FoVeOOS competition 2011
Second Challenge

Krakatoa/Why3 team
October 4, 2011

1 Solution in Why3, first part

This first part is only a partial specification, proving that the code returns a
value greater or equal the maximum of the tree

The Why3ML version of the challenge code, is as follows. (verbatim copy,
sorry for the length file).

(%
COST Verification Competition
Please send solutions to vladimir@cost-ic0701.org

Challenge 2: Maximum in a tree

Given: A non-empty binary tree, where every node carries an integer.

Implement and verify a program that computes the maximum of the values
in the tree.

Please base your program on the following data structure signature:
public class Tree {
int value;

Tree left;
Tree right;

You may represent empty trees as null references or as you consider
appropriate.

*)

theory BinTree

use import int.Int
use import int.MinMax

type tree = Null | Tree int tree tree

(* tests whether an integer v occurs in t *)
predicate mem (v:int) (t:tree) =
match t with
| Null -> false
| Tree x 1 r -> x=v /\ mem v1 /\ mem v r
end

(* tests whether an integer is greater or equal to all values of a tree *)
predicate ge_tree (v:int) (t:tree) =

match t with

| Null -> true

| Tree x 1 r -> v >= x /\ ge_tree v 1 /\ ge_tree v r

end

lemma ge_trans : forall t:tree, x y:int.
x >= 7y /\ ge_tree y t -> ge_tree x t

end
module Tree

use import int.Int
use int.MinMax
use import BinTree

let rec max_aux (t:tree) (acc:int) =
{ true }
match t with
| Null -> acc
| Tree v1r ->
max_aux 1 (max_aux r (MinMax.max v acc))
end
{ ge_tree result t /\ result >= acc }

let max (t: tree) =
{ t <> Null }
match t with
| Null -> absurd
| Tree v1r —>

max_aux 1 (max_aux r v)
end
{ ge_tree result t }

end

(*

Local Variables:

compile-command: "why3ide challenge2_why3.mlw"
End:

*)

predicate ge_tree defines what means for a given integer to be greater or
equal all values in a tree.

The proof proceeds automatically by several theorem provers, except the
lemma which is proved in Coq

Proof of the lemma:

Coq 8.2pll

Proof obligations
ge_trans 0.44
Coq script (excerpt from file challenge2_why3/challenge2_why3_BinTree_ge_trans_1.v)

induction t.

intros; simpl; auto.

intros x y.

simpl.

intros (H,(I,(J,K))).

split; auto with zarith.

split.

apply IHtl with (y:=y); auto with zarith.
apply IHt2 with (y:=y); auto with zarith.

[~e]
D
S [a\]
& N
20 - =
RO |
Proof of the code: = > ™
Proof obligations << @) N
parameter max_aux | parameter max_aux | 0.02 | 0.01 | 0.03
parameter max_aux | 0.03
parameter max 0.02 0.06

2 Solution in Why3, second part
This times we also specify that the result belongs to the tree

(*
COST Verification Competition
Please send solutions to vladimir@cost-ic0701.org

Challenge 2: Maximum in a tree

Given: A non-empty binary tree, where every node carries an integer.

Implement and verify a program that computes the maximum of the values
in the tree.

Please base your program on the following data structure signature:
public class Tree {

int value;
Tree left;
Tree right;

You may represent empty trees as null references or as you consider
appropriate.

*)
theory BinTree

use import int.Int
use import int.MinMax

type tree = Null | Tree int tree tree

(* tests whether an integer v occurs in t *)
predicate mem (v:int) (t:tree) =
match t with
| Null -> false
| Tree x 1 r -> x=v /\ mem v 1 /\ mem v r
end

(* tests whether an integer is greater or equal to all values of a tree *)
predicate ge_tree (v:int) (t:tree) =

match t with

| Null -> true

| Tree x 1 r -> v >= x /\ ge_tree v 1 /\ ge_tree v r
end

lemma ge_trans : forall t:tree, x y:int.
x >=y /\ ge_tree y t -> ge_tree x t

end
module Tree

use import int.Int
use int.MinMax
use import BinTree

let rec max_aux (t:tree) (acc:int) =
{ true }
match t with
| Null -> acc
| Tree v1r ->
max_aux 1 (max_aux r (MinMax.max v acc))
end
{ ge_tree result t /\ result >= acc /\
(result = acc /\ mem result t)

}

let max (t: tree) =
{t <> Null }
match t with
| Null -> absurd
| Tree v1r ->
max_aux 1 (max_aux r v)
end
{ ge_tree result t /\ mem result t }

end

(*

Local Variables:

compile-command: "why3ide challenge2part2_why3.mlw"
End:

*)

function max is proved automatically, but not function max_aux. A few
lemmas are needed here, not enough time.

3 About a Solution using Krakatoa

Proving the same example in Java may rise the difficulty that the subtrees may
be shared. However in that particular case, that is finding the maximum, it
should be correct even if shared.

Another major issue would be about termination: one should specify that
the tree is finite.

