
Int J Softw Tools Technol Transfer (2015) 17:647–657
DOI 10.1007/s10009-015-0396-8

INTRODUCTION

VerifyThis 2012
A Program Verification Competition

Marieke Huisman1 · Vladimir Klebanov2 · Rosemary Monahan3

Published online: 18 August 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract VerifyThis 2012was a 2-day verification compe-
tition that took place as part of the International Symposium
on Formal Methods (FM 2012) on August 30–31, 2012, in
Paris, France. It was the second installment in the VerifyThis
series. After the competition, an open call solicited contribu-
tions related to the VerifyThis 2012 challenges and overall
goals. As a result, seven papers were submitted and, after
review and revision, included in this special issue. In this
introduction to the special issue, we provide an overview
of the VerifyThis competition series, an account of related
activities in the area, and an overview of solutions submitted
to the organizers both during and after the 2012 competition.
We conclude with a summary of results and some remarks
concerning future installments of VerifyThis.

Keywords Deductive verification · Competition ·
VerifyThis · Program verification tools

1 Introduction

Software is vital for modern society. The efficient devel-
opment of correct and reliable software is of ever-growing

B Rosemary Monahan
Rosemary.Monahan@nuim.ie

Marieke Huisman
m.huisman@utwente.nl

Vladimir Klebanov
klebanov@kit.edu

1 University of Twente, Enschede, The Netherlands

2 Karlsruhe Institute of Technology, Karlsruhe, Germany

3 Maynooth University, Maynooth, Co. Kildare, Ireland

importance. An important technique for achieving this goal is
formal verification: demonstrating in amathematically rigor-
ous andmachine-checkedway that a programsatisfies a given
formal specification of what is considered correct behavior.
In the last decade, technologies for the formal verification of
software—mostly based on logics and formal reasoning—
have been rapidly maturing and are on the way to com-
plement and partly replace traditional software engineering
methods.

However, to achieve a major uptake of formal verification
techniques in industrial practice, realistic demonstrations of
their capabilities are needed. This major challenge for formal
verification was identified 20 years ago, as illustrated by the
following quote from [25]:

A recent questionnaire [Formal methods: a survey
1993] of the British National Physical Laboratory
(NPL) showed that one of the major impediments of
formal methods to gain broader acceptance in industry
is the lack of realistic, comparative surveys.

Surprisingly this observation is still accurate and relevant.
One way to improve this situation is to systematically

encourage comparative evaluation of formal verification
techniques. It has become generally accepted wisdom that
regular evaluation helps focus research, identify relevant
problems, bolster development, and advance the field in gen-
eral. Benchmark libraries and competitions are two popular
approaches.

Competitions are widely acknowledged as a means of
improving the available tools, increasing the visibility of
their strengths, and establishing a publicly available set
of benchmark problems. In the formal methods commu-
nity (loosely interpreted), competitions include those on
SAT, SMT, planning, quantifiedBoolean formulas,Hardware
model checking, software model checking, and automated

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-015-0396-8&domain=pdf

648 M. Huisman et al.

theorem proving1. These events had a significant positive
impact on the development speed and the quality of the partic-
ipating tools as theoretical results are transferred to practical
tools almost instantly.

This special issue of Software Tools for Technology
Transfer (STTT) reports on the VerifyThis 2012 competi-
tion posed program verification challenges concerned with
expressive data-centric properties. In this introduction, we
present the competition challenges along with a high-level
overview of the solutions, report on the results of the com-
petition and conclude with some suggestions for future
installments.

1.1 About VerifyThis

VerifyThis 2012 was a 2-day event that took place as part of
the Symposium on Formal Methods (FM 2012) on August
30-31, 2012 in Paris, France. It was the second installment
in the VerifyThis series (though the first one was explicitly
branded as such) after the program verification competition
held at FoVeOOS 2011.

The aims of the VerifyThis competition series are:

– To bring together those interested in formal verification,
and to provide an engaging, hands-on, and fun opportu-
nity for discussion.

– To evaluate the usability of logic-based program verifica-
tion tools in a controlled experiment that could be easily
repeated by others.

Typical challenges in the VerifyThis competitions are
small, but intricate algorithms given in pseudo-code with
an informal specification in natural language. Participants
have to formalize the requirements, implement a solution,
and formally verify the implementation for adherence to the
specification. The time frame to solve each challenge is quite
short (between 45 and 90 min), so that anyone can easily
repeat the experiment.

