
Optimization of Slice Encoding in
Gobra

Bachelor’s Thesis

Zdenek Snajdr

May 2023

Advisors: Prof. Dr. Peter Müller, Dionysios Spiliopoulos

Department of Computer Science, ETH Zürich

Abstract

Gobra is a deductive verifier for Go. It translates annotated Go code
into the Viper intermediate verification language. Slices are a common
data type in Go. The current way slices are translated by Gobra induces
overhead for functionality that is not leveraged by all methods or func-
tions. As a result, specific handling of slices in those methods provides
a performance gain. This thesis introduces a new method-specific en-
coding for slices in Gobra. It can be used for methods without slicing
expressions. The aim is to mitigate performance problems in Gobra.
Finally, the syntactic check assures the use of the right encoding for
each method.

i

Contents

Contents iii

1 Introduction 1

2 Background 3
2.1 Go . 3

2.1.1 Slices . 3
2.2 Viper . 5

2.2.1 Domains . 5
2.2.2 Contracts . 5
2.2.3 Permissions . 6
2.2.4 Inhaling and Exhaling 7

2.3 Gobra . 8
2.3.1 Permissions in Gobra 9

3 Understanding The Existing Slice Encoding 11
3.1 Design . 11

3.1.1 Arrays as Basis . 11
3.1.2 Injectivity . 12

3.2 Specification . 13
3.2.1 Domain . 13
3.2.2 Initialization and Declaration 14

4 Proposed Slice Encoding 15
4.1 Objectives . 15
4.2 Design . 15

4.2.1 Representation of Slices 16
4.2.2 Creating Slices . 16
4.2.3 Injectivity . 16

4.3 Specification . 17

iii

Contents

4.3.1 Domain . 17
4.3.2 Slice Creation . 18

5 Evaluation 19

6 Syntactic Check for Slice Encoding 23
6.1 Design . 23
6.2 Implementation . 24
6.3 Further Optimization . 24

7 Future Directions 27
7.1 Granularity . 27
7.2 Method-specific Encoding for Other Data Types 28

8 Conclusion 31

A Code Appendix 33

Bibliography 37

iv

Chapter 1

Introduction

Program correctness is the central goal of formal verification of software
programs. The verification process has to be not only sound but also fast.
The latter is especially of importance when dealing with large code bases.

Gobra [16] is an automated deductive verifier [7] for the programming lan-
guage Go [4]. Automated verification using Gobra makes ensuring the cor-
rectness of Go programs easier. Verification is carried out by translating
Go programs into the Viper intermediate verification language [8], which is
part of the Viper verification infrastructure (Figure 1.1). Furthermore, this
infrastructure contains two verification back-ends; both leverage the Z3 SMT
solver [3]. Since the verification relies on Viper, functionality and behavior
of Go programs have to be transferred faithfully. Such translation is main-
tained by the encoding process that defines how data types, functions, and
other parts are translated. One way to make the verification faster is to adapt
the translated code to the needs of specific functions or methods. As a result,
the same data type can be represented through different Viper code depend-
ing on context, reducing the workload for the SMT solver. For simplicity
reasons, functions and methods will be referred to as members in the rest of
the thesis.

Slices are a commonly used data type in Go for a variety of tasks, such as
manipulating and processing portions of data stored in large arrays. Despite
their simple representation in Go, there are many ways to encode them in
Viper; the main constraint being equivalent behavior and functionality to
the original program. Since not every member requires all the features, the
translated Viper code can leverage this by proper encoding based on context.
The current implementation supports only one slice encoding that covers all
the features of slices in Go. The way this encoding represents slices in Viper
leads to verification overhead for members that only use a subset of the
functionality of slices. Having a specialized encoding for slices based on the
context and needs can speed up the verification and prevent timeout.

1

1. Introduction

Figure 1.1: Viper infrastructure (Source: Viper Tutorial [15])

In the thesis an alternative simpler slice encoding for members that do not
contain slicing expressions is introduced. The members which require the
complete functionality will still use the existing encoding. Syntactic check
of the program before the translation assures the use of suitable encoding
for each member. The introduction of a specialized encoding promises less
time spent in the Z3 Theorem Prover, the SMT solver used by Viper.

The first step was to design a function-specific encoding based on the re-
quirements and the existing encoding. We prototyped and tested the design
before implementing it in Scala. After the implementation of the encoding
was done the next step was to evaluate the speed up and soundness. The
final phase was to create a syntactic check to allow for further development
and work with the simpler encoding.

The thesis is divided into eight chapters. Chapter 2 summarizes the technical
background essential for the thesis. Chapters 3 to 4 introduce the current
and the proposed encoding for slices in Gobra. Chapter 5 examines the
evaluation of chosen programs in the proposed encoding against the current
one; Chapter 6 focuses on a syntactic check for slice encodings and finally
Chapter 7 discusses future directions of encodings in Gobra.

2

Chapter 2

Background

This chapter provides a technical background for the thesis. Section 2.1
describes the basics of slices in Go and Section 2.2 introduces code structure
and heap access permissions in the intermediate verification language Viper.
Last Section 2.3 comments on some basic features of Gobra. In this chapter,
a substantial portion of the content has been sourced and adapted from the
Viper and Gobra tutorial [15][6].

2.1 Go

The Go programming language [4], also known as Golang, is an open-source
high-level programming language developed at Google. It was designed
with simplicity, efficiency and reliability in mind to tackle problems intro-
duced by multicore processors, networked systems, massive computation
clusters, etc.

2.1.1 Slices

Slices are an important feature of Go offering a flexible way to work with
dynamically-sized parts of arrays. A slice consists of a pointer to the under-
lying array, length, and capacity. A slice itself does not store any data but
rather serves as a pointer to certain part of an array. For this reason, changes
in the slice modify also the corresponding elements of the underlying array
and vice versa, and these changes are visible to other slices which share the
same part of the underlying array.

The length of a slice represents the number of elements currently accessible
within the slice and the capacity indicates the maximum number of elements
that the slice can hold without the need to resize. A slice might be empty,
i.e. the length is zero. The value of such slice is nil.

3

2. Background

An array in Go always has a fixed size whereas a slice supports dynamic
resizing which allows to append or remove arbitrary number of elements.
This might be one of the reasons why in practice, slices are more common
than arrays. A slice can be initialized and declared directly or it can be
implicitly created from an array by slicing. The following code listings show
both variants.

1 arr := [5]int{1, 2, 3, 4, 5}

2 s1 := arr[1:4]

3 s2 := arr[:3]

4 s3 := arr[3:]

Listing 1: Slicing in Go

arr is an array with five elements and s1, s2 and s3 are slices created im-
plicitly by slicing arr. Any array can be sliced by specifying the inclusive
lower and the exclusive upper bound, separated by a colon (arr[low:high]).
However, one may omit the lower or upper bound and their default values
will be used instead. The default values are zero and the length of the slice
respectively.

1 s1 := make([]int, 3, 5)

2 s2 := make([]int, 5)

3 s3 := []int{1, 2, 3}

Listing 2: Direct slice declaration in Go

Another way to declare a slice is through a slice literal []t{elems}. t rep-
resents the member type and elems the elements accessible within the slice.
The expression make([]t, len, cap) declares a slice with the length len

and optionally capacity cap with default elements of the type t. When no
value for cap is specified, the value of len is used. A slice can be resized
by specifying new length (if still within capacity) or by simply slicing again
with new bounds.

