
8 i f e−>name−>equa l s ( ”Link1” ) then
9 e−>post to wa l l

10 else do nothing

3.1.3 Invalid Object

In TouchDevelop objects, Strings and Numbers can be invalid. If a collection is accessed with
a key that is not in the domain the program does not crash but rather an invalid object is
returned.

Invalid Objects as Arguments

If an invalid object is passed to a library method or the field or method of an invalid object is
accessed the program crashes. Hence the code in Listing 3.8 results in a runtime error.

Listing 3.8: Invalid object as argument

1 var s := inva l i d−>s t r i n g
2 var s t r i n g s := c o l l e c t i o n s−>c r e a t e s t r i n g c o l l e c t i o n
3 s t r i n g s−>add ( s ) //ERROR
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This is important in the context of collections, as it means that a collection can never have an
invalid object as a value.

3.2 High-level Representation of Collections

As we have seen, TouchDevelop offers different types of collections. Our analysis shall be able
to handle all these collection types. Instead of defining an analysis for each collection type
individually, we are going to introduce a high-level representation, that is able to represent all
collection types presented in Section 3.1. This will allow us to define basic semantic operations
for this representation (e.g. adding a new element), that we can use to build the semantics for
the individual collection types.

The high-level representation describes how a collection is represented in memory. To introduce
this representation we are going to use an example collection. We consider a String Map s that
has two mappings: The key Zurich points to ETHZ and the key Bern points to BFH.

We look at a collection as a set of memory locations. At each memory location a pointer to a
key and a pointer to a value is stored. We call these memory locations Elements. To tell which
Elements belong to which collection, we keep a set of Elements for each collection. We call this
set the Element Set of a collection.

Furthermore, we need to know what the content of a collection element is. More precisely we
need to know what the content of its key and the content of its value is. We therefore keep a
map which maps an Element and one of the keywords key or value to a value. A value is either
a reference to an object or a primitive value (String, Number or Boolean). We call this map the
Value Map of a collection.

For the running example this means that we represent the collection as a set with two El-
ements A and B and a Value Map [(A, key) → Zurich, (A, value) → ETHZ, (B, key) →
Bern, (B, value)→ BFH]. We can also draw this as a graph like in figure 3.1.

Figure 3.1: Representation of the String Map [Zurich→ ETHZ,Bern→ BFH]

A TouchDevelop script can have multiple collections. Each collection is identified by a single
memory location that we call Reference. If the field of an object or a variable in the program
is a collection, then it points to the Reference of the collection. This allows us to integrate the
collection into the heap structure. Figure 3.2 shows an example where an object field and a
variable both point to the same collection. Notice that we do not show the keys and values
of the collection elements in this illustration. For simplicity reasons we will not include the
representation of variables and the heap structure in the formal description of the concrete
domain.
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Figure 3.2: A collection that is pointed to by a variable and an object field

To track which Element Set belongs to which collection Reference, we use a map that maps
collection References to Element Sets. We call this map the Collection Environment.

We have learned, that an Element is the memory location where the pointer to the key and the
value of the collection element is stored. An Element therefore always belongs to exactly one
collection. For this reason we can join the Value Maps of all the collections in a TouchDevelop
script to one map, without clashes. We call this joined map the Value Environment.

In the running example we therefore would end up with the Collection Environment [c →
{A,B}] and the Value Environment [(A, key) → Zurich, (A, value) → ETHZ, (B, key) →
Bern, (B, value)→ BFH].

The high-level representation that we have described here, requires each collection type to define
keys and values. In the previous section we have learned, that TouchDevelop distinguishes three
categories of collections: Maps, Lists and Sets. A map naturally defines keys and values. For
lists the key is a number and corresponds to the position of the element in the list and the value
is the element itself. For sets the key is a number as well and corresponds to the position of the
element in the insertion order. The value is the element itself.

3.3 Formal Definition of Concrete Domain

After we have described the intuition behind the high-level representation for collections, we can
now formally define the concrete domain of our analysis based on this representation.

First we define Ref to be the set of all memory-locations in a TouchDevelop script. The set of
all memory-locations used for collection Elements we name Elem.

Elem ⊆ Ref

We can then formally define an Element Set e as a set of Elements:

e ∈ P(Elem)

where P(S) denotes the power set of S.

The Collection Environment that maps the Reference of a collection to it’s Element Set is
defined as a function from Ref to Element Sets:

EnvC : Ref → P(Elem)

The Value Environment maps an Element and one of the keywords key or value to a value. We
define the set of possible values that can be assigned to the key or the value field of a collection
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element as V . The Value Environment is then defined as:

EnvV : (Elem× {”key”, ”value”})→ V

The Environment, which in our analysis represents the concrete state of a program, is the
cartesian product of the Collection Environment and the Value Environment :

Env : EnvC × EnvV

When we statically analyze a program we have to consider all possible traces of the program.
Considering all this possible traces, we use collecting semantics to collect for each program point
all possibly reachable states. Our concrete state is defined as an Environment. Therefore, the
lattice structure on which defines our concrete domain, is defined as follows:

< P(Env),⊆, ∅, Env,∪,∩ >



Chapter 4
Abstract Domains

Section 3 introduced, how collection elements are represented in the concrete domain. In this
chapter we will now show two complementary abstractions for those collection elements.

The first abstraction captures if an element might be contained in a collection. We call this
abstraction May Analysis. If we track for example the elements of a set and at a certain point
in the program the set either contains the elements a, b or the elements b, c. Then the May
Analysis needs to track that the elements a, b, and c might be in the collection. This analysis
over-approximates the collection elements and can for example be used to prove that an element
certainly is not contained in a collection.

The second abstraction tracks which elements certainly must be contained in a collection. We
call this abstraction Must Analysis. If we use the same example as before where a set either
contains the elements a, b or the elements b, c then the Must Analysis tracks that the element
b certainly must be in the collection. Since this analysis under-approximates the elements in a
collection and can for example be used to prove that a collection access at a given key always
returns a valid object. For the Must Analysis we also define two different least upper bound
operators. A standard least upper bound operator that, when joining two collections, only
keeps the elements that are contained in both collections and a an extended least upper bound
operator that uses a more involved operation to gain precision.

We define those two abstractions separately and uses the cartesian product to combine the the
two analyses.

One problem that both abstractions need to solve is that collections can potentially have an
unbounded number of elements. If a program for example consists of an endless loop, where
an element is added to a collection inside the loop body, we end up with a collection that has
infinitely many elements. We therefore need to abstract away from individual elements. ow heap
structures are abstracted is known under the problem of shape analysis [13], [2]. We summarize
all the collection elements that were added at the same allocation site and represent them with
one single abstract collection element [2]. Since there exist different possibilities how one can
abstract the individual collection elements, we designed the technique in such a way that this
abstraction is exchangeable.

But not only the number of elements can be unbounded but also the number of collections itself.
We therefore also abstract the References that represent the collections by the allocation site
where they were created. This means that an abstract collection can represent multiple concrete
collections. We call such collections summary collections. Summary collections produce new
challenges which we will discuss in section 4.5.

19
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Since we summarize multiple - potentially infinitely many - collection elements, we also need to
be able to abstract the values of these collection elements. To do this we need a value domain
that is able to handle summary identifiers. We do not define a specific value domain but rather
describe the properties and semantic operators that it needs to have, in order to be used with
our analysis. The specific value domain that we used is described as part of the implementation
in Chapter 6. In general our technique becomes more precise if the value domain is more precise.

Before we formally define the two abstract domains for the May and the Must Analysis, we
introduce the concepts described above more precisely.

4.1 Abstraction of References and Elements

In the concrete domain we have defined References as memory locations. The number of memory
locations that are allocated in a TouchDevelop script can potentially be unbounded and we
therefore need to abstract away from them. Similar to [7] we abstract multiple References
with one Heap Identifier. We call the set of all Heap Identifiers in the abstract domain HId. In
contrast to the set of References, the number of elements in the set of Heap Identifiers needs to be
bounded to ensure that the analysis terminates. There are different approaches how References
can be abstracted to Heap Identifiers. For this reason we have designed the technique in a way
that this abstraction is exchangeable. A Reference abstraction must provide an abstraction
function αHId to convert a set of Reference to a set of Heap Identifiers and a concretization
function γHId to convert a Heap Identifier to a set of References.

αHId : P(Ref)→ P(HId) γHId : HId→ P(Ref)

The abstraction we use abstracts References by allocation site. This is a well studied technique
[2] and is already implemented in Sample as part of the heap abstraction. All Elements that
were created at the same program point are abstracted by the same Heap Identifier.

Remember that an Element is a memory location as well. In fact we have defined the set of all
Elements as a subset of the set of all References. We can therefore use the same abstraction
for Elements as we use for References. This means that we summarize all Elements that were
added to the collection at the same allocation site with one Heap Identifier.

4.2 Tuple Identifiers

We will see that the extended least upper bound operator, presented in Section 4.8.5, requires
the ability to represent the fact that there must be an element in a collection that is abstracted
by any of multiple possible Heap Identifiers. To describe such a collection element, we introduce
a new type of identifier called Tuple Identifier. A Tuple Identifier is a set of Heap Identifiers.
It abstracts all elements that are abstracted by any of the Heap Identifiers in that set. We call
the set of all Tuple Identifiers TId.

TId : P(HId)

4.2.1 Abstraction and Concretization of Tuple Identifiers

A Tuple Identifier abstracts multiple collection Elements. More precisely, a Tuple Identifier t
abstracts all the Elements that are abstracted by all Heap Identifiers h ∈ t.
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γTId : TId→ P(Elem)
γTId(t) =

⋃
h∈t γHId(h)

A set of collection Elements E is abstracted by the Tuple Identifier that represents the set of
Heap Identifiers retrieved from αHId(E).

αTId : P(Elem)→ TId
αTId(E) = αHId(E)

4.3 Representation of Abstract Environment

After we have seen how single collection elements are abstracted, we can now look at how they
are embedded in the abstract state.

An abstract collection element is represented as a Tuple Identifier. To track which Tuple Iden-
tifiers are in an abstract collection we keep a set of Tuple Identifiers c(A) which we call Abstract
Element Set.

c(A) ∈ P(TId)

The Abstract Element Set is the counterpart of the concrete Element Set in the abstract domain.

Since there can be many collections in a TouchDevelop script, there can also exist multiple
abstract collections. Analogous to the concrete domain we define an Abstract Collection Envi-
ronment that maps Heap Identifiers to Abstract Element Sets.

Env
(A)
C : HId→ P(TId)

To abstract the values of collection elements we use an Abstract Value Environment env
(A)
V ∈

Env
(A)
V . How the Abstract Value Environment looks like is defined by the value domain, which

is a parameter of our analysis. The properties of the value domain are described in Section 4.4.

Finally the complete Abstract Environment is defined as the cartesian product of the Abstract
Collection Environment and the Abstract Value Environment.

Env(A) : Env
(A)
C × Env(A)

V

The Abstract Environments will be used as the elements of the lattices that define the abstract
domains of the May and Must Analysis. We will however see that the lattice operators are
defined differently for the two domains.

4.4 Value Domain

The abstraction of the values of collection elements influences the precision of the analysis. Since
primitive values and object references can be abstracted in many different ways, we designed the
analysis such that the abstraction of the Value Environment is easily exchangeable. We however
require certain properties that the value domain needs to fulfill. Particularly it needs to define
lattice operators, abstraction and concretization functions and a set of semantic operations.
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4.4.1 Abstraction and Concretization functions

A value abstraction needs to define a concretization function γV that concretizes an Abstract
Value Environment to a set of Value Environments and an abstraction function αV that does
the opposite.

αV : P(EnvV )→ Env
(A)
V

γV : Env
(A)
V → P(EnvV )

4.4.2 Lattice operators

The value domain needs to implement the lattice operators for the Abstract Value Environments.
Particularly it needs to provide a least upper bound and a greatest lower bound operator.

tV :
(
Env

(A)
V × Env(A)

V

)
→ Env

(A)
V

uV :
(
Env

(A)
V × Env(A)

V

)
→ Env

(A)
V

4.4.3 Semantic Operators

A value domain needs to offer a few semantic operators for the concrete and the abstract domains.
In this section we will describe the interfaces for these operators. We assume that all these
operations are sound, meaning that the concrete semantics is over-approximated by the abstract
semantics.

Assign

Assigns an expression to an identifier. An expression is a construct that needs to be provided
by the value domain. It is either a value, an identifier, an arithmetic operator or a comparison
operation. We need to assign expressions instead of values to an identifier, to be able to make use
of relational value domains. Expressions allow us to represent relations between identifiers. We
can for example say, that the key of a collection element is equal to its value. How expressions
are evaluated depends on the used value domain.

assignV : ((Elem× {”key”, ”value”})× V × EnvV )→ EnvV

assign
(A)
V :

(
(TId× {”key”, ”value”})× Expression× Env(A)

V

)
→ Env

(A)
V

Assume

Assumes that a given expression holds in a the Value Environment. If a provided assumption can
never be true in the provided Value Environment, the returned Value Environment is bottom.

assumeV : (Expression× EnvV )→ EnvV

assume
(A)
V :

(
Expression× Env(A)

V

)
→ Env

(A)
V
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Equals

With this function we can check whether an identifier is equal to a given expressions in a Value
Environment.

equalsV : ((Elem× {”key”, ”value”})× V × EnvV )→ {true, false}

Since an Abstract Value Environment represents multiple concrete Value Environments, the
abstract semantics of equalsV returns a set of boolean values instead of a single boolean value.
They have the following meaning:

• If the identifier must be equal to the expression in all Value Environments abstracted by
the provided Abstract Value Environment, {true} is returned.

• If the identifier can not be equal to the expression in an Value Environments abstracted
by the provided Abstract Value Environment, {false} is returned.

• If the identifier is equal to the expression in some bot not in all Value Environments
abstracted by the provided Abstract Value Environment, {true, false} is returned.

equals
(A)
V :

(
(TId× {”key”, ”value”})× Expression× Env(A)

V

)
→ P({true, false})

Replace

This operation is used to assign to an identifier the least upper bound of the values of a set of
other identifiers. More details about this operation and the used Replacement structure will be
explained in Section 4.6.

replaceV :
(
Env

(A)
V ×Replacement

)
→ Env

(A)
V

Bottom Check

We need a function for the abstract value domain that checks whether a given identifier is bottom
or not.

isBottom
(A)
V :

(
(TId× {”key”, ”value”})× Env(A)

V

)
→ {true, false}

4.5 Summary Collections

The Abstract Collection Environment maps Heap Identifiers to Abstract Element Sets. Remem-
ber that a Heap Identifier can abstract multiple References. If a Heap Identifier, that represents
a collection, in the domain of the Abstract Collection Environment abstracts multiple Refer-
ences, the abstract collection does no longer represent one collection in the script but rather
multiple ones. Such an abstract collection is called a summary collection.

Formally, we say an abstract collection, that is represented by the Heap Identifier c(A), is a
summary collection, if |γHId

(
c(A)

)
| > 1.
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Listing 4.1 shows an example which leads to a summary collection. In this example the two
different collections are created at the same allocation site. The two References that represent the
concrete collections are abstracted by one Heap Identifier c(A). This means that the collection,
represented by c(A) is a summary collection.

Listing 4.1: Create collections with a factory method

1 $c := code−>c r e a t e c o l l e c t i o n ( ) ;
2 $d := code−>c r e a t e c o l l e c t i o n ( ) ;
3
4 action c r e a t e c o l l e c t i o n ( ){
5 return c o l l e c t i o n s −>c r e a t e l i n k c o l l e c t i o n ( ) ;
6 }

Semantic operations that involve a summary collection have to consider that a summary collec-
tion represents multiple collections. To illustrate this let’s look at an example: Assume that we
add an element to collection c in the script in listing 4.1. In the abstract domain the collections
c and d are represented as one summary collection. The element however is added only to c.
In the Must analysis the collection only contains the elements that certainly are in a collection.
It would therefore not be sound for the abstract semantics to add the element to the summary
collection, as it is not contained in d. More details on how summary collections must be treated
will be shown when the abstract semantics are defined.

To simplify the presentation here, we do not consider summary collections when defining the
abstract domain.

4.5.1 Detection of summary collections

Whether an identifier c(A) represents a summary collection or not can be determined by checking
if γHId

(
c(A)

)
contains more than one element. But since a summary collection can abstract

potentially infinitely many collections, γHId

(
c(A)

)
can also have infinitely many elements, which

makes it uncomputable. Hence, we need an alternative way to determine whether a collection
is a summary collection or not. Sample uses a technique to identify summary Heap Identifiers
by checking if a Heap Identifier is created more than once in a script. Since a collection is
represented in the Abstract Collection Environment as a Heap Identifier, we can directly apply
this technique to determine whether a collection is a summary collection or not.

For the formalization we therefore define an operation isSummary that can determine whether
an identifier is a summary identifier or not.

isSummary : (HId ∪ TId)→ {true, false}

4.6 Replacements

Some operations in the Abstract Collection Environment remove or replace Heap Identifiers.
This information also needs to be reflected in the state of of the Abstract Value Environment.
To pass the information which Heap Identifiers need to be replaced from the Abstract Collection
Environment to the Abstract Value Environment we are using Replacements. Replacements were
first introduced by Ferrara et. al. [7].

A Replacement is a map from sets of Heap Identifiers to sets of Heap Identifiers:

Replacement : P(HId)→ P(HId)
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An entry in this map might be {hId1, hId2} → {hId3, hId4}. This means hat hId1 and hId2
are replaced by hId3 and hId4. We call the left set of the entry ({hId1, hId2}) the from set and
the right set ({hId3, hId4}) the to set.

A value domain needs to define a function replaceV that performs the replacement by assigning
to all Heap Identifiers in the to set the least upper bound of the values of Heap Identifiers in
the from set for all entries in the Replacement map.

replaceV :
(
Env

(A)
V ×Replacement

)
→ Env

(A)
V

For our example this would mean that the least upper bound of the values of {hId1, hId2} is
assigned to hId3 as well as to hId4. The formal description of Replacements and the replace
function can be found in [7].

For a functional domain, that maps Heap Identifiers to values, the replaceV function can be
implemented as follows: For each entry in the Replacement with a from set F and a to set T ,
we apply the function r, that replaces the values of all Heap Identifiers in the to set with the
least upper bound of the values of all Heap Identifiers in the from set.

r : (EnvV × P(HId)× P(HId))→ EnvV

r(env, F, T ) =

 h→ v : h ∈ (dom(env)− F ) ∪ T∧

v =

{⊔
h′∈F env(h′) if h ∈ T

env(h) otherwise


For relational value domains the implementation of the replaceV operation is more involved.

4.6.1 Joining Replacements

We will need to be able to join multiple Replacements to one Replacement to easier pass it to
other domains. For this operation it is important to know that all the entries in a Replacement
map are executed in parallel. This means that they are all executed on the same state. When
we join two Replacements we still want to execute them in parallel. Hence, the join operation
⊕ on Replacements simply joins the two maps of the Replacements.

⊕ : Replacement×Replacement→ Replacment

rep1 ⊕ rep2 =

[
t→ f : (t ∈ dom(rep1) ∧ f = rep1(r))∨

(t ∈ dom(rep2) ∧ f = rep2(t))

]
In an earlier version of the formalization we used an operation to concatenate Replacements.
This operation is no longer used, but because it might be of general interest its formalization
can be found in Appendix C.

4.7 May Analysis

We now define the abstract domain for the May Analysis. The May Analysis tracks which
elements might be in a collection.This means that if we abstract a set of concrete collections
the resulting abstract collections should contain all elements that are in any of the concrete
collections.

On the other hand, each concrete collection that is abstracted by an abstract collection, can
have no other elements than the elements contained in the abstract collection. It however does



26 CHAPTER 4. ABSTRACT DOMAINS

not need to have all the elements of the collection. We can therefore say that the concretization
of an abstract collection consists of all concrete collections that contain a subset of the elements
in the abstract collection.

When joining two abstract collections, the resulting abstract collection should abstract all con-
crete collections that were abstracted by either of the two joined abstract collection.

In this section we will formally describe how this intuition can be applied for our technique and
how we can use it to describe the abstract domain for the May-Analysis.

4.7.1 Abstract Domain

The abstract domain is defined as a lattice structure. The elements of this lattice are Abstract
Environments (Env(A)) that were defined earlier.

< Env(A),vMay,⊥May,>May,tMay,uMay >

Intuitively we can say that an abstract collection in the May Analysis abstracts less concrete
collections, if it contains less elements. Formally we have do define the partial ordering operator
of the lattice for the complete Abstract Collection Environment.

Partial Ordering

Since an Abstract Environment is the cartesian product of the Collection Environment and the
Value Environment, the partial ordering among Abstract Environments is defined as the typical
partial ordering relation for cartesian product domains.

(
envL

(A)
C , envL

(A)
V

)
vMay

(
envR

(A)
C , envR

(A)
V

)
⇔(

envL
(A)
C vMay

C envR
(A)
C

)
∧
(
envL

(A)
V vV envR

(A)
V

)
The partial ordering relation for the Abstract Value Environment vV is defined by the value
domain but the partial ordering relation for the Abstract Collection Environment vMay

C needs
to be defined by our analysis. Since the Abstract Collection Environment is a functional domain
its partial ordering operator is defined as the standard partial ordering relation for functional
domains.

envL
(A)
C vMay

C envR
(A)
C ⇔ ∀h ∈ dom

(
envL

(A)
C

)
: envL

(A)
C (h) vMay

E envR
(A)
C (h)

The partial ordering among Abstract Element Sets vMay
E is defined as follows:

eL(A) vMay
E eR(A) ⇔ eL(A) ⊆ eR(A)
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Top and Bottom

Similar to the partial ordering operator, the top and bottom elements of the abstract domain
are the standard operators for the respective domains. We therefore only show the definition of
the top and bottom elements for the Element Sets. The top element is the set containing all
Tuple Identifiers whereas the bottom element is the empty set.

>May
E = TId ⊥May

E = ∅

4.7.2 Concretization function

The concretization function converts an Abstract Environment into a set of Environments.

Since the Abstract Environment is the cartesian product of the Abstract Collection Environ-
ment and the Abstract Value Environment we decompose the concretization function into the
concretization functions of those two environments.

γMay : Env(A) → P(Env)

γMay

(
env(A)

)
= γMay

(
env

(A)
C , env

(A)
V

)
= γMay

C

(
env

(A)
C , env

(A)
V

)
× γV

(
env

(A)
V

)
We have already seen that the value domain is exchangeable and that each value domain therefore
has to provide a concretization function γV . It takes an Abstract Value Environment and
concretizes it to a set of Value Environments.

The concretization function for the collection environment γMay
C however is defined by our

analysis. Remember that the Abstract Collection Environment is a map from Heap Identifiers
to sets of Tuple Identifiers. Each entry in that map corresponds to one abstract collection.

