
Noname manuscript No.
(will be inserted by the editor)

VerifyThis 2022 Program Verification Competition

Marie Farrell · Peter Lammich · Marieke Huismann · Rosemary

Monahan · Peter Müller · Mattias Ullbrich

Received: date / Accepted: date

Abstract VerifyThis 2022 was a two-day program ver-

ification competition that was ran as part of the Eu-

ropean Joint Conferences on Theory and Practice of

Software (ETAPS) on the 2nd and 3rd of April 2022 in

Munich, Germany. This paper provides an overview of

the competition, challenges and results. We also exam-

ine the solutions to the challenges and reflect on lessons

learned.

Keywords Verification · Formal Methods · Competi-

tion

1 Introduction

VerifyThis is a series of program verification competi-

tions [12,13,15,14,8]. VerifyThis 2022 took place on the

2nd and 3rd of April, 2022 in Munich, Germany. It was

the 10th edition in the VerifyThis series and was held as

part of the European Joint Conferences on Theory and

Practice of Software (ETAPS 2022). This was the first

in-person edition of the competition after the COVID-

19 pandemic restrictions were lifted. The previous com-

petition was held completely virtually in 20211.

The aims of the competition have been and continue

to be [14,8,15]:

We extend our sincere thanks to Amazon Web Services for
their generous sponsorship of travel grants and prizes at Ver-
ifyThis 2022.

Marie Farrell
Department of Computer Science, The University of Manch-
ester, UK
E-mail: marie.farrell@manchester.ac.uk

1 https://www.pm.inf.ethz.ch/research/verifythis/

Archive/20191.html

– to bring together those interested in formal verifi-

cation, and to provide an engaging, hands-on, and

fun opportunity for discussion;

– to evaluate the usability of logic-based program ver-

ification tools in a controlled experiment that could

be easily repeated by others.

Challenges in VerifyThis competitions are usually

given as pseudocode with an accompanying list of ver-

ification tasks that typically focus on the input/out-

put behaviour of programs. Competitors are provided

with a specified time limit in which to complete each

challenge. Within this predefined time limit, they must

specify/implement the problem in their chosen verifi-

cation tool and then try to verify as many of the veri-

fication tasks as possible for each challenge. There are

no restrictions on the verification tools/techniques used

and the challenges for each competition are available

on the VerifyThis website2. Solutions are judged on the

basis of correctness, completeness and elegance.

We began VerifyThis 2022 with a short Team In-

troductions session where each team introduced them-

selves, their background and the tools that they planned

to use in the competition. After this, VerifyThis 2022

participants were provided with three challenges and

given two hours to solve each challenge. Initially, we

planned for the competition to follow a fully in-person

format. However, a couple of days before the competi-

tion we allowed those already registered but unable to

attend in-person (due to COVID-19 related issues) to

attend virtually. There were roughly 3 virtual partic-

ipants, one of which competed alongside an in-person

team mate. Some were present and competed in the

2 https://www.pm.inf.ethz.ch/research/verifythis.

html

2 Marie Farrell et al.

competition, others joined for the tutorial and team

presentation sessions.

At VerifyThis 2022, 17 teams submitted solutions to

the challenges. There were approximately 3 other teams

that participated but that did not submit any solutions.

We summarise the teams and list the verification tools

that they used in Table 1. Teams submitted their solu-

tions at the end of each challenge timeslot. They also

submitted a self assessment form3 at the end of the

competition that was used to judge the solutions.

Michael Sammler was invited to give a tutorial on

the RefinedC tool [18] during Day 2 of VerifyThis whilst

judging took place. Judging involved interviews between

the organisers and each individual team where we used

the information in the self assessment form as well as

the conversations during interviews to assess the solu-

tions. Once the tutorial was over, each team presented

their solution(s) to the other teams again in parallel

with judging.

The following sections describe each of the chal-

lenges and summarise the solutions that were submit-

ted. Each challenge was accompanied by a problem de-

scription, pseudocode and a list of verification tasks.