1 slice1 := []int{1, 2, 3, 4, 5}

2 slice1 = append(slice1, 20, 21)

4 slice2 := []int{4,5,6}

5 slice1 := append(slice1, slice2...)

6 copy(slice1, slice2)

Listing 3: Append and copy

4

2.2. Viper

Two very useful methods are append(slice, elems) and copy(dest, src).
The method append appends an element or a slice at the end of the current
slice. The dots, ’. . . ’, after slice2 are necessary when appending the el-
ements of one slice to another. copy copies data from src to dest. The
method returns the number of elements copied.

Other operations such as retrieving and setting a value of a slice element
work the same way as for arrays and are not mentioned here.

2.2 Viper

Viper [8] is a verification infrastructure which contains Viper intermediate
verification language as well as two verification backends; this language is
designed to simplify the verification of programs that involve a mutable
state. It uses a form of separation logic [11] to provide built-in support
for reasoning about program state. Viper has a syntax similar to C, and it
supports both sequential and concurrent programming paradigms. Viper
supports writing specifications and contracts, which makes it easy to verify
programs using formal methods. It is mainly used as an intermediate veri-
fication language between a frontend (e.g. Gobra [16], Prusti [1], etc.) and
an SMT encoding. The goal of Viper is to improve the overall reliability and
security of programs by reducing the risk of bugs or vulnerabilities.

2.2.1 Domains

Domains in Viper allow the introduction of additional types not innate to
Viper. Functions and axioms are used to define their properties. A domain
consists of a name for the new type and a block where function declara-
tions, also called domain functions, and axioms can be defined. Functions
declared in a domain are global and can be used anywhere in the Viper
program. These domain functions are always abstract, lacking a defined
implementation body, and cannot have preconditions; hence, they can be ap-
plied in any state. The meaning of these domain functions is derived from
domain axioms, which are global and establish properties assumed to be
true in all states. Domain axioms should be well-defined across all states
and must not reference heap values or permission amounts. Typically, they
are expressed as first-order logic assertions, often involving quantification
[15].

2.2.2 Contracts

Contracts in program verification refer to formal specifications that provide
means to specify the intended behavior or properties of a member. There
are three main types of contracts commonly used in program verification:

5

2. Background

1 domain MyDomain {

2 function foo(): Int

3 function bar(x: Bool): Bool

5 axiom axFoo { foo() > 0 }

6 axiom axBar { bar(true) }

7 axiom axFoobar { bar(false) ==> foo() == 3 }

8 }

Listing 4: Domain in Viper

preconditions, postconditions, and invariants. A precondition specifies the
conditions that must be satisfied for a member to be called. Further rea-
soning about the program behavior is based upon assumptions defined by
preconditions. A postcondition describes the expected behavior or proper-
ties that should hold true after returning from a member call, e.g. it can
describe the desired output. The third most common type of contract is an
invariant. An invariant is a property that remains true throughout the exe-
cution of a program or a specific code section. Invariants are necessary for
reasoning about loops, data structures, or critical sections of code.

2.2.3 Permissions

Viper is used for verifying heap-manipulating programs and employs im-
plicit dynamic frames [12], a variant of separation logic [11], to support
reasoning about mutable heap data. In Viper, every heap location is linked
to an access permission, which has to be transferred between members dur-
ing calls and returns through contracts. Access to a location or member
invocation is only possible if the appropriate permission is held [15]. The
permission to access a heap location x is denoted by acc(x). This acces-
sibility predicate is not duplicable, i.e. acc(x) does not entail acc(x) &&

acc(x), where && is separating conjunction.

When a method reads from or modifies heap locations, it requires access
permissions in its precondition. This guarantees that the caller must transfer
permissions to the method. The access permissions in the postcondition
ensure that the they are returned upon returning from a call. acc(x) is
semantically equal to acc(x, write). Viper offers fractional permissions,
a rational number between 0 and 1. Non-zero means read and 1 means
write access. An exclusive permission (write) to a heap location can be
held at most once. Fractional permission to the same heap location can be
held more than once are summed up, however, the permission amount to a
location can never exceed 1.

Permissions can also be quantified with the forall quantifier like in List-
ing 6. The general form of this quantifier is forall [vars] :: [triggers]

6

2.2. Viper

1 method set(x: Ref, i: Int)

2 requires acc(x.f) && x.f < i

3 ensures acc(x.f) && x.f == i

4 {

5 x.f := i

6 }

Listing 5: Pre- and post-conditions in Viper

A where [vars] is a list of comma-separated declarations of variables which
are being quantified over, [triggers] consists of trigger expressions in curly
braces, and A is a Viper assertion potentially including the quantified vari-
ables. The purpose of the triggers is to inform the SMT solver to instantiate
the quantifier only when it encounters expressions of forms matching the
trigger. This allows for element-wise specification of data structures such as
arrays or graphs. Listing 6 models a binary tree, i.e. each node has at most
two children. The preconditions provide permission to access the first and
second fields of all nodes n.

1 field first : Ref

2 field second : Ref

4 method inc(nodes: Set[Ref], x: Ref)

5 requires forall n:Ref :: { n.first } n in nodes ==>

6 acc(n.first) && (n.first != null ==> n.first in nodes)

7 requires forall n:Ref :: { n.second } n in nodes ==>

8 acc(n.second) && (n.second != null ==> n.second in nodes)

9 requires x in nodes

10 {

11 var y : Ref

12 if(x.second != null) {

13 y := x.second.first // permissions covered by preconditions

14 }

15 }

Listing 6: Quantified permissions in Viper

2.2.4 Inhaling and Exhaling

Permissions to heap locations can also be managed by inhale and exhale

statements. The process of gaining permission (which happens in the callee),
is called inhaling permissions; the opposite process of losing permission
(in the caller) is called exhaling. Both operations update the amount of
held permissions. From the caller’s perspective, permissions required by a
precondition are removed before the call, and permissions guaranteed by a
postcondition are gained after the call returns. Conversely, from the callee’s

7

2. Background

perspective, the opposite occurs.

1 field f: Int

3 method set_inex(x: Ref, i: Int) {

4 inhale acc(x.f)

5 x.f := i

6 exhale acc(x.f)

7 }

Listing 7: Inhale and exhale in Viper

Inhaling and exhaling is not only used for permissions, moreover, constraints
on values may also be specified. Viper allows explicit exhaling or inhaling
via the statements exhale A and inhale A, where A is a Viper assertion such
as acc(x.f) && i < x.f. Inhaling A means gaining permissions required
by A and also assuming that the constraints in A hold; exhaling A means as-
serting that the constraints in A hold and giving up permissions expressed
by A. From a caller’s perspective, pre- and post-condition in Listing 5 can be
seen as syntactic sugar for appropriate exhale and inhale statements before
and after a call to the member.

2.3 Gobra

Gobra [16] is a modular, deductive program verifier [7] for Go. It was devel-
oped by the Programming Methodology Group at ETH Zurich and serves
as a frontend for Viper, translating Go code annotated with contracts and as-
sertions into the Viper intermediate verification language [8] and then using
an existing SMT solver [3] to perform formal verification. Gobra supports a
large subset of the Go programming language, allowing developers to lever-
age the benefits of formal verification directly in the existing Go code. Gobra
helps to prove memory safety, crash safety and data-race freedom to prevent
errors, bugs, and other issues that can lead to software vulnerabilities. This
makes it a valuable tool helping developers to ensure correctness, safety,
and security of their code. One of Gobra’s applications is VerifiedSCION
[14], a project focused on verifying the SCION Next-Generation Internet ar-
chitecture [2] that aims to provide secure routing and forwarding, alongside
numerous other desirable properties.

