
Challenge III: Shearsort

Description

For this challenge we look at shearsort, which is a parallelisable algorithm for sorting
an n× n integer matrix in a snake-like order. With snake-like we mean that, after
termination of shearsort, the rows of the given input matrix have been sorted in
alternating direction.

The next page shows a pseudo-code implementation of shearsort. It takes an integer
matrix M as input, which is assumed to be of size n × n (with n a positive integer).
Then the following two steps are repeated dlog2(n)e+ 1 times:

1. Sort all rows of M in an alternating manner.

2. Sort all columns of M in ascending order.

Below an example application of shearsort is given, on a 3× 3 matrix:

5 8 2

9 1 7

3 6 4

Input matrix

2 5 8

9 7 1

3 4 6

Round 1: sorting rows

2 4 1

3 5 6

9 7 8

Round 1: sorting columns

1 2 4

6 5 3

7 8 9

Round 2: sorting rows

1 2 3

6 5 4

7 8 9

Round 2: sorting columns

1 2 3

6 5 4

7 8 9

Round 3: sorting rows

1 2 3

6 5 4

7 8 9

Round 3: sorting columns

1 2 3

6 5 4

7 8 9

Output matrix

The row and column sorts in every round can be performed in parallel, as they
operate on disjoint memory. The implementations of sort-row and sort-column are
left abstract, but could be chosen to be any sorting function.

1



Furthermore, an alternative implementation of shearsort is given, that uses a ma-
trix transpose operation instead of sort-column. This version should be equivalent
to shearsort, although less efficient. Feel free to perform the verification tasks using
alternative-shearsort instead, if that is more convenient.

Moreover, in case your verifier does not support reasoning about concurrency, feel
free to turn all parallel for-loops into sequential ones.

Verification tasks

The verification tasks for shearsort are:

1. Verify that shearsort terminates, and is memory safe.

2. Verify that shearsort permutes the input matrix.

3. Verify that shearsort sorts the matrix in a snake-like manner.

4. Verify that (parallel) shearsort satisfies the same specification as sequential
shearsort, in which all parallel for-loops are replaced by sequential ones.

5. Verify that shearsort and alternative-shearsort satisfy the same specification.

6. Extra: give implementations to sort-row, sort-column and transpose, and ver-
ify these as well.

2



1 // Sorts the row -th row of M in ascending order if ascending is true,
2 // or in descending order if ascending is false.
3 void sort-row(int[ ][ ] M, int row , bool ascending) {
4 . . .

5

6 // Sorts the column-th column of M in ascending order.
7 void sort-column(int[ ][ ] M, int column) {
8 . . .

9

10 // Sorts M in snake-like order, assuming that M is an n× n matrix.
11 void shearsort(int n, int[ ][ ] M) {
12 repeat dlog2(n)e+ 1 times {
13 for int tid = 0 . . . n do in parallel {
14 sort-row(M, tid , tid % 2 = 0);
15 }
16 for int tid = 0 . . . n do in parallel {
17 sort-column(M, tid);
18 }
19 }
20

21 // An alternative version of shearsort, that only uses sort-row.
22 void alternative-shearsort(int n, int[ ][ ] M) {
23 repeat dlog2(n)e+ 1 times {
24 for int tid = 0 . . . n do in parallel {
25 sort-row(M, tid , tid % 2 = 0);
26 }
27 transpose(M);
28 for int tid = 0 . . . n do in parallel {
29 sort-row(M, tid , true);
30 }
31 transpose(M);
32 }

3