Correctness properties are typically expressive and con-
cerned with data. To tackle them to the full extent, some
human guidance for the verification tool is usually required.
At the same time, the competition welcomes participation
of automatic tools. Considering partial properties or sim-
plified problems, if this suits the pragmatics of the tool, is
encouraged. Combining complementary strengths of differ-
ent kinds of tools is a development that VerifyThis would
like to advance in the future. Submissions are judged by the
organizers for

1 http://www.satcompetition.org, http://www.smtcomp.org, http://ipc.
icaps-conference.org, http://www.qbflib.org/competition.html, http://
fmv.jku.at/hwmcc11, http://sv-comp.sosy-lab.org, and http://www.cs.
miami.edu/~tptp/CASC.

– correctness,
– completeness, and
– elegance.

The focus is primarily on the usability of the tools, their
facilities for formalizing the properties to be specified, and
the helpfulness of their output.

For the first time, the 2012 competition included a post-
mortem session where participants explained their solutions
and answered questions of the judges. In parallel, the partic-
ipants used this session to discuss details of their solutions
amongst each other.

In another first, challenges were solicited from the pub-
lic in advance of the competition, and eight suggestions for
challenges were received. Even though we decided not to
use the submitted challenges directly,2 the call for challenge
submissions was useful, as it provided:

– additional challenges that formal verification technique
developers can try their tools upon;

– insight into what people in the community consider inter-
esting, challenging and relevant problems; and

– inspiration for further challenges.

Teams of up to two people, physically present on site,
could participate. Particularly encouraged were:

– student teams (including PhD students),
– non-developer teams using a tool someone else devel-
oped, and

– several teams using the same tool.

Note that the teams were welcome to use different tools for
different challenges (or even for the same challenge).

The competition website can be found at http://fm2012.
verifythis.org/. More background information on the com-
petition format and the choices made can be found in [18].
Reports from previous competitions of similar nature can be
found in [2,17,22].

1.2 VerifyThis 2012 participants and tools used

Participating teams and the tool which they used in the com-
petition follow in no particular order:

1. Bart Jacobs, Jan Smans (VeriFast [29])
2. Jean-Christophe Filliâtre, Andrei Paskevich (Why3 [16])
3. Yannick Moy (GNATprove [14])
4. Wojciech Mostowski, Daniel Bruns (KeY [1])
5. Valentin Wüstholz, Maria Christakis (Dafny [24]) (stu-

dent, non-developer team)

2 In particular, because the author of the best challenge submission was
participating in the competition.

123

http://www.satcompetition.org
http://www.smtcomp.org
http://ipc.icaps-conference.org
http://ipc.icaps-conference.org
http://www.qbflib.org/competition.html
http://fmv.jku.at/hwmcc11
http://fmv.jku.at/hwmcc11
http://sv-comp.sosy-lab.org
http://www.cs.miami.edu/~tptp/CASC
http://www.cs.miami.edu/~tptp/CASC
http://fm2012.verifythis.org/
http://fm2012.verifythis.org/

VerifyThis 2012 649

6. Gidon Ernst, Jörg Pfähler (KIV [30]) (student team)
7. Stefan Blom, Tom van Dijk (ESC/Java2 [12]) (non-

developer team)
8. Zheng Cheng, Marie Farrell (Dafny) (student, non-

developer team)
9. Claude Marché, François Bobot (Why3)

10. Ernie Cohen (VCC [10])
11. Nguyen Truong Khanh (PAT [28])

1.3 Papers presented in this special issue

After the competition, an open call for this issue of STTT
solicited contributions related to the VerifyThis 2012 chal-
lenges and overall goals. This call targeted not only com-
petition participants, but also anyone interested in tackling
the challenges, using them as a benchmark for novel tech-
niques, or advancing the agenda of VerifyThis in general.
Contributors were encouraged to share their experience of
the competition challenges containing topics such as (but
not limited to) the following:

– details of the tool/approach used,
– material emphasizing usability of the tool,
– discussion of completed challenges,
– details of additional related challenges,
– a reflection on what was learned from completing the
competition challenges (advancements that are necessary
for tools, usability issues, comparison with other tools
etc.),

– a report on the experience of participating in the compe-
tition.