Gobra uses contracts as a basis for reasoning about code correctness. In
Listing 8, a caller of the method sum must guarantee the preconditions and
the postconditions must hold upon returning from a call. If a pre- or post-
condition is not satisfied, Gobra throws an error and aborts the verification.
Gobra supports deterministic boolean expressions (e.g. x > y + z), impli-

8

2.3. Gobra

1 requires 0 <= n // precondition

2 ensures sum == n * (n+1)/2 // postcondition

3 func sum(n int) (sum int) {

4 sum = 0

6 invariant 0 <= i && i <= n + 1 // conjoined invariant

7 invariant sum == i * (i-1)/2

8 for i := 0; i <= n; i++ {

9 sum += i

10 }

11 return sum

12 }

Listing 8: Gobra code

cations (==>), conditionals (cond ? e1 : e2), universal quantifiers (e.g.
forall x int :: x >= 5 ==> x >= 0), and many other assertions. [6]

2.3.1 Permissions in Gobra

Since Gobra is a frontend for Viper, permissions in Gobra work similarly
to permissions in Viper. acc(&x.f) can be understood as permission to
the heap location &x.f. Permissions to heap locations are declared in pre-
and postconditions which are in Gobra denoted with requires and ensures

respectively. Analogously to Viper, permissions can be quantified for spec-
ifying permissions to potentially unbounded number of heap locations, as
you can see in Listing 9.

1 requires forall k int :: 0 <= k && k < len(s) ==> acc(&s[k], 1/2)

2 ensures forall k int :: 0 <= k && k < len(s) ==> acc(&s[k], 1/2)

3 ensures isContained ==> 0 <= idx && idx < len(s) && s[idx] == x

4 func contains(s []int, x int) (isContained bool, ghost idx int) {

6 invariant 0 <= i && i <= len(s)

7 invariant forall k int :: 0 <= k && k < len(s) ==> acc(&s[k], 1/4)

8 for i := 0; i < len(s); i += 1 {

9 if s[i] == x {

10 return true, i

11 }

12 }

14 return false, 0

15 }

Listing 9: Function in Gobra with permissions

9

Chapter 3

Understanding The Existing Slice
Encoding

This chapter examines the objectives, design, and specification of the current
encoding of slices in Gobra.

The existing encoding of slices in Gobra supports a large subset of the fea-
tures of slices in Go. The encoding process serves as a bridge between the
Go programming language, which is widely used for software development,
and Viper, a specialized language designed for formal verification. It aims
to automate the translation process and reduce the manual effort required
to verify programs written in Go. The primary goal of slice encoding is to
facilitate formal verification of slices in Go by faithfully representing this
data type in Viper.

3.1 Design

The existing slice encoding in Gobra is designed to faithfully encode slices
and their features in annotated Go code into Viper for formal verification.
This section introduces the key design points that make up the current en-
coding.

3.1.1 Arrays as Basis

Arrays serve as the underlying data structure for slices in Go. By using the
arrays as basis for encoding slices after translation into Viper, the design
maintains high compatibility with the semantics of the Go language; this
also allows us to leverage the existing array representation in the Viper code
for slices. Each slice stores its underlying array, length, and capacity. The
latter two, length and capacity, define the part of the array that is accessible

11

3. Understanding The Existing Slice Encoding

to the slice. Information about the elements themselves is managed by its
underlying array.

Translating slices directly into Viper can be challenging due to their dynamic
nature and variable size. By relying on arrays as the basis, the translation
process becomes more straightforward. In Viper, the concrete location a slice
points to is represented as the underlying array with a fixed offset, this is
the array index where the slice starts, to which the index within the slice
itself is added. Consequently, the implementation of slices in Viper is based
and relies on encoding of arrays in Viper. The existing encoding supports a
large subset of slice properties in Go, especially all the properties discussed
in Section 2.1.

3.1.2 Injectivity

In the context of verification of arrays in heap-manipulating programs, injec-
tivity refers to a property ensuring that two different indexes of any array
will always identify a different heap location. Injectivity plays a crucial role
in program verification; it ensures that modifications or operations on a par-
ticular memory location are reflected consistently across all references to
that location. Concretely for arrays and slices, if two or more arrays or slices
point to the same memory location, then their corresponding elements at
that location must also be the same.

For slices, injectivity guaranties that when two slices reference the same part
of underlying array, modifying an element in one slice will also affect the
corresponding element in the other slice. Injectivity is particularly relevant
in situations where aliasing occurs, meaning that multiple variables or ref-
erences point to the same memory location, e.g. when multiple slices are
used to manipulate and access the same part of an array. Without injectivity,
inconsistent states and unexpected behavior may arise due to inconsistent el-
ement values across aliased arrays or slices; It is hence used for maintaining
data consistency and avoiding unexpected behavior.

Viper uses field permissions to reason about the heap. In order to denote
permission to a potentially unbounded set of locations without prescribing
a traversal order, permissions and predicates are allowed to occur under
universal quantifiers (see Section 2.2.3). In addition, Viper requires for each
assertion acc(E.f) under a forall x:T that E is injective [9].

Similarly to slices, arrays are also not innate to Viper and are therefore im-
plemented through a domain (see Listing 10). An array access in a higher-
level programming language, e.g. arr[i] in Go, is modeled as loc(arr,

i).val in Viper. The loc function maps arrays and indices to a value of
type Ref. Fields of these Refs are used to represent array slots (locations).
The val field represents the value stored in this array slot. The allDiff ax-

12

3.2. Specification

1 field val: Int

3 domain Array {

4 function loc{a: Array, i: Int): Ref

5 function length(a: Array): Int

6 function rToA(ref: Ref): Array

7 function rToI(ref: Ref): Int

9 axiom allDiff {

10 forall a: Array, i: Int :: {loc(a, i)} rToA(loc(a, i)) == a && rToI

(loc(a, i)) == i

11 }

12 axiom lengthNonneg {

13 forall a:Array :: length(a) >= 0

14 }

15 }

Listing 10: Encoding of Arrays in Viper

iom expresses that the loc function is injective [13]. Injectivity is necessary
to maintain soundness for mapping from integers back to locations through
the loc function [10].

3.2 Specification

3.2.1 Domain

The Slice[T] domain is the representation of Go slices in Viper. The com-
plete Slice[T] domain in Viper can be found in Appendix A.

As described in 2.2.1, a Viper domain consists of functions and axioms.
These functions serve as filed values that store important data about a con-
crete slice. The function sarray represents the underlying array, the func-
tions slen and scap return the length and capacity of the slice respectively.
The function soffset keeps the offset value from the beginning of the array.
The offset is added to the array’s base address to mark the beginning of the
slice elements in the array. And the last function is smake which is used for
representing each slice as a ShArray (analogous to Listing 10) with offset o,
length l, and capacity c.

Domain axioms are used to attach meaning to the abstract domain func-
tions. The properties defined in the axioms are assumed to hold universally
in all states. These domain axioms assure the basic properties of slices as de-
scribed in the Go documentation [5], e.g. the length of a slice is less or equal
to its capacity or that the length and the offset must be at least zero. More-
over, they define properties which are connected to the ShArray domain.
These are that the sum of offset and capacity cannot exceed the length of

13

3. Understanding The Existing Slice Encoding

the underlying array, or that each slice is represented as slicing operation of
ShArray. The last group of axioms are deconstructing axioms. They define
the return values of the domain functions by using the slice representation
of smake.