Let’s look at one such entry h → c(A). The Heap Identifier h is an abstraction of one or more
collection References as described in section 4.5. The set of References that are abstracted by
h is obtained by γHId(h). The Abstract Element Set c(A), which is a set of Tuple Identifiers,
abstracts one or multiple Element Sets. For each Tuple Identifier t in c(A), the value and the key
fields are tracked in the Abstract Value Environment. It is possible that the values of those fields
in the Abstract Value Environment are bottom. We will later see how this can occur as a result of
the abstract semantics of the remove operation. If the key or the value field of t is bottom in the
Abstract Value Environment, then the abstract collection element, represented by t, has either no
key or no value. This is the same as if t would not be in the Abstract Element Set. We therefore
need to filter out all the Tuple Identifiers from the Abstract Element Set that have either no
key or no value. We do this by checking for each Tuple Identifier t in the Abstract Element Set,
that neither the key nor the value field is equal to bottom in the Abstract Value Environment.
We name the set of filtered Tuple Identifiers of an Abstract Element Set c(a): Ec(A)

. The set

of Element Sets that are abstracted by c(A) is therefore obtained by γMay
E

(
E(c(A))

)
. Each of

the collection References might point to any of the Element Sets. We therefore consider all the

combinations of References in γHId(h) with Element Sets in γMay
E

(
E(c(A))

)
.

Since this needs to be done for all entries in the Abstract Collection Environment we take the
union over all the sets created for each entry. The result of this is a set with all possible mappings
from collection References to Element Sets. The Collection Environments represented by the
given Abstract Collection Environment are then all functions that are built from all possible
subsets of this set.
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γMay
C : Env

(A)
C → P(EnvC)

γMay
C

(
env

(A)
C , env

(A)
V

)
=



[r → c : (r, c) ∈ x] :

x ⊆
⋃

h∈dom
(
env

(A)
C

)



(r′, c′) : r′ ∈ γHId(h)∧
c′ ∈ γMay

E (E)∧

E =


t :

t ∈ env(A)
C (h)∧

notBottom
(
t, env

(A)
V

)





The function notBottom checks that neither the key nor the value field of a tuple t is equal to
bottom in the Value Environment.

notBottom :
(
TId× Env(A)

V

)
→ {true, false}

notBottom
(
t, env

(A)
V

)
= ¬isBottom(A)

V

(
(t, ”key”), env

(A)
V

)
∧¬isBottom(A)

V

(
(t, ”value”), env

(A)
V

)
What is now left to define is how an Abstract Element Set is concretized to a set of Element
Sets. This concretization is described by the function γMay

E . Remember that in the May Analysis
an abstract collection abstracts the information which elements may be in a collection. Also
remember that with the Element Set we represent the information which elements are contained
in the collection. The Element Sets represented by an Abstract Element Set are therefore all
the subsets of the Abstract Element Set.

γMay
E : P(TId)→ P(P(Elem))

γMay
E

(
c(A)

)
=

x : x ⊆
⋃

t∈c(A)

γHId(t)


4.7.3 Abstraction function

The abstraction function abstracts a set of Environments to an Abstract Environment.

Since an abstract in the May Analysis contains all elements that possibly might be in a collection,
it can be built by taking the union of all elements contained in the concrete collections that shall
be abstracted.

Formally, we need to define the abstraction function for the complete environment.

Since an Environment is the cartesian product of a Collection Environment and a Value En-
vironment we decompose the abstraction function into the abstraction functions of those two
environments.

αMay : P(Env)→ Env(A)

αMay(env) = αMay(envC , envV ) =
(
αMay
C (envC), αV (envV )

)
The abstraction function for the value environment αV is defined by the value domain. It
abstracts a set of Value Environments to an Abstract Value Environment. The abstraction
function for the collection environment αMay

C however is defined by our analysis. It abstracts a
set of Collection Environments to an Abstract Collection Environment.
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The Abstract Collection Environment is a function from Heap Identifiers to Abstract Element
Sets. The domain of the Abstract Collection Environment function is the set of all the Heap
Identifiers that abstract the collection References in the domains of the Collection Environments.
The Abstract Element Set to which such a Heap Identifier points to abstracts all the Element
Sets to which the collection References, that where abstracted by that Heap Identifier, point to
in any Collection Environment.

αMay
C : P(EnvC)→ Env

(A)
C

αMay
C (envsC) =


h→ c(A) : h ∈ αHId({r : r ∈ dom(envC) ∧ envC ∈ envsC})∧

c(A) = αMay
E


envC(r) : r ∈ dom(envC)∧

αHId({r}) = h∧
envC ∈ envsC





A set of Element Sets is abstracted by a single Abstract Element Set. Remember that the May
Analysis abstracts multiple collections by telling which elements may be in the collection. Every
Element that is in one of the provided Element Sets might be in the collection. Therefore the
Abstract Element Set contains all Tuple Identifiers that abstract a collection Element which is
in any of the provided Element Sets.

αMay
E : P(P(Elem))→ P(TId)

αMay
E (C) =

⋃
R∈C

αHId(R)

4.7.4 Least upper bound

Intuitively the least upper bound of two abstract collections for the May Analysis is an abstract
collection that represents all the elements that may be in any of the concrete collections that
are abstracted by one of the two abstract collections.

Formally we need to define the least upper bound for two Abstract Environments. For this we
again decompose the least upper bound operator into the least upper bound operator of the
Abstract Value Environment tV and the least upper bound operator of the Abstract Collection
Environment.

tMay :
(
Env(A) × Env(A)

)
→ Env(A)

envL tMay envR = (envLC , envLV ) tMay (envRC , envRV )

=
(
envLC tMay

C envRC , envLV tV envRV

)
The least upper bound operator for the Abstract Value Environment tV is provided by the value
domain that is used.

The least upper bound operator for the Abstract Collection Environment however is defined by
our analysis.

Since the Abstract Collection Environment is a function from Heap Identifiers to Abstract Ele-
ment Sets we define the least upper bound operator as the standard least upper bound operator
used for functional domains: Let’s call the two Abstract Collection Environments which are the
operands of the least upper bound operator left and right. The least upper bound operator
builds a new Abstract Collection Environment whose domain is the union of the domains of the
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left and the right Abstract Collection Environment. A Heap Identifier h in the domain of that
new Abstract Collection Environment points to:

• The Abstract Element Set that h points to in the left Abstract Collection Environment, if
h only occurs in the domain of the left Abstract Collection Environment.

• The Abstract Element Set that h points to in the right Abstract Collection Environment,
if the h only occurs in the domain of the right Abstract Collection Environment.

• The union of the Abstract Element Set that h points to in the left Abstract Collection
Environment and the one that h points to in the right Abstract Collection Environment,
if h occurs in the domains of the left and the right Abstract Collection Environments.

tMay
C :

(
Env

(A)
C × Env(A)

C

)
→ Env

(A)
C

envLC tMay
C envRC =


h→ c(A) :

h ∈ dom(envLC) ∪ dom(envRC)∧

c(A) =


envLC(h) if h ∈ dom(envLC)− dom(envRC)

envRC(h) if h ∈ dom(envRC)− dom(envLC)

envLC(h) ∪ envRC(h) otherwise


Notice that if an abstract collection occurs in both Abstract Collection Environments, we take
the union of the two Abstract Element Sets. This is due to the fact that the least upper bound of
two abstract collections needs to represent all the elements that might be in one of the collections
abstracted by both abstract collections that are joined.

4.8 Must Analysis

We can now define the second abstract domain: The Must Analysis. In contrast to the May
Analysis the Must Analysis does not capture which elements might be contained in a collection,
but rather which elements certainly must be in the collection.

However, we will see that the Environments for both Analyses are abstracted in the same way.
Only the abstraction of the Elements Set of a concrete collection is defined differently than in
the May Analysis.

For the abstraction and the concretization functions, it is therefore sufficient to replace the γMay
E

and the αMay
E . We however have to be careful how we define the lattice operators, since they

are different for the Must Analysis.

For the abstraction and the concretization functions, it is therefore sufficient to replace the γMay
E

and the αMay
E . We however have to be careful how we define the lattice operators, since they

are different for the Must Analysis.

Intuitively we can say that if we abstract a set of concrete collections, the resulting abstract
collection should contain only the elements that are contained in all concrete collections. In
other words the collections represented by an abstract collection are all the concrete collections
that contain a superset of the elements in the abstract collection.
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4.8.1 Abstract Domain

As in the May Analysis the elements of the lattice structure for the abstract domain of the
Must Analysis are Abstract Environments (Env(A)). However the lattice operators are defined
differently.

< Env(A),vMust,⊥Must,>Must,tMust,uMust >

Intuitively an abstract collection in the Must Analysis abstracts less concrete collections, the
more elements it contains. Formally we again have to define the partial ordering operator of the
lattice for the complete Abstract Environment.

Partial Ordering

Except for the partial ordering of Abstract Element Sets vMay
E , the partial ordering operator

of Abstract Environments for the Must Analysis is defined analogous to the partial ordering
operator for the May Analysis.

The partial ordering among Abstract Element Sets vMust
E is defined as follows:

eL(A) vMust
E eR(A) ⇔ eR(A) ⊆ eL(A)

Top and Bottom

Similar to the partial ordering operator, the top and bottom elements are defined analogously
to the operators in the May Analysis. Only the top and bottom elements for the Element Sets
are defined differently. The top element is the empty set, whereas the bottom element is the set
containing all possible Tuple Identifiers.

>Must
E = ∅ ⊥Must

E = TId

4.8.2 Concretization function

The concretization function converts an Abstract Environment into a set of Concrete Environ-
ments.

Since the Abstract Environment is the cartesian product of the Abstract Collection Environ-
ment and the Abstract Value Environment we decompose the concretization function into the
concretization functions of these two environments.

γMust : Env(A) → P(Env)

γMust

(
env(A)

)
= γMust

(
env

(A)
C , env

(A)
V

)
= γMust

C

(
env

(A)
C , env

(A)
V

)
× γV

(
env

(A)
V

)
We have already seen that the value domain is exchangeable and that each value domain therefore
has to provide a concretization function γV . It takes an Abstract Value Environment and
concretizes it to a set of Value Environments.

The concretization function for the collection environment γMust
C however is defined by our

analysis.
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The concretization function of the collection environment for the Must Analysis is the same as
the one for the May Analysis.

γMust
C : Env

(A)
C → P(EnvC)

γMust
C

(
env

(A)
C , env

(A)
V

)
=



[r → c : (r, c) ∈ x] :

x ⊆
⋃

h∈dom
(
env

(A)
C

)



(r′, c′) : r′ ∈ γHId(h)∧
c′ ∈ γMust

E (E)∧

E =


t :

t ∈ env(A)
C (h)∧

notBottom
(
t, env

(A)
V

)





However, the Abstract Element Set must be concretized differently in the Must Analysis. Re-
member that in the Must Analysis an abstract collection abstracts all the concrete collections
that at least contain the elements that are in the abstract collection. Also remember that with
the Element Set we represent the information which elements are contained in the collection.
The Element Sets represented by an Abstract Element Set are therefore all the supersets of the
concretized Tuple Identifiers in the Abstract Element Set.

γMust
E : P(TId)→ P(P(Elem))

γMust
E

(
c(A)

)x : x ⊇
⋃

t∈c(A)

γHId(t)


4.8.3 Abstraction function

The abstraction function abstracts a set of Environments to an Abstract Environment.

Since the Environment is the cartesian product of the Collection Environment and the Value
Environment we decompose the abstraction function into the abstraction functions of those two
environments.

αMust : P(Env)→ Env(A)

αMust(env) = αMust(envC , envV ) =
(
αMust
C (envC), αV (envV )

)
The abstraction function for the value environment αV is defined by the value domain. It
abstracts a set of Value Environments to an Abstract Value Environment.

The abstraction function for the collection environment αMust
C however is defined by our analysis.

It abstracts a set of Collection Environments to an Abstract Collection Environment.

The Collection Environments are abstracted similarly as in the May Analysis.

αMust
C : P(EnvC)→ Env

(A)
C

αMust
C (envsC) =


h→ c(A) : h ∈ αHId({r : r ∈ dom(envC) ∧ envC ∈ envsC})

c(A) = αMust
E


envC(r) : r ∈ dom(envC)∧

αHId({r}) = h∧
envC ∈ envsC)





However, the set of Element Sets must be abstracted differently. A set of Element Sets is
abstracted by a single Abstract Element Set. Remember that the Must Analysis abstracts
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multiple collections by telling which elements must be in the collection. If an Element is in all
the Element Sets it must be in the collection and therefore needs to be represented the Abstract
Element Set. Hence, the Abstract Element Set is the intersection over all the Element Sets.

αMust
E : P(P(Elem))→ P(TId)

αMust
E (C) =

⋂
R∈C

αHId(R)

4.8.4 Least upper bound

Intuitively the least upper bound of two abstract collections for the Must Analysis is an abstract
collection that represents all the elements that must be in all the collections represented by the
two abstract collections.

Formally we need to define the least upper bound operator for two Abstract Environments.

We will see later, that in least upper bound of two Abstract Collection Environments some Tuple
Identifiers are replaced by new Tuple Identifiers. These changes also have to be communicated
to the Abstract Value Environment. We do this using Replacements as defined in Section 4.6.
This is why the least upper bound operator for the Abstract Collection Environments lubRep
does not only return the least upper bound of the Abstract Collection Environments but also a
Replacement which then needs to be applied to the Abstract Value Environment.

tMust :
(
Env(A) × Env(A)

)
→ Env(A)

envL tMust envR =
(envLC , envLV ) tMust (envRC , envRV ) = (envC , envV ) :

(envC , rep) = lubRep(envLC , envRC)∧
envV = replaceV (envLV tV envRV , rep)

The least upper bound operator for the Abstract Value Environments tV is provided by the value
domain but the operator lubRep which creates the least upper bound for the Abstract Collection
Environment as well as the necessary Replacements needs to be defined by our analysis.

lubRep :
(
Env

(A)
C × Env(A)

C

)
→
(
Env

(A)
C ×Replacement

)
lubRep(envLC , envRC) =

(
envLC tMust

C envRC , getReplacement(envLC , envRC)
)

Similarly as for the May Analysis we are using the standard least upper bound operator for
functional domains to build the least upper bound for the two Abstract Collection Environments.

However, if a Heap Identifier occurs in both domains of the Abstract Collection Environments
(which means that the abstract collection is present in both environments) we don’t take the
union of the Element-Sets but rather the intersection.

This is due to the fact that the least upper bound of two abstract collections in the Must-Analysis
needs to represent only the elements that are contained in all the collections abstracted by both
abstract collections that are joined.

tMust
C :

(
Env

(A)
C × Env(A)

C

)
→ Env

(A)
C
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envLC tMust
C envRC =


h→ c(A) : h ∈ dom(envLC) ∪ dom(envRC)∧

c(A) =


envLC(h) if h ∈ dom(envLC)− dom(envRC)

envRC(h) if h ∈ dom(envRC)− dom(envLC)

envLC(h) ∩ envRC(h) otherwise


Since we take the intersection of two Abstract Element Sets all the Tuple Identifiers that are in
only one of the two Abstract Element Sets are no longer present in the new Abstract Collection
Environment. Hence we need to return a Replacement that tells the value domain to remove
the key and value fields of those Tuple Identifiers.

A Replacement that represents the deletion of a set of identifiers simply has one entry where this
set of identifiers points to an empty set. We call the set of identifiers that need to be removed
S. Than the Replacement contains one entry where S points to the empty set.

getReplacements :
(
Env

(A)
C × Env(A)

C

)
→ Replacement

getReplacements(envLC , envRC) = [S → ∅]

Now let’s see how S is constructed. First notice that we are building one set of identifiers for
the whole Abstract Collection Environment. Tuple Identifiers only vanish from the Abstract
Collection Environment if an abstract collection is present in both Abstract Collection Environ-
ments (because in the least upper bound operator we only perform an intersection in this case).
This means we only need to consider Heap Identifiers that are in the domain of both Abstract
Collection Environments (dom(envLC) ∩ dom(envRC)).

Each such Heap Identifier h points to an Abstract Element Set in the left and to an Abstract
Element Set in the right Abstract Collection Environment. Since in the least upper bound we
only keep Tuple Identifiers that are in the intersection of those two Abstract Element Sets the
set S needs to contain all the Tuple Identifiers that are not in the intersection ((envLC(h) ∪
envRC(h))− (envLC(h) ∩ envRC(h))).

Because the Abstract Value Environment tracks only the key and the value field and not the
Tuple Identifier itself, S does not contain the Tuple Identifier itself but rather the key and value
identifiers of the removed Tuple Identifiers.

S =


(t, ”key”), (t, ”value”) :
t ∈ (envLC(h) ∪ envRC(h))− (envLC(h) ∩ envRC(h))∧
h ∈ dom(envLC) ∩ dom(envRC)


4.8.5 Extended least upper bound

With the described least upper bound operation we loose precision because we use the intersec-
tion of two Abstract Element Sets.

To illustrate this we show an example. Listing 4.2 shows a simple TouchDevelop script with a
conditional. In both branches of the conditional an element is added to a String Map. As one
can see, the key of the added element in both cases is Zurich.
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Listing 4.2: Adding an element in all branches at the same key

1 action main ( ) {
2 $ u n i v e r s i t i e s := c o l l e c t i o n s −>c r ea t e s t r i ng map ( ) ;
3
4 i f (web−>i s c o n n e c t e d ( ) ) then{
5 $ u n i v e r s i t i e s−>s e t a t ( ” Zurich ” , ”ETHZ” ) ;
6 } else {
7 $ u n i v e r s i t i e s−>s e t a t ( ” Zurich ” , ”UZH” ) ;
8 }
9

10 $ u n i v e r s i t i e s−>at ( ” Zurich ” ) ;
11 }

We are interested in the collection access $universities → at(”Zurich”) at line 10. Obviously
this collection access always returns a valid String. We can however only prove this, if we can
track that the collection must contain an element at the key Zurich. The information whether
an element is contained in the collection is represented by the Abstract Element Set.

At the end of the then branch the Abstract Element Set of the collection would contain one Tuple
Identifier t1 that represents the collection element added at line 5. The Abstract Element Set
at the end of the else branch would contain one Tuple Identifier t2 that represents the collection
element added at line 7. However t1 and t2 are two different Tuple Identifiers. If the least upper
bound operation simply takes the intersection of the two Abstract Element Sets we would end
up with an empty Abstract Element Set and would therefore not be able to prove that there
must be an element in the collection.

To get a more precise least upper bound, we need a more involved operation to join two Abstract
Element Sets. Instead of taking the intersection we compare all Tuple Identifiers in the left
Abstract Element Set with all Tuple Identifiers in the right Abstract Element Set. If we find two
Tuple Identifiers ti and tj that have the same value for either the key or the value field we have
to represent this in the new Abstract Element Set. We combine these two Tuple Identifiers to a
new Tuple Identifier t. In the Value Environment we assign the least upper bound of the key
fields of ti and tj to the key field of the new Tuple Identifier t. Analogously we do the same for
the value field of t.

In the above example this operation would result in an Abstract Element Set with one Tuple
Identifier whose key is Zurich and whose value is the least upper bound of ETHZ and UZH.
Because of this, we are able to say that there must be an element with key Zurich in the abstract
collection.

We are now going to formally define this extended least upper bound operator.

Because we need the Abstract Value Environment to join two Abstract Element Sets, we must
pass it to the least upper bound operator of the Abstract Collection Environment lubRep. Similar
to the standard least upper bound operator, the extended least upper bound operator of the
Abstract Collection Environments replaces Tuple Identifiers with other Tuple Identifiers and
therefore returns a Replacement which needs to be applied to the Abstract Value Environment.
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tMust :
(
Env(A) × Env(A)

)
→ Env(A)

(envL) tMust (envR) =

(envLC , envLV ) tMust (envRC , envRV ) =
(
envC , env

(1)
V

)
:

envV = envLV tV envRV ∧
(envC , rep) = lubRep(envLC , envRC , envV )∧
env

(1)
V = replaceV (envV , rep)

We define the least upper bound operator tMust
C and the creation of the Replacement separately.

lubRep :
(
Env

(A)
C × Env(A)

C × Env(A)
V

)
→
(
Env

(A)
C ×Replacement

)
lubRep(envLC , envRC , envV ) =

(
tMust
C (envLC , envRC , envV ), getReplacement(envLC , envRC , envV )

)
To take the least upper bound of two Abstract Collection Environments we use the same function
as for the standard least upper bound operator. However when an abstract collection is present
in both Abstract Collection Environments we don’t take the intersection of the two Abstract
Element Sets but rather use the extended join operation tMust

E .

tMust
C :

(
Env

(A)
C × Env(A)

C × EnvV
)
→
(
Env

(A)
C ×Replacement

)
tMust
C (envLC , envRC , envV ) =

h→ c(A) : h ∈ dom(envLC) ∪ dom(envRC)∧

c(A) =


envLC(h) if h ∈ dom(envLC)− dom(envRC)

envRC(h) if h ∈ dom(envRC)− dom(envLC)

tMust
E (envLC(h), envRC(h), envV ) otherwise


The extended least upper bound operation tMust

E builds a new Abstract Element Set from the
two provided Abstract Element Sets in the following way.

• If a Tuple Identifier is in both Abstract Element Sets this Tuple Identifier is added to the
new Abstract Element Set.

• If a Tuple Identifier t1 in one Abstract Element Set is the proper super set of a Tuple
Identifier t2 in the other Abstract Element Set, then t1 is added to the new Abstract
Element Set. Remember that Tuple Identifiers are sets of Heap Identifiers which allows
us to use the super set relation here.

• For all other Tuple Identifiers we are checking whether there exist two Tuple Identifiers t1
and t2 such that t1 is in the left Abstract Element Set, t2 is in the right Abstract Element
Set and either the key or the value field of the two Tuple Identifiers must be equal in the
Abstract Value Environment. (This is formally described by the considerT function). For
all pairs of Tuple Identifiers that match this criteria, we create a new Tuple Identifier that
is the union of t1 and t2 (Remember that Tuple Identifiers are sets of Heap Identifiers).

• All other Tuple Identifiers are not part of the new Abstract Element Set.



4.8. MUST ANALYSIS 37

tMust
E :

(
P(TId)× P(TId)× Env(A)

V

)
→ P(TId)

tMust
E

(
cL(A), cR(A), envV

)
=



t : tL ∈ cL(A) ∧ tR ∈ cR(A)∧
(tL = tR ∧ t = tL)∨
(tL ⊂ tR ∧ t = tR)∨
(tR ⊂ tL ∧ t = tL)∨(
considerT (tR, tL, envV )∧
t = tL ∪ tR

)



considerT :

(
TId× TId× Env(A)

V

)
→ {true, false}

considerT (t1, t2, envV ) = equals
(A)
V ((t1, ”key”), (t2, ”key”), envV ) = {true}∨

equals
(A)
V ((t1, ”value”), (t2, ”value”), envV ) = {true}

Beside the least upper bound we also have to create a Replacement that tells the Abstract Value
Environment which Tuple Identifiers are no longer present in the new Abstract Element Set.
We build one Replacement for the complete Abstract Collection Environment.

