
Optimization of slice encoding in Gobra
Bachelor’s Thesis Project Description

Zdeněk Šnajdr
Supervised by Dionysios Spiliopoulos, Prof. Dr. Peter Müller

Department of Computer Science, ETH Zürich
Zürich, Switzerland

March 2023

1 Introduction

Gobra is an automated, modular verifier for Go code. It was developed by the Programming Methodology
Group at ETH Zurich and serves as a frontend for Viper, translating annotated Go code into Viper AST
and then utilizing the Viper verification language to perform formal verification. One of the key strengths
of Gobra is its support for a large subset of the Go programming language, allowing developers to leverage
the benefits of formal verification without sacrificing the flexibility and expressiveness of the Go language.
By translating Go code into Viper, Gobra provides a rigorous way of verifying code correctness, helping
to prevent errors, bugs, and other issues that can lead to software vulnerabilities. This makes it a valuable
tool for developers who want to ensure the correctness, safety, and security of their code.

Viper Intermediate Language is designed to simplify the verification of programs that involve mutable
state by providing built-in support for reasoning about program state using a form of separation logic.
Viper has a syntax that is similar to C, and it supports both sequential and concurrent programming
paradigms. Viper supports writing specifications and contracts. This makes it easy to verify programs
using formal methods, and it enables developers to define and enforce correctness properties on their
programs. The goal of Gobra is to improve the overall reliability and security of Go programs by reducing
the risk of bugs or vulnerabilities.

2 Motivation

One of the data structures supported by Gobra are slices. A slice offers a dynamically-sized, flexible view
of the elements of an array. Slices are a commonly used data structure in Go for a variety of tasks, such
as manipulating and processing portions of data stored in large arrays.

In Go, there is no direct concept of a subarray like there is for a subslice. At the moment, subslices are
part of the current enconding and the functionality for subslices is automatically added to the translated
Viper code when there is syntax for slicing a slice present in the code. Nevertheless, there are numerous
cases where no subslicing operation takes place. In such cases an alternative encoding of slices in Gobra
might be a better fit. The goal of such approach is to use different encodings of slices depending on the
requirements of each function. Specifically, we want to use a simpler encoding for functions that do not
use any form of subslicing, and the current encoding with subslicing functionality for functions that have
instances of subslicing. Optimizing the current encoding of slices in Gobra, with modified behavior for
handling subslices, should improve the performance of programs that heavily use these data structures.
The resulting time improvement in the verification process could impact the overall performance of the
code.

Listing 1 serves as an illustrative example. In the last line of the main function there is a function call
in the assignment with a subslice as a parameter. The function sum sums up the elements of the given slice.
Notice that the generated Viper code includes the functionality for creating and handling subslices. In 2,
the first axiom is triggered when we use slen and states that o + c <= (ShArraylen(a):Int) over the
slice constructor. The second axiom states that (soffset(s):Int) + (scap(s):Int) <= (ShArraylen

((sarray(s):ShArray[T])):Int) for all Slice[T]. The offset is actually only needed for subslicing and

1

is often triggered and used even when it is unnecessary as both of these predicates can be dropped when
no subslicing takes place in the code.

This additional functionality for subslicing represents an overhead during the verification process.
However, there is no need to create a subslice for the function parameter since only the values pointed
to by the slice are important. In fact, one could use an alternative encoding such that the given Gobra
code translates into Viper without the need for subslicing. In this example, the idea is to verify the sum
function with the simpler encoding and the main function with the current encoding.

Both encodings, the current one and the new one, are meant to be used in parallel. The first step
towards implementing the new encoding would be to create a basic implementation in Gobra for all
functions that do not use subslicing. This can be used to determine the performance of the new encoding
against the existing encoding.

Once the new encoding has been tested, the next challenge would be to create a syntactic check that
can determine which encoding is most appropriate for each function. This would involve analyzing the
code to identify any instances of subslices and then deciding whether to use the current or new encoding
based on the code requirements.

3 Core Goals

1. Design a simpler function-specific encoding for slices that does not support subslicing

The current encoding represents verification overhead when subslicing is not needed. The simpler
encoding solves this issue by leaving out the support for subslicing for functions that do not need
it.

2. Prototype the said encoding in Gobra

This will replace the current encoding just for evaluating the performance of the new encoding in
functions where it is suitable.

3. Evaluate the speedup compared to the current encoding

4. Implement syntactic check for choosing the correct encoding for the method

The purpose of the syntactic check is to decide if the simpler encoding can be used for a particular
function. Otherwise the current encoding will be used.

4 Extension Goals

1. Investigate if the slice encoding can be chosen in a more fine-grained manner instead of per function

2. Explore more function-specific encodings

References

[1] A Tour of Go. https://go.dev/tour/list.

[2] Gobra. https://github.com/viperproject/gobra.

[3] Viper Tutorial. https://viper.ethz.ch/tutorial/.

2

https://go.dev/tour/list
https://github.com/viperproject/gobra
https://viper.ethz.ch/tutorial/

Listing 1: Gobra

package main

func main () {
nums@ := [5] i n t {1 , 2 , 3 , 4 , 5}
s l i c e := nums [0 :]
s := sum(s l i c e [1 : 4])

}

r e qu i r e s f o r a l l k i n t : : 0 <= k && k < l en (x) ==> acc(&x [k])
ensure s f o r a l l k i n t : : 0 <= k && k < l en (x) ==> acc(&x [k])
func sum(x [] i n t) (r e s i n t) {

var l ength = len (x)
sum := 0

inva r i an t 0 <= i && i <= len (x)
i nva r i an t f o r a l l k i n t : : 0 <= k && k < l en (x) ==> acc(&x [k])
f o r i := 0 ; i < l ength ; i++ {

sum += x [i]
}
re turn sum

}

Listing 2: Excerpt from the Slice domain

axiom de c on s t r u c t o r o v e r c on s t r u c t o r l e n {
(f o r a l l a : ShArray [T] , o : Int , l : Int , c : Int : :

{ (s l e n ((smake (a , o , l , c) : S l i c e [T])) : Int) }
0 <= o && (0 <= l && (l <= c && o + c <= (ShArraylen (a) : Int))) ==>
(s l e n ((smake (a , o , l , c) : S l i c e [T])) : Int) == l)

}

axiom {
(f o r a l l s : S l i c e [T] : :

{ (s o f f s e t (s) : Int) , (scap (s) : Int) }
{ (ShArraylen ((sa r ray (s) : ShArray [T])) : Int) }
(s o f f s e t (s) : Int) + (scap (s) : Int) <=
(ShArraylen ((sa r ray (s) : ShArray [T])) : Int))

}

3

	Introduction
	Motivation
	Core Goals
	Extension Goals