3.2.2 Initialization and Declaration

Initially, slices have to be declared and initialized. The existing encoding
supports the entire range of slice initializations innate to Go; this subsection
covers how Gobra deals with slice initializations as seen in Listing 1 and
Listing 2.

Slice created with the existing encoding always has an underlying array. The
Viper code contains helper functions for slice initialization from an array or a
slice. These functions take an array or a slice as an argument together with
the lower and upper slicing bound. In the helper function the values for
sarray, soffset, slen, and scap are checked and assigned. The general
style of these helper functions can be observed on the example in Listing 11.

1 function ssliceFromArray_Ref(a: ShArray[Ref], i: Int, j: Int): Slice[Ref]

2 requires 0 <= i

3 requires i <= j

4 requires j <= (ShArraylen(a): Int)

5 ensures (soffset(result): Int) == i

6 ensures (slen(result): Int) == j - i

7 ensures (scap(result): Int) == (ShArraylen(a): Int) - i

8 ensures (sarray(result): ShArray[Ref]) == a

Listing 11: Function for slicing

When initializing a slice an underlying array is created, or it already exists,
and is passed as an argument to one of the helper functions to create a slice
from that array. The only exception in this is when declaring a slice with
make as can be seen in Listing 13. On lines 14 to 16, the translated code
assigns the default value, in this case 0 for int, for each valid index and on
lines 9 and 10 the length and the capacity values are inhaled.

14

Chapter 4

Proposed Slice Encoding

This chapter will focus mainly on introducing the objectives, design, and
specification of an additional, simpler, encoding for slices in Gobra.

4.1 Objectives

The existing encoding of slices in Gobra is designed to be used universally
for verification of Go programs with slices. This chapter proposes and de-
scribes the prototype of a function-specific encoding for slices that is simpler
and covers a subset of the existing encoding; the proposed encoding does
not cover slice expressions that use slicing and it is not intended to entirely
replace the existing slice encoding. The aim is to speed up the verification of
members that do not use slicing. Consequently, both encodings are meant
to be used in parallel within one program.

In the existing slice encoding, Slice[T] domain in Viper keeps track of the
underlying array and the offset from the beginning of the array; the slice
itself does not store any elements, rather it stores the pointer to an array and
an offset at which the slice elements begin. Hence, a lot of axioms contain
expressions with the underlying array and additions of slice index and array
offset (see Appendix A), making the tasks for the Z3 Theorem Prover [3]
more complicated. Empirically it seems that the majority of the verification
time is spent in Z3, so the proposed encoding should reduce this burden
by simplifying the Slice[T] domain along with the axioms. The concrete
design choices and the specification of the simple slice encoding will be
addressed in the following sections.

4.2 Design

The simple slice encoding is designed to be faster in certain applications than
the existing one. The representation of slices with the simple encoding is

15

4. Proposed Slice Encoding

similar to the representation of arrays in Viper, e.g. elements are addressed
directly through functions in the slice domain. The following subsections
address differences between the existing and the proposed encoding.

4.2.1 Representation of Slices

The key difference, between slices in the existing and the proposed encod-
ing, is the way they are represented. A slice in both encodings has length
and capacity functions. However, contrary to the description in Section 3.1,
the proposed encoding does not use an array as a basis for slices anymore.
A slice representation no longer has an underlying array and an offset mark-
ing the beginning of the actual slice elements. Consequently, the slices in
the proposed encoding are similar to an array representation in Viper; the
elements are stored in the slice itself and are accessed via a simple index.

4.2.2 Creating Slices

This simple slice encoding is only to be used when no slicing expression
is present in a member. Many members do not require slicing and simply
perform some operation on elements of the slice such as sorting or filtering.
Therefore, with this encoding it is not possible to create a new slice by slicing
an array or an existing slice as in Listing 1. Though, it is still possible to
declare a slice without an underlying array as in Listing 2. Even though
slicing is not supported, arrays can be sliced in other members and the
resulting slices can then be passed as arguments to members, which use the
simple slice encoding.

4.2.3 Injectivity

In Section 3.1.2 was mentioned that E in each assertion acc(E.f) under a
forall x:T quantifier must be injective. In the existing encoding this prop-
erty is maintained by the encoding of the underlying array. Unfortunately,
the simple encoding does not work with arrays anymore and does not have
injectivity axiom. Instead, the elements are accessed directly through the
slice and these direct access permissions are inhaled at the beginning of a
member. Although the simple slice encoding does not contain an axiom
for injectivity, when a Gobra generated Viper program should be verified
the flag assumeInjectivityOnInhale is enabled. This flag results in assuming
injectivity for inhale statements, in our case for inhaled quantified access as-
sertions. This means that despite injectivity not being ensured from within
the encoding, it is not an issue due to the use of this flag.

16

4.3. Specification

4.3 Specification

The section will introduce and explain the implementation of the design
choices.

4.3.1 Domain

Listing 12 shows the Slice[T] domain of the simple slice encoding. One
may notice that it is much simpler that the one presented in Section 3.2.1.
Indeed, the requirements for the simple encoding made many axioms redun-
dant.

Some functions from the existing slice domain are still present. The function
scap returns the slice capacity and slen the slice length. Since the elements
of a slice are not represented by an underlying array and an offset now, the
functions sarray and soffset were replaced with sloc. This function takes
advantage of the way elements are stored in the proposed encoding. It takes
two arguments, a slice s and an index i and returns the element stored at
that index. sloc(s,i) models s[i] in Go and it works analogously to loc

function in array domain (Listing 10).

The above mentioned functions are accompanied by two axioms. The axiom
slice len leq cap states that the length is less or equal to the capacity. The
second axiom slice len nonneg bounds the length to be at least zero. Both
define the necessary properties of length and capacity of a slice. The fairly
minimal design of the domain has two main justifications.

The first justification is the use of the simpler encoding. It is designed and
intended only for members that fulfill the given criteria and accompanies
the existing encoding. The goal was to make it as simple as possible with-
out sacrificing any substantial functionality. For example, as explained in
Section 4.2.3, there is no need for injectivity axiom as in the array encoding.
The essential properties of slices were tested and the proposed encoding
passed the test suite (see Chapter 5 for more detail).

In addition, the proposed slice encoding was not the only encoding that was
considered. During the design and creation of a prototype an idea for a dif-
ferent slice encoding emerged. This promising slice encoding contained ad-
ditional domain functions and axioms compared to the proposed encoding
These domain functions were inspired by the slice domain in the existing
encoding, smake(l: Int, c: Int): Slice[T], and the array domain,
rToS(r: T): Slice[T] and rToI(r: T): Int for the sloc function. The
full domain can be seen in Listing 15. The function smake(l: Int, c:

Int): Slice[T] is a modified version of the original function smake(a:

ShArray[T], o: Int, l: Int, c: Int): Slice[T]; it represents each
slice with length l and capacity c. Functions rToS and rToI are used in axiom

17

4. Proposed Slice Encoding

slice injectivity to mimic the injectivity axiom from ShArray. Although
this axiom would not be necessary, it should show the influence of a simi-
lar injectivity axiom inside the Slice domain on the verification time. This
alternative slice encoding was compared against the proposed encoding dis-
cussed in this chapter. Both completed successfully all tests, however, the
verification time was slightly better only in a few cases. Simpler nature
and faster verification in most cases demanded the decision to stick to the
simpler and faster encoding of the both.

