
Challenge I: Lexicographic Permutations

Description

This challenge considers an algorithm that takes any sequence A as input, and enu-
merates all possible permutations of A. Moreover, it enumerates these permutations in
sorted (lexicographic) order. For example, when given a sequence A B C of characters as
input, the algorithm enumerates and outputs the following six sequences: A B C, A C B,
B A C, B C A, C A B, C B A, in that specific order.

Let us restrict ourselves to integer sequences for the purpose of this challenge. For
example, given an integer sequence 3 1 2 as input, the algorithm enumerates and reports
the sequences 1 2 3, 1 3 2, 2 1 3, 2 3 1, 3 1 2, 3 2 1, in that order.

The enumeration algorithm, named permut, is shown on the next page. At the heart
of this algorithm lies a procedure named next(A) that takes an integer array A as input
and modifies A to be the next permutation in the enumeration sequence. For example,
if A were 2 3 1, then next(A) would modify A to be 3 1 2. The next procedure does not
wrap, but instead returns a Boolean value that indicates whether a next permutation
was found. For example, next(2 3 1) yields true, whereas next(3 2 1) yields false as it
is the last permutation.

Verification tasks

The verification challenges related to next are:

1. Verify that next is memory safe.

2. Verify that next terminates for every input.

3. Verify that any changes on A performed by next(A) are permutations.

4. Verify that, if next(A) returns false, then A is left unmodified and is indeed the
“last permutation” in the permutation sequence.

5. Verify that, if next(A) yields true, then A is modified to be the proper “next
permutation” in the sequence.

The verification challenges related to the permut procedure are:

6. Verify that permut is memory safe.

7. Verify that permut terminates for every input.

8. Verify that any permutation reported by permut is unique.

1



9. Verify that permut(A) reports all permutations of A.

10. Verify that permut outputs all permututations in lexicographic order.

1 seq〈int〉 permut(int[ ] A) {
2 seq〈int〉 result := seq();
3

4 if (A = null) return result ;
5

6 sort(A);
7

8 do { result := result ++ seq(to seq(A)); }
9 while (next(A));

10

11 return result ;
12 }
13

14 bool next(int[ ] A) {
15 int i := A.length − 1;
16 while (i > 0 ∧A[i− 1] ≥ A[i]) {
17 i := i− 1;
18 }
19

20 if (i ≤ 0) return false;
21

22 int j := A.length − 1;
23 while (A[j] ≤ A[i− 1]) {
24 j := j − 1;
25 }
26

27 int temp := A[i− 1];
28 A[i− 1] := A[j];
29 A[j] := temp;
30

31 j := A.length − 1;
32 while (i < j) {
33 temp := A[i];
34 A[i] := A[j];
35 A[j] := temp;
36 i := i + 1;
37 j := j − 1;
38 }
39

40 return true;
41 }

2


