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Problem Description

The following algorithm describes the functionality of downsampling an input
point cloud. Downsampling is used to reduce the size of an input image before
it is processed further. The resulting point cloud retains the overall geometric
structure but has a reduced number of points.

Techniques such as this are common in domains such as signal/image pro-
cessing and robotics. Our pseudocode uses square voxel downsampling with
a predefined voxel size. That is, the space is tiled into cube-shaped voxels, and
the average point in the voxel becomes the new point to replace the others.

This challenge was inspired by work on verifying an autonomous grasping
algorithm in [1].
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datatype Point = Point(x : real, y : real, z : real)
method downSample(p : list<Point>, voxel_size : real) returns (pd : list<Point>)
{

// Get max and min x, y and z of point cloud

x_max := max{pt.x | pt ∈ p}; x_min := min{pt.x | pt ∈ p};

y_max := max{pt.y | pt ∈ p}; y_min := min{pt.y | pt ∈ p};

z_max := max{pt.z | pt ∈ p}; z_min := min{pt.z | pt ∈ p};

// Find the number of voxels in all 3 dimensions. A voxel is a cube with

edge length voxel_size. Note that we round up in the division.

var num_vox_x := (|x_max - x_min|/voxel_size).Ceiling;

var num_vox_y := (|y_max - y_min|/voxel_size).Ceiling;

var num_vox_z := (|z_max - z_min|/voxel_size).Ceiling;

// Array of voxels, each element eg at voxel_array[i,j,k] is a Point which

is initialised to (0.0, 0.0, 0.0)

voxel_array := new Point[num_vox_x,num_vox_y,num_vox_z];

// Array of counts in all dimensions (useful for averaging), each element

should be set to 0 at initialisation, at the end the sum of counts

should be equal to the number of points in the input point cloud.

count_array := new int[num_vox_x,num_vox_y,num_vox_z];

// Objective is to calculate : E.g : voxel_array[0,2,1] -> (((0.23, 2.45,

1.89) + (0.13, 2.87, 1.35) + ..())/count_array[0,2,1])

forall pt in p {

//take the floor to collect points that are in the same region

var x_floored := ((pt.x - x_min)/voxel_size).Floor;

var y_floored := ((pt.y - y_min)/voxel_size).Floor;

var z_floored := ((pt.z - z_min)/voxel_size).Floor;

voxel_array[x_floored,y_floored,z_floored] := voxel_array[x_floored,

y_floored,z_floored] + pt;

count_array[x_floored,y_floored,z_floored] := count_array[x_floored,

y_floored,z_floored] + 1;

}

// Average the voxelised (bucketed) points to get the final point cloud

i, j, k := 0, 0, 0;

pd := [];

for 0 ≤ i < num_vox_x

for 0 ≤ j < num_vox_y

for 0 ≤ k < num_vox_z

if(count_array[i,j,k] 6=0)

pd.append(voxel_array[i,j,k]/count_array[i,j,k]);

return pd;

}
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Tasks

Implementation task. Implement the downsample method. The pseudocode
uses real numbers but participants may simplify and use integers if their tool
does not have adequate support for real numbers. Other potential simplifica-
tions include requiring that the least point is at (0, 0, 0) and fixed parameters
for x_max, y_max and z_max.

Verification tasks. Verify the following properties:

1. Memory Safety.

2. Termination.

3. The output point cloud is smaller or equal to the input point cloud. For
example:

size(pd) <= size(p)

4. The output point cloud is within the same range as the input point cloud.
For example

boundingbox(pd) inside boundingbox(p)

5. The output point cloud is a correct downsampled version of the input
point cloud.

References

[1] M. Farrell, N. Mavrakis, A. Ferrando, C. Dixon, and Y. Gao. Formal mod-
elling and runtime verification of autonomous grasping for active debris
removal. Frontiers in Robotics and AI, 8, 2021.

3