4.3.2 Slice Creation

The simple encoding is designed to work analogously to an array. In the
former encoding accessing a slice element occurred through referencing the
underlying array with the desired index and the offset of the slice, i.e. where
the beginning if the slice in the array is. Accessing an element in the new
encoding is straight-forward and there is no offset needed since the stored
elements are accessible directly by the slice. This is done by the function
sloc, which takes a slice s and an integer i as arguments and returns the
element at the position i.

By directly referencing the elements in the slice and not in the underlying
array, we can save time during verification since we do not have to check
constraints with the offset, e.g. checking that slen(s) + soffset(s) ≤
ShArrayLen(sarray(s)), and reference the ShArray domain as before. The
Slice[T] and ShArray domains are not coupled anymore.

Since the simple encoding does not allow slicing operations the only way to
create new slices is with make or the slice literal []t{elems}. A slice does not
reference an underlying array like its counterparts in the existing encoding.
When a slice is initialized, its length, and sometimes also its capacity (if
no argument for capacity is given, a default value is used), are given as
arguments and are inhaled in the Viper code. Hence, the return value of
the slen and scap domain functions is defined by the inhale during slice
initialization.

As for the elements, the existing encoding used an indirect way by creating
an array first or using an existing array (see Section 3.2). The simpler en-
coding does not rely on an array to initialize the elements. The element at
index i is directly mapped to the i-th element of the sequence containing
the desired element values.

18

Chapter 5

Evaluation

In this chapter, the proposed slice encoding described in Chapter 4 will
be compared to the existing slice encoding from Chapter 3. To assess the
efficacy of both encodings, they were used in translating ten evaluation pro-
grams without any slicing operations, allowing us to measure the evaluation
time of the resulting Viper code.

One evaluation program is specifically designed to evaluate the correctness
of one of the extension goals. Extension goals are meant to accompany the
core goals and for example widen the scope of the thesis or facilitate the
integration of new or modified features. This evaluation program contains
expressions of the form arr[i:][j]. These expressions create a slice from
arr with offset i first and then access the element at position j. As a re-
sult, the syntactic check would mark members containing such expressions.
However, arr[i:][j] is semantically equivalent to arr[i+j] which does not
perform any slicing operation and does not trigger marking by the syntactic
check. This extension goal was introduced because it allows for wider use
of the simple slice encoding. Members with such expressions can in fact be
found throughout the SCION code. Since Gobra is used by VerifiedSCION,
it is reasonable to assume that there is going to be some improvement in the
verification time. The goal is to transform the said expression into a simpler
form and thus allow for the use of the simpler encoding. Due to incom-
pleteness the existing encoding does not verify this program so it is also not
present in the tables below; it was only used to test the implementation of
the said extension goal.

The first evaluation program in the table is designed to test the basic proper-
ties of the simple encoding, including working with append and copy. This
is not so much about the verification time but rather about the overall cor-
rectness of the encoding. The next three programs are sorting algorithms,
bubble sort, selection sort, and insertion sort, which sort a given slice in an as-
cending order. The main focus of these is on working with the slice elements

19

5. Evaluation

(get and set). Next program is a filter function that filters out all the ele-
ments of a given slice that do not satisfy a certain property. In this program
a new empty slice is created and all the elements that satisfy the property
are appended to that slice via the append method. The main loop of the
filter function is contained five times in the code to make it more chal-
lenging to verify. matrixMul contains standard implementation of matrix
multiplication, transClosure performs transitive closure on a graph repre-
sented as an adjacency matrix, testFile1 consists mainly of function calls
in loops, and testFile2 focuses purely on copy and append methods in a
loop. The information about verification times from ten runs can be found
in the tables.

File tW tB tA σt

properties 2691 2187 2365.5 178.88
bubbleSort 2421 2162 2287.6 74.47

selectionSort 2758 2491 2648.2 89.63
insertionSort 1918 1434 1698.4 146.33

filter 12010 11603 11792.1 115.49
matrixMul 32715 27013 29347.0 1738.71

transClosure 6266 5858 6011.0 148.67
testFile1 6042 4952 5623.9 334.41
testFile2 41020 33137 35761.1 2700.86

Table 5.1: Verification times in ms of the evaluation programs in the existing encoding. Each
benchmark file is listed along with its worst and best verification time tW and tB respectively,
the average verification time tA and the standard derivation σt rounded to two decimal places.

File tW tB tA σt

properties 1972 1621 1841.9 92.96
bubbleSort 1916 1586 1702.3 91.27

selectionSort 2282 1600 2024.4 192.78
insertionSort 1488 1033 1263.6 135.93

filter 8328 6977 7640.0 439.39
matrixMul 14024 12359 13126.9 602.47

transClosure 4205 3872 4041.0 127.33
testFile1 4847 4403 4597.3 149.62
testFile2 26661 22343 24760.9 1324.93

Table 5.2: Verification times in ms of the evaluation programs in the simple encoding. Each
benchmark file is listed along with its worst and best verification time tW and tB respectively,
the average verification time tA and the standard derivation σt rounded to two decimal places.

The average times of the tables above are captured in Table 5.3 together with
their difference and measured speed-up. One can see that the proposed

20

encoding is faster than the existing encoding by about 20 to 25 percent for
programs or rather members that do not use slicing operations. Both pro-
grams containing copy or append methods in a loop, filter and testFile2,
are over 30 percent faster. matrixMul exhibits a remarkable speed-up of 2.24,
which was confirmed by a second evaluation of ten consecutive runs; there
even a speed-up of 2.33 was achieved. This speed-up is a perfect example of
the verification time improvement for members which contain a lot of access
permissions. As expected, representing a slice more like an array rather that
an underlying array with an offset is beneficial to the verification time. The
verification time in the tables represents only the duration Viper requires to
verify the translated code; other actions carried out by Gobra, such as trans-
lation or a syntactic check, are not taken into account. Nevertheless, the time
required for a syntactic check is negligible in relation to the overall process
(parsing, desugaring, etc.) for small members.

File tC tS Difference Speed-up
properties 2365.5 1841.9 523.6 1.28
bubbleSort 2287.6 1702.3 585.3 1.34

selectionSort 2648.2 2024.4 623.8 1.31
insetionSort 1695.4 1263.6 431.8 1.34

filter 11792.1 7640.0 4152.1 1.54
matrixMul 29347.0 13126.9 16220.0 2.24

transClosure 6011.0 4041.0 1970.0 1.49
testFile1 5623.9 4597.3 1026.6 1.22
testFile2 35761.1 24760.9 11000.2 1.44

Table 5.3: Average verification times of the evaluation programs in the complete encoding (tC)
and the simpler encoding (tS) in ms, the difference of average verification times in ms and the
measured speed-up.

All the files listed in the tables were verified successfully by Gobra. The
first testing file is mainly designed to verify basic features of the proposed
encoding and not for the speedup.

Gobra developers themselves created a small test suites1, among others also
for the features of slices. The simpler encoding should also be evaluated
with the tests from the said test suite that do not contain subslicing expres-
sions. There are also tests that must not be successfully verified otherwise
the encoding would be proven to be unsound. The proposed simpler encod-
ing was tested and passed all the tests that it should pass and did not verify
the tests that were expected to fail.