2 Challenge 1: Downsampling a Point Cloud

This challenge was directly derived from experience in

verifying a real-world use case of autonomous grasping

for active debris removal in space [11,10]. This algo-

rithm is a classical algorithm that is used for reducing

the size of an input image to ease further processing.

This type of functionality is employed in many real-

world/industrial applications of robotics and vision sys-
tems. As such, it is widely available in libraries for main

stream programming languages such as Python. We

provided competitors with a simplified version which

they were free to further simplify as required to suit

their chosen verification tool(s).

2.1 Problem Description

The algorithm shown in Fig. 1 describes the function-

ality of downsampling an input point cloud. Downsam-

pling is used to reduce the size of an input image before

it is processed further. The resulting point cloud retains

the overall geometric structure but has a reduced num-

ber of points. Techniques such as this are common in

domains such as signal/image processing and robotics.

Our pseudocode uses square voxel downsampling with

3 https://mariefarrell.github.io/verifythis/self_

assessment.txt

1 datatype Point = Point(x : real ,y : real ,z : real)
2 method downSample(p : list <Point >, voxel_size : real)
3 returns (pd : list <Point >)
4 {
5 // Get max and min x, y and z of point cloud
6 x_max := max{pt.x | pt ∈ p};
7 x_min := min{pt.x | pt ∈ p};
8 y_max := max{pt.y | pt ∈ p};
9 y_min := min{pt.y | pt ∈ p};

10 z_max := max{pt.z | pt ∈ p};
11 z_min := min{pt.z | pt ∈ p};
12

13 // Find the number of voxels in all 3 dimensions .
14 //A voxel is a cube with edge length voxel_size .
15 // Note that we round up in the division.
16 var num_vox_x := (|x_max -x_min |/ voxel_size). Ceiling;
17 var num_vox_y := (|y_max -y_min |/ voxel_size). Ceiling;
18 var num_vox_z := (|z_max -z_min |/ voxel_size). Ceiling;
19

20 // Array of voxels , each element
21 // e.g. at voxel_array [i,j,k] is a Point which is
22 // initialised to (0.0 , 0.0, 0.0)
23 voxel_array
24 := new Point[num_vox_x ,num_vox_y ,num_vox_z];
25

26 // Array of counts in all dimensions (useful for
27 // averaging), each element should be set to 0 at
28 // initialisation , at the end the sum of counts
29 // should be equal to the number of points in
30 // the input point cloud.
31 count_array
32 := new int[num_vox_x ,num_vox_y ,num_vox_z];
33

34 // Objective is to calculate :
35 // E.g : voxel_array [0 ,2 ,1]
36 // -> (((0.23 , 2.45 , 1.89) + (0.13 , 2.87 , 1.35)
37 // + ..())/ count_array [0 ,2 ,1])
38

39 forall pt in p {
40 // take the floor to collect points that are in
41 // the same region
42 var x_floored := ((pt.x-x_min)/ voxel_size).Floor;
43 var y_floored := ((pt.y-y_min)/ voxel_size).Floor;
44 var z_floored := ((pt.z-z_min)/ voxel_size).Floor;
45

46 voxel_array[x_floored ,y_floored ,z_floored]
47 := voxel_array[x_floored ,y_floored ,z_floored]+pt;
48 count_array[x_floored ,y_floored ,z_floored]
49 := count_array[x_floored ,y_floored ,z_floored]+1;
50 }
51

52 // Average the voxelised (bucketed) points to get
53 // the final point cloud
54 i, j, k := 0, 0, 0;
55 pd := [];
56 for 0 ≤ i < num_vox_x
57 for 0 ≤ j < num_vox_y
58 for 0 ≤ k < num_vox_z
59 if(count_array[i,j,k] ̸=0)
60 pd.append(voxel_array[i,j,k]
61 /count_array[i,j,k]);
62 return pd;
63 }

Fig. 1 Pseudocode for Challenge 1: Downsampling a Point
Cloud.

a predefined voxel size. That is, the space is tiled into

cube-shaped voxels, and the average point in the voxel

becomes the new point to replace the others. The pseu-

docode (Fig. 1) uses real numbers but participants may

simplify and use integers if their tool does not have ade-

quate support for real numbers. Other potential simpli-

fications include requiring that the least point is already

at (0, 0, 0) and assuming fixed parameters for x max,

y max and z max.

