
2 Work-Stealing for Task Trees — extended1

Work stealing is a popular efficient technique for performing load balancing in
multicore computations. In traditional schemes, the work-stealing is receiver-
initiated : workers that run out of work are responsible for stealing tasks. In
a dual approach, called sender-initiated work-stealing, workers with tasks are
responsible for actively sharing their tasks with workers that are out of work.

In this challenge we investigate work-stealing in the context of a binary tree
of tasks. Each task has at most two child subtasks and a task may be executed
only after their parent task; the root task must be executed first, therefore. The
order in which tasks can be executed is otherwise not restricted.

Let P > 0 be the number of workers; each worker has a unique ID i in the
range 0 to P−1. Each worker has a double-ended queue q[i] representing the
tasks currently ready to execute and assigned to this worker; these start off
empty, and the root task is then assigned to worker 0. Our algorithms are each
built around the same key main function, shown in pseudo code below:

typedef int task // tasks are represented by their IDs

const int nTasks // number of tasks (IDs 0,1,...,nTasks -1)

const task NO_TASK = -1 // special code to denote ‘no child task ’

const task ROOT_TASK = 0 // ID of the root task

task subtask[nTasks ][2] // maps task ID to child task IDs / NO_TASK

bool executed[nTasks] // marks executed tasks; initially 0 (false)

const int P // number of workers

deque <task > q[P] // double -ended queue per worker; initially empty

// entry point for each worker (calling this concurrently)

void main(int i) // i = ID of the worker; 0 for the initial worker

if i = 0 // the worker who starts things off

push_bottom(q[i], ROOT_TASK)

repeat // until termination

if (empty(q[i])) // if out of work , try to acquire a task

acquire(i) // scheme -dependent function; see later

else // pick a task and execute it

task t = pop_bottom(q[i])

communicate(i) // scheme -dependent function; see later

execute(i, t)

// execution of a task t by worker i

void execute(int i, task t)

// perform some task -specific computation; omitted for simplicity

executed[t] += 1 // flag the task as executed

// then schedule the subtasks

add_task(i, subtask[t][1])

add_task(i, subtask[t][0])

// called for scheduling a task t into worker i’s queue

void add_task(int i, task t)

if t != NO_TASK

push_bottom(q[i], t)

1We warmly thank Arthur Charguéraud for contributing the idea for this challenge.

1



The array subtask (which is never mutated in the code; you may assume this
to be immutable if it helps you) expresses the tree structure of tasks: looking
up a task’s ID in the array gives an array with two elements, storing the task
IDs of its respective subtasks (or the special value NO TASK).

We assume an existing suitable implementation of a double-ended queue (the
deque type in our pseudo code). You do not need to implement this type for
these challenges. However, since the code we are concerned with interacts with
these queues, you will need specifications for five functions on these queues:

empty(Q) returning a boolean indicating whether the queue Q is empty.

peek top(Q) returning the element at the start of Q (without removing it).

pop top(Q) removing the top element from Q and returning it.

push bottom(Q,T) which modifies the queue Q, adding the task T at the end.

pop bottom(Q) removing the bottom/end element from Q and returning it.

The variation between different task-handling schemes is expressed by chang-
ing (only) the implementations of the acquire and communicate functions.

Version 0: Sequential task processing We start with a sequential scheme:
here, we can assume P = 1 and so there is a unique worker executing the main

function with ID (i parameter) 0. In this version, the two functions acquire
and communicate are no-ops: their implementations are empty, and calling them
does nothing. The (only) worker will initially add the root task to its queue,
and continually execute a task in its queue, queueing up its subtasks, and so
on. We do not handle worker termination in the code (which is complex for
concurrent schemes), but all tasks should eventually be executed this way.

Tasks for version 0

(a) Formalise the assumption that the initial values stored in the array (of
length two arrays) subtask define a valid binary tree rooted at task ID 0.

(b) Define suitable specifications for the queue functions listed above.

(c) Verify that the pseudocode functions given are memory-safe / crash free
(assuming that the queue functions are similarly safe): in particular, verify
that all array accesses performed are guaranteed to be within bounds.

(d) Verify that every task is executed at most once.

(e) Verify that all task dependencies (as expressed by the tree structure) are
respected: a subtask is never executed before its parent.

(f) Verify that all tasks are eventually executed.

(g) Verify that (after ROOT TASK has been inserted by worker 0) all the worker
queues (in version 0, the single queue q[0]) eventually become empty.

