i = 0
i is running index (inc by 2 every iteration)
while i < length(A)-1
 x = A[i]
 # let x and y hold the next to elements in A
 y = A[i+1]

 if x < y then
 # ensure that x is not smaller than y
 swap x and y

 j = i - 1
 # j is the index used to find the insertion point
 while j >= 0 and A[j] > x
 # find the insertion point for x
 j = j - 1
 end while
 A[j+2] = x
 # store x at its insertion place
 A[j+1] is an available space now

 while j >= 0 and A[j] > y
 # find the insertion point for y
 A[j+1] = A[j]# shift existing content by 1
 j = j - 1
 end while
 A[j+1] = y
 # store y at its insertion place

 i = i+2
end while

if i = length(A)-1
 # if length(A) is odd, an extra
 y = A[i]
 # single insertion is needed for
 j = i - 1
 # the last element
 while j >= 0 and A[j] > y
 j = j - 1
 end while
 A[j+1] = y
end if