In the Abstract Value Environment we track the key and the value fields of a Tuple Identifier.
Therefore a Replacement for the keys and a Replacement for the value fields are created and then
joined (⊕ operator). Notice that we use the getReplacement′ function to create the Replacement
for the key fields as well as for the value fields. We pass the field name (either key or value) as
a parameter to the getReplacement′ function.

getReplacement :
(
Env

(A)
C × Env(A)

C × Env(A)
V

)
→ Replacement

getReplacement(envLC , envRC , envV ) = getReplacement′(envLC , envRC , envV , ”key”)
⊕getReplacement′(envLC , envRC , envV , ”value”)

We have to consider all the Abstract Element Sets of the collections that exist in both Abstract
Collection Environments, since only for those the least upper bound operation replaces Tuple
Identifiers.

The rules to build the Replacement based on two Abstract Element Sets are similar to the ones
used to build the least upper bound:

• If a Tuple Identifier is in both Abstract Element Sets, no Replacement is needed.

• If one Tuple Identifier t1 is a proper subset of another Tuple Identifier t2, an entry is
added to the Replacement that replaces t1 with t2.

• If a new Tuple Identifier is created out of two Tuple Identifiers in the least upper bound
operation the old Tuple Identifiers must be replaced by the new one.

getReplacement′ :
(
Env

(A)
C × Env(A)

C × Env(A)
V × {”key”, ”value”}

)
→ Replacement

getReplacement′(envLC , envRC , envV , n) =



F → T : tL ∈ cL ∧ tR ∈ cR∧
F = {(tL, n), (tR, n)}∧

tL ⊂ tR ∧ T = {(tR, n)})∨
(tR ⊂ tL ∧ T = {(tL, n)})∨(
consider(tR, tL, envV )∧
T = {(tL ∪ tR, n)}

)



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Chapter 5
Semantics

In this Chapter we formally define the concrete and the abstract semantics of the most important
collection operations in the TouchDevelop standard library. We also argue that the abstract
semantics are sound by showing that they over-approximate the concrete semantics.

5.1 Concrete and Abstract Semantics

The concrete semantics describe how an operation in TouchDevelop changes the state of the
concrete domain.

Since in static program analysis we consider all possible program executions, the concrete se-
mantics operate on a set of states. In our analysis the state is an Environment as defined in
Chapters 4 and 3. Formally, a concrete semantic operation op(S) takes a set of Environments as
an input and transfers them into a new set of Environments.

op(S) : P(Env)→ P(Env)

We will define each concrete semantic operation by describing how it changes a single Environ-
ment. The concrete semantic over a set of Environments is then the pointwise application of
the operation on that set. Formally, if we define a semantic operation op, then the concrete
semantic operation over a set of Environments is

op(S)(envs) = {op(env) : env ∈ envs}

The abstract semantics is the counterpart of the concrete semantics in the abstract domain.
The state in the abstract domain is defined by the Abstract Environment. An abstract semantic
operation op(A) transfers an Abstract Environment into another Abstract Environment.

op(A) : (Env(A))→ (Env(A))

5.1.1 Soundness Proofs for Semantics

To prove that an abstract semantic operation is sound, we need to show that it over-approximates
the corresponding concrete semantic operation.

39
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The general idea of the soundness proofs is as follows: Each abstract state abstracts multiple
concrete states. If we now apply the abstract semantics to the abstract state and the concrete
semantics to each of the concrete states, the new abstract state must abstract at least all the
new concrete states.

Formally, the concretization of an abstract operation op(A) on an Abstract Environment env(A)

must be a superset of the concrete operation op applied to all concrete Environments abstracted
by env(A).

γ
(
op(A)

(
env(A)

))
⊇ op(S)

(
γ
(
env(A)

))
Or, if we apply the definition of op(S):

γ
(
op(A)

(
env(A)

))
⊇
{
op(env) : env ∈ γ

(
env(A)

)}
This form will be used for most soundness proofs.

5.2 Basic Operations

To keep the formalization modular and easier to read we will first describe a few basic operations
that are then used to define the semantics for TouchDevelop collection operations.

For each basic operation we will define the concrete and the abstract semantics and prove its
soundness, by showing that the abstract operation over-approximates the concrete one. The
soundness has to be proven for the May and the Must Analysis separately since those are two
different abstractions.

We can later use these results to prove the soundness of the abstract semantics.

5.2.1 Isolation Lemma

First we will define a lemma that will be used in a lot of proofs to isolate the changes, applied
to a single concrete collection, from the rest of a collection environment.

When we prove that the abstract semantics is sound, the concrete semantics is applied to every
concrete Collection Environment that is abstracted by the same Abstract Collection Environ-
ment. To retrieve all the concrete collection environments that are abstracted by an Abstract

Collection Environment env
(A)
C we use the concretization function γC

(
env

(A)
C

)
. On each con-

crete collection environment that we retrieve from γC

(
env

(A)
C

)
we apply the concrete semantics.

Usually the concrete semantics only change a single collection c in the Collection Environment.

With this lemma we isolate the parts of γC

(
env

(A)
C

)
that create the entries for the collection c in

the concrete collection environments. We can then use this to represent the concrete semantics
in terms of the Abstract Collection Environment.
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Lemma 1. For a any Abstract Environment
(
env

(A)
C , env

(A)
V

)
and for any abstract col-

lection c(A) ∈ dom
(
env

(A)
C

)
, and for any concrete collection c ∈ γHId

(
c(A)

)
, the following

equation holds for both γMust
C and γMay

C

(
γC ∈

{
γMay
C , γ

(Must)
C

})
:

γC

(
env

(A)
C , env

(A)
V

)
=

[a→ b : (a, b) ∈ x] :

x ⊆




⋃

i∈dom
(
env

(A)
C

)
−{c(A)}



(r′, c′) : r′ ∈ γHId(i)∧
c′ ∈ γE(E)∧

E =


t′ :

t′ ∈ env(A)
C (i)∧

notBottom
(
t′, env

(A)
V

)






∪


(r′, c′) : r′ ∈ γHId

(
c(A)

)
− {c}∧

c′ ∈ γE(E)∧

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }


∪


(c, c′) : c′ ∈ γE (E)

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }





Proof. The definitions for γMay

C and γMust
C are identical except that one uses the function γMay

E

and the other uses the function γMust
E to concretize an Abstract Element Set. We will therefore

show the lemma for all γE ∈
{
γMay
E , γMust

E

}
and hence prove, that the lemma holds for γMay

C

and for γMust
C .

We can directly prove this by using the definition of γC and the restrictions defined in the lemma

that c ∈ γHId

(
c(A)

)
and c(A) ∈ dom

(
env

(A)
C

)
.

γC

(
env

(A)
C , env

(A)
V

)

=



[a→ b : (a, b) ∈ x] :

x ⊆
⋃

i∈dom
(
env

(A)
C

)


(r′, c′) : r′ ∈ γHId(i)∧
c′ ∈ γE(E)∧

E =

{
t′ : t′ ∈ env(A)

C (i)∧
notBottom

(
t′, env

(A)
V

) }



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=



[a→ b : (a, b) ∈ x] :

x ⊆




⋃

i∈dom
(
env

(A)
C

)
−{c(A)}



(r′, c′) : r′ ∈ γHId(i)∧
c′ ∈ γE(E)∧

E =


t′ :

t′ ∈ env(A)
C (i)∧

notBottom
(
t′, env

(A)
V

)






∪


(r′, c′) : r′ ∈ γHId

(
c(A)

)
∧

c′ ∈ γE(E)∧

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }






=



[a→ b : (a, b) ∈ x] :

x ⊆




⋃

i∈dom
(
env

(A)
C

)
−{c(A)}



(r′, c′) : r′ ∈ γHId(i)∧
c′ ∈ γE(E)∧

E =


t′ :

t′ ∈ env(A)
C (i)∧

notBottom
(
t′, env

(A)
V

)






∪


(r′, c′) : r′ ∈ γHId

(
c(A)

)
− {c}∧

c′ ∈ γE(E)∧

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }


∪


(c, c′) : c′ ∈ γE (E)

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }






5.2.2 Adding an Element to a Collection

This operation defines how an element is added to a collection in a collection environment.

This means that in the concrete domain we are adding an Element e to the Element Set of a
collection c in a Collection Environment envC .

addC : (Ref ×Elem)→ (EnvC → EnvC)
addC (c, e)(envC) = envC [c→ envC(c) ∪ {e}]

In the abstract semantics a Tuple Identifier t is added to the Abstract Element Set of an abstract

collection c(A) in an Abstract Collection Environment env
(A)
C .

add
(A)
C : (HId×TId)→

(
Env

(A)
C → Env

(A)
C

)
add

(A)
C (c, t)(envC) = envC [c→ envC(c) ∪ {t}]

For the May Analysis we can directly use add
(A)
C :

add
(May)
C : (HId×TId)→

(
Env

(A)
C → Env

(A)
C

)
add

(May)
C (c, t)(envC) = add

(A)
C (c, t, envC)

For the Must Analysis this would not be sound if the affected abstract collection is a summary
collection. To illustrate this, consider an abstract summary collection c(A) that abstracts two
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distinct concrete collections c1 and c2. Now we add a new element e to the second concrete
collection c2. This operation is abstracted by the abstract add operation. Remember that in
the Must Analysis an abstract collection abstracts all the concrete collections that contain at
least the elements that are in the abstract collection. It would not be sound to add e to the
abstract collection c(A), since c1 would not contain e after the add operation. Similarly it would
be unsound to add a Tuple Identifier that abstracts multiple Elements to an abstract collection
in the Must Analysis.

For this reason we have to refine the abstract semantics of the add operation for the Must
Analysis. If the provided abstract collection c is not a summary collection (|γHId(c) = 1|) and
the Tuple Identifier t that shall be added is not a summary identifier (|γTId(c) = 1|), we can
safely add the element to the collection. But otherwise we can not add the element to the
collection and therefore do not change the Abstract Collection Environment. Notice that we
use the function isSummary that we defined in Section 4.5 to compute if a given identifier is a
summary node.

add
(Must)
C : (HId×TId)→

(
Env

(A)
C → Env

(A)
C

)
add

(Must)
C (c, t)(envC) =

{
add

(A)
C (c, t, envC) if ¬isSummary(c) ∧ ¬isSummary(t)

envC otherwise

Soundness - May Analysis

We first prove the soundness of add
(May)
C . To do this, we need to show that adding an element

to an abstract collection over-approximates adding an element to a concrete collection.

However this is not enough to prove the soundness of add
(May)
C . Imagine that we have two

concrete collections c1 and c2 that are abstracted by an abstract collection c(A) (which there-
fore is a summary collection). Assume now, that an element is added to c1. This operation
is abstracted by adding an element to the abstract collection c(A). After the add operation
collection c2 remains unchanged but is still abstracted by c(A). We therefore have to show that
adding an element to the abstract collection also over-approximates leaving a concrete collection
unchanged.

We will show these two cases with the Lemmas 2 and 3. We can then use these Lemmas to show
that add

(May)
C is sound for complete collection environments.

Lemma 2. Adding a Tuple Identifier t to the Abstract Element Set E(A) of an abstract
collection over-approximates adding an Element e ∈ γTId(t) to the Element Set E of a
concrete collection. This holds for all Abstract Element Sets E(A) ∈ P(TId) and for all
Tuple Identifiers t ∈ TId.

{
E ∪ {e} : E ∈ γMay

E

(
E(A)

)}
⊆ γMay

E

(
E(A) ∪ {t}

)
Proof. We show this directly and start with

{
E ∪ {e} : E ∈ γMay

E (E(A))
}

.

We first apply the definition of γMay
E (1). Then we can use that {X ∪R : X ⊆ T} ⊆ {X : X ⊆

T ∪R} holds for all sets T and R, which we have proven in Appendix B (3). For transformation
(4) we use that e ∈ γTId(t) and therefore {e} ⊆ γTId(t).
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{
E ∪ {e} : E ∈ γMay

E

(
E(A)

)} (1)
=
{
E ∪ {e} : E ∈

{
x : x ⊆

⋃
i∈E(A) γTId(i)

}}
(2)
=
{
E ∪ {e} : E ⊆

⋃
i∈E(A) γTId(i)

}
(3)

⊆
{
E : E ⊆

((⋃
i∈E(A) γTId(i)

)
∪ {e}

)}
(4)

⊆
{
E : E ⊆

((⋃
i∈E(A) γTId(i)

)
∪ γTId(t)

)}
(5)
=
{
E : E ⊆

⋃
i∈E(A)∪{t} γTId(i)

}
(6)
= γMay

E

(
E(A) ∪ {t}

)

Lemma 3. Adding a Tuple Identifier t to the Abstract Element Set E(A) of an abstract
collection over-approximates not changing the Element Set of a concrete collection. This
holds for all Abstract Element Sets E(A) ∈ P(TId) and for all Tuple Identifiers t ∈ TId.

{
E : E ∈ γMay

E

(
E(A)

)}
⊆ γMay

E

(
E(A) ∪ {t}

)
Proof. This proof is straight-forward and similar to the proof of Lemma 2.

{
E : E ∈ γMay

E

(
E(A)

)}
=
{
E : E ⊆

⋃
i∈E(A) γTId(i)

}
⊆
{
E : E ⊆

((⋃
i∈E(A) γTId(i)

)
∪ γTId(t)

)}
=
{
E : E ⊆

⋃
i∈E(A)∪{t} γTId(i)

}
= γMay

E

(
E(A) ∪ {t}

)

With these two Lemmas we are now able to prove that add
(May)
C is sound.

Theorem 1. Adding a Tuple Identifier t to an abstract collection c(A) in an Abstract

Environment
(
env

(A)
C , env

(A)
V

)
over-approximates adding any Element e ∈ γTId(t) to any

collection in c ∈ γHId

(
c(A)

)
in all Collection Environments (envC ∈ γMay

C

(
env

(A)
C , env

(A)
V

)
.

This holds for all Tuple Identifiers t ∈ TId, for all abstract collections c(A) ∈ dom
(
env

(A)
C

)
and for all abstract environments (env

(A)
C , env

(A)
V ) ∈ Env(A).

{
addC(c, e, envC) : envC ∈ γMay

C

(
env

(A)
C , env

(A)
V

)}
⊆

γMay
C

(
add

(A)
C

(
c(A), t, env

(A)
C

)
, env

(A)
V

)

Proof. We are going to show that if z ∈
{
addC(c, e, envC) : envc ∈ γMay

C

(
env

(A)
C , env

(A)
V

)}
it

follows that z ∈ γMay
C

(
add

(May)
C

(
c(A), t, env

(A)
C

)
, env

(A)
V

)
which, by the definition of ⊆, proves

the Theorem.

z ∈
{
addC(c, e, envC) : envC ∈ γMay

C

(
env

(A)
C , env

(A)
V

)}
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First we apply the definition of addC .

z ∈
{
envC [c→ envC(c) ∪ {e}] : envC ∈ γMay

C

(
env

(A)
C , env

(A)
V

)}
We can see that in each Collection Environment in γMay

C

(
env

(A)
C , env

(A)
V

)
only the entry for the

concrete collection c is changed. Therefore we use Lemma 1 to isolate the part of γ
(May)
C that

generates the entries for the concrete collection c in the Collection Environment.

γMay
C

(
env

(A)
C , env

(A)
V

)
=

[a→ b : (a, b) ∈ x] :

x ⊆



⋃i∈dom
(
env

(A)
C

)
−{c(A)}


(r′, c′) : r′ ∈ γHId(i)∧

c′ ∈ γMay
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C (i)∧
notBottom

(
t′, env

(A)
V

) }



∪


(r′, c′) : r′ ∈ γHId

(
c(A)

)
− {c}∧

c′ ∈ γMay
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }


∪


(c, c′) : c′ ∈ γMay

E (E)

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }





The part that generates the entries for the concrete collection c in the collection environments
is: 

(c, c′) : c′ ∈ γMay
E (E)

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }


Since the changes of the addC operation only affect the entries of collection c in the Collection
Environments and because all entries of collection c in the Collection Environments are generated
from the above set, we can directly apply this changes to (c, c′). From this follows:

z ∈



[a→ b : (a, b) ∈ x] :

x ⊆



⋃i∈dom
(
env

(A)
C

)
−{c(A)}


(r′, c′) : r′ ∈ γHId(i)∧

c′ ∈ γMay
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C (i)∧
notBottom

(
t′, env

(A)
V

) }



∪


(r′, c′) : r′ ∈ γHId

(
c(A)

)
− {c}∧

c′ ∈ γMay
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }


∪


(c, c′ ∪ {e}) : c′ ∈ γMay

E (E)

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }





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From Lemmas 2 and 3 we know that γMay
E

(
env

(A)
C

(
c(A)

)
∪ {t}

)
is a superset of{

c′ : c′ ∈ γMay
E

(
env

(A)
C

(
c(A)

))}
and of

{
c′ ∪ {e} : c′ ∈ γMay

E

(
env

(A)
C

(
c(A)

))}
.

Using these two results we can conclude:

z ∈



[a→ b : (a, b) ∈ x] :

x ⊆



⋃i∈dom
(
env

(A)
C

)
−{c(A)}


(r′, c′) : r′ ∈ γHId(i)∧

c′ ∈ γMay
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C (i)∧
notBottom

(
t′, env

(A)
V

) }



∪


(r′, c′) : r′ ∈ γHId

(
c(A)

)
− {c}∧

c′ ∈ γMay
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∪ {t}∧

notBottom
(
t′, env

(A)
V

) }


∪


(c, c′) : c′ ∈ γMay

E (E)

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∪ {t}∧

notBottom
(
t′, env

(A)
V

) } 




Finally, we can simplify this expression.

z ∈



[a→ b : (a, b) ∈ x] :

x ⊆
⋃

i∈dom
(
env

(A)
C

)



(r′, c′) : r′ ∈ γHId(i)∧
c′ ∈ γMay

E (E)∧

E =


t′ :

t′ ∈ env(A)
C

[
c(A) → env

(A)
C

(
c(A)

)
∪ {t}

]
(i)∧

notBottom
(
t′, env

(A)
V

)





By applying the definition of γMay

C we get

z ∈ γMay
C

(
env

(A)
C

[
c(A) → env

(A)
C

(
c(A)

)
∪ {t}

]
, env

(A)
V

)
But this is the same as z ∈ γMay

C

(
add

(May)
C

(
c(A), t, env

(A)
C

)
, env

(A)
V

)
, which is what we wanted

to prove.

Soundness - Must Analysis

The proof for the Must Analysis is very similar to the proof for the May Analysis.

Since the abstract add
(Must)
C operation is defined differently depending on whether the provided

collection and Tuple Identifier are summary identifiers or not, we will distinguish these two cases
in the proof.

For both cases we will show that add
(Must)
C is sound. This will then allow us to show that

add
(Must)
C is sound for all Tuple Identifiers and for all abstract collections.
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Case 1: Non Summary collections
In this case we assume that the provided abstract collection c(A) is not a summary collec-
tion (|γHId

(
c(A)

)
| = 1) and that the provided Tuple Identifier t is not a summary identifier

(|γTId(t)| = 1).

Similar to the proof of the May Analysis we will first show the soundness for a single collection
and then use this to show that the operation is sound for complete collection environments.

Lemma 4. Adding a Tuple Identifier t to the Abstract Element Set E(A) of an abstract
collection over-approximates adding an Element e ∈ γTId(t) to the Element Set of a concrete
collection. This holds for all Abstract Element Sets E(A) ∈ P(TId) and for all non-
summary Tuple Identifiers t ∈ TId.

{
E ∪ {e} : E ∈ γMust

E

(
E(A)

)}
⊆ γMust

E

(
E(A) ∪ {t}

)

Proof. We show this directly and we start with
{
E ∪ {e} : E ∈ γMust

E (E(A))
}

.

First we apply the definition of γMust
E and then reformulate the resulting expression.

We first apply the definition of γMust
E (1). Then we can use the fact that {X ∪ R : X ⊇ T} ⊆

{X : X ⊇ T ∪ R} holds for all sets T and R, which we have proven in Appendix B (3). For
transformation (4) we use that in this case {e} = γTId(t), since e ∈ γTId(t) and |γTId(t)| = 1.

{
E ∪ {e} : E ∈ γMust

E

(
E(A)

)} (1)
=
{
E ∪ {e} : E ∈

{
x : x ⊇

⋃
i∈E(A) γTId(i)

}}
(2)
=
{
E ∪ {e} : E ⊇

⋃
i∈E(A) γTId(i)

}
(3)

⊆
{
E : E ⊇

((⋃
i∈E(A) γTId(i)

)
∪ {e}

)}
(4)
=
{
E : E ⊇

((⋃
i∈E(A) γTId(i)

)
∪ γTId(t)

)}
(5)
=
{
E : E ⊇

⋃
i∈E(A)∪{t} γTId(i)

}
(6)
= γMust

E

(
E(A) ∪ {t}

)

With this Lemma we are now able to show that add
(Must)
C is sound, if a non-summary Tuple

Identifier is added to a non-summary collection.

Lemma 5. Adding a non-summary Tuple Identifier t to an abstract non-summary

collection c(A) in an Abstract Environment
(
env

(A)
C , env

(A)
V

)
over-approximates adding any

Element e ∈ γTId(t) to any collection c ∈ γHId

(
c(A)

)
in all Collection Environments envC ∈

γMust
C

(
env

(A)
C , env

(A)
V

)
. This holds for all non-summary Tuple Identifiers t ∈ TId, for all

abstract non-summary collections c(A) ∈ dom
(
env

(A)
C

)
and for all abstract environments(

env
(A)
C , env

(A)
V

)
∈ Env(A).

{
addC(c, e, envC) : envC ∈ γMust

C

(
env

(A)
C , env

(A)
V

)}
⊆

γMust
C

(
add

(Must)
C

(
c(A), t, env

(A)
C

)
, env

(A)
V

)
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Proof. We are going to show that if z ∈
{
addC(c, e, envC) : envC ∈ γMust

C

(
env

(A)
C , env

(A)
V

)}
it

follows that z ∈ γMust
C

(
add

(Must)
C

(
c(A), t, env

(A)
C

)
, env

(A)
V

)
which, by the definition of ⊆, proves

the Lemma.

z ∈
{
addC(c, e, envC) : envC ∈ γMust

C

(
env

(A)
C , env

(A)
V

)}
First we apply the definition of addC .

z ∈
{
envC [c→ envC(c) ∪ {e}] : envC ∈ γMust

C

(
env

(A)
C , env

(A)
V

)}

We again use Lemma 1 to isolate the part of γ
(Must)
C that generates the entries for the con-

crete collection c in the Collection Environments. In this case we furthermore know that
c(A) is not a summary collection and therefore the only element in γHId

(
c(A)

)
is the concrete

collection c. From this follows that γHId

(
c(A)

)
− {c} = ∅ which allows us to further adapt

γMust
C

(
env

(A)
C , env

(A)
V

)
.