1https://github.com/viperproject/gobra/tree/master/src/test/resources/

regressions/features/slices

21

https://github.com/viperproject/gobra/tree/master/src/test/resources/regressions/features/slices
https://github.com/viperproject/gobra/tree/master/src/test/resources/regressions/features/slices

Chapter 6

Syntactic Check for Slice Encoding

Chapters 3 to 4 describe the existing as well as the modified encoding for
slices in Gobra. As mentioned in Section 4.1 already, both encodings should
be used concurrently to achieve verification speedup from Chapter 5 without
sacrificing features of slices in Go, e.g. slicing. This chapter focuses on
the introduction of a syntactic check for Gobra programs to decide which
encoding should be used for each member.

6.1 Design

The goal of having a syntactic check in place for a method-specific encoding
is to check that a member is free of slicing expressions. It is useful for
determining which slice encoding should be used. For members that do not
contain any slicing expressions, the simple encoding can be used. Otherwise
the existing encoding is to be used.

The syntactic check is a transformation of the internal abstract syntax tree
(AST). It traverses the tree and marks the members that contain slicing ex-
pressions. If a slicing expression is found inside a member, the correspond-
ing node is annotated with this information. The result of the syntactic
check is an AST with additional information about slicing expressions. Af-
terwards, when the Viper code is generated, Gobra can decide easily which
encoding for slices to use based on the node annotations. This leverages the
speedup of the simpler encoding for specific members.

Additionally, a Gobra code can contain expressions that might be marked as
slicing expressions even though there is an equivalent expressions without
slicing. The expressions are of the type arr[i:][j] where arr is an array or
a slice and i and j are indices. Such an expression would be marked by the
syntactic check as containing a slicing expression. However, arr[i:][j] is
semantically equivalent to arr[i+j] which does not contain any slicing ex-

23

6. Syntactic Check for Slice Encoding

pression and is not marked by the syntactic check. The AST should therefore
be transformed in such a way that these expressions do not cause any trou-
ble. The syntactic check has to be performed on the modified AST where
the expressions of the said type do not occur.

6.2 Implementation

Initially, expressions of the type arr[i:][j] must be replaced with semanti-
cally equivalent expressions arr[i+j]. This is done before the actual syntac-
tic check to ensure its correctness. If one would check for slicing operation
before the replacement, the syntactic check would also mark members with
nodes that would not be in the final AST. The syntactic check itself then
traverses the modified AST where such expressions are no longer present.

Fortunately, both the node replacement and the syntactic check can be done
in one traversal of the AST. This is due to the fact that the expression to
replace can be spotted before the slicing operations get checked. The expres-
sion to replace is a node of type IndexedExp that has a slicing operation
Slice as a base. In the AST, the base is then a child of IndexedExp. This
parent node is replaced with the base of the slicing operation and the access
index is changed to the addition of the lower slicing index and the access in-
dex of the original indexed expression. The traversal continues on the nodes
of the modified AST where the node containing the slicing operation is no
longer present.

In the internal AST, Slice represents the slicing expression (or operation)
and not the slice itself. If the syntactic check finds a slicing expressions (an
Expr of type Slice), be it from array of other slices, it creates an annotation
for the member node. The internal AST with these annotations is then re-
turned. The additional information created by the syntactic check can be
used to determine which slice encoding to use for each member.

6.3 Further Optimization

Each traversal of the internal AST is connected with additional cost, espe-
cially for members with large bodies. Consequently, future modified encod-
ings for other Gobra data types and data structures should consider this
overhead and try to reuse the existing syntactic check for their annotations.
Any extra traversal of the tree should only be done if the current implemen-
tation does not allow otherwise.

It might be the case that a member that uses the existing slice encoding calls
another member that uses the simpler encoding. Since both encoding need
different contracts there should exist an interface for handling such cases. It

24

6.3. Further Optimization

should use the node annotations obtained from the syntactic check of the
program and be scalable to accommodate future alternative encodings.

25

Chapter 7

Future Directions

This thesis introduced new and simple method-specific slice encoding. Be-
fore this encoding can be used, some problems need to solved and improve-
ments made, however, these would go beyond the scope of a bachelor’s
thesis. This chapter summarizes the way forward and provides some ideas
about possible future directions. Topics of granularity and the chances and
limitations of using similar encoding approach for other data types in Gobra
will be addressed.

7.1 Granularity

The granularity of the approach is an important criterion for the potential
speedup. The finer the granularity, the greater the potential for using faster
encoding. But it comes with a cost in the form of overhead, e.g. for a
syntactic check or other additional procedure for context switching. The
simpler slice encoding introduced in this thesis is designed to be method-
specific, i.e. the slice encoding is decided per member.

Apart from implementing a syntactic check to decide which encoding can be
used, there also have to be different pre- and post-conditions for members
that use the simpler encoding. In consequence, a deeper understanding of
whether the slice encoding can be chosen in a more fine-grained manner
instead of per member, is needed. Seeing the difficulties with the method-
specific slice encoding, one might be tempted to answer the previous ques-
tion negatively. Nonetheless, pre- and post-conditions are not the only con-
tracts used for formal verification. There are also invariants that are cru-
cial for loop verification. This leads the author to the idea that it might
be possible to introduce an even more fine-grained slice encoding than the
method-specific one.

Since loops also have invariants, one could design an encoding that imple-

27

7. Future Directions

ments the same kind of optimization as the simpler one, namely a simpler
encoding for loops that do not use slicing operations. With this, even a
member that creates slices at the beginning but does not use slicing any-
where else, especially not in its loops, would benefit from the speed-up of
such encoding structure. This would be a major benefit mainly for members
with many iterations and large loop bodies. Finally, the method-specific and
loop-specific slice encodings could both be used within the same program.

Additionally, specialized encodings could also be used per slice variable.
Instead of marking members containing slicing expressions, syntactic check
would go through the program and mark slice variables that are used in
slicing expressions. The contribution of such an approach is not clear since
it is highly dependable on the code it is used for. For example, if a concrete
slice variable is only sliced once in one method, this would force the entire
slice to use the complete encoding instead of the simpler one. Whereas a
method-specific encoding would do much better in this case because only
the method that uses slicing would use the complete encoding. Nonetheless,
if the code was optimized for such encoding, e.g. create copies of slices to
use in slicing expressions to avoid marking the entire slice variable, there
might be a verification speed-up.

As mentioned above, even for this simpler slice encoding one needs differ-
ent pre- and post-conditions for functions using different encodings. This
will likely be handled by a new interface that is being implemented in the
Programming Methodology Group at ETH. Coming up with a more fine- or
coarse-grained encoding would probably require comparable or even larger
amount of time and resources to make it work. One would have to weigh
the gain and the price to pay.

7.2 Method-specific Encoding for Other Data Types

This thesis introduced a method-specific encoding for slices in Gobra. It ap-
pears that the achieved speed-up can be mostly attributed to uncoupling of
the slice and array domains. Before, the two domains were always coupled
through the sarray function in the slice domain that stores the underlying
array. This is not the case with the simpler encoding anymore; the slice
domain does not keep an underlying array (cf. Chapter 4). This method-
specific approach opens up the possibility for further optimizations and im-
provements in performance for other data types in Gobra.

There are many data types innate to Gobra. Since the optimization of slice
encoding involves mainly a method-specific domain, the list was reduced to
data types that are known to have a domain in the translated Viper code,
i.e. arrays and structs, together with maps which do not have a domain but
could be handled differently based on whether they are mutable or not. By

28

7.2. Method-specific Encoding for Other Data Types

tailoring other encodings to the needs of specific methods, it may be feasible
to achieve similar benefits in terms of speed-up as with slices. However, the
applicability of such an approach to other data types highly depends on
their characteristics in the translated Viper code.

