
Challenge 3: Static Tree Barriers

This challenge focuses on multi-threaded executions and targets verifiers for concurrent
programs. However, the problem can also be encoded as a transition system and verified by a
verifier for sequential code.

Consider a multi-threaded program execution. In each state with N threads, we assume we
have given a binary tree with N nodes. Each node corresponds to exactly one thread. In the
context of this challenge, we do not consider thread creation and termination; the number of
nodes and their position in the tree is assumed to be immutable. Each node has references to
at most two children, and each node except for the root has a reference to its parent. Moreover,
each node stores a boolean value sense and an integer version. Hence, we have the
following data structure:

 class Node {
 final Node left, right;
 final Node parent;

 boolean sense;
 int version;

 // methods and constructors omitted
 }

The tree described above represents a tree barrier that can be used for thread synchronization.
This synchronization is performed by the following method of class Node:

 void barrier()

requires !sense
ensures !sense

 {
// synchronization phase
if(left != null)

 while(!left.sense) { }

if(right != null)
 while(!right.sense) { }

sense = true; // assume this statement and the next to execute
version++; // simultaneously (that is, in one step)

// wake-up phase
if(parent == null)

 sense = false;

while(sense) { }

if(left != null)
 left.sense = false

if(right != null)
 right.sense = false
}

Synchronization is performed in two phases. In the synchronization phase, each thread that
calls barrier() on its node waits until all threads have called barrier. The sense field is used
to propagate information about waiting threads up in the tree. When all threads have called
barrier() , the propagation reaches the root of the tree and initiates the wake-up phase,
which proceeds top-down.

Assume a state in which sense is false and version is zero in all nodes. Assume further that
no thread is currently executing barrier() and that threads invoke barrier() only on
their nodes. The number of threads (and, thus, the number of nodes in the tree) is constant, but
unknown.

Tasks. Prove that:

1. the following invariant holds in all states:
If n.sense is true for any node n then m.sense is true for all nodes m in the subtree
rooted in n .

2. for any call n.barrier() , if the call terminates then there was a state during the
execution of the method where all nodes had the same version.

Hint: The problem can be solved with a verifier for sequential programs by encoding it as a
non-deterministic transition system that represents threads and their states explicitly in each
state of the transition system.