γMust
C

(
env

(A)
C , env

(A)
V

)
=

[a→ b : (a, b) ∈ x] :

x ⊆




⋃

i∈dom
(
env

(A)
C

)
−{c(A)}



(r′, c′) : r′ ∈ γHId(i)∧
c′ ∈ γMust

E (E)∧

E =


t′ :

t′ ∈ env(A)
C (i)∧

notBottom
(
t′, env

(A)
V

)






∪


(r′, c′) : r′ ∈ γHId

(
c(A)

)
− {c}∧

c′ ∈ γMust
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }


∪


(c, c′) : c′ ∈ γMust

E (E)

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }






=



[a→ b : (a, b) ∈ x] :

x ⊆




⋃

i∈dom
(
env

(A)
C

)
−{c(A)}



(r′, c′) : r′ ∈ γHId(i)∧
c′ ∈ γMust

E (E)∧

E =


t′ :

t′ ∈ env(A)
C (i)∧

notBottom
(
t′, env

(A)
V

)





∪


(c, c′) : c′ ∈ γMust

E (E)

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }





We can now replace γC

(
env

(A)
C , env

(A)
V

)
with this expression and again apply the change to the

Element Set of c directly to (c, c′).
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z ∈



[a→ b : (a, b) ∈ x] :

x ⊆




⋃

i∈dom
(
env

(A)
C

)
−{c(A)}



(r′, c′) : r′ ∈ γHId(i)∧
c′ ∈ γMust

E (E)∧

E =


t′ :

t′ ∈ env(A)
C (i)∧

notBottom
(
t′, env

(A)
V

)





∪


(c, c′ ∪ {e}) : c′ ∈ γMust

E (E)

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }





From Lemma 4 we know that

{
c′ ∪ {e} : c′ ∈ γMust

E

(
env

(A)
C

(
c(A)

))}
⊆ γMust

E

(
env

(A)
c

(
c(A)

)
∪ {t}

)
.

Therefore we can conclude

z ∈



[a→ b : (a, b) ∈ x] :

x ⊆




⋃

i∈dom
(
env

(A)
C

)
−{c(A)}



(r′, c′) : r′ ∈ γHId(i)∧
c′ ∈ γMust

E (E)∧

E =


t′ :

t′ ∈ env(A)
C (i)∧

notBottom
(
t′, env

(A)
V

)





∪


(c, c′) : c′ ∈ γMust

E (E)

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∪ {t}∧

notBottom
(
t′, env

(A)
V

) } 




Similar to the proof of Theorem 1 we can simplify this to

z ∈ γMust
C

(
env

(A)
C

[
c(A) → env

(A)
C

(
c(A)

)
∪ {t}

]
, env

(A)
V

)
But since in this case we assumed that c(A) and t are not summary identifiers, this is equal to

z ∈ γMust
C

(
add

(Must)
C

(
c(A), t, env

(A)
C

)
, env

(A)
V

)
which is exactly what we wanted to prove.

Case 2: Summary collections
In the second case we assume that the provided abstract collection c(A) is a summary collec-
tion (|γHId

(
c(A)

)
| > 1) and / or that the provided Tuple Identifier t is a summary identifier

(|γTId(t)| > 1).

In this case the abstract semantic of the add
(Must)
C operation returns the unchanged Collection

Environment. Hence, we need to show that this over-approximates the concrete semantics of
addC which adds an Element to the collection.

We are going to show first in Lemma 6, that this is sound for a single collection and then in
Lemma 7, that it is sound for a complete collection environment.



50 CHAPTER 5. SEMANTICS

Lemma 6. Not changing the Abstract Element Set E(A) of an abstract collection over-
approximates adding an Element e to the Element Set of a concrete collection. This holds
for all Elements e ∈ Elem and for all Abstract Element Sets E(A) ∈ P(TId).

{
E ∪ {e} : E ∈ γMust

E

(
E(A)

)}
⊆ γMust

E

(
E(A)

)
Proof. We show this directly and we start with

{
E ∪ {e} : E ∈ γMust

E

(
E(A)

)}
.

We first apply the definition of γMust
E (1). For transformation (3) we use that {X ∪ R : X ⊇

T} ⊆ {X : X ⊇ T ∪R} holds for all sets T and R, which we have proven in Appendix B.

{
E ∪ {e} : E ∈ γMust

E

(
E(A)

)} (1)
=
{
E ∪ {e} : E ∈

{
x : x ⊇

⋃
i∈E(A) γTId(i)

}}
(2)
=
{
E ∪ {e} : E ⊇

⋃
i∈E(A) γTId(i)

}
(3)

⊆
{
E : E ⊇

((⋃
i∈E(A) γTId(i)

)
∪ {e}

)}
(4)

⊆
{
E : E ⊇

⋃
i∈E(A) γTId(i)

}
(5)
= γMust

E

(
E(A)

)

With this Lemma we can now prove that add
(Must)
C is sound for collection environments, if the

added Tuple Identifier and/or the abstract collection is a summary identifier.

Lemma 7. Applying add
(Must)
C to an Abstract Environment

(
env

(A)
C , env

(A)
V

)
with an ab-

stract collection c(A) and a Tuple Identifier t over-approximates adding an Element e ∈
γTId(t) to any concrete collection c ∈ γHId

(
c(A)

)
in all Collection Environments envC ∈

γMust
C

(
env

(A)
C , env

(A)
V

)
if c(A) and/or t is a summary identifier. This holds for all Tuple

Identifiers t ∈ TId, for all abstract collections c(A) ∈ dom
(
env

(A)
C

)
and for all Abstract

Environments
(
env

(A)
C , env

(A)
V

)
∈ Env(A).

{
addC(c, e, envC) : envC ∈ γMust

C

(
env

(A)
C , env

(A)
V

)}
⊆

γMust
C

(
add

(Must)
C

(
c(A), t, env

(A)
C

)
, env

(A)
V

)

Proof. We are going to show that if z ∈
{
addC(c, e, envC) : envC ∈ γMust

C

(
env

(A)
C , env

(A)
V

)}
it

follows that z ∈ γMust
C

(
add

(Must)
C

(
c(A), t, env

(A)
C

)
, env

(A)
V

)
which, by the definition of ⊆, proves

the Lemma.

z ∈
{
addC(c, e, envC) : envC ∈ γMust

C

(
env

(A)
C , env

(A)
V

)}
We first apply the definition of addC

z ∈
{
envC [c→ envC(c) ∪ {e}] : envC ∈ γMust

C

(
env

(A)
C , env

(A)
V

)}
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We use Lemma 1 to isolate the part of γMust
C that generates the entries for the concrete collection

c in the Collection Environments.

γC

(
env

(A)
C , env

(A)
V

)
=

[a→ b : (a, b) ∈ x] :

x ⊆




⋃

i∈dom
(
env

(A)
C

)
−{c(A)}



(r′, c′) : r′ ∈ γHId(i)∧
c′ ∈ γE(E)∧

E =


t′ :

t′ ∈ env(A)
C (i)∧

notBottom
(
t′, env

(A)
V

)






∪


(r′, c′) : r′ ∈ γHId

(
c(A)

)
− {c}∧

c′ ∈ γE(E)∧

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }


∪


(c, c′) : c′ ∈ γE (E)

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }






We can replace γC

(
env

(A)
C , env

(A)
V

)
with this expression and apply the change to the Element

Set of c directly to (c, c′).

z ∈



[a→ b : (a, b) ∈ x] :

x ⊆




⋃

i∈dom
(
env

(A)
C

)
−{c(A)}



(r′, c′) : r′ ∈ γHId(i)∧
c′ ∈ γE(E)∧

E =


t′ :

t′ ∈ env(A)
C (i)∧

notBottom
(
t′, env

(A)
V

)






∪


(r′, c′) : r′ ∈ γHId

(
c(A)

)
− {c}∧

c′ ∈ γE(E)∧

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }


∪


(c, c′ ∪ {e}) : c′ ∈ γE (E)

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }






From Lemma 6 we know
{
c′ ∪ {e} : c′ ∈ γMust

E

(
env

(A)
C

(
c(A)

))}
⊆ γMust

E

(
env

(A)
C

(
c(A)

))
. And

we can therefore deduce
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z ∈



[a→ b : (a, b) ∈ x] :

x ⊆




⋃

i∈dom
(
env

(A)
C

)
−{c(A)}



(r′, c′) : r′ ∈ γHId(i)∧
c′ ∈ γE(E)∧

E =


t′ :

t′ ∈ env(A)
C (i)∧

notBottom
(
t′, env

(A)
V

)






∪


(r′, c′) : r′ ∈ γHId

(
c(A)

)
− {c}∧

c′ ∈ γE(E)∧

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }


∪


(c, c′) : c′ ∈ γE (E)

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }





Similar to the proof of Theorem 1 we can simplify this to

z ∈ γMust
C

(
env

(A)
C , env

(A)
V

)
But since in this case we assumed that c(A) and / or t is a summary identifier, this is equal to

z ∈ γMust
C

(
add

(Must)
C

(
c(A), t, env

(A)
C

)
, env

(A)
V

)
, which is exactly what we wanted to prove.

Since we have proven for both summary and for non-summary identifiers that add
(Must)
C is sound,

we can now prove that add
(Must)
C is sound for all collections and for all Tuple Identifiers.

Theorem 2. Applying add
(Must)
C on an Abstract Environment

(
env

(A)
C , env

(A)
V

)
with an

abstract collection c(A) and a Tuple Identifier t over-approximates applying addC on any
concrete collection c ∈ γHId

(
c(A)

)
and any Element e ∈ γHId(t) for all Collection En-

vironments envC ∈ γMust
C

(
c(A), env

(A)
V

)
. This holds for all abstract collections c(A) ∈

dom
(
env

(A)
C

)
, for all Tuple Identifiers t ∈ TId and for all Abstract Environments(

env
(A)
C , env

(A)
V

)
∈ Env(A)

C .

{
addC(c, e, envC) : envC ∈ γMust

C

(
env

(A)
C , env

(A)
V

)}
⊆

γMust
C

(
add

(Must)
C

(
c(A), t, env

(A)
C

)
, env

(A)
V

)

Proof. We distinguish two cases. In the first case c(A) and t are non-summary identifiers and in
the second c(A) and / or t is a summary identifier. The first case is proven by Lemma 5 and the
second case is proven by Lemma 7. We can therefore conclude, that the Theorem is proven for
all abstract collections and for all Tuple Identifiers.
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5.2.3 Adding a Value at a given Key

This operation adds a value to a collection at a given key. We assume for this operation that
the key was not previously in the collection.

For the concrete semantics this means, that first an Element e for the new collection element is
created. Then e is added to the Element Set of collection c in the Collection Environment and
finally the key k is assigned to the key and the value v is assigned to the value field of e in the
Value Environment.

addElement : (Ref ×V ×V)→ ((EnvC ×EnvV)→ (EnvC ×EnvV))

addElement (c, k, v)(envC , envV ) = (env
(1)
C , env

(2)
V ) :

e = createObject(TC)∧
env

(1)
C = addC(c, e, envC)∧

env
(1)
V = assignV ((e, ”key”), k, envV )∧

env
(2)
V = assignV ((e, ”value”), v, env

(1)
V )

where TC is the type of the collection c.

The abstract semantic operation to add a key-value-pair to an abstract collection are identical
for the May and the Must Analysis. First the Tuple Identifier t for the new collection element
is retrieved. Then t is added to the Abstract Element Set of the abstract collection c and finally
the key k is assigned to the key and the value v is assigned to the value field of t in the Abstract
Value Environment.

addElement(A) : (HId×Expression×Expression)→
(
Env(A) → Env(A)

)
addElement(A) (c, k, v)(envC , envV ) = (env

(1)
C , env

(2)
V ) :

t = createObject(A)(TC)∧
env

(1)
C = add

(A)
C (c, t, envC)∧

env
(1)
V = assign

(A)
V ((t, ”key”), k, envV )∧

env
(2)
V = assign

(A)
V ((t, ”value”), v, env

(1)
V )

Soundness

Since we only concatenate semantic operations for which we know, that they are sound in both
the May and the Must Analysis, we can conclude that addElement(A) is sound as well.

5.2.4 Find Elements by Key

The operation findElmentsByKey finds elements in a collection whose key field matches a
given key.

This is a supporting operation, which does not need to be proven sound in the same way as
other semantic operators. But we will show relationships between the abstract and the concrete
operations that we can later use to prove other semantic operations.

The concrete semantics of findElementsByKey takes a collection identifier c, a key k and an
Environment (envV , envC). It looks for an Element e, such that e is in the Element Set of c
and (e, ”key”) equals k in the Value Environment. If it finds such an Element it returns a set
only containing this Element. Otherwise it returns the empty set.

findElementsByKey : (Ref ×V)→ ((EnvC ×EnvV)→ P(Elem))
findElementsByKey (c, k)(envC , envV ) = {e : e ∈ envC(c) ∧ equalsV ((e, ”key”), k, envV )}
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May Analysis

In the May Analysis we want to find all the elements that might be in the collection and that
might have the given key. Thus we want to over-approximate the elements in a collection that
have the given key in any Collection Environment.

The findElementsByKey(May) function therefore returns for a key k all Tuple Identifiers that
are in the Abstract Element Set of an abstract collection c and whose key field might be equal to
k in the Abstract Value Environment. Furthermore we must also ensure, that the value field of
the Tuple Identifier are not bottom in the Abstract Value Environment, since this would mean
that there is no value stored at key k and it would not be sound to return such a Tuple Identifier.

findElementsByKey(May) : (HId×Expression)→
((

Env
(A)
C ×Env

(A)
V

)
→ P(TId)

)
findElementsByKey(May) (c, k)(envC , envV ) =

t : t ∈ envC(c)∧
equals

(A)
V ((t, ”key”), k, envV ) ⊇ {true}∧

notBottom(t, envV )


We want to show, that the set of Tuple Identifiers returned by findElementsByKeyMay over-
approximates the set of Elements that have the given key in any of the concrete environments
abstracted by the abstract environment that was passed to findElementsByKeyMay.

To be able to show this, we first need to prove the following Lemma.

Lemma 8. The concretization of the Abstract Element Set of an abstract collection c(A)

in an Abstract Environment
(
env

(A)
C , env

(A)
V

)
over-approximates the Element Sets of any

collection c ∈ γHId(c(A)) in all Collection Environments envC ∈ γC
(
env

(A)
C , env

(A)
V

)
. This

holds for all Abstract Environments
(
env

(A)
C , env

(A)
V

)
∈ Env(A) and for all abstract col-

lections c(A) ∈ HId. Furthermore this holds for the May and for the Must Analysis(
γE ∈

{
γMay
E , γMust

E

}
, γC ∈

{
γMay
C , γMust

C

})
{
envC(c) : envC ∈ γC

(
env

(A)
C , env

(A)
V

)}
⊆

γE

({
t : t ∈ env(A)

C

(
c(A)

)
∧ notBottom

(
t, env

(A)
V

)})
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Proof. From Lemma 1 we know

γC

(
env

(A)
C , env

(A)
V

)
=

[a→ b : (a, b) ∈ x] :

x ⊆




⋃

i∈dom
(
env

(A)
C

)
−{c(A)}



(r′, c′) : r′ ∈ γHId(i)∧
c′ ∈ γE(E)∧

E =


t′ :

t′ ∈ env(A)
C (i)∧

notBottom
(
t′, env

(A)
V

)






∪


(r′, c′) : r′ ∈ γHId

(
c(A)

)
− {c}∧

c′ ∈ γE(E)∧

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }


∪


(c, c′) : c′ ∈ γE (E)

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }





We can see that envC(c) ∈ γE

({
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }). And from this follows

directly

{
envC(c) : envC ∈ γC

(
env

(A)
C , env

(A)
V

)}
⊆ γE

({
t : t ∈ env(A)

C

(
c(A)

)
∧ notBottom

(
t, env

(A)
V

)})

With this Lemma we are now able to prove the previously described relationship between
findElementByKey and findElementByKeyMay.

Theorem 3. For each Element e ∈ γTId(t) that is found by the concrete

findElementsByKey operation in any Environment (envC , envV ) ∈ γMay

(
env

(A)
C , env

(A)
V

)
,

the Tuple Identifier t, that abstracts e, is in the result of findElementsByKey(May) in
env(A).

∀c ∈ γHId

(
c(A)

)
, k ∈ γ

(
k(A)

)
, k(A) ∈ Expression,

c(A) ∈ dom
(
env

(A)
C

)
,
(
env

(A)
C , env

(A)
V

)
∈ Env(A) :

⋃ findElementsByKey(c, k, envC , envV ) : envC ∈ γMay
C

(
env

(A)
C , env

(A)
V

)
∧

envV ∈ γV
(
env

(A)
V

) 
⊆⋃

t∈findElementsByKey(May)
(
c(A),k(A),env

(A)
C ,env

(A)
V

) γTId(t)

Proof. We are going to show that if z is in the first set, it follows that z is in the second set
which, by the definition of ⊆, proves the Theorem.
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z ∈
⋃ findElementsByKey(c, k, envC , envV ) : envC ∈ γMay

C

(
env

(A)
C , env

(A)
V

)
∧

envV ∈ γV
(
env

(A)
V

) 
First we apply the definition of findByKey.

z ∈
⋃ {e

′ : e′ ∈ envC(c) ∧ equalsV ((e′, ”key”), k, envV )} : envC ∈ γMay
C

(
env

(A)
C , env

(A)
V

)
∧

envV ∈ γV
(
env

(A)
V

) 
Using lemma 8 and the soundness of equal

(A)
V it can be shown, that for all envV ∈ γV

(
env

(A)
V

)
the following holds:{

{e′ : e′ ∈ envC(c) ∧ equalsV ((e′, ”key”), k, envV )} : envC ∈ γMay
C

(
env

(A)
C , env

(A)
V

)}
⊆

γMay
E




t : t ∈ env(A)
C

(
c(A)

)
∧

notBottom(t, env
(A)
V )∧(

equals
(A)
V

(
(t, ”key”), k(A), env

(A)
V

)
⊇ {true}

)



Therefore we can conclude

z ∈
⋃
γMay
E




t : t ∈ env(A)
C

(
c(A)

)
∧

notBottom(t, env
(A)
V )∧(

equals
(A)
V

(
(t, ”key”), k(A), env

(A)
V

)
⊇ {true}

)



We can then apply the definition of findElementsByKey(May)

z ∈
⋃
γMay
E

(
findElementsByKey(May)

(
c(A), k(A), env

(A)
C , env

(A)
V

))
And by the definition of γMay

E we can write:

z ∈
⋃x : x ⊆

⋃
t∈findElementsByKey(May)

(
c(A),k(A),env

(A)
C ,env

(A)
V

) γTId(t)


Since

⋃
{X : X ⊆ S} = S for all sets S, we can finally deduce

z ∈
⋃

t∈findElementsByKey(May)
(
c(A),k(A),env

(A)
C ,env

(A)
V

) γTId(t)
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Must Analysis

Finding elements in a collection by key in the Must Analysis means that we want to find all
the elements that must be in the collection and that must have the given key. Thus we want to
under-approximate the elements that have the given key in all Collection Environments.

The findElementsByKey(Must) function therefore returns for a key k all Tuple Identifiers that
are in the Abstract Element Set of an abstract collection c and whose key field must be equal to
k in the Abstract Value Environment. Analogous to findElementsByKey(May) we must ensure,
that the value field of the Tuple Identifier is not bottom in the Abstract Value Environment.

findElementsByKey(Must) : (HId×Expression)→
((

Env
(A)
C ×Env

(A)
V

)
→ P(TId)

)
findElementsByKey(Must) (c, k)(envC , envV ) =

t : t ∈ envC(c)∧
equals

(A)
V ((t, ”key”), k, envV ) = {true}∧

noitBottom(t, envV )


We want to show that the set of Tuple Identifiers returned by findElementsByKeyMust under-
approximates the set of Elements that have the given key in all the concrete environments
abstracted by the abstract environment that was passed to findElementsByKeyMust.

Theorem 4. Every Element, that is in the concretization of the result of

findElementsByKey(Must) in an Abstract Environment
(
env

(A)
C , env

(A)
V

)
, must be found

in all concrete Environments (envC , envV ) ∈ γMust

(
env

(A)
C , env

(A)
V

)
by the concrete

findElementsByKey operation.

∀c ∈ γHId

(
c(A)

)
, k ∈ γ

(
k(A)

)
, k(A) ∈ Expression,

c(A) ∈ dom
(
env

(A)
C

)
,
(
env

(A)
C , env

(A)
V

)
∈ Env(A) :⋃

t∈findElementsByKey(Must)
(
c(A),k(A),env

(A)
C ,env

(A)
V

) γTId(t)

⊆⋂ findElementsByKey(c, k, envC , envV ) : envC ∈ γMust
C

(
env

(A)
C , env

(A)
V

)
∧

envV ∈ γV
(
env

(A)
V

) 
Proof. We are going to show that if z is in the first set, it follows that z is in the second set
which, by the definition of ⊆, proves the theorem.

z ∈
⋃

t∈findElementsByKey(Must)
(
c(A),k(A),env

(A)
C ,env

(A)
V

) γTId(t)

Since S =
⋂
{X : X ⊇ S} for all sets S, we can write

z ∈
⋂x : x ⊇

⋃
t∈findElementsByKey(Must)

(
c(A),k(A),env

(A)
C ,env

(A)
V

) γTId(t)


By applying the definition of γMust

E we get
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z ∈
⋂
γMust
E

(
findElementsByKey(Must)

(
c(A), k(A), env

(A)
C , env

(A)
V

))
If we then use the definition of findElementsByKey(Must) we can conclude

z ∈
⋂
γMust
E




t : t ∈ env(A)
C

(
c(A)

)
∧

notBottom(t, env
(A)
V )∧(

equals
(A)
V

(
(t, ”key”), k(A), env

(A)
V

)
= {true}

)



By using lemma 8 and the soundness of equal
(A)
V it can be shown that for all envV ∈ env(A)

V the
following holds:

{
{e′ : e′ ∈ envC(c) ∧ equalsV ((e′, ”key”), k, envV )} : envC ∈ γMust

C

(
env

(A)
C

)}
⊆

γMust
E




t : t ∈ env(A)
C

(
c(A)

)
∧

notBottom(t, env
(A)
V )∧(

equals
(A)
V

(
(t, ”key”), k(A), env

(A)
V

)
= {true}

)



And therefore we can deduce

z ∈
⋂ {e

′ : e′ ∈ envC(c) ∧ equalsV ((e′, ”key”), k, envV )} : envC ∈ γMust
C

(
env

(A)
C

)
∧

envV ∈ γV
(
env

(A)
V

) 
By applying the definition of findElementsByKey we finally get

z ∈
⋂ findElementsByKey(c, k, envC , envV ) : envC ∈ γMust

C

(
env

(A)
C

)
∧

envV ∈ γV
(
env

(A)
V

) 

5.2.5 Find Elements by Value

The findElementsByV alue methods are defined analogously to the findElementsByKey
methods.

findElementsByValue : (Ref ×V)→ ((EnvC ×EnvV)→ P(Elem))
findElementsByV alue (c, v)(envC , envV ) =

{e : e ∈ envC(c) ∧ equalsV ((e, ”value”), v, envV )}

findElementsByValue(May) : (HId×Expression)→
((

Env
(A)
C ×Env

(A)
V

)
→ P(TId)

)
findElementsByV alue(May) (c, v)(envC , envV ) =

t : t ∈ envC(c)∧
equals

(A)
V ((t, ”value”), v, envV ) ⊇ {true}∧

notBottom(t, envV )


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findElementsByValue(Must) : (HId×Expression)→
((

Env
(A)
C ×Env

(A)
V

)
→ P(TId)

)
findElementsByV alue(Must) (c, v, envC , envV ) =

t : t ∈ envC(c)∧
equals

(A)
V ((t, ”value”), v, envV ) = {true}∧

noitBottom(t, envV )


5.2.6 Assume Keys not equal to k

This function is used to assume for a set of collection elements that their key field is not equal
to a provided key k. It is an extension of the assumeV operation and only operates on the
Abstract Value Environment.