Let’s begin by considering the potential application of method-specific en-
coding to arrays in Gobra. Arrays are fixed-size, ordered collections of
elements of the same data type. Slices are coupled to arrays in the origi-
nal encoding, hence, the speed-up achieved by optimizing arrays could im-
prove the time needed for verification of slices in the original encoding as
well. Compared to the original slice domain the array domain ShArray is
relatively small; it comprises four functions and only two axioms (cf. List-
ing 10). One axiom guarantees the length to be non-negative and the other
is for injectivity. Due to the array domain working well with minimum
functions and axioms there is not a lot of potential for a method-specific
domain. One possible improvement could be to drop the injectivity axiom
and corresponding functions as we did with alternative simpler encoding
(cf. Listing 15).

However, dropping only the injectivity axiom in the slice domain did not
result in a significant performance improvement (cf. Section 4.3.1) and a
similar result could be expected for arrays. Injectivity plays a crucial role in
program verification and not including it could result in unsound behavior
or more imprecision in some cases. The soundness of the slice domain was
evaluated both with and without an injectivity axiom and both passed all
the tests. The method-specific encoding for slices is limited to such members
that it does not cause any problems and the slice domain was meant to be
as simple as possible. By leaving out anything that is not necessary for ver-
ification of members that do not contain slicing expressions, it was possible
to drop the injectivity axiom and the corresponding functions. Ultimately,
the potential negative consequences outweigh the marginal improvement in
verification time.

Next data type are structs, user-defined data types that allow you to group
together variables of different types under a single name. The translation
of structs already employs type-specific encoding. A struct is translated
as Tuple if it is of exclusive type and as ShStruct if it is of shared type.
Alongside to this thesis there was another thesis focused on designing and
prototyping a method-specific encoding for structs in Gobra being done at
the Programming Methodology Group at ETH. From the information given
by the supervisor and the colleague who works on the thesis it seems that
such optimization would unfortunately not yield significant speed-up for
Gobra generated Viper code with structs [17].

Lastly, maps are unordered collections of key-value pairs that provide a
way to associate and retrieve values based on unique keys. Although maps

29

7. Future Directions

do have a generated domain they were still considered as there might be
for example redundant functions in some context. The consideration of
maps was motivated by Scion where mutable and immutable maps are used.
Gobra does not differentiate between mutable and immutable maps, so this
distinction might result in speed-up during verification. The problem with
improving maps is that they do not translate to domains like structs or slices
but are implemented using maps innate to Viper; each map has a Viper
map field with the given types. Upon inspecting the translation of maps
from Gobra to Viper it was concluded that even if there were any possible
optimizations they would have to be done on Viper level. This is due to the
fact that maps are directly translated to features specific to Viper and thus
do not fall under optimization of Gobra.

In conclusion, no data type could be found that would benefit from a similar
method-specific optimization. The approximation done on slices cannot be
easily replicated for the addressed data types. Further research and experi-
mentation would be needed to determine the viability and potential advan-
tages of implementing method-specific encodings for other data types.

30

Chapter 8

Conclusion

In the thesis a simpler encoding for slices in Gobra was designed and in-
troduced. The purpose of the modified encoding is to assist the existing
encoding in the translation of slices into Viper and it is used for represent-
ing slices in members that do not need the full specification of the existing
encoding. The evaluation confirmed a verification speedup with the simpler
encoding. The syntactic check assures that the AST is annotated with addi-
tional information such that for each member the suitable slice encoding can
be chosen. During the AST traversal certain expressions are replaced with
semantically equivalent but simpler expressions for the encoding.

The simple encoding reduces the verification time spent in the Z3 solver for
slices. In practice, using both the existing and the simpler encoding would
result in reduction of the overall verification time for large projects.

Since the simpler slice encoding only covers a subset of the complete encod-
ing, there are some limitations to its use. It can only be used for members
that do not contain any slicing expressions or where such expressions are re-
placed before the syntactic check. The simpler encoding stores and accesses
the elements in a different way than the complete encoding. Additionally,
to use both encodings we need an interface that can leverage the results
of the syntactic check and generate the contracts, member’s pre- and post-
conditions, accordingly.

In Chapter 7 we looked into some possible future directions for encodings in
Gobra. Unfortunately, the primary contribution to optimizing the complete
slice encoding is the decoupling of the slice and array domains in Viper. This
complicates the task of extending a similar improvement to other data types
in Gobra. The results of the thesis point to possible future optimizations, be
it leveraging similar optimization strategy for other data types in Gobra or
investigating more fine-grained approach to the presented optimization.

31

Appendix A

Code Appendix

1 domain Slice[T] {

2 function scap(s: Slice[T]): Int

3 function slen(s: Slice[T]): Int

4 function sloc(s: Slice[T], i: Int): T

6 axiom slice_len_leq_cap {

7 (forall s: Slice[T] ::

8 { (slen(s): Int) }

9 { (scap(s): Int) }

10 (slen(s): Int) <= (scap(s): Int))

11 }

12 axiom slice_len_nonneg {

13 (forall s: Slice[T] :: { (slen(s): Int) } 0 <= (slen(s): Int))

14 }

15 }

Listing 12: Slice domain in the new encoding

33

A. Code Appendix

1 var fn0: Slice[Ref]

2 exhale 0 <= 5 && 0 <= 8 && 5 <= 8

3 inhale (forall fn1: Int ::

4 { (ShArrayloc((sarray(fn0): ShArray[Ref]), sadd((soffset(fn0): Int),

5 fn1)): Ref) }

6 0 <= fn1 && fn1 < (scap(fn0): Int) ==>

7 acc((ShArrayloc((sarray(fn0): ShArray[Ref]), sadd((soffset(fn0): Int)

,

8 fn1)): Ref).val, write))

9 inhale (scap(fn0): Int) == 8

10 inhale (slen(fn0): Int) == 5

11 inhale (forall fn2: Int ::

12 { (ShArrayloc((sarray(fn0): ShArray[Ref]), sadd((soffset(fn0): Int),

13 fn2)): Ref) }

14 0 <= fn2 && fn2 < 5 ==>

15 (ShArrayloc((sarray(fn0): ShArray[Ref]), sadd((soffset(fn0): Int),

16 fn2)): Ref).val ==

17 0)

Listing 13: Translated Viper code of make([]int,5,8)

34

1 domain Slice[T] {

2 function sarray(s: Slice[T]): ShArray[T]

3 function scap(s: Slice[T]): Int

4 function slen(s: Slice[T]): Int

5 function smake(a: ShArray[T], o: Int, l: Int, c: Int): Slice[T]

6 function soffset(s: Slice[T]): Int

8 ...