VerifyThis 2022 Program Verification Competition 3

Team Name Team Members Student Team Tool(s) Used

VerCors Yellow Robert Rubbens & Philip Tashce Yes VerCors [4]
VerCors Blue Lukas Armborst & Pieter Bos No VerCors [4]
VerCors Red Omer Sakar & Raul Monti No VerCors [4]
Frama-C Veterans Lionel Blatter & Jean-Christophe Lechenet No Frama-C [6] and Coq [5]
Team KIV Stefan Bodenmuller & Martin Bitterlich Yes KIV [3]
Acid Jazz Jonas Fiala & Thibault Dardinier Yes Viper [17]
Team 3 Vytautas Astrauskas and Marco Eilers Yes Viper [17] and Nagini [9]
Jeroen Jeroen Dijkhuizen No Prusti [2]
rc::trust me Michael Sammler & Paul Zhu Yes Refined C [18]
SUPAERO Baptiste Pollien & Lelio Brun No Frama-C [6]
The Superconders Linard Arquint & Joao Pereira Yes Gobra [21]
Soundproof Aurel Bily & Felix Wolf Yes Viper [17]
The Blacksmiths Xavier Denis Yes Creusot [7]
KeY Team 2 Julian Wiesler & Alicia Appelhagen Yes KeY [1]
assert(false) Noe De Santo & Mario Bucev No Stainless [16]
Team CIVL Stephen Siegel No CIVL [20]
KeY Team 1 Wolfram Pfeifer Yes KeY [1]

Table 1 This table summarises the teams that competed in VerifyThis 2022 and lists the verification tool(s) that each team
used. We also distinguish teams that were fully composed of students (10 in total) and those that were not (7 in total).

2.2 Verification tasks

We provided five verification tasks for competitors to

attempt. Specifically, we asked them to verify the fol-

lowing properties:

1. Memory Safety.

2. Termination.

3. The output point cloud is smaller or equal to the

input point cloud. For example:

size(pd) <= size(p)

4. The output point cloud is within the same range as

the input point cloud. For example:

boundingbox(pd) inside boundingbox(p)

5. The output point cloud is a correct downsampled
version of the input point cloud.

2.3 Solutions

This challenge had 5 verification tasks, the highest score

received on this challenge was 2/5 and was achieved

by three teams (The Superconders, KeY Team 2 and

Frama-C Veterans). These teams primarily focused on

verifying memory safety and termination for this chal-

lenge, some of them managed to specify but not verify

some of the other properties. No team was able to ver-

ify the correctness tasks 4 and 5 for this challenge. The

scoring scheme is discussed in detail in Section 5.1.

3 Challenge 2: Mergesort With Runs

The second challenge focused on a sorting algorithm

that is based on mergesort. This algorithm is recursive

and is shown in Fig. 2.

3.1 Problem Description

The following mergesort-based algorithm sorts the ele-

ments of a list or array, and, at the same time, computes

the indexes where runs of equal elements end. The pro-

gram operates on a type T with a weak partial ordering

≤, i.e., there exists a mapping f : T → L, such that L

is linearly ordered and t1 ≤ t2 iff f(t1) ≤ f(t2). More-

over, we assume an unsigned integer type size t that

is large enough to hold array indexes, and a type array

that supports indexing a[i] and pushing elements to

the back a.push back, extending the array’s size. Ar-

rays are always initialized as empty with length zero.

The pseudocode corresponding to Challenge 2 is shown

in Fig. 2.

We asked the competitors to implement the merge

and msort functions. They were also asked to imple-

ment the array, T, and size t types in any way that

fits the tool that they were using. If their tool could

not handle fixed bit-width types, they could use arbi-

trary precision integers for size t. If their tool could

not handle generic types or type-classes, they could fix

T to be some concrete type, e.g., integer. An example of

the input and output of this algorithm is shown below.

msort ([5,4,5,3,9,3],0,6) = {
// end indexes or runs (exclusive)
runs : [2,3, 5,6]
// sorted input
data : [3,3,4,5,5,9]

}

3.2 Verification tasks

There were 8 verification tasks posed for this challenge.