In the concrete semantics we define the assumeNot operation recursively for a set of Elements
and a key k. If the set of Elements is empty we can simply return the unchanged Value
Environment. Otherwise we extract one Element e from the set. For this Element we assume
that its key field is not equal to k. We then recursively call assumeNot for the remaining
Elements.

assumeNot : (P(Elem)×Value)→ (EnvV → EnvV)
assumeNot (∅, k)(envV ) = envV

assumeNot (E, k)(envV ) = env
(2)
V :

e ∈ E∧
env

(1)
V = assumeV (((e, ”key”) 6= k), envV )∧

env
(2)
V = assumeNot(E − {e}, k, env(1)V )

The abstracts semantics for the assumeNot operation is identical for the May and the Must
Analysis. It is defined analogously to the concrete assumeNot operation.

assumeNot(A) : (P(TId)×Expression×Env
(A)
V )→ Env

(A)
V

assumeNot(A) (∅, k, envV ) = envV

assumeNot(A) (tuples, k, envV ) = env
(2)
V :

t ∈ tuples∧
env

(1)
V = assume

(A)
V ((t, ”key”) 6= k, envV )∧

env
(2)
V = assumeNot(A)(tuples− {t}, k, env(1)V )

Soundness

Since we are only concatenating assumeV operations and we know from the specification of the
value domain, that this operation has to be sound, we can conclude that assumeNot is sound
as well.

5.2.7 Removing a Value at a given Key

This operation removes a value from a collection at a given key.

In the concrete semantics we remove an element at key k from collection c as follows: For each
Element e that is in the Element Set of c, we assume (e, ”key”) 6= k in the Value Environment.

removeElement : (Ref ×V)→ ((EnvC ×EnvV)→ (EnvC ×EnvV))
removeElement (c, k)(envC , envV ) = (envC , assumeNot(envC(c), k, envV )

The abstract semantics to remove an element at k from an abstract collection c is defined similar.
For each Tuple Identifier t that is in the Abstract Element Set of c, we assume (t, ”key”) 6= k in
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the Abstract Value Environment.

removeElement(A) : (HId×Expression)→
((

Env
(A)
C ×Env

(A)
V

)
→
(
Env

(A)
C ×Env

(A)
V

))
removeElement(A) (c, k)(envC , envV ) = (envC , assumeNot

(A)(envC(c), k, envV )

Notice that if the only possible value of the key field of a Tuple Identifier is k, then after the
remove operation, the key field has the value bottom in the Value Domain. This means that
also the value should no longer be in the abstract collection, since there is no possible key that
points to it. Because the findElementByKey and the concretization functions handle this case
correctly, we do not need to remove the Tuple Identifier from the Abstract Element Set here.

Soundness

Since we only concatenate operations, which we have already proven to be sound, we can conclude
that removeElement(A) is sound as well.

5.2.8 Decrease Keys

This function decreases all the keys in a collection that are greater than a given key.

In the concrete semantics we first collect all Elements e in the Element Set of the collection c
such that the value of (e, ”key”) in the Value Environment is greater than the provided value
k. We then recursively decrease the value of the key field of all these Elements in the Value
Environment by one.

decreaseKeys : (Ref ×V)→ ((EnvC ×EnvV)→ (EnvC ×EnvV))
decreaseKeys (c, k)(envC , envV ) = decreaseKeysV (E, envV )

where E =

{
e : e ∈ envC(c)∧

assumeV ((e, ”key”) > k, envV ) 6= ⊥

}
decreaseKeysV : (P(Elem))→ (EnvV → EnvV)
decreaseKeysV (∅)(envV ) = envV

decreaseKeysV (E)(envV ) = env
(2)
V :

e ∈ E∧
env

(1)
V = assignV ((e, ”key”), (e, ”key”)− 1, envV )∧

env
(2)
V = decreaseKeysV

(
E − {e}, env(1)V

)
In the abstract semantics we first collect all Tuple Identifiers t in the Abstract Element Set of
the abstract collection c such that the value of (t, ”key”) in the Abstract Value Environment
may be greater than the provided value k. We are then decreasing the value of the key field of
all these Tuple Identifiers in the Abstract Value Environment by one recursively.

decreaseKeys(A) : (HId×Expression)→
((

Env
(A)
C ×Env

(A)
V

)
→ Env

(A)
V

)
decreaseKeys(A) (c, k)(envC , envV ) = decreaseKeys

(A)
V (T, envV )

where T =

{
t : t ∈ envC(c)∧

assume
(A)
V ((t, ”key”) > k, envV ) 6= ⊥

}
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decreaseKeys
(A)
V : (P(TId))→

(
Env

(A)
V → Env

(A)
V

)
decreaseKeys

(A)
V (∅)(envV ) = envV

decreaseKeys
(A)
V (tuples)(envV ) = env

(2)
V :

t ∈ tuples∧
env

(1)
V = assign

(A)
V ((t, ”key”), (t, ”key”)− 1, envV )∧

env
(2)
V = decreaseKeys

(A)
V

(
tuples− {t}, env(1)V

)

Soundness

Analogous to the findElementsByKey function we can prove that the set of Tuple Identifiers

passed to decreaseKeys
(A)
V over-approximates the set of Elements passed to decreaseKeysV .

The decreaseKeysV operation concatenates assignV for each element in the set of passed Ele-
ments / Tuple Identifiers. We already know that the assignV operation is sound.

We can therefore conclude that the dcecreaseKeys operation is sound.

5.2.9 Assigning an Empty Collection

This operation assigns an empty collection to a collection identifier in the collection environment.

For the concrete semantics this means, that an empty Element Set ∅ is assigned to a collection
c.

assignEmptyC : Ref → (EnvC → EnvC)
assignEmptyC (c)(envC) = envC [c→ ∅]

In the abstract semantics we need to distinguish whether the abstract collection to which we
assign the empty set is a summary collection or not. For non-summary collections we can simply
assign the empty Abstract Element Set to the abstract collection. But if the abstract collection
is a summary collection this would not be sound. We need to handle this case for the May and
the Must Analysis individually.

The May Analysis represents all collection elements that might be in a collection. If an abstract
collection is a summary collection, representing multiple distinct collections, the May Analysis
represents all elements that may be in any of these collections. Since we can not know which of
the elements in the abstract summary collection abstract the elements of the emptied concrete
collection, we have to keep all elements in the abstract collection.

assignEmpty
(May)
C : HId→

(
Env

(A)
C → Env

(A)
C

)
assignEmpty

(May)
C (c)(envC) =

{
envC [c→ ∅] if |γHId(c)| = 1

envC otherwise

The Must Analysis represents all elements that certainly are in a collection. For a summary
collection this means it contains all elements that certainly are contained in all collections
represented by the summary collection. Since one of the concrete collections is now empty, no
element is certainly contained in all concrete collections and we need to remove all elements from
the abstract collection (Assigning an empty Abstract Element Set to the abstract collection).

assignEmpty
(Must)
C : HId→

(
Env

(A)
C → Env

(A)
C

)
assignEmpty

(Must)
C (c)(envC) = envC [c→ ∅]
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Soundness - May Analysis

In the abstract semantics of the May Analysis we distinguish between summary collections and
non summary collections.

We are going to prove the soundness for these two cases and can then proof the soundness

assignEmpty
(May)
C for all collections.

Case 1: Non-Summary Collections

In this case we assume that the abstract collection is a non-summary collection. This means
|γHId

(
c(A)

)
| = 1.

We will first prove, that the empty Abstract Element Set over-approximates the empty Ele-

ment Set. We can then use this to show that assignEmpty
(May)
C is sound for all non-summary

collections.

Lemma 9. The empty Element Set ∅ is in the concretization of the empty Abstract Element
Set ∅.

∅ ∈ γMay
E (∅)

Proof. γMay
E is defined as γMay

E

(
c(A)

)
=
{
x : x ⊆

⋃
t∈c(A) γHId(t)

}
. The set retrieved from

γMay
E (∅) is therefore the set containing all the subsets of

⋃
t∈∅ γHId(t). Since the empty set

is a subset of every set, γMay
E (∅) must contain the empty set.

With this Lemma we are now able to prove the soundness of the assignEmpty(May) operation
for non-summary collections.

Lemma 10. Emptying an abstract non-summary collection c(A) in an Abstract Environ-

ment
(
env

(A)
C , env

(A)
V

)
over-approximates emptying a concrete collection c ∈ γHId

(
c(A)

)
in all Collection Environments envC ∈ γMay

C

(
env

(A)
C , env

(A)
V

)
. This holds for all ab-

stract non-summary collections c(A) ∈ dom
(
env

(A)
C

)
and for all Abstract Environments(

env
(A)
C , env

(A)
V

)
∈ Env(A).

{
assignEmptyC(c, envC) : envC ∈ γMay

C

(
env

(A)
C , env

(A)
V

)}
⊆

γMay
C

(
assignEmpty

(May)
C

(
c(A), env

(A)
C

)
, env

(A)
V

)

Proof. We are going to show that if z ∈
{
assignEmptyC(c, envC) : envC ∈ γMay

C

(
env

(A)
C , env

(A)
V

)}
it follows that z ∈ γMay

C

(
assignEmpty

(May)
C

(
c(A), env

(A)
C

)
, env

(A)
V

)
which, by the definition of

⊆, proves the lemma.

z ∈
{
assignEmptyC(c, envC) : envC ∈ γMay

C

(
env

(A)
C , env

(A)
V

)}
First, we apply the definition of assignEmptyC .
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z ∈
{
envC [c→ ∅] : envC ∈ γMay

C

(
env

(A)
C , env

(A)
V

)}
We use lemma 1 to isolate the part of γ

(May)
C that generates the entries for the concrete collection

c in the Collection Environments. In this case we furthermore know that c(A) is not a summary
collection and therefore the only element in γHId(c(A)) is the concrete collection c. From this

follows that γHId

(
c(A)

)
−{c} = ∅ which allows us to further adapt γMay

C

(
env

(A)
C , env

(A)
V

)
as we

have already seen in the proof of lemma 5.

γMust
C

(
env

(A)
C , env

(A)
V

)
=

[a→ b : (a, b) ∈ x] :

x ⊆




⋃

i∈dom
(
env

(A)
C

)
−{c(A)}



(r′, c′) : r′ ∈ γHId(i)∧
c′ ∈ γMay

E (E)∧

E =


t′ :

t′ ∈ env(A)
C (i)∧

notBottom
(
t′, env

(A)
V

)





∪


(c, c′) : c′ ∈ γMay

E (E)

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }





We can now replace γMay

C

(
env

(A)
C , env

(A)
V

)
with this expression.

z ∈



[a→ b : (a, b) ∈ x] :

x ⊆




⋃

i∈dom
(
env

(A)
C

)
−{c(A)}



(r′, c′) : r′ ∈ γHId(i)∧
c′ ∈ γMay

E (E)∧

E =


t′ :

t′ ∈ env(A)
C (i)∧

notBottom
(
t′, env

(A)
V

)





∪{(c, ∅)}




From lemma 9 we know that ∅ ∈ γMay

E (∅) and therefore {∅} ⊆ γMay
E (∅). This allows us to

conclude:

z ∈



[a→ b : (a, b) ∈ x] :

x ⊆




⋃

i∈dom
(
env

(A)
C

)
−{c(A)}



(r′, c′) : r′ ∈ γHId(i)∧
c′ ∈ γMay

E (E)∧

E =


t′ :

t′ ∈ env(A)
C (i)∧

notBottom
(
t′, env

(A)
V

)





∪
{

(c, c′) : c′ ∈ γMay
E (∅)

}




Similar to the proof of Theorem 1 we can simplify this to

z ∈ γMay
C

(
env

(A)
C

[
c(A) → ∅

]
, env

(A)
V

)
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But since in this case we know that c(A) is a summary collection, this is equal to

z ∈ γMay
C

(
assignEmpty

(May)
C

(
c(A), env

(A)
C

)
, env

(A)
V

)
which is exactly what we wanted to prove.

Case 2: Summary Collections

In this case we assume that the collection is a summary collection. This means |γHId

(
c(A)

)
| > 1.

We will first prove, that the empty Element Set is abstracted by any Abstract Element Set. We

can then use this to show, that assignEmpty
(May)
C is sound for summary collections.

Lemma 11. The empty Element Set ∅ is abstracted by every Abstract Element Set E(A) ∈
P(TId).

∅ ∈ γMay
E (E(A))

Proof. γMay
E is defined as γMay

E

(
E(A)

)
=
{
x : x ⊆

⋃
t∈E(A) γHId(t)

}
. The Element Sets con-

tained in γMay
E

(
E(A)

)
are all the subsets of

⋃
t∈E(A) γHId(t). Because the empty set is a subset

of every set we can conclude that ∅ ∈ γMay
E

(
E(A)

)
holds for every Abstract Element Set E(A).

With this Lemma we are now able to prove the soundness of the assignEmpty(May) operation
for summary collections.

Lemma 12. Emptying an abstract summary collection c(A) in an Abstract Environment(
env

(A)
C , env

(A)
V

)
over-approximates emptying a concrete collection c ∈ γHId

(
c(A)

)
in all

Collection Environments envC ∈ γMay
C

(
env

(A)
C , env

(A)
V

)
. This holds for all abstract sum-

mary collections c(A) ∈ dom
(
env

(A)
C

)
and for all Abstract Environments

(
env

(A)
C , env

(A)
V

)
∈

Env(A).

{
assignEmptyC(c, envC) : envC ∈ γMay

C

(
env

(A)
C , env

(A)
V

)}
⊆

γMay
C

(
assignEmpty

(May)
C

(
c(A), env

(A)
C

)
, env

(A)
V

)

Proof. We are going to show that if z ∈
{
assignEmptyC(c, envC) : envC ∈ γMay

C

(
env

(A)
C , env

(A)
V

)}
it follows that z ∈ γMay

C

(
assignEmpty

(May)
C

(
c(A), env

(A)
C

)
, env

(A)
V

)
which, by the definition of

⊆, proves the Lemma.

z ∈
{
assignEmptyC(c, envC) : envC ∈ γMay

C

(
env

(A)
C , env

(A)
V

)}
First, we apply the definition of assignEmptyC

z ∈
{
envC [c→ ∅] : envC ∈ γMay

C

(
env

(A)
C , env

(A)
V

)}
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We use Lemma 1 to isolate the part of γMay
C that generates the entries for the concrete collection

c in the Collection Environments.

γMay
C

(
env

(A)
C , env

(A)
V

)
=

[a→ b : (a, b) ∈ x] :

x ⊆



⋃i∈dom
(
env

(A)
C

)
−{c(A)}


(r′, c′) : r′ ∈ γHId(i)∧

c′ ∈ γMay
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C (i)∧
notBottom

(
t′, env

(A)
V

) }



∪


(r′, c′) : r′ ∈ γHId

(
c(A)

)
− {c}∧

c′ ∈ γMay
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }


∪


(c, c′) : c′ ∈ γMay

E (E)

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }





We can use this to restate the expression.

z ∈



[a→ b : (a, b) ∈ x] :

x ⊆



⋃i∈dom
(
env

(A)
C

)
−{c(A)}


(r′, c′) : r′ ∈ γHId(i)∧

c′ ∈ γMay
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C (i)∧
notBottom

(
t′, env

(A)
V

) }



∪


(r′, c′) : r′ ∈ γHId

(
c(A)

)
− {c}∧

c′ ∈ γMay
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }


∪{(c, ∅)}




From Lemma 11 we know that ∅ ∈ γMay

E

(
env

(A)
C

(
c(A)

))
and therefore {∅} ⊆ γMay

E

(
env

(A)
C

(
c(A)

))
and we can deduce:

z ∈



[a→ b : (a, b) ∈ x] :

x ⊆



⋃i∈dom
(
env

(A)
C

)
−{c(A)}


(r′, c′) : r′ ∈ γHId(i)∧

c′ ∈ γMay
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C (i)∧
notBottom

(
t′, env

(A)
V

) }



∪


(r′, c′) : r′ ∈ γHId

(
c(A)

)
− {c}∧

c′ ∈ γMay
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }


∪


(c, c′) : c′ ∈ γMay

E (E)∧

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }





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Similar to the proof of Theorem 1 we can simplify this to

z ∈ γMay
C

(
env

(A)
C , env

(A)
V

)
But since in this case c(A) is a summary collection, this is equal to

z ∈ γMay
C

(
assignEmpty

(May)
C

(
c(A), env

(A)
C

)
, env

(A)
V

)
which is exactly what we wanted to prove.

With these Lemmas we are now able to prove that assignEmpy
(May)
C is sound for all collections.

Theorem 5. Emptying an abstract collection c(A) in an Abstract Environment(
env

(A)
C , env

(A)
V

)
over-approximates emptying a concrete collection c ∈ γHId

(
c(A)

)
in all

Collection Environments envC ∈ γMay
C

(
env

(A)
C , env

(A)
V

)
. This holds for all abstract collec-

tions c(A) ∈ dom
(
env

(A)
C

)
and for all Abstract Environments

(
env

(A)
C , env

(A)
V

)
∈ Env(A).

{
assignEmptyC(c, envC) : envC ∈ γMay

C

(
env

(A)
C , env

(A)
V

)}
⊆

γMay
C

(
assignEmpty

(May)
C

(
c(A), env

(A)
C

)
, env

(A)
V

)

Proof. We distinguish the two cases that c(A) is a non-summary collection and that c(A) is a
summary collection. The first case is proven by Lemma 10 and the second case is proven by
Lemma 12. We can therefore conclude, that the Theorem is proven for all abstract collections.

Soundness - Must Analysis

The soundness proof of assignEmpty
(Must)
C does not distinguish between summary and non-

summary collections. We therefore have to prove only one case.

We will first show that an empty abstract collection abstracts every possible concrete collection in

the Must Analysis. We can then show that assignEmpty
(Must)
C is sound for complete Collection

Environments.

Lemma 13. Every Element Set E ∈ P(Elem) is in the concretization of the empty Ab-
stract Element Set ∅.

E ∈ γMust
E (∅)

Proof. By the definition of γMust
E we know that γMust

E (∅) =
{
x : x ⊇

⋃
t∈∅ γHId(t)

}
. And be-

cause
⋃

t∈∅ γHId(t) = ∅ the sets contained in the set retrieved from γMust
E (∅) are all the super-

sets of the empty set. Since every set is a superset of the empty set, we can conclude that
E ∈ γMust

E (∅) holds for every Element Set E.

We can now use this Lemma to show the soundness of assignEmpty
(Must)
C for complete collection

environments.
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Theorem 6. Emptying an abstract collection c(A) in an Abstract Environment(
env

(A)
C , env

(A)
V

)
over-approximates emptying a concrete collection c ∈ γHId

(
c(A)

)
in all

Collection Environments envC ∈ γMust
C

(
env

(A)
C , env

(A)
V

)
. This holds for all abstract collec-

tions c(A) ∈ dom
(
env

(A)
C

)
and for all Abstract Environments

(
env

(A)
C , env

(A)
V

)
∈ Env(A).

{
assignEmptyC(c, envC) : envC ∈ γMust

C

(
env

(A)
C , env

(A)
V

)}
⊆

γMust
C

(
assignEmpty

(Must)
C

(
c(A), env

(A)
C

)
, env

(A)
V

)

Proof. We are going to show that if z ∈
{
assignEmptyC(c, envC) : envC ∈ γMust

C

(
env

(A)
C , env

(A)
V

)}
it follows that z ∈ γMust

C

(
assignEmpty

(Must)
C

(
c(A), env

(A)
C

)
, env

(A)
V

)
which, by the definition

of ⊆, proves the Theorem.

z ∈
{
assignEmptyC(c, envC) : envC ∈ γMust

C

(
env

(A)
C , env

(A)
V

)}
First, we apply the definition of assignEmptyC .

z ∈
{
envC [c→ ∅] : envC ∈ γMust

C

(
env

(A)
C , env

(A)
V

)}
We use Lemma 1 to isolate the part of γMust

C that generates the entries for the concrete collection
c in the Collection Environments.

γMust
C

(
env

(A)
C , env

(A)
V

)
=

[a→ b : (a, b) ∈ x] :

x ⊆



⋃i∈dom
(
env

(A)
C

)
−{c(A)}


(r′, c′) : r′ ∈ γHId(i)∧

c′ ∈ γMust
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C (i)∧
notBottom

(
t′, env

(A)
V

) }



∪


(r′, c′) : r′ ∈ γHId

(
c(A)

)
− {c}∧

c′ ∈ γMust
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }


∪


(c, c′) : c′ ∈ γMust

E (E)

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }





We can use this to restate the expression.
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z ∈



[a→ b : (a, b) ∈ x] :

x ⊆



⋃i∈dom
(
env

(A)
C

)
−{c(A)}


(r′, c′) : r′ ∈ γHId(i)∧

c′ ∈ γMust
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C (i)∧
notBottom

(
t′, env

(A)
V

) }



∪


(r′, c′) : r′ ∈ γHId

(
c(A)

)
− {c}∧

c′ ∈ γMust
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C

(
c(A)

)
∧

notBottom
(
t′, env

(A)
V

) }


∪{(c, ∅)}




Because we know from Lemma 13 that any Element Set is in γMust

E (∅), we can deduce:

z ∈



[a→ b : (a, b) ∈ x] :

x ⊆



⋃i∈dom
(
env

(A)
C

)
−{c(A)}


(r′, c′) : r′ ∈ γHId(i)∧

c′ ∈ γMust
E (E)∧

E =

{
t′ : t′ ∈ env(A)

C (i)∧
notBottom

(
t′, env

(A)
V

) }



∪
{

(r′, c′) : r′ ∈ γHId

(
c(A)

)
− {c}∧

c′ ∈ γMust
E (∅)∧

}
∪
{

(c, c′) : c′ ∈ γMust
E (∅)

}




Similar to the proof of Theorem 1 we can simplify this to

z ∈ γMust
C

(
env

(A)
C

[
c(A) → ∅

]
, env

(A)
V

)
But this is equal to z ∈ γMust

C

(
assignEmpty

(Must)
C

(
c(A), env

(A)
C

)
, env

(A)
V

)
which is exactly

what we wanted to prove.

5.3 Create Collection

After we have introduced the basic operations, we can now use them to define the collection
operations of TouchDevelop. We start with the operation to create a new collection. An empty
collection can be created using the collections module of TouchDevelop as shown in listing 5.1.

