
Challenge 1
Monotonic Segments and GHC Sort

VerifyThis at ETAPS 2019
Organizers: Claire Dross, Carlo A. Furia,

Marieke Huisman, Rosemary Monahan, Peter Müller

6–7 April 2019, Prague, Czech Republic

How to submit solutions: send an email to verifythis19@googlegroups.com

with your solution in attachment. Remember to clearly identify you, stating
your group’s name and its members.

This challenge1 is in two parts, each consisting of several different verifica-
tion tasks. Since you have limited time at your disposal, you are not expected
to solve both challenges: pick the one that you find the most feasible given the
tool you’re using and your preferences.

You can also choose to focus on specific verification tasks and assume the
others; for example, you can just assume that a procedure works according to
some specification without actually implementing or proving it.

1 Part A: Monotonic Segments

Given a sequence s

s = s[0] s[1] . . . s[n− 1] n ≥ 0

of elements over a totally sorted domain (for example, the integers), we call
monotonic cutpoints any indexes that cut s into segments that are monotonic:
each segment’s elements are all increasing or all decreasing. Here are some
examples of sequences with monotonic cutpoints:

SEQUENCE s MONOTONIC CUTPOINTS MONOTONIC SEGMENTS

1 2 3 4 5 7 0 6 1 2 3 4 5 7
1 4 7 3 3 5 9 0 3 5 7 1 4 7 | 3 3 | 5 9
6 3 4 2 5 3 7 0 2 4 6 7 6 3 | 4 2 | 5 3 | 7

Formally, given a sequence s as above, we call monotonic cutpoints any
integer sequence

cut = c0 c1 . . . cm−1

such that the following four properties hold:

1The topic of this challenge was suggested by Nadia Polikarpova.

1

verifythis19@googlegroups.com

non-empty: m > 0

begin-to-end: c0 = 0 and cm−1 = n

within bounds: for every element ck ∈ cut: 0 ≤ ck ≤ n

monotonic: for every pair of consecutive elements ck, ck+1 ∈ cut, the segment

s[ck..ck+1) = s[ck] s[ck + 1] . . . s[ck+1 − 1]

of s, which starts at index ck included and ends at index ck+1 excluded, is
monotonic, that is:

1. either s[ck] < s[ck + 1] < · · · < s[ck+1 − 1]

2. or s[ck] ≥ s[ck + 1] ≥ · · · ≥ s[ck+1 − 1]

(If you prefer, you can change the definition of monotonic so that seg-
ments of equal values can be indifferently included in increasing or in
decreasing segments. If you choose to do so, you may have to change the
algorithm given below to match your definition of monotonic segment.)

In this challenge we focus on maximal monotonic cutpoints, that is such that,
if we extend any segment by one element, the extended segment is not mono-
tonic anymore.

Given a sequence s, for example stored in an array, maximal monotonic
cutpoints can be computed by scanning s once while storing every index that
corresponds to a change in monotonicity (from increasing to decreasing, or vice
versa), as shown in the following algorithm.

cut := [0] # singleton sequence with element 0

x, y := 0, 1

while y < n: # n is the length of sequence s

increasing := s[x] < s[y] # currently in increasing segment?

while y < n and (s[y-1] < s[y]) == increasing:

y := y + 1

cut.extend(y) # extend cut by adding y to its end

x := y

y := x + 1

if x < n:

cut.extend(n)

Tasks

Implementation task. Implement the algorithm shown above to compute
monotonic cutpoints of an input sequence. Choose any representation of input
sequence and cutpoints sequence that is manageable using your programming
language of choice: arrays, mathematical sequences, dynamic lists, If you
are using a functional programming language, you can use recursion instead
of looping to implement the general idea behind the algorithm.

2

Verification tasks.

1. Verify that the output sequence satisfies properties non-empty, begin-to-
end, and within bounds above.

2. Verify that the output sequence satisfies property monotonic given above
(without the maximality requirement).

3. Optional task (advanced): Strengthen the definition of monotonic cut-
points so that it requires maximal monotonic cutpoints, and prove that
your algorithm implementation computes maximal cutpoints according
to the strengthened definition.

2 Part B: GHC Sort

The GHC Haskell compiler’s standard library includes an implementation of a
generic sorting method which is a form of patience sorting.2 To sort a sequence s,
GHC sort works as follows:

1. Split s into monotonic segments σ1, σ2, . . . , σm−1

2. Reverse every segment that is decreasing

3. Merge the segments pairwise in a way that preserves the order

4. If all segments have been merged into one, that is an ordered copy of s;
then terminate. Otherwise, go to step 3

Merging in step 3 works like merging in Merge Sort:

merge ordered segments s and t

merged := []

x, y := 0, 0

while x < length(s) and y < length(t):

if s[x] < t[y]:

merged.extend(s[x])

x := x + 1

else:

merged.extend(t[y])

y := y + 1

append any remaining tail of s or t

while x < length(s):

merged.extend(s[x])

x := x + 1

while y < length(t):

merged.extend(t[y])

y := y + 1

For example, GHC sort applied to the sequence s = 3 2 8 9 3 4 5 goes
through the following steps:

• monotonic segments: 3 2 | 8 9 | 3 4 5

2Named after the patience card game https://en.wikipedia.org/wiki/Patience_sorting.

3

https://en.wikipedia.org/wiki/Patience_sorting

• reverse decreasing segments: 2 3 | 8 9 | 3 4 5

• merge segments pairwise: 2 3 8 9 | 3 4 5

• merge segments pairwise again: 2 3 3 4 5 8 9, which is s sorted

Tasks

Implementation task. Implement GHC sort in your programming language
of choice. Again, you can represent the sequences of ordered segments using
any data structure or abstract representation that works well with your tool.

To compute the monotonic segments of the input you can rely on the al-
gorithm developed in part 1 of this challenge. If you find it preferable, you
can add the reversal (step 2) to the same pass that constructs the monotonic
segments in step 1.

Verification tasks.

1. Write functional specifications of all procedures/functions/main steps of
your implementation.

2. Verify that the implementation of merge returns a sequence merged that is
sorted.

3. Verify that the overall sorting algorithm returns an output that is sorted.

4. Verify that the overall sorting algorithm returns an output that is a per-
mutation of the input.

According to the capabilities of your verification tool, you may focus on
the parts of the algorithm that are more amenable to analysis, while specify-
ing the expected behavior of the other parts without proving their correctness
explicitly.

4

	Part A: Monotonic Segments
	Part B: GHC Sort