Specifically, participants should verify:

4 Marie Farrell et al.

1 // Structure to store sorted array and end
2 // indexes of runs
3 struct sr {
4 // End indexes of runs (exclusive)
5 array <size_t > runs;
6 array <T> data; // Data
7 }
8

9 // Merge r_1 and r_2
10 sr merge(sr r_1 , sr r_2) {
11 sr res;
12

13 // Current positions in data arrays
14 size_t di_1 =0; size_t di_2 =0;
15 // Current positions in runs
16 size_t ri_1 =0; size_t ri_2 =0;
17

18 while (ri_1 < r_1.runs.length
19 or ri_2 < r_2.runs.length) {
20 // Check if we have to take data from first
21 // and/or second input array
22 bool t_1 = ri_1 < r_1.runs.length
23 and (ri_2 = r_2.runs.length
24 or r_1.data[di_1] ≤ r_2.data[di_2]);
25 bool t_2 = ri_2 < r_2.runs.length
26 and (ri_1 = r_1.runs.length
27 or r_2.data[di_2] ≤ r_1.data[di_1]);
28

29 if (t_1) { // Copy data from first input array
30 for (;di_1 < r_1.runs[ri_1]; ++di_1)
31 res.data.push_back(r_1.data[di_1]);
32 ++ri_1;
33 }
34

35 if (t_2) { // Copy data from second input array
36 for (;di_2 < r_2.runs[ri_2]; ++di_2)
37 res.data.push_back(r_2.data[di_2]);
38 ++ri_2;
39 }
40

41 // Add new segment boundary
42 res.runs.push_back(res.data.size ());
43 }
44 return res;
45 }
46

47 // Mergesort array in between l and h. assumes l≤h
48 sr msort(array <T> a, size_t l, size_t h) {
49 // Corner cases
50 if (l = h) return res;
51 if (h-l = 1) {
52 res.data.push_back(a[l]);
53 res.runs.push_back(res.data.size ());
54 return res;
55 }
56

57 size_t m = l + (h-l) / 2; // Compute middle index
58

59 sr res_1 = msort(a,l,m); // Sort left side
60 sr res_2 = msort(a,m,h); // Sort right side
61 return merge(res_1 ,res_2); // Merge
62 }

Fig. 2 Pseudocode for Challenge 2: Mergesort With Runs.

1. Memory safety.

2. Termination.

3. merge merges correctly (permutation and sorted-

ness).

4. merge returns the correct run indexes.

5. msort sorts the input (permutation and sortedness).

6. msort returns the correct run indexes.

7. msort is a stable sorting algorithm.

8. msort runs in O(n log n) time and O(n log n) space.

3.3 Solutions

This challenge had 8 verification tasks, the highest score

received on this challenge was 4/8 (Team CIVL) and

only one team received the next highest score of 3/8

(Acid Jazz). Both of these teams verified memory safety

(partial for Acid Jazz) and termination. Team CIVL

verified some correctness properties while Acid Jazz

verified tasks 3 and 5 (partially).

4 Challenge 3: The World’s Simplest Lock-Free

Hash

This challenge is inspired by Jeff Preshing’s blog en-

try: The World’s Simplest Lock-Free Hash Table4. The

corresponding pseudocode is shown in Fig. 3.

4.1 Problem Description

This simple hash-set has a fixed capacity, only supports

insert and membership query operations, and uses lin-

ear probing for collision handling. However, it is thread-

safe and implemented lock-free. At the core, the insert

operation uses a compare-and-swap (CAS) operation

to find a free spot for adding the key to be inserted.

An optimization replaces expensive CAS operations by

cheaper load operations when the table fills up.

The hash table works with a key type K. It has a

special value

key invalid :: K

that is used as placeholder for empty slots, and cannot

be used as key. Moreover, there is a function

get hash(size t,K) :: size t

such that get hash(n,k) returns a hash-code for k, in

the range [0, n).