Listing 5.1: Create Link collection

1 var c := c o l l e c t i o n s −> c r e a t e l i n k c o l l e c t i o n

In the concrete semantics we first create a Reference c for the new collection and then assign an
empty Element Set to c in the Collection Environment.

createCollection : TC → ((EnvC ×EnvV)→ (EnvC ×EnvV))

createCollection (tC)(envC , envV ) = (env
(1)
C , env

(1)
V ) :

c = createObject(tC)∧
env

(1)
C = assignEmptyC(c, envC)
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tC denotes the type of the new collection.

The abstract semantics to create a new collection is defined identically for the May and for the
Must Analysis. We first retrieve a Heap Identifier c for the new collection and then assign an
empty Abstract Element Set to c in the Abstract Collection Environment.

createCollection(A) : TC →
((

Env
(A)
C ×Env

(A)
V

)
→
(
Env

(A)
C ×Env

(A)
V

))
createCollection(A) (tC)(envC , envV ) = (env

(1)
C , env

(1)
V ) :

c = createObject(A)(tC)∧
env

(1)
C = assignEmpty

(A)
C (c, envC)

Notice that assignEmpty
(A)
C corresponds to assignEmpty

(May)
C in the May Analysis and to

assignEmpty
(Must)
C in the Must Analysis.

5.3.1 Soundness

Since we only concatenate operations, that were already proven sound for both the May and
the Must Analysis, we can conclude that createCollection(A) is sound.

5.4 Contains Key

The containsKey operation checks whether a given key is contained in a collection or not.

In the concrete semantics we define for a single environment, that the key k is in the collection
c if there exists an Element e in the Element Set of c, such that (e, ”key”) is equal to k in the
Value Environment.

containsKey : (Ref ×V)→ ((EnvC,EnvV)→ {true, false})

containsKey (c, k)(envC , envV ) =

{
true if |F | > 0

false otherwise

where F = findElementsByKey(c, k, envC , envV )

Now let’s look at the result of the operation, if it is applied on a set of environments.

containsKey : (Ref ×V)→ (P(Env)→ P({true, false}))
containsKey (c, k)(envs) = {containsKey(c, k, envC , envV ) : (envC , envV ) ∈ envs}

Three results are possible:

• If we get the result {true}, then k must be in c, since in every Environment it is contained
in c.

• If we get the result {false}, then k is certainly not contained in c, since in every Environ-
ment it is not contained in c.

• If we get the result {true, false}, then we can not say whether k is in the collection or
not, since in some Environments it is contained in c and in some it is not.

Let’s now look at how we can abstract this operation: Remember that the May Analysis only
tracks which elements may be in a collection and is therefore only able to determine if an element
is not in the collection. In contrast, the Must Analysis only tracks which elements must be in a
collection and is therefore only able to determine whether an element is in the collection.

We will define the abstract semantics of containsKey for the May Analysis and the Must
Analysis individually. And to gain as much precision as possible we will also define an operation
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that operates on the cartesian product of the domains of the May and the Must Analysis. This
operation is used when we use both the May and the Must Analysis to analyze a script.

Boolean Domain

As we have seen, the result of containsKey is a set of boolean values (P({true, false})). In
the abstract semantics the result of containsKey(A) will be an abstract boolean value. These
abstract boolean values are defined as B(A) = {>, true, false,⊥}.

The function γB defines how they are concretized:

γB : B(A) → P({true, false})

γB(b) =


∅ if b = ⊥
{true} if b = true

{false} if b = false

{true, false} if b = >

5.4.1 Contains Key - May Analysis

The contains key operation for the May Analysis is able to tell whether an element whether an
element with the given key is certainly not in the collection. This is the case, if no element that
possibly is in the collection can have the given key.

The abstract semantics for the containsKey operation in the May Analysis therefore looks for
a Tuple Identifier t in the Abstract Element Set of c such that (t, ”key”) may be equal to the
provided key k in the Abstract Value Environment. If it finds such a Tuple Identifier, this means
that there might be an element with key k in the collection and therefore it returns top. But if
it does not find such a Tuple Identifier, then there can be no element with key k in the collection
and it returns false.

containsKey(May) : (HId×Expression)→
((

Env
(A)
C ×Env

(A)
V

)
→ B(A)

)
containsKey(May) (c, k)(envC , envV ) =

{
false if |F | = 0

> otherwise

where F = findElementsByKey(May)(c, k, envC , envV )

Soundness

We prove the soundness of containsKey(May) by showing that it over-approximates the concrete
containsKey operation.
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Theorem 7. Applying containsKey(May) on an Abstract Environment
(
env

(A)
C , env

(A)
V

)
with an abstract collection c(A) and an abstract key k(A) over-approximates applying

containsKey on all Environments env ∈ γMay

(
env

(A)
C , env

(A)
V

)
with any collection c ∈

γHId

(
c(A)

)
and any concrete key k ∈ γ

(
k(A)

)
. This holds for all abstract collections c(A) ∈

dom
(
env

(A)
C

)
, for all abstract keys k(A) ∈ Expression and for all Abstract Environments(

env
(A)
C , env

(A)
V

)
∈ Env(A).

{
containsKey(c, k, env) : env ∈ γMay

(
env(A)

)}
⊆

γB
(
containsKey(May)

(
c(A), k(A), env(A)

))
Proof. In the function containsKey(May) we distinguish two cases:

• The result of findElementsByKey(May) is the empty set (|F | = 0).

• The result of findElementsByKey(May) is not the empty set.

We are showing for both cases that the Theorem holds.

Case 1: In the first case we assume, that the result of findElementsByKey(May) is the
empty set. In Theorem 3 we have already shown, that the concretization of the result of
findElementsByKey(May) is a super set of the result of findElementsByKey. And be-
cause in this case the result of findElementsByKey(May) is the empty set, the result of
findElementsByKey must also be the empty set in all environments env ∈ γMay

(
env(A)

)
.

Therefore we know that containsKey returns false in every environment env ∈ γMay

(
env(A)

)
.

And from this follows that{
containsKey(c, k, env) : env ∈ γMay

(
env(A)

)}
= {false}

But we also know, that in this case containsKey(May)
(
c(A), k(A), env(A)

)
= false. And because

γB(false) = {false} we can conclude for the first case{
containsKey(c, k, env) : env ∈ γMay

(
env(A)

)}
⊆ γB

(
containsKey(May)

(
c(A), k(A), env(A)

))
.

Case 2: In the second case containsKey(May)
(
c(A), k(A), env(A)

)
= >. And Since γB(>) =

{true, false}, we can conclude

γB

(
containsKey(May)

(
c(A), k(A), env(A)

))
⊇
{
containsKey(c, k, env) : env ∈ γMay

(
env(A)

)}
Because we have proven the Theorem for both cases, we can deduce that containsKey(May) is
sound.

5.4.2 Contains Key - Must Analysis

The contains key operation for the Must Analysis is able to tell whether an element with the
given key is certainly contained in the collection. This is the case, when an element that must
be in the collection has the requested key.
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The abstract semantics for the containsKey operation in the Must Analysis therefore looks for
a Tuple Identifier t in the Abstract Element Set of c such that (t, ”key”) must be equal to the
provided key k in the Abstract Value Environment. If it finds such a Tuple Identifier, this means
that there must be an element with key k in the collection and therefore it returns true. But if
it does not find such a Tuple Identifier, then it can not tell whether an element with key k is in
the collection and returns top.

containsKey(Must) : (HId×Expression)→
((

Env
(A)
C ×Env

(A)
V

)
→ B(A)

)
containsKey(Must) (c, k)(envC , envV ) =

{
true if |F | > 0

> otherwise

where F = findElementsByKey(Must)(c, k, envC , envV )

Soundness

We prove the soundness of containsKey(Must) by showing that it over-approximates the concrete
containsKey operation.

Theorem 8. Applying containsKey(Must) on an Abstract Environment
(
env

(A)
C , env

(A)
V

)
with an abstract collection c(A) and an abstract key k(A) over-approximates applying

containsKey on all Environments env ∈ γMust

(
env

(A)
C , env

(A)
V

)
with any collection c ∈

γHId

(
c(A)

)
and any concrete key k ∈ γ

(
k(A)

)
. This holds for all abstract collections c(A) ∈

dom
(
env

(A)
C

)
, for all abstract keys k(A) ∈ Expression and for all Abstract Environments(

env
(A)
C , env

(A)
V

)
∈ Env(A).

{
containsKey(c, k, env) : env ∈ γMust

(
env(A)

)}
⊆

γB
(
containsKey(Must)

(
c(A), k(A), env(A)

))
Proof. In the function containsKey(Must) we distinguish two cases:

• The result of findElementsByKey(Must) is the empty set (|F | = 0).

• The result of findElementsByKey(Must) is not the empty set (|F | > 0).

We are showing for both cases that the theorem holds.

Case 1: In the first case containsKey(Must)
(
c(A), k(A), env(A)

)
= >. And Since γB(>) =

{true, false}, we can conclude{
containsKey(c, k, env) : env ∈ γMust

(
env(A)

)}
⊆ γB

(
containsKey(Must)

(
c(A), k(A), env(A)

))
Case 2: In the second case we assume, that findElementsByKey(Must) is not the empty set.

From Theorem 4 we know, that if findElementsByKey(Must) does not return an empty set then
findElementsByKey does not return an empty set in any environment env ∈ γMay

(
env(A)

)
.

This means that

{
containsKey(c, k, env) : env ∈ γMust

(
env(A)

)}
= {true}
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We furthermore know, that in this case containsKey(Must)
(
c(A), k(A), env(A)

)
= true And be-

cause γB(true) = {true} we can conclude for the second case

{
containsKey(c, k, env) : env ∈ γMust

(
env(A)

)}
⊆ γB

(
containsKey(Must)

(
c(A), k(A), env(A)

))
.

Because we have proven the Theorem for both cases, we can deduce that containsKey(Must) is
sound.

5.4.3 Contains Key - May and Must Analysis

Remember that we combine the May and Must Analysis with the cartesian product. Usually
the abstract semantics are applied for the two domains separately. In the case of contains key
however, we can gain more precision if we combine the results of the two domains.

Because the combination of the May and the Must Analysis is defined as the cartesian product
the input for the combined containsKey operation are two Abstract Environments where one
belongs to the May Analysis and the other to the Must Analysis.

If the Must Analysis can tell that the collection must contain an element with key k, then we
return true. If the May Analysis says that there can be no element in the collection with key k,
then we return false. Otherwise we can not tell whether the element is in the collection or not
and therefore we return top.

containsKey(A) : (HId×Expression)→
((

Env(A) ×Env(A)
)
→ B(A)

)
containsKey(A) (c, k)(env(May), env(Must)) =

false if containsKey(May)
(
c, k, env(May)

)
= false

true if containsKey(Must)
(
c, k, env(Must)

)
= true

> otherwise

Soundness

We have already shown that the containsKey(May) and the containsKey(Must) operations are
sound. In the first two cases of containsKey(A) we simply propagate their results. In the third
case we return top which is always sound, since it over-approximates any set of boolean values
that might be returned from the concrete containsKey semantics. We can therefore conclude
that containsKey(A) is sound.

5.5 Contains Value

The containsV alue operation checks whether a given value is contained in a collection or not.

The operations are defined analogously to the containsKey operations.

containsValue : (Ref ×V)→ ((EnvC,EnvV)→ {true, false})

containsV alue (c, v)(envC , envV ) =

{
true if |F | > 0

false otherwise

where F = findElementsByV alue(c, v, envC , envV )
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containsValue(May) : (HId×Expression)→
((

Env
(A)
C ×Env

(A)
V

)
→ B(A)

)
containsV alue(May) (c, v)(envC , envV ) =

{
false if |F | = 0

> otherwise

where F = findElementsByV alue(May)(c, v, envC , envV )

containsValue(Must) : (HId×Expression)→
((

Env
(A)
C ×Env

(A)
V

)
→ B(A)

)
containsV alue(Must) (c, v)(envC , envV ) =

{
true if |F | > 0

> otherwise

where F = findElementsByV alue(Must)(c, v, envC , envV )

containsValue(A) : (HId×Expression)→
((

Env(A) ×Env(A)
)
→ B(A)

)
containsV alue(A) (c, v)(env(May), env(Must)) =

false if containsV alue(May)
(
c, v, env(May)

)
= false

true if containsV alue(Must)
(
c, v, env(Must)

)
= true

> otherwise

5.5.1 Soundness

The soundness of the containsV alue operations can be shown analogously to the soundness of
the containsKey operations.

5.6 Add

Add appends a value at the end of a list. As described earlier the key of an element in a list
corresponds to its position in the list. The key of the first element in the list is 0. For the add
operation this means that the key of the element equals the collection length before the add
operation. In the script shown in listing 5.2 for example the key-value pair (0, 1) is added to a
previously empty list.

Listing 5.2: Add element to list

1 $c := c o l l e c t i o n s−>c r e a t e n u m b e r c o l l e c t i o n ( ) ;
2 $c−>add ( 1 ) ;

The length of a collection in the concrete domain is equal to the number of elements in the
Element Set of c. In the concrete semantics we therefore add a the given value v to the concrete
collection c in the Collection Environment envC at key |envC(c)|.

add : (Ref ×V)→ ((EnvC ×EnvV)→ (EnvC ×EnvV))
add (c, v)(envC , envV ) = addElement(c, |envC(c)|, v, envC , envV )

The abstract semantics of add for the May and the Must Analysis are defined identically. The
key of the of the added abstract element corresponds to the abstracted collection length. The
formalization of the collection length abstraction is out of the scope of this thesis. We therefore
assume here that a sound abstraction of the collection length exists and that the length of a
collection c is tracked in the Abstract Value Environment with the identifier (c, ”length”). We
can therefore simply add the new element at key (c, ”length”)

add(A) : (HId×Expression)→
((

Env
(A)
C ×Env

(A)
V

)
→
(
Env

(A)
C ×Env

(A)
V

))
add(A) (c, v)(envC , envV ) = addElement(A)(c, (c, ”length”), v, envC , envV )
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5.6.1 Soundness

Since we assume that the collection length is abstracted soundly and since we have already
shown that addElement(A) is sound, we can conclude that add(A) is sound as well.

5.7 Set At

Set at adds an element to a map at a given key. If the key is already present in the map, then
the existing value is replaced with the new value. Listing 5.3 shows an example where the value
ETHZ is added to a map at key Zurich.

Listing 5.3: Set value at key in a map

1 $c := c o l l e c t i o n s−>c r ea t e s t r i ng map ( ) ;
2 $c−>add ( ” Zurich ” , ”ETHZ” ) ;

We can express this operation using basic operations that we have already defined: In the
concrete as well as in the abstract semantics we first remove a potentially present element at
the given key and then add the given key-value pair to the collection.

setAt : (Ref ×V ×V)→ (Env→ Env)

setAt (c, k, v)(env) = env(2) :

env(1) = removeElement(c, key, env)∧
env(2) = addElement(c, k, v, env(1))

setAt(A) : (HId×Expression×Expression)→
(
Env(A) → Env(A)

)
setAt(A) (c, k, v)(env) = env(2) :

env(1) = removeElement(A)(c, k, env)∧
env(2) = addElement(A)(c, k, v, env(1))

5.7.1 Soundness

Since we only concatenate operations which we have already proven sound, we can conclude
that setAt(A) is sound as well.

5.8 Remove At (List)

If remove at is called on a list, the element at the given position is removed from the collection.
If the provided index is out of bounds, the list remains unchanged. Listing 5.4 shows an example
where the first element of a collection is removed. Since the key in a list represents the position
of the element in the list, the key of all the elements that have a greater key than the removed
element’s key need to be decreased by one.

Listing 5.4: Remove element at key in a list

1 $messages−>remove at ( 0 ) ;

For both, the concrete and the abstract semantics we can build this operation based on basic
operations which we have already defined: First we check whether an element with the given
key exists in the collection by using the containsKey operation. If this is not the case we simply
return the unchanged environment. Otherwise we remove the element with key k from the
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collection c and then we decrease the keys of all elements in c that have a greater key than k by
one. We can do this by concatenating the removeElement and the decreaseKeys operations.

removeAt : (Ref ×V)→ ((EnvC ×EnvV)→ (EnvC ×EnvV))

removeAt (c, k)(envC , envV ) =

{
(env

(1)
C , env

(2)
V ) if containsKey(c, k, envC , envV )

(envC , envV ) otherwise

(env
(1)
C , env

(1)
V ) = removeElement(c, k, envC , envV )∧

env
(2)
V = decreaseKeys(c, k, env

(1)
C , env

(1)
V )

removeAt(A) : (HId×Expression)→
((

Env
(A)
C ×Env

(A)
V

)
→
(
Env

(A)
C ×Env

(A)
V

))
removeAt(A) (c, k)(envC , envV ) =

(env
(1)
C , env

(2
V ) if containsKey(A)(c, k, envC , envV ) = {true}

(envC , envV ) if containsKey(A)(c, k, envC , envV ) = {false}(
envC tC env(1)C ,

envV tV env(2)V

)
otherwise

(env
(1)
C , env

(1)
V ) = removeElement(A)(c, k, envC , envV )∧

env
(2)
V = decreaseKeys(A)(c, k, env

(1)
C , env

(1)
V )

5.8.1 Soundness

To show that removeAt(A) is sound, we look at the three different cases that the removeAt(A)

operation distinguishes and show for each case that it is sound.

• In the first case we know that containsKey(A)(c, k, envC , envV ) = {true}. Because we
already know that the containsKey(A) operation is sound, we know that in the concrete
semantics containsKey(c, k, envC , envV ) = true in all Collection Environments. This
means that in the concrete and in the abstract the same concatenation of operations is
returned. For each of the concatenated operations, we know that it is sound. We can
therefore conclude for the first case that removeAt(A) is sound .

• In the second case we know that containsKey(A)(c, k, envC , envV ) = {false}. Because
containsKey(A) is sound, we also know that in the concrete semantics
containsKey(c, k, envC , envV ) = false in all Collection Environments. This means that
in both, the concrete and the abstract semantics the unchanged state is returned. We can
therefore conclude that removeAt(A) is sound for the second case as well.

• In the third case we know that containsKey(A)(c, k, envC , envV ) = {true, false}. We
therefore can not say whether the concrete removeAt operation returns the changed or
the unchanged environment. But in this case, the abstract removeAt(A) operation returns
the least upper bound of the changed and the unchanged environment. Therefore the third
case is sound as well.

We have shown for all three cases of the removeAt(A) operation that they are sound. We can
therefore conclude that removeAt(A) is sound.

5.9 Remove At (Map)

If remove at is called on a map, the element at the given key is removed from the collection. If
the key does not exist in the map, the map remains unchanged. Listing 5.5 shows an example
where an element at key Zurich is removed from a string map.
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Listing 5.5: Remove element at key in a map

1 $ u n i v e r s i t i e s−>remove at ( ” Zurich ” ) ;

For both, the concrete and the abstract semantics we can build this operation based on operations
that we have already defined.

First we check whether an element with the given key exists in the collection by using the
containsKey operation. If this is not the case we simply return the unchanged environment.
Otherwise we remove the element with key k from the collection c using the removeElement
operation.

removeAt : (Ref ×V)→ ((EnvC ×EnvV)→ (EnvC ×EnvV))

removeAt (c, k)(envC , envV ) =

{
(env

(1)
C , env

(1)
V ) if containsKey(c, k, envC , envV )

(envC , envV ) otherwise

(env
(1)
C , env

(1)
V ) = removeElement(c, k, envC , envV )

removeAt(A) : (HId×Expression)→
((

Env
(A)
C ×Env

(A)
V

)
→
(
Env

(A)
C ×Env

(A)
V

))
removeAt(A) (c, k)(envC , envV ) =

(env
(1)
C , env

(1)
V ) if containsKey(A)(c, k, envC , envV ) = {true}

(envC , envV ) if containsKey(A)(c, k, envC , envV ) = {false}(
envC tC env(1)C ,

envV tV env(1)V

)
otherwise

(env
(1)
C , env

(1)
V ) = removeElement(A)(c, k, envC , envV )

5.9.1 Soundness

The soundness of removeAt(A) for maps can be shown analogously to the soundness of removeAt(A)

for lists.

5.10 At

The at function returns the value that is stored in a collection at a given key. If the key is not
present in the collection, invalid is returned.

In the concrete semantics of at we use the containsKey function to determine whether an element
with key k is contained in a collection c or not. If the containsKey function returns false, then
the concrete semantics of at returns {invalid}. Otherwise a set containing the value field of
the Element with key k is returned (this Element can be found using the findElementsByKey
operation).

at : (Ref ×Expression)→ ((EnvC ×EnvV)→ (P(Elem× {”value”}) ∪ {invalid}))

at (c, k)(envC , envV ) =

{
V if containsKey(c, k, envC , envV )

{invalid} otherwise

where V = {(r, ”value”) : r ∈ findElementsByKey(c, k, envC , envV )}

In the abstract semantics we use the containsKey(A) function to determine whether a key k is
contained in the collection or not.

• If k is certainly contained in the abstract collection (containsKey(A) returns {true}), then
the value fields of all the Tuple Identifiers whose key field might be equal to k is returned.
These Tuple Identifiers can be found using the operation findElementsByKey(May).
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• If k is certainly not contained in the abstract collection (containsKey(A) returns {false}),
{invalid} is returned.

• If we don’t know whether k is contained in the collection (containsKey(A) returns
{true, false}), the least upper bound of the two other results (value fields of Tuple Iden-
tifiers and {invalid}) is returned.

at(A) : (HId×Expression)→
((

Env
(A)
C ×Env

(A)
V

)
→ (P(TId× {”value”}) ∪ {invalid})

)
at(A) (c, k)(envC , envV ) =


V if containsKey(A)(c, k, envC , envV ) = {true}
{invalid} if containsKey(A)(c, k, envC , envV ) = {false}
V ∪ {invalid} otherwise

where V = {(t, ”value”) : t ∈ findElementsByKey(May)(c, k, envC , envV )}

5.10.1 Soundness

To show that at(A) is sound we look at the three possible results of the operation separately.
For each case we argue that the result of at(A) over-approximates the result of at.

• In the first case containsKey(A) returns {true}. Since we have shown that containsKey(A)

over-approximates containsKey we know that containsKey in the concrete at function
must return true in all concrete Collection Environments. This means that the concrete
semantics returns the result of findElementsByKey over all concrete Collection Envi-
ronments and the abstract semantics returns the result of findElementsByKey(May). In
Theorem 3 we have shown that
findElementsByKey(May) over-approximates findElementsByKey. Therefore, this is
case sound.

• In the second case containsKey(A) returns {false}. For the same reason as in the first
case, the containsKey operation must return false. This means that both the abstract
and the concrete semantics return {invalid}. Therefore, the second case is sound as well.

• In the third case containsKey(A) returns {true, false}. This means that in the concrete
semantics, containsKey can either return {invalid} or the result of findElementsByKey.
But since the abstract semantic returns the least upper bound of {invalid} and the result
of findElementsByKey(Must), this case is also sound.

