
FoVeOOS competition 2011

Third Challenge

Krakatoa/Why3 team

October 4, 2011

1 Solution in Why3

The Why3ML version of the challenge code, is as follows. (verbatim copy, sorry
for the length file).

The first part is a theory defining a generic option type. the predicate eq_opt
decides whether a value x is equal to the value stored in option o. it is of course
false if o is None.

The second part is the module defining the code.
The main function is duplets, which proceeds by calling an auxiliary func-

tion duplet which finds one duplet.
To ease the specification, a predicate is_duplet is introduced, which tells

that a pair (i,j) are indexes for a duplet in an array a.
To make the main function work, the auxiliary function should be able to

return a duplet that is different from the first one found. This is the role of the
extra parameter except : the duplet to find must be have a value different from
this option.

The loops in the code of the auxiliary function must be annotated with
proper invariants to ensures that no duplet have been found yet. This is indeed
necessary only for proving that the loop cannot exit normally.

(*

COST Verification Competition

Please send solutions to vladimir@cost-ic0701.org

Challenge 3: Two equal elements

Given: An integer array a of length n+2 with n>=2. It is known that at

least two values stored in the array appear twice (i.e., there are at

least two duplets).

Implement and verify a program finding such two values.

You may assume that the array contains values between 0 and n-1.

1



*)

theory Option

type option ’a = None | Some ’a

predicate eq_opt (x:’a) (o:option ’a) =

match o with

| None -> false

| Some v -> v=x

end

end

module Simple

use import int.Int

use import Option

use import module ref.Ref

use import module array.Array

(* duplet in array a is a pair of indexes (i,j) in the bounds of array

a such that a[i] = a[j] *)

predicate is_duplet (a:array int) (i:int) (j:int) =

0 <= i < j < length a /\ a[i] = a[j]

exception Break

(* (duplet a) returns the indexes (i,j) of a

duplet in a.

*)

let duplet (a:array int) (except:option int) =

{ 2 <= length a /\

exists i j:int. is_duplet a i j /\

not (eq_opt a[i] except) }

let res = ref (0,0) in

try

for i=0 to length a - 2 do

invariant {

forall k l:int. 0 <= k < i /\ k < l < length a ->

not (eq_opt a[k] except) -> not (is_duplet a k l)

}

let v = a[i] in

if eq_opt v except then () else

for j=i+1 to length a - 1 do

invariant {

2



forall l:int. i < l < j -> not (is_duplet a i l)

}

if a[j] = v then

begin

res := (i,j);

raise Break

end

done

done;

assert { forall i j:int. not (is_duplet a i j) };

absurd

with Break -> !res

end

{ let (i,j) = result in

is_duplet a i j /\ not (eq_opt a[i] except) }

let duplets (a: array int) =

{ 4 <= length a /\ exists i j k l:int.

is_duplet a i j /\ is_duplet a k l /\ a[i] <> a[k]

}

let (i,j) = duplet a None in

let (k,l) = duplet a (Some a[j]) in

((i,j),(k,l))

{ let ((i,j),(k,l)) = result in

is_duplet a i j /\ is_duplet a k l /\ a[i] <> a[k] }

end

(*

Local Variables:

compile-command: "why3ide challenge3_why3.mlw"

End:

*)

predicate is_duplet defines what means for a given integer to be greater or
equal all values in a tree.

The proof proceeds automatically by several theorem provers. Proofs are
separate d between the duplet function and the duplets function, and in each
case the verification condition, a large conjunction, was split into parts. The
time limit was 10 sec.

3



Proof obligations A
lt

-E
rg

o
0
.9

3

C
V

C
3

2.
2

Z
3

2.
19

parameter duplet assertion 0.03 0.02 0.04
parameter duplet 0.02 0.02 0.04

for loop initialization 0.01 0.03 0.01
for loop preservation (timeout) 0.12 0.15

assertion 0.07 0.04 0.05
parameter duplet 0.04 0.03 0.04

parameter duplets precondition 0.04 0.03 0.04
precondition 0.04 0.03 0.04
precondition 0.04 0.03 0.04

normal postcondition 0.06 0.03 0.04

2 About a Solution using Krakatoa

Proving the same example in Java, annotated, with Krakatoa should not rise any
difficulty, apart maybe the fact that we need a way to return pairs of integers.

4


