
Challenge 1: Matrix Multiplication

Consider the following pseudocode algorithm, which is naive implementation of matrix
multiplication. For simplicity we assume that the matrices are square.

 int[][] matrixMultiply(int[][] A, int[][] B) {

int n = A.length;

// initialise C
int[][] C = new int[n][n];

for (int i = 0; i < n; i++) {
 for (int k = 0; k < n; k++) {
 for (int j = 0; j < n; j++) {
 C[i][j] += A[i][k] * B[k][j];
 }

 }

}

return C;
 }

Tasks.
1. Provide a specification to describe the behaviour of this algorithm, and prove that it

correctly implements its specification.
2. Show that matrix multiplication is associative, i.e., the order in which matrices are

multiplied can be disregarded: A(BC) = (AB)C. To show this, you should write a program
that performs the two different computations, and then prove that the result of the two
computations is always the same.

3. [Optional, if time permits] In the literature, there exist many proposals for more efficient
matrix multiplication algorithms. Strassen’s algorithm was one of the first. The key idea
of the algorithm is to use a recurisive algorithm that reduces the number of
multiplications on submatrices (from 8 to 7), see
https://en.wikipedia.org/wiki/Strassen_algorithm for an explanation. A relatively clean
Java implementation (and Python and C++) can be found here:
https://martin-thoma.com/strassen-algorithm-in-python-java-cpp/. Prove that the naive
algorithm above has the same behaviour as Strassen’s algorithm. Proving it for a

https://martin-thoma.com/strassen-algorithm-in-python-java-cpp/
https://en.wikipedia.org/wiki/Strassen_algorithm
https://en.wikipedia.org/wiki/Strassen_algorithm
https://martin-thoma.com/strassen-algorithm-in-python-java-cpp/

restricted case, like a 2x2 matrix should be straightforward, the challenge is to prove it
for arbitrary matrices with size 2^n.