We have argued for all three cases that the output of at(A) over-approximates the output of at.
And therefore we can conclude, that at(A) is sound.



Chapter 6
Implementation

The analyses were implemented as an extension to the existing analysis infrastructure of Sample.
They use the already available mechanisms to run an analysis based on a least fixed point
computation. This chapter describes how we integrated the analyses in Sample.

6.1 Implementation of Analyses

Since Sample already provides an implementation for the value domain, the implementation
only needs to cover the Abstract Collection Environment. We extend the already existing non-
relational Heap Domain in Sample, such that it is also able to represent the Abstract Collection
Environment. We have implemented an individual Heap Domain for both the May and the Must
Analysis. Additionally we also implemented a Heap Domain that combines the May and the
Must Heap Domain as a cartesian product.

These Heap Domains offer basic operations such as adding a Tuple Identifier to a collection. All
those operations are not specific to TouchDevelop and could also be used to implement collection
analyses for other programming languages.

Figure 6.1 shows the structure of the domains for an analysis that uses the May Analysis as well
as the Must Analysis.

Figure 6.1: Structure of the domains with the new domains for the May and the
Must Analysis
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To run an analysis we combine one of the three Heap Domains with the Value Domain and
pass them as an argument to Samples least fixpoint computation. Depending upon which Heap
Domain is passed the May, the Must or the May and Must Analysis is executed.

6.2 Implementation of Semantics

The abstract semantics is the part of the implementation that is specific to TouchDevelop. They
operate on a state (a heap and a value domain) and use the basic operations that are defined
by these domains.

To implement the abstract semantics, we grouped the collections based on the operations that
they offer and defined abstract classes that implement common semantic operations. We distin-
guish between linear collections (sets and lists) and maps. The main difference is that the first
are accessed with a linear numeric key and the latter can be accessed with any type of key. We
further defined an abstract class for mutable collections, which are linear collections that also
offer update operations.

The specific collection types (e.g. StringMap) inherit their semantic operations from these
abstract classes. The class structure with a few examples of specific collection types is depicted
in figure 6.2.

Figure 6.2: Class Structure for the collection types

6.3 Abstraction of Collection Length

In Sample there already exists an abstraction of the collection length. This abstraction is imple-
mented using the same value domain that is used to abstract values of collection elements. For
each abstract collection the abstracted collection length is tracked with an individual identifier.
We implemented the abstract semantics of our analysis such that they update this identifier
when a collection is altered.

We also used the abstraction of the collection length to make the abstract semantics more
precise. When for example a list or a set is accessed we need to be able to determine whether
the provided index is in the bounds. Since lists and sets have a linear index that starts at 0, we
know that if the provided index is between 0 and the collection length minus 1, then there must
be an element at that index. We can use that to determine whether an access to a list or a set
can return an invalid object or not. We will see in Chapter 7 that this helps us to improve the
precision in many cases.



Chapter 7
Evaluation

The evaluation presented in this chapter shall show the benefits and the limitations of the
implemented technique. We compare four different analyses:

• Smashing Analysis: The Smashing Analysis is the analysis that was used before this
thesis to abstract collection elements in Sample. It abstracts all elements of a collection
with one summary node. Although this analysis already existed in Sample before, we
adapted it such that it can handle non linear keys (like they are used in maps) as well.
This means instead of having just one summary node for all the collection values, there
are now two summary nodes per collection. One represents all the keys and the other one
all the values of a collection. We use this analysis as a baseline to show how the newly
added analyses compare to it in terms of precision and performance

• May Analysis: This is the analysis that we described in this thesis as the May Analysis. In
the implementation of the analysis we summarize collection elements based on the program
point where they were added. We therefore are able to distinguish collection elements that
are added at different program points. The May Analysis tracks which elements may be
in a collection. Hence, it can be used to prove that an element is certainly not contained
in a collection.

• May And Must Analysis (standard lub): The third analysis combines the May and the
Must Analysis as described in this thesis. Additionally to the properties of the May
Analysis, this analysis can be used to show that an element certainly is contained in a
collection. In this analysis we use the standard least upper bound operator for the Must
Analysis.

• May And Must Analysis (extended lub): This analysis is the same as the third analysis
except that we use the extended least upper bound operator for the Must Analysis as
described in Chapter 4.

We split the evaluation of our analysis into three parts. First we run the analyses on a set of
hand constructed TouchDevelop scripts. To present how the analysis works on real world scripts
we show the results on a few real world scripts from the TouchDevelop cloud. To finally see the
implications of our analyses on a large number of TouchDevelop scripts we run the analysis on
over 5000 scripts from the TouchDevelop cloud and compared them in terms of precision and
performance.
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7.1 Case Studies

We are first going to show how the analyses compare to each other on a set of hand constructed
TouchDevelop scripts. The scripts are all fully functional but they do not have a meaningful
purpose. We constructed these scripts such that they are minimal but still illustrate how the
analyses work.

7.1.1 Key Access

The script shown in listing 7.1 constructs a Number Map with two elements, where one of them
is 0. Then the non-zero element is accessed and stored in the variable x. One can easily see that
x can never be 0 and therefore the division on line 7 is always safe.

Listing 7.1: Key access

1 action main ( ) {
2 $c := c o l l e c t i o n s−>create number map ( ) ;
3 $c−>s e t a t (100 , 2 ) ;
4 $c−>s e t a t (200 , 0 ) ;
5
6 $x := $c−>at ( 1 0 0 ) ;
7 $y := 4 / $x ;
8 }

This script highlights the difference between the Smashing Analysis the May Analysis and the
Must Analysis.

Remember that in the Smashing Analysis all elements are abstracted with one summary node.
Hence, we can not distinguish between the two elements in the map. With this analysis we
are therefore only able to prove that x is between 0 and 2. Notice that even a more precise
Numerical Domain would at most allow us to prove that x is either 0 or 2. Because we can
not prove that x 6= 0, we can also not prove that the division at line 7 is safe. The Smashing
Analysis therefore raises a false alarm, that at line 7 there might be a division by zero.

Let’s now look at the May Analysis. The May Analysis is able to distinguish between the two
elements in the collection. Therefore it would be able to prove that x 6= 0. But the May Analysis
only tracks whether an element might be in a collection. Remember that the semantics of the
Number Map’s at operation returns 0 if a key, that is not in the map, is accessed. Since the
May Analysis can not say that a key certainly is in the map, it must also consider the possibility
that 0 is returned from any collection access. Therefore we are again only able to prove that x
is either 0 or 2 and the May Analysis raises a false alarm as well.

The May and Must Analysis finally can not only distinguish the two elements but can also prove
that at key 100 there must be an element. It therefore has not to consider the possibility that the
collection access returns 0. Hence, it can prove that x = 2 and therefore also that the division
at line 7 is safe. No false alarm is raised.

7.1.2 Elements Added in Two Branches

The script in listing 7.2 shows a conditional where in both branches an element is added to the
collection at key Switzerland. Then the value stored at Switzerland is retrieved and posted to
the wall.
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Listing 7.2: Add an element to a map in two branches

1 action main ( ) {
2 $s := c o l l e c t i o n s−>c r ea t e s t r i ng map ( ) ;
3
4 i f ( wal l−>ask boo lean ( ”Choose” , ” Zurich , Bern” ) ) then {
5 $s−>s e t a t ( ” Switzer land ” , ” Zurich ” ) ;
6 }
7 else {
8 $s−>s e t a t ( ” Switzer land ” , ”Bern” ) ;
9 }

10
11 $c := $s−>at ( ” Switzer land ” ) ;
12
13 $c−>p o s t t o w a l l ( ) ;
14 }

With this example we want to highlight the effect of the extended least upper bound operator.
The property that we are interested in is whether the variable c can be invalid. We can easily
see that this can never be the case, since there is always a value stored at key Switzerland and
therefore the collection access at line 11 never returns an invalid object.

However with the Smashing and the May Analysis we are not able to tell whether the key
Switzerland is contained in the list since they do not track this information. They both raise a
false alarm at line 13 that a method is called on a possibly invalid object.

We need the May and Must Analysis to prove this property. However if we use the standard
least upper bound operator for the Must Analysis we loose the information that an element
must be in the key collection when we join the two abstract collections after the then and else
branch. Why this is the case is explained in section 4.8.5. Therefore the May and Must Analysis
with the standard least upper bound operator also raises a false alarm at line 13.

As soon as we activate the extended join operation for the Must Analysis we are able to show
that there must be an element in the collection with key Switzerland and we therefore can prove
that c is never invalid. The May and Must Analysis with the extended join operation therefore
does not raise a false alarm for this script.

One might assume that we get the same results for a script as shown in listing 7.3 where in both
branches of a conditional an element is added to a list.

Listing 7.3: Add an element to a list in in two branches

1 action main ( ) {
2 $s := c o l l e c t i o n s−>c r e a t e s t r i n g c o l l e c t i o n ( ) ;
3
4 i f ( wal l−>ask boo lean ( ”Choose” , ” Zurich , Bern” ) ) then {
5 $s−>add ( ” Zurich ” ) ;
6 }
7 else {
8 $s−>add ( ”Bern” ) ;
9 }

10
11 $c := $s−>at ( 0 ) ;
12 $c−>p o s t t o w a l l ( ) ;
13 }
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On first sight this seems reasonable, since both elements are added at key 0 which makes this
example very similar to the previous one. However this example will show that the extended
join operation does not have as big of an impact on the precision as expected.

In this example it is important to notice that we are using a collection that has a linear key.
This means, that if for example we know that the size of a collection is at least 2 there must
exist elements at index 0 and 1. We have described earlier that the abstraction of the collection
length already exists in Sample. In this example that abstraction gives us the information, that
after the two branches of the conditional are joined, the length of the list is equal to 1. The
semantics of the at operation for collections with linear keys checks whether the provided index
certainly is between 0 and the collection length minus 1. In our case we know that the collection
length is 1 and hence the collection access at index 0 can never return an invalid object. With
this additional information of the collection length we are able to prove that the variable c is
never invalid and therefore all three analyses do not raise a false alarm.

7.1.3 Relations between Variables and Collection Elements

In the script shown in listing 7.4 we add a number that we received as an argument to a collection.
Since we received the number as an argument, we know nothing about the value of it. We then
check whether the parameter is contained in the list. Only if we can prove that the parameter
is certainly in the list we are also able to prove that k is equal to 1 at line 10 and therefore no
division by zero can happen.

Listing 7.4: Add a parameter to collection

1 action c r e a t e ( x : Number) {
2 $c := c o l l e c t i o n s−>c r e a t e n u m b e r c o l l e c t i o n ( ) ;
3 $c−>add ( $x ) ;
4
5 $k := 0 ;
6 i f ( $c−>conta in s ( $x ) ) then {
7 $k := 1 ;
8 }
9

10 $x := 10 / $k ;
11 }

We use this example to show that our analysis can benefit from a relational value domain. Sample
provides relational numerical domains such as Octagons [15] by using the APRON library [12].
This means that it can track relations between different identifiers. In our example it is able to
track that the collection element at position 0 is equal to x.

The May and the Smashing Analysis both raise a false alarm in this example, because they can
not track whether an element is certainly contained in a collection.

But the Must Analysis combined with the relational value domain can capture that an element
which has the same value as x is certainly contained in the collection. Therefore we can prove,
that the condition $c→ contains($x) always evaluates to true and that k is always 1 at line 10.
Hence, he Must Analysis does not raise a false alarm in this example.

This shows that our analysis can use the benefits of relational value domains and that the
implemented technique can become more precise if the used value domain is more precise. If
we would use a non-relational numerical value domain which is not able to represent that the
collection entry at key 0 is equal to x, it would have been impossible to prove the desired
property.
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7.1.4 Contains Key

Listing 7.5 shows a script where a String Map is passed as an argument to an action. We don’t
know anything about the content of that map. But since we check whether there is an element
at key Zurich before we access it, we can be sure that this collection access never returns an
invalid object.

Listing 7.5: Contains key

1 action main ( c : String Map ) {
2 i f ( $c−>keys()−> conta in s ( ” Zurich ” ) ) then {
3 $c−>at ( ” Zurich ”)−>p o s t t o w a l l ( ) ;
4 }
5 }

With this script we want to show how the assume function works in our analysis. When the
then branch of the conditional at line 2 is entered, we can assume that an element at key Zurich
is contained in the collection. Therefore a new collection element with key Zurich is added to
the abstract collection. If we then access the element inside the then branch, the Must Analysis
is able to prove that there must be an element at key Zurich. Therefore it can be shown that
the collection access at line 3 never returns an invalid object. Hence, the Must Analysis does
not raise a false alarm.

The May Analysis and the Smashing Analysis do not track the information whether an element
must be in a collection or not. Hence, they can not prove that the collection access at line 3
never returns an invalid object. Both analyses raise a false alarm because a method on a possibly
invalid object is called.

7.1.5 Remove

The script shown in listing 7.6 takes a String Map as a parameter and removes the element at
key Zurich. It then checks whether the key is contained in the collection and if this is the case,
it performs a division by zero. However, one can observe, that the condition at line 3 does never
evaluate to true, because the key has been removed and therefore the division by zero is never
executed.

Listing 7.6: Remove an element from a collection

1 action main ( c : String Map ) {
2 $c−>remove ( ” Zurich ” ) ;
3 i f ( $c−>keys()−> conta in s ( ” Zurich ” ) ) then {
4 $x := 5 / 0 ;
5 }
6 }

With this example we want to show, how our analysis depends on the value domain. When the
remove operation is called at line 2, our analysis assumes for each key in the collection, that it
does not equal Zurich. But the value domain for strings that is used in Sample can not represent
the fact that an identifier does not equal a certain string. Therefore this assume operation has
no effect and all three analyses raise a false alarm.

If the string domain would be able to represent that an identifier does not equal a certain string,
we could prove that a division by zero will never occur.
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7.1.6 Object List

The script shown in listing 7.7 creates a Message with the text Hello world! and adds it to
an empty collection. We then check whether the message at position 0 in the list has the text
Hello world!. Only if this is the case a division by zero is avoided. But we can observe that the
condition at line 7 will always evaluate to true and therefore a division by zero can never occur.

Listing 7.7: Message list

1 action main ( ) {
2 $msgs := c o l l e c t i o n s−>c r e a t e m e s s a g e c o l l e c t i o n ( ) ;
3 $msg := s o c i a l−>c reate message ( ” He l lo world ! ” ) ;
4 $msgs−>add ($msg ) ;
5
6 $k := 0 ;
7 i f ( $msgs−>at(0)−>message()−> equa l s ( ” He l lo world ! ” ) ) then {
8 $k := 2 ;
9 }

10
11 $x := 4 / $k ;
12 }

With this example we want to show that our analysis can handle objects as well as primitive
types.

The Smashing Analysis, the May Analysis and the Must Analysis are all able to prove, that no
division by zero occurs and do not raise a false alarm. Notice, that the Smashing Analysis and
the May Analysis benefit from the collection length abstraction in order to determine that there
must be an element in the collection at key 0. Without the collection length abstraction, only
the Must Analysis would be able to prove desired property.

7.1.7 Adding Elements with a Loop

The script shown in listing 7.8 adds 10 elements to a Number Map using a loop. It then divides
4 by the value of the element stored at key 1 in the Number Map. Remember that the at method
of the Number Map returns 0 if the provided key does not exist. In this example would lead to
a division by zero. We can however see, that at key 1 there must be the value 2 and therefore a
division by zero can never happen.

Listing 7.8: Add elements to a map using a loop

1 action main ( ) {
2 $c := c o l l e c t i o n s−>create number map ( ) ;
3
4 for 0 <= i < 10 do {
5 $c−>s e t a t ( $ i , $ i +1);
6 }
7
8 $x := 4 / $c−>at ( 1 ) ;
9 }

With this example we want to show, how the analysis behaves if multiple elements are added to
a collection in a loop. Our analysis abstracts all Elements that were added at the same program
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point with one Tuple Identifier. This means that all Elements that are added to the collection
at line 6 are abstracted by the same Tuple Identifier.

In this example the Smashing Analysis and the May Analysis will both have one element in
the abstract collection after the loop. This abstract collection element summarizes all elements
added inside the loop.

The Must Analysis on the other hand will have no elements in the abstract collection, since it is
not sound to add summary elements to an abstract collection in the Must Analysis. This means,
that we can not track that the elements added inside the loop must be in the collection. Hence,
we are also not able to prove, that the collection access at line 8 never returns 0 and that the
division at line 8 is never a division by 0.

All three analyses therefore raise a false alarm in this example.

One easy way to improve the precision for such cases would be to perform a loop unrolling.
Then the elements would be added at individual program points and the Must Analysis could
track them.

Let’s now look at a variation of this example, that uses a list instead of a map. The script
shown in listing 7.9 adds 10 elements to a number collection. We then access the first element.
If we access a list at an index that does not exist, an invalid object is returned. However, we
can see that in this example the collection access at line 8 never returns an invalid object. We
can therefore safely use the retrieved number and post it to the wall.

Listing 7.9: Add elements to a list using a loop

1 action main ( ) {
2 $c := c o l l e c t i o n s−>c r e a t e n u m b e r c o l l e c t i o n ( ) ;
3
4 for 0 <= i < 10 do {
5 $c−>add ( $ i ) ;
6 }
7
8 $c−>at(1)−> p o s t t o w a l l ( ) ;
9 }

In contrast to maps, lists have linear keys. We can therefore use the information gained from
the collection length abstraction. In our example we know that the collection length at line 8
must be 10. Hence, we can prove that the collection access at index 1 never returns an invalid
object.

Therefore all three analyses do not raise a false alarm for this example.
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7.2 Real World Scripts

In this Section we want to demonstrate how the Must Analysis can improve the precision of real
world scripts retrieved from the TouchDevelop cloud.

To make the scripts easier to read we only present those parts of the source code that is relevant
for the example. Each script has an identifier that is printed in the title of each example. With
this identifier the complete scripts can be found in the TouchDevelop cloud using the following
URL pattern: https://www.touchdevelop.com/api/<identifier>/text.

7.2.1 Random Wisdom - csnh

Random Wisdom is a simple script from the TouchDevelop cloud. The user can click a button
to display a random wisdom on it’s screen. The random wisdom is retrieved as a JSON Object
from a web service. A JSON Object is not a typical collection but since its fields can be accessed
using their names as key we can represent it as a map from Strings to JSON Objects.

Listing 7.10: Random Wisdom (csnh) script from TouchDevelop cloud

1 action main ( ) {
2 wall−>add button ( ” sync ” , ”New Wisdom” ) ;
3 code−>wisdom ;
4 }
5
6 action wisdom ( ) {
7 $ re sponse := web−>c r e a t e r e q u e s t ( ” http : / / . . . ”)−>send ;
8 $ j s := $response−>co n t e n t a s j s on−> f i e l d ( ” quote ”)−> t o s t r i n g ;
9 wal l−>c l e a r ;

10 $ j s−>p o s t t o w a l l ;
11 meta private ;
12 }
13
14 event shake ( ) {
15 code−>wisdom ;
16 }
17
18 event tap wal l Page Button ( item : Page Button ) {
19 code−>wisdom ;
20 }

Once the script has retrieved the JSON Object, it directly accesses the quote field, in which the
text of the random wisdom is supposed to be stored. This is not safe, since the web service could
change its API and rename the field in which the random wisdom is stored. If this happens, the
script crashes. This is a very common error in TouchDevelop scripts. In fact we could not find
any script in which this corner case is handled correctly.

In this case all analyses correctly raise an alarm.

Corrected Version - vrhzzzsb

So far the alarm could correctly be detected. However to achieve this the Must Analysis would
not have been needed. It gets interesting as soon as the developer corrects his script based on
the alarm raised by the analysis.

https://www.touchdevelop.com/api/<identifier>/text
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To simulate this, we published a version of the script where the described corner case is han-
dled correctly by checking whether the field quote actually exists in the JSON response before
accessing it. The source code of the corrected wisdom action is shown in listing 7.11.

Listing 7.11: Corrected Random Wisdom (vrhzzzsb) script from the TouchDevelop cloud

1 action wisdom ( ) {
2 $ re sponse := web−>c r e a t e r e q u e s t ( ” http : / / . . . ”)−>send ;
3 $ j s := $response−>c o n t e n t a s j s o n ;
4 wal l−>c l e a r ;
5 i f $ j s−>keys−>conta in s ( ” quote ” ) then {
6 $ j s−> f i e l d ( ” quote ”)−>p o s t t o w a l l ;
7 }
8 else {
9 ”No wisdom found” −>p o s t t o w a l l ;

10 }
11 meta private ;
12 }

With this corrected version of the script the May Analysis still shows an alarm. However this
alarm is now a false alarm. The May Analysis does not have enough precision to prove that the
collection access is safe, since it is never able to determine whether a key certainly is present in
a collection or not.

The Must Analysis however can determine that inside the then branch at line 6 in the source
code, there must be an element in the collection with the key quote. And therefore it is able to
prove that the access to the key quote is safe and does not raise a false alarm.

We have found out that in most TouchDevelop scripts JSON Objects are not handled correctly.
Therefore most alarms that are currently raised for scripts containing JSON Objects are not
false alarms. However, if the developers correct their programs, we would not be able to remove
those alarms (which then would be false alarms) without the Must Analysis.

7.2.2 Accent Colors - mbly

This TouchDevelop script presents the user with a palette of colors. The user can pick a color
to show the ARGB (Alpha, Red, Green, Blue) values of the picked color.

Listing 7.12: Accent colors (mbly) script from the TouchDevelop cloud

1 // . . . //
2
3 action l i s t c o l o r s ( ) r e tu rn s ( l i s t : String Map ) {
4 $ l i s t := c o l l e c t i o n s−>c r ea t e s t r i ng map ;
5
6 $ l i s t −>s e t a t ( ”Lime” , ” f fA4c400 ” ) ;
7 $ l i s t −>s e t a t ( ”Lime 7” , ” Ffa2c139 ” ) ;
8 // . . . //
9 $ l i s t −>s e t a t ( ”Mauve” , ” Ff76608a ” ) ;

10 $ l i s t −>s e t a t ( ” Sienna ” , ” Ff7a3b3f ” ) ;
11 meta private ;
12 }
13
14
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15 action show ( ) {
16 $ c o l s := code−> l i s t c o l o r s ( ) ;
17 foreach s in $ c o l s where t rue do {
18 // . . . //
19 $tb−>set background ( $co l s−>at ( $s)−> t o c o l o r ) ;
20 // . . . //
21 }
22 }
23
24 // . . . //

In this example the script first creates a string map containing mappings from color names to
their ARGB values. It then iterates over that map of strings using a foreach loop. The loop
variable, in this example s, contains in each iteration a different key of the map. At line 19 the
map is accessed at this key s. Obviously, this access will never return an invalid object.

However, the May Analysis is not able to prove this property, because it can not determine if
a key must be present in a map. Hence, it raises a false alarm. In contrast to that, the Must
Analysis is able to capture that there must be an element with the given key in the map and it
does not raise a false alarm.