As a result, seven papers were submitted and, after review
and revision, included in this issue. The first paper in this
issue is contributed by the VeriFast team, which won the
prize for the best team [21]. They provide an introduction
to the VeriFast tool and then describe their solutions to the
competition’s challenges, including several post-competition
alternatives and improved solutions. The next paper in this
issue is contributed by the KIV team, which won the prize
for the best student team [15]. They introduce the KIV tool
and describe their solutions to the competition’s challenges,
including a comparison to other solutions. Next, this spe-
cial issue continues with the contribution of the GNATprove
team, which won the prize for the best user-assistance tool
feature [19]. This paper introducesGNATprove anddiscusses
why it is used on the first two challenges. The special issue
then continues with a contribution by the combined Why3
teams [3], who introduceWhy3, and describe the solutions to
the challenges that were developed post-competition, com-
bining and polishing the competition solutions of the two
Why3 teams. The last contribution of a competition partici-
pation is provided by the KeY team [9], which introduces
the KeY verifier and discusses the solutions to the chal-

lenges, as developed during the competition, and completed
afterwards. The special issue then continues with a con-
tribution by the developers of the AutoProof verifier [32].
They did not participate in the competition, but describe
how their tool had been tried on the challenges afterwards.
They do not provide full solutions to all challenges; in some
cases they only verify a single use case. Finally, this spe-
cial issue concludes with a slightly different contribution:
Blom (from the ESC/Java team) and Huisman discuss how
they extended their VerCors tool set to support reasoning
about magic wands, and used this extension to solve the third
challenge [5].

1.4 Related efforts and activities

There are a number of related accounts and activities that we
would like to mention before presenting the VerifyThis 2012
details.

A historically interesting qualitative overview of the state
of program verification tools was compiled in 1987 by
Craigen [13]. There are also several larger comparative case
studies in formal development and verification, treated by a
number of different methods and tools. Here, we name the
RPC-memory specification case study, resulting from a 1994
Dagstuhl meeting [8], the “production cell” case study [25]
from 1995, and the Mondex case study [34].

Recently, we have seen a resurgence of interest in bench-
marking program verification tools. In particular, several
papers appearedduring the last years presenting specific chal-
lenges for program verification tools and techniques [26,27,
35]. In addition, the recent COST Action IC0701 maintains
an online repository3 of verification challenges and solutions
(which focuses mainly on object-oriented programs).

Of note are the following competitions closely related to
ours:

– The first “modern” competition and an inspiration for
VerifyThis was the Verified Software Competition
(VSComp4), organized by the verified software initiative
(VSI). Its first installment took place on site at VSTTE
2010. Subsequent VSComp installments included sev-
eral 48-h online competitions, and a larger verification
challenge, running over a period of several months. In
general, the problems tackled during VSComp are larger
than those in VerifyThis, as time restrictions are less
strict.

– Since 2012, the SV-COMP5 software verification com-
petition takes place in affiliation with the TACAS
conference. This competition focuses on fully auto-

3 http://www.verifythis.org.
4 http://www.vscomp.org.
5 http://sv-comp.sosy-lab.org.

123

http://www.verifythis.org
http://www.vscomp.org
http://sv-comp.sosy-lab.org

650 M. Huisman et al.

matic verification and is off-line, i.e., participants submit
their tools by a particular date, and the organizers
check whether they accurately handle the challenges.
We have regular contact with the SV-COMP orga-
nizers, and in particular we monitor the (shrinking)
gap between the expressive properties tackled in Veri-
fyThis and the automation achieved by tools evaluated in
SV-COMP.

– The RERS Challenge6 taking place since 2010 is dedi-
cated to rigorous examination of reactive systems. The
Challenge aims to bring together researchers from all
areas of software verification and validation, includ-
ing theorem proving, model checking, program analysis,
symbolic execution, and testing, and discuss the specific
strengths and weaknesses of the different technolo-
gies.

In contrast, the unique proposition of the VerifyThis com-
petition series is that it assesses the user–tool interaction and
emphasizes the repeatability of the evaluation within modest
time requirements.

In April 2014, we organized (together with Dirk Beyer
of SV-COMP) a Dagstuhl seminar on “Evaluating Software-
Verification Systems: Benchmarks and Competitions” [6],
where we gathered participants and organizers of different
verification-related competitions. The event was concluded
with a joint VerifyThis/SV-COMP competition session. The
verification challenge chosen was based on a bug encoun-
tered in the Linux kernel.7

Participants were encouraged to build teams of up to three
people, in particular mixing attendees and tools from differ-
ent communities. The applied automatic verifiers (typical of
tools used in SV-COMP) could detect the assertion viola-
tion easily, though interpreting the error path and locating
the bug cause required not negligible effort. Unsurprisingly,
proving the program correct after fixing the bug was not
easy for most automatic verifiers (with the notable excep-
tion of the Predator tool). With deductive verifiers typically
used in VerifyThis, the situation was more varied. Several
teams succeeded in verifying parts of the code respective to
a subset of assertions. Success factors include support for
verifying C programs (as otherwise time was lost translating
the subject program into the language supported by the ver-
ifier) and finding the bug first (either by testing or by using
automatic verification as an auxiliary technique). An inter-
esting question that arose for future investigation is whether
and how the automatically synthesized safety invariants pro-
vided by some automatic verifiers can be used in a deductive
verifier.