The compare and swap operation that we use re-

turns the value that is stored in target after the opera-

tion (whether swapped or not). Competitors were free

to replace it with whatever similar operation their tool

supports. For example:

T compare_and_swap(T &target , T oldv , T newv) {
T result;
atomic {

if (target = oldv) target=newv;
result=target;

}
return result;

}

The competitors were informed that if their tool

does not support concurrency, and they also cannot

model concurrency on a more abstract level, then they

4 https://preshing.com/20130605/

the-worlds-simplest-lock-free-hash-table/

VerifyThis 2022 Program Verification Competition 5

1 typedef hset = array <K>
2

3 hset empty(size_t n) {
4 hset t = new K[n];
5 for (size_t i=0; i<n; {+\¬+}\ : i)
6 t[i]= key_invalid;
7 return t;
8 }
9

10 // Assumes k ̸= key_invalid
11 // returns true if key was inserted ,
12 // false if table is full
13 bool insert(K k, hset t){
14 size_t n = t.length;
15 size_t i_0 = get_hash(n,k);
16 size_t i = i_0;
17

18 do {
19 {
20 // Optimization : probe for potentially free spot
21 key kk = atomic_load(t[i]);
22

23 // Key already in table
24 if (kk = k) return true;
25

26 // Spot taken , try next index
27 if (kk ̸= key_invalid) {
28 i = (i+1) mod n; continue;
29 }
30 }
31

32 // Maybe i is still free when we
33 // try to put our key there
34 key k’ = compare_and_swap(t[i],key_invalid ,k);
35

36 // We (or someone else) stored our key
37 if (k’ = k) return true;
38

39 // Someone interfered with us , try next index
40 i=(i+1) mod n;
41 } while (i ̸= i_0);
42 // Stop if we went one full round
43 return false; // Table is full
44 }
45

46 // Assumes k ̸= key_invalid
47 bool member(hset t, key k) {
48 size_t n = t.length;
49 size_t i_0 = get_hash(n,k);
50 size_t i = i_0;
51

52 do {
53 key k’ = atomic_load(t[i]);
54 if (k’ = k) return true; // found the key
55 if (k’ = key_invalid) return false;
56 // found empty entry. Key not in.
57 i=(i+1) \mod n;
58 } while (i ̸= i_0);
59 return false;
60 // Table full , our key is not in
61 }

Fig. 3 Pseudocode for Challenge 3: The World’s Simplest
Lock-Free Hash.

should implement and verify the sequential version of

this hash-set as last resort.

Competitors were instructed to implement the above

hash-table, using whatever atomic operations their tool

supports, but try to stay lock-free. If they have to use

locks, use a fine-grained lock around compare and swap,

rather than locking the whole table for the duration of

an insert/member operation.

4.2 Verification tasks:

There were 6 verification tasks for this challenge. Specif-

ically, participants were asked to verify the following

properties:

1. empty(n) creates an empty set with capacity n.

2. member(k) == true, if insert(k) has been exe-

cuted before (and returned true).

3. member(k) == false, if no insert(k) that re-

turned true can have been executed.

4. Termination.

5. Every key is contained in the table at most once.

6. If insert returns false, the table is full.

Competitors were permitted to re-phrase properties

2 and 3, but they should ensure that they could prove

properties like:

insert (1) ∨ insert (2) ∨ insert (3);
{ assert(member (1) and ¬member (42)) }

∨ insert (4) ∨ insert (5);

4.3 Solutions

This challenge had 6 verification tasks, the highest score

received on this challenge was 6/6 (Team CIVL) with

Acid Jazz again second with (3/6). The bounded model-

checker, CIVL, was very effective at this challenge but

verification was restricted to 2 threads, each perform-

ing 2 arbitrary inserts, due to state space explosion.

Acid Jazz verified tasks 1 and 4 completely, partially

verifying tasks 2 and 6 using the Viper tool.

After the competition, Team KIV [19] published

a paper that presents a refinement-based proof tech-

nique for concurrent systems. In their paper, they used

this challenge as a running example to motivate their

work. They remarked that they could not complete the

challenge during the competition due to the time con-

straints imposed but provided a more detailed solution

in their paper. Since the focus of their paper was not

on the challenge itself, rather serving the purpose of

presenting their novel approach, it is difficult to say ex-

actly to what degree their updated solution addresses

the challenge tasks.