7.2.3 JSpaceTV Library - xpbx

This TouchDevelop script is a library that allows to remotely control a TV. It uses a global String
Map to store properties. This is a pattern that is commonly used in TouchDevelop scripts.

Listing 7.13 shows the parts of the scripts that store and access the properties.

Listing 7.13: JSpaceTV library (xpbx) script from the TouchDevelop cloud

1 // . . . //
2
3 var audio : String Map {}
4
5 // . . . ///
6
7 private action i n i t p a t h g l o b a l s ( ) r e tu rn s {
8 // . . . //
9 ( data−>audio ( ) ) := ( c o l l e c t i o n s −>c r ea t e s t r i ng map ( ) ) ;

10 data−>audio()−> s e t a t ( ”” , ”/1/ audio /volume” ) ;
11 data−>audio()−> s e t a t ( ” audio ” , ”/1/ audio /volume” ) ;
12 data−>audio()−> s e t a t ( ”volume” , ”/1/ audio /volume” ) ;
13 // . . . //
14 }
15
16 // . . . //
17
18 action volume get from TV ( ) r e tu rn s ( j son : Json Object ) {
19 $path := data−>audio−>at ( ” audio ” ) ;
20 $ j son := code−>j o in tSpaceReques t ge t ( $path ) ;
21 meta private ;
22 }
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We can see that only the Must Analysis is able to capture that the key audio must be contained
in the String Map data→ audio and that the collection access at line 20 therefore never returns
an invalid object. Hence, only the Must Analysis is able to avoid a false alarm in this case.

However, there currently exists a problem in Sample that by mistake detects all global variables
as summary nodes. In our example this means that the collection data → audio is considered
a summary collection which prevents us from adding elements to the collection in the Must
Analysis and hence also from avoiding he false alarm. To be able to prove the desired property
in this script we need to tell Sample manually that data→ audio is not a summary collection.

7.3 Experiments

To further evaluate the precision and the performance of the implemented technique we run the
analysis on 5107 real world scripts obtained from the TouchDevelop cloud. These are all the root
scripts in the TouchDevelop cloud which were created before May 23. 2013 and were reported
as not having compilation errors. We are interested in the precision and in the performance of
the analysis.

All the tests were executed on the following environment: Intel Core 2 Quad CPU Q9550 @ 2.83
GHz, 4 GB RAM, Ubuntu 12.04, Java SE Runtime Environment 1.7.0.

7.3.1 Precision

For the precision we only considered the scripts on which Sample did not raise an error. In total
these were 4422 scripts. On the other scripts either the compilation of the script was erroneous,
the Java Runtime Environment crashed, the analysis threw an exception or could not be finished
within 60 seconds. Out of these 4422 scripts 1909 use collections (including JSON Objects) and
could therefore potentially benefit from the Must Analysis.

We analyzed all the scripts with each of the four analyses and measured the total number of
warnings produced. This gives us an indication about the precision of the analyses, since a more
precise analysis does raise less false alarms. The total number of warnings raised by each of the
analyses for the 4422 scripts are denoted in table 7.1 and visualized in the diagram in figure 7.1

Table 7.1: Number of warnings measured on 4422 scripts

Analysis Number of warnings

Smashing Analysis 8653

May Analysis 8658

May and Must Analysis (standard lub) 7503

May and Must Analysis (extended lub) 7503



92 CHAPTER 7. EVALUATION

Summary Analysis

May Analysis

Must A
nalysis

Must A
nalysis 

(ext. lu
b)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
# Warnings

Figure 7.1: Number of warnings measured on 4422 scripts

We can see that the Must Analysis compared to the May Analysis reduces the number of
warnings remarkably. It has 1150 warnings less than the May Analysis. In total 61 scripts
produce less false alarms with the Must Analysis than they do with the May Analysis. Most of
these false warnings were produced by the May Analysis because it was not able to prove that
iterating over the keys of a map and then accessing the map at that key can never return an
invalid object. Whenever this object then is accessed or passed as an argument a false alarm is
raised. This case is also described in the example in Section 7.2.2.

Furthermore we can observe, that there is almost no increase in precision between the Smashing
Analysis and the May Analysis. One factor that influences this result, is that all the elements
that are added to a collection inside a loop are summarized as one element. In all these cases
there is no difference between the Smashing Analysis and the May Analysis. We expect the
May Analysis to become more precise in real world scripts, if a loop unrolling as explained in
the example in Section 7.1.7 would be performed.

We can also see, that the extended least upper bound operator was not able to reduce the
number of warnings in real world scripts. This mostly can be explained due to the fact that it
only brings an advantage in precision in very specific cases as explained in Section 7.1.2.

Problems and Further Improvements

We could reduce the number of false alarms in 61 scripts. We initially expected to be able to
decrease the number of false alarms in more scripts. The reasons that this was not the case are
manifolded:

• A lot of scripts do not correctly handle special collection types such as JSON Objects
or XML Objects. Often the collections are directly accessed at a key without checking
if it is actually contained in the collection. This means that many warnings considering
collections are correct warnings. However, if the programmers would correct their scripts
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in these cases, only the Must Analysis would be precise enough to avoid the false alarms,
as explained in the example in section 7.2.1. Among the analyzed scripts there are 329
scripts that use JSON Objects and for which this scenario applies.

• If a collection is stored in a global variable, Sample mistakenly detects this collection as
a summary collection. Because it is not sound to add elements to a summary collection
in the Must Analysis we are not able track which elements must be in these collections.
Although the analysis is still sound in these cases, we loose precision and are often not
able to prove the desired property.

• The Must Analysis usually only brings an advantage in precision, if the collections that we
are analyzing are maps. If the collection has a linear key (is a list or a set) we can use the
length abstraction to determine if at an accessed index there must be an element in the
collection. This already allows to prove that a collection access never returns an invalid
object.

• At the moment we do not perform a loop unrolling. This means that we can not gain any
information for the Must Analysis from elements that are added to a collection inside a
loop. We expect the results to improve if a loop unrolling is implemented.

• The precision for String Maps could be improved by using a relational String Domain.
Some scripts check whether a string that is retrieved non-deterministically (e.g. through
user input) is contained as a key in a map and then access the collection at that key. Only
a relational String Domain would allow us to be able to prove that such an access never
returns an invalid object.

7.3.2 Performance

For the performance measurements we analyzed 4635 scripts. Those were all the scripts where
the analysis either completed successfully or could not finish in under a minute in one or more
of the four analyses.

In the future the analysis shall be integrated into the TouchDevelop programming environment
to analyze scripts while they are written. To be of use for the developer, the analysis should
not take longer than a minute to be executed. When we run our experiments we therefore set
a timeout of 60 seconds for each script. We measured for each analysis, how many of the 4635
scripts timed out. The results are denoted in table 7.2 and visualized in figure 7.2

Table 7.2: The number of scripts scripts where the analysis run longer than a minute (out of
out of 4635 scripts)

Analysis Number of scripts timed out

Smashing Analysis 116

May Analysis 173

May and Must Analysis (stan-
dard lub)

195

May and Must Analysis (ex-
tended lub)

213
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Figure 7.2: Number of scripts timed out (upper bar) compared to number of
scripts not timed out (lower bar) with a timeout of 60 seconds

Furthermore we measured for each of the four analyses the average runtime per script over all the
4422 scripts that did not time out in any of the four analyses. The results of this measurement
are denoted in table 7.3 and visualized in figure 7.3.

Table 7.3: The average runtime of the analyses over 4422 scripts

Analysis Average runtime [sec]

Smashing Analysis 0.62

May Analysis 0.75

May and Must Analysis (standard lub) 0.82

May and Must Analysis (extended lub) 1.10
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Figure 7.3: Average run time of the analyses measured on 4422 scripts

The Smashing Analysis which is expectedly the fastest analysis is not able to analyze 2.6 percent
of the 4422 scripts in under a minute, whereas the slowest analysis the May and Must Analysis
with the extended least upper bound operator is not able to analyze 4.8 percent of the scripts
in under a minute. Although this is a significant difference, the May and Must Analysis is still
able to analyze most of the scripts in under a minute. From the average runtime measurements
we can learn that the extended least upper bound operator for the Must Analysis slows down
the analysis significantly. Since we have also seen that the extended least upper bound does not
bring an improvement in precision, we can conclude that at the moment it does not make sense
to use the extended least upper bound operator for the Must Analysis in practice.

Further Improvements

The current implementation handles the May and the Must Analysis independently. This also
means that we use different Tuple Identifiers for the May and for the Must Analysis. Therefore
the number of Tuple Identifiers that we have to track doubles, if we combine the two analyses.
This slows down the analysis remarkably. Instead of keeping separate Tuple Identifiers for the
May and the Must Analysis it would be possible to keep the same Tuple Identifiers for both
analyses and only track which Tuple Identifiers must be in the collection and which might be
in the collection. With this change we would reduce the number of identifiers that need to be
tracked by the value domain significantly. We expect that with this change the performance of
the May and Must Analysis would improve.



96 CHAPTER 7. EVALUATION



Chapter 8
Conclusion

We successfully designed, implemented and formalized two analyses: One that over-approximates
the elements in a collection and one that under-approximates the elements in a collection. We
presented a technique that works with different collection types such as maps, lists or sets. We
also defined, implemented and proven sound the concrete and the abstract semantics of collection
operations for the TouchDevelop programming language.

We implemented the analyses as an extension to Sample which allowed us to use the value and
heap domains as well as the analysis framework that were already implemented. Although the
semantics for the collection operations are specific to TouchDevelop, the rest of the implemen-
tation is done in a generic fashion such that it could be used for other programming languages
as well.

We could show on hand constructed and on real world TouchDevelop scripts that the Must
Analysis improves the precision significantly. Compared to the baseline (the Smashing Anal-
ysis) we could reduce the number of warnings measured on 4422 scripts from 8653 to 7503.
Additionally, we found out that a lot of TouchDevelop scripts are implemented poorly and do
not handle corner cases correctly. As a consequence, a lot of alarms concerning collections are
not false alarms. It can be expected that the Must Analysis will have a bigger impact on the
precision once the developers start to correct their TouchDevelop scripts based on the provided
alarms. We have also seen that the May Analysis which distinguishes individual elements based
on allocation site does not bring a big improvement in precision when analyzing TouchDevelop
scripts.

As expected, the performance of the analysis decreases when we do not summarize all collection
elements with a single tuple. It also decreases significantly if we additionally to the May Analysis
also run the Must Analysis. But we were still able to show that we can still analyze over 95% of
the scripts scripts from the TouchDevelop cloud in reasonable time. We also found out that the
extended least upper bound operator for the Must Analysis slows down the average run time of
the analysis significantly, but does not bring an improvement in precision for real world scripts.
It therefore does not make sense at the moment to use this extended least upper bound operator
in practice.

We can finally conclude that the Must Analysis is a valuable asset when analyzing TouchDevelop
scripts.
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8.1 Related Work

There has already been work done in the field of statically analyzing the content of collections.

Gopan et al. [9] for example presented a technique to analyze operations on arrays, such that
they can capture numeric properties of array elements. They partition array elements based
on numeric relationships between array indices and the value of variables. All elements of an
array that belong to the same partition are abstracted by one abstract element. The goal of
this partitioning is to isolate the array elements that are assigned to. This allows to perform
strong instead of weak updates and therefore improve the precision. Similar to our approach,
they distinguish individual elements of the array to improve the precision for array operations,
but in contrast to the work presented in this thesis it is only able to handle arrays. Furthermore
our approach focuses on the property whether an element must be in a collection or not.

Lev-Ami et al. [13] present a technique called TVLA (3-Valued Logic Analysis) to automatically
derive abstract semantics from concrete semantics based on logic predicates. They describe the
shape of the heap in the abstract state with predicates using 3-valued logic. For example the
information whether node u points to node v is represented with a predicate u(v). Similar
to our analysis they can then describe that u must point to v (u(v) = 1) that u may point
to v (u(v) = 1/2) or that u can not point to v (u(v) = 0). There has also been work done
to combine shape analysis such as TVLA with value domains [7], [10]. These techniques all
analyze the actual implementations of collections. This can become inefficient or imprecise if
the collections are implemented with complex data structures. In contrast to these techniques we
used a high-level representation of collections which allows to define simpler and more efficient
operations.

Marron et al. [14] also introduced a method that avoids analyzing the implementation of col-
lections by abstracting the collections based on their semantics. They extend an existing heap
analysis with semantics for high-level collection operations. They represent the semantics of
collection operations with a shape analysis framework. These operations allow to refine summa-
rized elements in the shape analysis such that strong instead of weak updates can be performed
and therefore the precision for collection operations can be increased. We pursuit a similar ap-
proach by not considering the actual implementation of the collections in the library but rather
defining a high-level representation of them. In contrast to the work of Marron et al. we make
use of the value domain to refine the semantics for collection operations.

8.2 Future Work

In this last Section we want to show a few possibilities, how the presented analyses could be
further extended and improved.

• Capture collection elements added inside a loop: We have shown in the case studies that
the presented analysis is currently not able to capture collection elements that are added to
a collection inside a loop. To be able to do this, it would be necessary to either implement
loop unrolling or to further refine the currently used abstraction of Elements.

• Reduce Number of Tuple Identifiers: We have seen that the combined May and Must
Analysis is significantly slower than the May Analysis. We have also elaborated that this
is caused by the fact, that in the combined May and Must Analysis twice as many Tuple
Identifiers as in the May Analysis need to be tracked. The efficiency of the presented
technique could be further improved by using the same Tuple Identifiers for the May and
the Must Analysis.
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• Support for composed keys: Beside the standard collections TouchDevelop also supports
more involved data structures called Records [18]. Records allow to have composed keys
(e.g. a key composed of a String value and a Number value). Our approach could be
extended to allow such types of keys as well.
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Appendix A
Symbols

The following tables give an overview of the expressions used in this thesis.

A.1 Set Operators

Name Symbol

Union ∪
Intersection ∩
Difference −

A.2 Notations

A.2.1 Function update

We often need to create a new function based on another function, where only one key maps to
a new value. We denote this in the following way: For a function f : A→ B and x ∈ A, y ∈ B

f [x 7→ y]⇔ g(a) =

{
y if a = x

f(a) otherwise

101
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A.3 Functions

Name Description Signature

αHId The abstraction function for Element abstraction P(Ref)→ P(HId)

γHId The concretization function for Element abstrac-
tion

HId→ P(Ref)

αV The abstraction function for the value environ-
ment

P(EnvV )→ EnvAV

γV The concretization function for the value environ-
ment

Env
(A)
V → P(EnvV )

γMay The concretization function for the May Analysis Env(A) → P(Env)

γMay
C The concretization function of the collection envi-

ronment for the May Analysis
Env

(A)
C → P(EnvC)

γMay
E The concretization function of the Element Set for

the May Analysis
P(TId)→ P(P(Ref))

αMay The abstraction function for the May Analysis P(Env)→ Env(A)

αMay
C The abstraction function of the collection environ-

ment for the May Analysis
P(EnvC)→ Env

(A)
C

αMay
E The abstraction function of the Element Set for

the May Analysis
P(P(Ref))→ P(TId)

γMust The concretization function for the Must Analysis Env(A) → P(Env)

γMust
C The concretization function of the collection envi-

ronment for the Must Analysis
Env

(A)
C → P(EnvC)

γMust
E The concretization function of the Element Set for

the Must Analysis
P(TId)→ P(P(Ref))

αMust The abstraction function for the Must Analysis P(Env)→ Env(A)

αMust
C The abstraction function of the collection environ-

ment for the Must Analysis
P(EnvC)→ Env

(A)
C

αMust
E The abstraction function of the Element Set for

the Must Analysis
P(P(Ref))→ P(TId)

tMay The least upper bound operator on two Abstract
Environments for the May Analysis

(Env(A) × Env(A))→ Env(A)

tMay
C The least upper bound operator on two Abstract

Collection Environments for the May Analysis
(Env

(A)
C × Env(A)

C )→ Env
(A)
C

tMust The least upper bound operator on two Abstract
Environments for the Must Analysis

(Env(A) × Env(A))→ Env(A)

lubRep The least upper bound operator with replacement
on two Abstract Collection Environments for the
Must Analysis

(
Env

(A)
C × Env(A)

C

)
→
(
Env

(A)
C ×Replacement

)
tMust
C The least upper bound operator on two Abstract

Collection Environments for the Must Analysis
(Env

(A)
C × Env(A)

C )→ Env
(A)
C



A.3. FUNCTIONS 103

Name Description Signature

getReplacements The function that cre-
ates a Replacement for
the least upper bound
of the Abstract Collec-
tion Environments for
the Must Analysis

Env
(A)
C × Env(A)

C )
→ Replacement

assignV The function to assign
a value in the Value En-
vironment

(Elem× {”key”, ”value”})× V × EnvV )
→ EnvV

assign
(A)
V The function to assign

a value in the Abstract
Value Environment

(
(TId× {”key”, ”value”})
×Expression× Env(A)

V

)
→ Env

(A)
V

assumeV The function to assume
an Expression in the
Value Environment

(Expression× EnvV )→ EnvV

assume
(A)
V The function to assume

an Expression in the
Abstract Value Envi-
ronment

(
Expression× Env(A)

V

)
→ Env

(A)
V

equalsV Checks whether an
identifier equals an
expression in the Value
Environment

((Elem× {”key”, ”value”})× V × EnvV )
→ {true, false}

equals
(A)
V Checks whether an

identifier equals an
expression in the
Abstract Value Envi-
ronment

(
(TId× {”key”, ”value”})× Env(A)

V

)
→ {true, false}

isBottom
(A)
V Checks whether even

the key or the value
field of a Tuple Iden-
tifier must be equal to
bottom in the Abstract
Value Environment

(Env
(A)
V ×Replacement)→ Env

(A)
V

replaceV The function that ap-
plies replacement to the
Abstract Value Envi-
ronment

(Env
(A)
V ×Replacement)→ Env

(A)
V

++ Join operation of Re-
placements

(Replacment×Replacement)→ Replacement
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A.4 Sets

For sets we also state how a variable that represents an element of the set is usually called.

Name Description Variable names

Ref Set of all memory locations of a pro-
gram.

r ∈ Ref

Elem Set of memory locations in which collec-
tion elements are stored (Elem ⊆ Ref)

e ∈ Elem

P(Elem) Concrete Element-Sets, defining which
Elements are in a concrete collection.

E ∈ P(Elem)

EnvC The Concrete Collection Environment
(Ref → P(Ref))

envC ∈ EnvC

V The set of concrete values consisting
of object-references and primitive values
(Number, Boolean, String)

v ∈ V

EnvV The Concrete Value Environment
((Ref × {key, value})→ V )

envV ∈ EnvV

Env The Concrete Environment (EnvC ×
EnvV )

env ∈ Env or (envC , envV ) ∈ Env

HId The Set of Heap Identifiers h ∈ HId
TId The Tuple Identifiers (P(HId)) t ∈ TId
Expression The set of Expressions that are used in

the value domain
expr ∈ Expression

P(TId) The Abstract Element-Set, defining
which Tuple Identifiers are in an ab-
stract collection

c(A) ∈ P(TId)

Env
(A)
C The Abstract Collection Environment

(HId→ P(TId))
env

(A)
C ∈ Env(A)

C

Env
(A)
V The Abstract Value Environment env

(A)
V ∈ Env(A)

V

Env(A) The Abstract Environment (Env
(A)
C ×

Env
(A)
V )

env(A) ∈ Env(A)

Replacement The replacements of Heap Identifiers
(P(HId)→ P(HId))

rep ∈ Replacement



Appendix B
General Proofs

Theorem 9. {X �R : X ⊇ T} ⊆ {X : X ⊇ (T �R)} for all sets R and T and � ∈ {∪,−}

Proof. We are going to show that if z ∈ {X�R : X ⊇ T} it follows that z ∈ {X : X ⊇ (T �R)}
which by the definition of ⊆ proves the theorem.

z ∈ {X �R : X ⊇ T}
→ (z = X �R) ∧ (X ⊇ T )

Since (X ⊇ T ) → ((X − R) ⊇ (T − R)) and (X ⊇ T ) → ((X ∪ R) ⊇ (T ∪ R)) for all sets X,T
and R

(z = X �R) ∧ (X ⊇ T )
→ (z = X �R) ∧ (X �R ⊇ T �R)
→ z ⊇ (T �R)

And since we have shown that z ⊇ (T �R) we can conclude z ∈ {X : X ⊇ (T �R)}

Theorem 10. {X�R : X ⊆ T} ⊆ {X : X ⊆ (T �R)} for all sets R and T and � ∈ {∪,−}

Proof. We are going to show that if z ∈ {X�R : X ⊆ T} it follows that z ∈ {X : X ⊆ (T �R)}
which by the definition of ⊆ proves the theorem.

z ∈ {X �R : X ⊆ T}
→ (z = X �R) ∧ (X ⊆ T )

Since (X ⊆ T ) → ((X − R) ⊆ (T − R)) and (X ⊆ T ) → ((X ∪ R) ⊆ (T ∪ R)) for all sets X,T
and R

(z = X �R) ∧ (X ⊆ T )
→ (z = X �R) ∧ ((X �R) ⊆ (T �R))
→ z ⊆ (T �R)

And since we have shown that z ⊆ (T �R) we can conclude z ∈ {X : X ⊆ (T �R)}
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Appendix C
Replacement Concatenation

In some situations it is desirable to concatenate two Replacements. The goal of the concatenation
is to find a Replacement such that when it is applied to a value domain it produces the same
result as if the two Replacements were applied consecutively.

Formally, let rep1 and rep2 be two Replacements, then the concatenation operation � finds a
Replacement rep = rep1 � rep2 such that for all Abstract Value Environments the following
holds:

replaceV

(
replaceV

(
env

(A)
V , rep1

)
, rep2

)
= replaceV

(
env

(A)
V , rep

)
If we have for example two Replacements rep1 = [{hId1} → {hId2}] and rep2 = [{hId2} →
{hId3}] the concatenation produces a new Replacement rep = [{hId1} → {hId3}].

The concatenation operator needs to exchange all ids in the right Replacement ’s from set that
occur in one of the right Replacement ’s to sets with the value of the right Replacement ’s from
set. Furthermore the concatenation needs to preserve all Replacements that are not affected by
an identifier exchange.

We formally define the concatenation operation � on Replacements as follows:

�: (Replacement×Replacement)→ Replacement

rep1 � rep2 =

 f → t : (l ∈ dom(rep1) ∧ f = l ∧ t = (rep1(l)− (
⋃

I∈dom(rep2)
I)))∨

(r ∈ dom(rep2) ∧ f = replace(r, rep−11 ) ∧ t = rep2(r))∨
(f ∈ ((

⋃
I∈dom(rep1)

rep1(I)) ∩ (
⋃

I∈dom(rep2)
I)) ∧ t = ∅)


where rep−1 is the inverse function of the Replacement rep and

replace : (P(HId)×Replacement)→ P(HId)

replace(S, rep) = (S − (∪I∈dom(rep)I)) ∪ (∪I∈dom(rep)rep(I))
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