
Challenge 3:
 Odd-even Transposition Sort
This sorting algorithm, developed originally for use on parallel processors, compares all odd-
indexed list elements with their immediate successors in the list and, if a pair is in the wrong
order (the first is larger than the second) swaps the elements. The next step repeats this for
even-indexed list elements (and their successors). The algorithms iterates between these two
steps until the list is sorted.

Single Processor Solution

The single-processor algorithm is simple, but not very efficient (O(n²)). It can be considered a
variation of the bubble sort algorithm. Here a zero-based index is assumed:

function oddEvenSort(list) {
 function swap(list, i, j) {
 var temp = list[i];
 list[i] = list[j];
 list[j] = temp;
 }

 var sorted = false;
 while(!sorted) {
 sorted = true;
 for(var i = 1; i < list.length-1; i += 2) {
 if(list[i] > list[i+1]) {
 swap(list, i, i+1);
 sorted = false;
 }
 }

 for(var i = 0; i < list.length-1; i += 2) {
 if(list[i] > list[i+1]) {
 swap(list, i, i+1);
 sorted = false;
 }
 }
 }
}

Multi Processor Solution

On parallel processors, with one value per processor and only local left–right neighbour
connections, the processors all concurrently do a compare–exchange operation with their
neighbours, alternating between odd–even and even–odd pairings in each step. The algorithm
has linear runtime as comparisons can be performed in parallel.

A pseudocode implementation that uses message passing for synchronisation is presented in
the following. The driver code spawns n processes, one for each array element and collects the
results after termination.

process ODD-EVEN-PAR(n, id, myvalue)
 // n … the length of the array to sort
 // id … processors label (0 .. n-1)
 // myvalue … the value in this process
begin
 for i := 0 to n-1 do
 begin
 // alternate between left and right partner
 if i+id is even then
 if id has a right neighbour
 sendToRight(myvalue);
 othervalue = receiveFromRight();
 myvalue = min(myvalue, othervalue);
 else
 if id has a left neighbour
 sendToLeft(myvalue);
 othervalue = receiveFromLeft();
 myvalue = max(myvalue, othervalue);
 end for
end ODD-EVEN-PAR

for i := 0 to array.length-1
 process[i] := new ODD-EVEN-PAR(n, i, array[i])
end for

start processes and wait for them to finish

for i := 0 to array.length-1
 array[i] := process[i].myvalue
end for

Verification Tasks:

1. Specify and verify that the result of the even-odd sort algorithm is a sorted list.
2. Specify and verify that the result of the even-odd sort algorithm is a permutation of the

input list.
3. Prove that the code terminates.

Concurrency: This algorithm was developed originally for parallel use. You should aim to have a
parallel solution also if your tool allows.

Synchronisation: We have proposed a synchronisation scheme using messages between
neighbouring processes. You are free to use a different scheme (semaphores, locks, …) if you
wish.

Caution: The implementations shown above are for demonstration purposes only, they have not
been thoroughly tested, let alone formally verified. That’s your job!