5 Judging and Results

5.1 Judging Criteria

Judging at VerifyThis typically involves a private in-

person discussion between the organisers and the indi-

vidual teams. The purpose of this is to give the com-

petitors an opportunity to explain their solutions to the

6 Marie Farrell et al.

organisers who may not be overly familiar with the spe-

cific tool that were used. As part of the submission pro-

cess, teams were required to provide a completed self-

assessment form5. This self assessment form included

questions about the solutions that they provided and

gave the participants a place to record any simplifica-

tions that were made as well as the good and bad points

of their chosen verification tool in the context of each

specific challenge.

We used this form to guide our discussion with the

teams and we also assembled a marking sheet. Each

task could receive 1 mark, with partial solutions receiv-

ing 0.5/1 (we did not reduce the granularity further

than this). Using this marking scheme we were able to

determine which teams solved the most tasks and then

we more closely considered the nature of the solutions

and how they compared to one another. For example,

the CIVL model-checking tool verified a lot of tasks but

only up to some size of input space whereas Viper could

verify tasks completely but on an abstract model, rather

than full implementation of the algorithm. Both ap-

proaches have positives and negatives and these needed

to be considered to really understand the depth of the

solutions that were provided.

In parallel with these discussions, teams were en-

couraged to present their solutions to the other teams

that participated in the competition. This serves the

purpose of allowing teams to see how their competitors

solved the problems and increases awareness in the com-

munity about the specific verification tools that were

used.

5.2 Results

The results of VerifyThis 2022 were as follows:

Best Overall Team:

Acid Jazz (Jonas Fiala and Thibault Dardinier)

Joint 2nd Place:

VerCors Yellow (Robert Rubbens and Philip Tasche)

Team CIVL (Stephen Siegel)

Most Distinguished Tool Feature:

Stainless (used counterexamples in a nice way)

6 Discussion

This section reflects on our experience of organising

VerifyThis 2022. We compare our challenges to those

5 https://mariefarrell.github.io/verifythis/self_

assessment.txt

from previous competitions and briefly summarise points

related to diversity.

6.1 Lessons Learned

As with previous editions of VerifyThis [8], we found

it difficult to assess how long a given challenge would

take. However, by providing a list of verification tasks

for each challenge we hoped to provide tasks that could

be done relatively quickly as well as those that were

more complex. Our challenge time slots were 120 min-

utes which is longer than at previous editions of Ver-

ifyThis. This was due to scheduling at ETAPS 2022.

As such, we felt that we had the opportunity to pose

some particularly challenging verification tasks. How-

ever, teams still struggled to tackle all of the tasks for

every problem. In hindsight, rather than adding extra

and more complex verification tasks to fill the time, we

should have only added additional tasks that were no

more difficult than the standard. For example, we were

aware that task 5 of Challenge 1 was especially difficult

(one of the organisers had verified the other tasks in

prior work [11]).

It is difficult to assess the level of expertise amongst

participants as well as the verification capabilities of the

many tools that might be used. By providing multiple

verification tasks, we hoped that we could include tasks

that were accessible for all tools. As a result, we in-

cluded some cross-cutting verification tasks such as ter-

mination (all challenges) and memory safety (Challenge

1 and 2). These tasks were generally solvable (even par-

tially) for most of the participants.

As is traditional at VerifyThis, our third challenge

was related to concurrency. We echo the point made by

previous organisers that concurrency related challenges

are difficult to design, especially whilst being conscious

that not all tools/teams will have the capacity to model

and verify such problems [8]. Additionally, and in gen-

eral, it is difficult to ensure that no solution can be eas-

ily found online to these problems. With the advance-

ment of technologies like ChatGPT this will become

even more difficult and future organisers should keep

this in mind when designing challenges.