2



Version 1: Sender-initiated Work-stealing The following alternative im-
plementations of the acquire and communicate functions (along with additional
definitions/state as shown) implement a sender-initiated work-stealing scheme.

// extra definitions/state

const task WAITING = -2 // code for ‘a task would be welcome ’

const task NOT_WAITING = -3 // code for ‘not receiving tasks ’

task s[P]; // communication cells , all initially NOT_WAITING

// called by workers when running out of work

void acquire(int i)

s[i] = WAITING // ‘a task would be welcome ’

while (s[i] == WAITING) // block until receiving a task

noop

add_task(i, s[i])

s[i] = NOT_WAITING // technically optional

// consider pushing a task to an idle (different) worker

void communicate(int i)

if (empty(q[i])) // cannot provide a task if we have none

return

int j = random in {0, ..., P-1}\{i} // pick a random other worker

if s[j] != WAITING // check if that worker is waiting for tasks

return // give up if we picked a worker not waiting

task t = peek_top(q[i])

// attempt to atomically take the target communication slot

bool r = compare_and_swap (&s[j], WAITING , t)

if (r) // we successfully wrote the task ID to s[j]

pop_top(q[i]) // remove from our queue; now worker j gets it

The acquire function is only called when a worker has no tasks, and sets the
worker’s communication cell to WAITING to signal that a task can be assigned
to it. It then busy-waits until this cell’s value has been changed (to a task ID),
and it then inserts this task and continues.

The communicate function represents worker i considering sending a task to
another worker. If it has a task to send, it randomly guesses (once) a different
worker ID, and checks whether that worker is waiting for work (if not, it gives
up for on communication for now). If so, it uses a compare-and-swap operation
(which might be racing with other workers trying to assign the same worker a
task) to attempt to atomically update the worker’s communication cell with the
task ID to send, removing this from its own queue if this operation is successful.

Tasks for version 1

(h) Prove that all functions provided for this scheme are memory-safe / crash
free (as for task (c) above).

(i) Prove that the same properties (d)–(g) as for version 0 for this new sender-
initiated concurrent scheme hold (in particular, assuming P > 1).

(j) Write a short textual comment labelled MODULARITY: explaining to what
extent you are able to reuse parts of the code and verification effort/results
between your two different versions.

3



Version 2: Receiver-initiated Work-stealing The following alternative
implementations of the acquire and communicate functions (along with defini-
tions/state as shown) implement a receiver-initiated work-stealing scheme.

const int NO_REQUEST = -1 // special "worker ID" value

int r[P] // request cell per worker; initially all NO_REQUEST

const task NO_RESPONSE = -2 // code for ‘no task provided yet ’

task t[P] // transfer cell per worker; initially all NO_RESPONSE

// called by workers when running out of work

void acquire(int i)

while true // block until receiving a proper task

t[i] = NO_RESPONSE // initialize the cell for receiving a task

int k = random in {0, .., P -1}\{i} // pick random other worker

if compare_and_swap (&r[k], NO_REQUEST , i) // make a request

while (t[i] == NO_RESPONSE) // wait for a response

communicate(i) // reply negatively to incoming queries

if (t[i] != NO_TASK) // if we obtained a valid task

add_task(i, t[i]) // get ready to work on that task

return

// otherwise , if obtained a negative reply , then try again

communicate(i) // provide negative reply to incoming queries

// check for incoming steal requests

void communicate(int i)

int j = r[i] // check our own request cell

if j == NO_REQUEST // if no request , then nothing to do

return

if (empty(q[i]))

t[j] = NO_TASK // if no task at hand , provide a negative reply

else

t[j] = pop_top(q[i]) // else , reply with a task

r[i] = NO_REQUEST // reset request cell to allow further requests

The scheme here is for workers without work to (via acquire) first prepare
their transfer cell for receiving a task, then pick a random other worker and
register a request for work in their request cell. Then workers wait to receive a
response: either NO TASK or a task ID (signifying a task transferred to them).
All workers are responsible for checking whether they have received requests
and responding, by periodically calling the communicate function.

Tasks for version 2

(k) Prove that all functions provided for this scheme are memory-safe / crash
free (as for task (c) above).

(l) Prove that the same properties (d)–(g) as for version 1 (for P > 1).

(m) Write a short textual comment labelled MODULARITY: explaining to what
extent you are able to reuse parts of the code and verification effort/results
between each of your different versions.

4