10 axiom {

11 (forall s: Slice[T] ::

12 { (sarray(s): ShArray[T]) }

13 { (soffset(s): Int) }

14 { (slen(s): Int) }

15 { (scap(s): Int) }

16 s ==

17 (smake((sarray(s): ShArray[T]), (soffset(s): Int),

18 (slen(s): Int), (scap(s): Int)): Slice[T]))

19 }

20 axiom {

21 (forall s: Slice[T] ::

22 { (slen(s): Int) }

23 { (scap(s): Int) }

24 (slen(s): Int) <= (scap(s): Int))

25 }

26 axiom {

27 (forall s: Slice[T] ::

28 { (soffset(s): Int), (scap(s): Int) }

29 { (ShArraylen((sarray(s): ShArray[T])): Int) }

30 (soffset(s): Int) + (scap(s): Int) <=

31 (ShArraylen((sarray(s): ShArray[T])): Int))

32 }

33 axiom {

34 (forall s: Slice[T] :: { (slen(s): Int) } 0 <= (slen(s): Int))

35 }

36 axiom {

37 (forall s: Slice[T] :: { (soffset(s): Int) } 0 <= (soffset(s): Int))

38 }

39 }

Listing 14: Slice domain

35

A. Code Appendix

1 domain Slice[T] {

2 function scap(s: Slice[T]): Int

3 function slen(s: Slice[T]): Int

4 function smake(l: Int, c: Int): Slice[T]

5 function rToS(r: T): Slice[T]

6 function rToI(r: T): Int

7 function sloc(s: Slice[T], i: Int): T

9 axiom slice_constructor {

10 (forall s: Slice[T] ::

11 { (slen(s): Int) }

12 { (scap(s): Int) }

13 s == (smake((slen(s): Int), (scap(s): Int)))

14)

15 }

17 axiom slice_len_leq_cap {

18 (forall s: Slice[T] ::

19 { (slen(s): Int) }

20 { (scap(s): Int) }

21 (slen(s): Int) <= (scap(s): Int))

22 }

24 axiom slice_len_nonneg {

25 (forall s: Slice[T] :: { (slen(s): Int) } 0 <= (slen(s): Int))

26 }

28 axiom slice_injectivity {

29 (forall s: Slice[T], i: Int ::

30 { (sloc(s, i): T) }

31 0 <= i && i < (slen(s): Int) ==>

32 (rToS((sloc(s, i): T)): Slice[T]) == s &&

33 (rToI((sloc(s, i): T)): Int) == i)

34 }

35 }

Listing 15: Alternative domain for slice encoding

36

Bibliography

[1] Vytautas Astrauskas, Aurel Bı́lý, Jonás Fiala, Zachary Grannan,
Christoph Matheja, Peter Müller, Federico Poli, and Alexander J. Sum-
mers. The prusti project: Formal verification for rust. In Jyotirmoy V.
Deshmukh, Klaus Havelund, and Ivan Perez, editors, NASA Formal
Methods - 14th International Symposium, NFM 2022, Pasadena, CA, USA,
May 24-27, 2022, Proceedings, volume 13260 of Lecture Notes in Computer
Science, pages 88–108. Springer, 2022.

[2] Laurent Chuat, Markus Legner, David A. Basin, David Hausheer,
Samuel Hitz, Peter Müller, and Adrian Perrig. The Complete Guide to
SCION - From Design Principles to Formal Verification. Information Secu-
rity and Cryptography. Springer, 2022.

[3] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient
SMT solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 14th International
Conference, TACAS 2008, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer
Science, pages 337–340. Springer, 2008.

[4] The Go Programming Language. https://go.dev.

[5] Go documentation. https://go.dev/doc/.

[6] Gobra tutorial. https://github.com/viperproject/gobra/blob/

master/docs/tutorial.md.

[7] Reiner Hähnle and Marieke Huisman. Deductive software verification:
From pen-and-paper proofs to industrial tools. In Bernhard Steffen and
Gerhard J. Woeginger, editors, Computing and Software Science - State

37

https://go.dev
https://go.dev/doc/
https://github.com/viperproject/gobra/blob/master/docs/tutorial.md
https://github.com/viperproject/gobra/blob/master/docs/tutorial.md

Bibliography

of the Art and Perspectives, volume 10000 of Lecture Notes in Computer
Science, pages 345–373. Springer, 2019.

[8] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A
verification infrastructure for permission-based reasoning. In Barbara
Jobstmann and K. Rustan M. Leino, editors, Verification, Model Checking,
and Abstract Interpretation - 17th International Conference, VMCAI 2016,
St. Petersburg, FL, USA, January 17-19, 2016. Proceedings, volume 9583 of
Lecture Notes in Computer Science, pages 41–62. Springer, 2016.

[9] Peter Müller. Program verification, 2023. Available at
https://ethz.ch/content/dam/ethz/special-interest/infk/

chair-program-method/pm/documents/Education/Courses/SS2023/

PV/slides/08-permissions-models.pdf.

[10] Severin Münger. Inference of pointwise specifications for heap ma-
nipulating programs. Master’s thesis, ETH Zürich, 2017. Available
at https://ethz.ch/content/dam/ethz/special-interest/infk/

chair-program-method/pm/documents/Education/Theses/Severin_

Muenger_MA_report.pdf.

[11] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In 17th IEEE Symposium on Logic in Computer Science (LICS
2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings, pages 55–74.
IEEE Computer Society, 2002.

[12] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames.
ACM Trans. Program. Lang. Syst., 34(1):2:1–2:58, 2012.

[13] Alexander J. Summers. Verification of unbounded heap data
structures, 2017. Available at https://ethz.ch/content/

dam/ethz/special-interest/infk/chair-program-method/pm/

documents/Education/Courses/SS2017/Program%20Verification/

10-UnboundedHeapDataStructures.pdf.

[14] VerifiedSCION. https://www.pm.inf.ethz.ch/research/

verifiedscion.html.

[15] Viper Tutorial. https://viper.ethz.ch/tutorial/.

[16] Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn,
João Carlos Pereira, and Peter Müller. Gobra: Modular specification
and verification of go programs. In Alexandra Silva and K. Rustan M.
Leino, editors, Computer Aided Verification - 33rd International Confer-
ence, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I, vol-
ume 12759 of Lecture Notes in Computer Science, pages 367–379. Springer,
2021.

38

https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Courses/SS2023/PV/slides/08-permissions-models.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Courses/SS2023/PV/slides/08-permissions-models.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Courses/SS2023/PV/slides/08-permissions-models.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Severin_Muenger_MA_report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Severin_Muenger_MA_report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Severin_Muenger_MA_report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Courses/SS2017/Program%20Verification/10-UnboundedHeapDataStructures.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Courses/SS2017/Program%20Verification/10-UnboundedHeapDataStructures.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Courses/SS2017/Program%20Verification/10-UnboundedHeapDataStructures.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Courses/SS2017/Program%20Verification/10-UnboundedHeapDataStructures.pdf
https://www.pm.inf.ethz.ch/research/verifiedscion.html
https://www.pm.inf.ethz.ch/research/verifiedscion.html
https://viper.ethz.ch/tutorial/

Bibliography

[17] René Čáky. Method-specific encodings for gobra structs. Bachelor’s
thesis, ETH Zürich, 2023.

39

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Optimization of Slice Encoding in Gobra

Snajdr Zdenek

Zürich, 05.09.2023 Inaje

	Contents
	Introduction
	Background
	Go
	Slices

	Viper
	Domains
	Contracts
	Permissions
	Inhaling and Exhaling

	Gobra
	Permissions in Gobra

	Understanding The Existing Slice Encoding
	Design
	Arrays as Basis
	Injectivity

	Specification
	Domain
	Initialization and Declaration

	Proposed Slice Encoding
	Objectives
	Design
	Representation of Slices
	Creating Slices
	Injectivity

	Specification
	Domain
	Slice Creation

	Evaluation
	Syntactic Check for Slice Encoding
	Design
	Implementation
	Further Optimization

	Future Directions
	Granularity
	Method-specific Encoding for Other Data Types

	Conclusion
	Code Appendix
	Bibliography