ETAPS 2022 was the first in-person conference for

many attendees since the COVID-19 pandemic and the

organisers endeavoured to make it an in-person only

event. However, this proved difficult for both VerifyThis

and ETAPS. Since COVID was still prevalent, we had

to facilitate some remote participation at the last minute.

This would have been better if included in the plan-

ning from the beginning and some potential partici-

pants complained about us not having remote atten-

dance. Remote is harder to facilitate though because

VerifyThis 2022 Program Verification Competition 7

Challenge Sequential/Concurrent Input Algorithm Partial Complete

1 Sequential Matrix Iterative 65 0
2 Sequential Array Recursive 88 0
3 Concurrent Array Iterative 76 0.06

Table 2 Percentage of partial and complete results for the challenges.

it is impossible to determine whether or not the com-

petitors are following the rules. Perhaps a more hy-

brid format could be considered in the future where

the competition, like the IEEE Xtreme6 programming

competition which has multiple competition venues ge-

ographically. This would also help to encourage wider

participation in and awareness of VerifyThis.

6.2 Analysis of the Solutions

The submissions used a variety of verification tools, as

summarised in Table 1. Of the 17 teams that com-

peted, 10 were student-only teams. KeY Team 2 was

the only team that had an undergraduate team mem-

ber. All teams submitted solutions to Challenge 1 and

2, 15 teams provided a solution to Challenge 3.

We compare our results with those from previous

editions of VerifyThis using the values from Table 2 in

[8]. We illustrate the percentage of partial and complete

solutions to our challenges in Table 2.

Our Challenge 1 had the lowest ever percentage of

completions across all of the previous VerifyThis Chal-

lenge 1 problems. This challenge proved especially dif-

ficult for competitors to solve. The majority of teams

submitting partial solutions could verify memory safety

and termination. One team was able to specify and

partially verify task 3 (that the output point cloud is

smaller than the input point cloud). This is interesting

because this challenge was drawn from a real-life prob-

lem. Its difficulty likely stems from the teams having

very limited time to provide a complete solution and

the tools themselves needing improvement to efficiently

deal with realistic examples.

In contrast, our partial completion values for Chal-

lenge 2 was the highest amongst all previous recursive

challenges. Specifically, we had 88% of teams produce

partial solutions. This is in contrast with 55% (Veri-

fyThis 2018), 40% (VerifyThis 2017) and 18% (Veri-

fyThis 2012). Almost all teams were able to verify some

degree of memory safety and termination for this chal-

lenge. Team Soundproof were ranked highest on this

challenge using Viper. They verified memory safety,

partial termination and partially that the algorithm

sorts the input.

6 https://ieeextreme.org/

We had 76% of teams produce partial solutions to

the concurrent Challenge 3 which seems to be in line

with previous concurrency challenges. These include 85%

(VerifyThis 2019), 60% (VerifyThis 2017) and 79% (Ver-

ifyThis 2016). Team CIVL was the only team to pro-

duce a complete solution to Challenge 3 using bounded

model checking.

6.3 Equality, Diversity & Inclusion

We included a Diversity questionnaire that participants

were asked to complete (though it was not compulsory).

Since we have a relatively small set of participants in

the competition we do not specifically cite the numeric

results here. However, the vast majority of participants

were white, male Europeans. In order to diversify par-

ticipants at VerifyThis we suggest that future organ-

isers make a conscious decision to advertise the com-

petition more widely and encourage more non-white,

non-male, non-Europeans to participate in future edi-

tions of VerifyThis.

7 Conclusion

VerifyThis gives participants the opportunity to com-

pete as well as interact with others interested in pro-

gram verification. We thoroughly enjoyed the competi-

tion and we extend our heartfelt thanks to those who

were brave enough to attempt our challenges. We hope

that you continue to participate in future editions of

VerifyThis.

References

1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese,
R. Hähnle, W. Menzel, W. Mostowski, A. Roth,
S. Schlager, et al. The KeY tool: integrating object ori-
ented design and formal verification. Software & Systems
Modeling, 4:32–54, 2005.

2. V. Astrauskas, A. B́ılỳ, J. Fiala, Z. Grannan, C. Math-
eja, P. Müller, F. Poli, and A. J. Summers. The Prusti
Project: Formal Verification for Rust. In NASA Formal
Methods Symposium, pages 88–108. Springer, 2022.

3. M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and
A. Thums. Formal System Development with KIV. In
International Conference on Fundamental Approaches to
Software Engineering, pages 363–366. Springer, 2000.

8 Marie Farrell et al.

4. S. Blom, S. Darabi, M. Huisman, and W. Oortwijn. The
VerCors tool set: verification of parallel and concurrent
software. In International Conference on Integrated For-
mal Methods, pages 102–110. Springer, 2017.

5. A. Chlipala. Certified programming with dependent types:
a pragmatic introduction to the Coq proof assistant. MIT
Press, 2022.

6. P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Sig-
noles, and B. Yakobowski. Frama-C: A software analysis
perspective. In International conference on software en-
gineering and formal methods, pages 233–247. Springer,
2012.

7. X. Denis, J.-H. Jourdan, and C. Marché. The Creusot
Environment for the Deductive Verification of Rust Pro-
grams. PhD thesis, Inria Saclay-̂Ile de France, 2021.

8. C. Dross, C. A. Furia, M. Huisman, R. Monahan, and
P. Müller. VerifyThis 2019: a program verification com-
petition. International journal on software tools for tech-
nology transfer, 23(6):883–893, 2021.

9. M. Eilers and P. Müller. Nagini: a static verifier for
Python. In International Conference on Computer Aided
Verification, pages 596–603. Springer, 2018.

10. M. Farrell, N. Mavrakis, C. Dixon, and Y. Gao. Formal
verification of an autonomous grasping algorithm. In In-
ternational symposium on artificial intelligence, robotics
and automation in space. European Space Agency, 2020.

11. M. Farrell, N. Mavrakis, A. Ferrando, C. Dixon, and
Y. Gao. Formal modelling and runtime verification of
autonomous grasping for active debris removal. Frontiers
in Robotics and AI, 8, 2021.

12. M. Huisman, V. Klebanov, and R. Monahan. VerifyThis
2012. International journal on software tools for tech-
nology transfer, 17(6):647–657, 2015.

13. M. Huisman, V. Klebanov, R. Monahan, and
M. Tautschnig. VerifyThis 2015. International journal
on software tools for technology transfer, 19(6):763–771,
2017.

14. M. Huisman, R. Monahan, P. Müller, A. Paskevich, and
G. Ernst. VerifyThis 2018: A program verification com-
petition. Technical report, Université Paris-Saclay, 2019.

15. M. Huisman, R. Monahan, P. Muller, and E. Poll. Veri-
fyThis 2016: A program verification competition. 2016.

16. V. Kuncak and J. Hamza. Stainless verification system
tutorial. In 2021 Formal Methods in Computer Aided
Design (FMCAD), pages 2–7. IEEE, 2021.

17. P. Müller, M. Schwerhoff, and A. J. Summers. Viper:
A verification infrastructure for permission-based rea-
soning. In International conference on verification,
model checking, and abstract interpretation, pages 41–
62. Springer, 2016.

18. M. Sammler, R. Lepigre, R. Krebbers, K. Memarian,
D. Dreyer, and D. Garg. RefinedC: automating the foun-
dational verification of C code with refined ownership
types. In Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design
and Implementation, pages 158–174, 2021.

19. G. Schellhorn, S. Bodenmüller, and W. Reif. Thread-
local, step-local proof obligations for refinement of state-
based concurrent systems. In International Conference
on Rigorous State-Based Methods, pages 70–87. Springer,
2023.

20. S. F. Siegel, M. Zheng, Z. Luo, T. K. Zirkel, A. V.
Marianiello, J. G. Edenhofner, M. B. Dwyer, and M. S.
Rogers. CIVL: the concurrency intermediate verification
language. In International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
pages 1–12. IEEE, 2015.

21. F. A. Wolf, L. Arquint, M. Clochard, W. Oortwijn, J. C.
Pereira, and P. Müller. Gobra: Modular specification
and verification of go programs. In International Con-
ference on Computer Aided Verification, pages 367–379.
Springer, 2021.