6 http://rers-challenge.org.
7 The challenge can be found in the SV-COMP database at https://
svn.sosy-lab.org/software/sv-benchmarks/trunk/c/heap-manipulation/
bubble_sort_linux_false-unreach-call.c.

2 VerifyThis 2012 challenge 1: longest common
prefix (LCP, 45 min)

2.1 Verification task

Longest common prefix (LCP) is a problem in text query-
ing [31]. In the following, we model text as an integer array,
but it is perfectly admissible to use other representations (e.g.,
Java Strings), if a verification system supports them. LCP can
be informally specified as follows:

– Input: an integer array a, and two indices x and y into
this array.

– Output: length of the longest common prefix of the sub-
arrays of a starting at x and y respectively.

A reference implementation of LCP is given by the
pseudocode below. Prove that your implementation complies
with a formalized version of the above specification.

int lcp(int[] a, int x, int y){
int l = 0;
while (x+l<a.length && y+l<a.length

&&
a[x+l]==a[y+l]) {

l++;
}
return l;

}

2.2 Organizer comments

As expected, the LCP challenge did not pose a difficulty.
Eleven submissions were received, of which eight were
judged as sufficiently correct and complete. Two submis-
sions failed to specify the maximality of the result (i.e., the
“longest” qualifier in LCP),while one submission had further
adequacy problems.

We found the common prefix property was best expressed
in Dafny syntax

a[x..x+l] == a[y..y+l],

which eliminatedmuchof the quantifier verbosity. Themaxi-
malitywas typically expressed by a variation of the following
expression:

x+l == a.length || y+l == a.length ||
a[x+l] != a[y+l]

.

Jean-Christophe Filliâtre and Andrei Paskevich (one of the
Why3 teams) also proved an explicit lemma that no greater

123

http://rers-challenge.org
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/c/heap-manipulation/bubble_sort_linux_false-unreach-call.c
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/c/heap-manipulation/bubble_sort_linux_false-unreach-call.c
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/c/heap-manipulation/bubble_sort_linux_false-unreach-call.c

VerifyThis 2012 651

result (i.e., longer common prefix) exists. This constituted
the most general and closest to the text specification.

2.3 Advanced verification tasks

For those who have completed the LCP challenge quickly,
the description included a further challenge, named LRS,
outlined below. No submissions attempting to solve the
advanced challenge were received during the competition.
Three solutions developed later are presented in the papers
in this special issue.

Background. Together with a suffix array, LCP can be
used to solve interesting text problems, such as finding the
longest repeated substring (LRS) in a text.

In its most basic form, a suffix array (for a given text) is
an array of all suffixes of the text. For the text [7,8,8,6], the
basic suffix array is

[[7,8,8,6],
[8,8,6],

[8,6],
[6]].

Typically, the suffixes are not stored explicitly as above,
but represented as pointers into the original text. The suffixes
in a suffix array are also sorted in lexicographical order. This
way, the occurrences of repeated substrings in the original
text are neighbors in the suffix array.

For the above example (assuming pointers are 0-based
integers), the sorted suffix array is: [3,0,2,1].

Verification task. The attached Java code8 contains an
implementation of a suffix array (SuffixArray.java), consist-
ing essentially of a lexicographical comparison on arrays, a
sorting routine, and LCP.

The client code (LRS.java) uses these to solve the LRS
problem. We verify that it does so correctly.

Results. This special issue contains contributions from the
KeY, KIV, and the (joint) Why3 teams with solutions to the
LRS challenge. The effort needed to develop them is reported
in a couple of days rather than hours. The difficult part of
the challenge is to prove the maximality of the computed
solution.

Future verification tasks. Togetherwith the call for contri-
butions to this special issue, we put forth a challenge to verify
one of the advanced suffix array implementations optimized
for performance, such as, e.g., [23]. So far, this challenge
remains unmet.An interesting potential approachwould be to
verify that a complex implementation equals or corresponds

8 Available as part of the original challenge http://fm2012.verifythis.
org and in Appendix 6.

Fig. 1 Upsweep and downsweep phases of the prefix sum calculation,
picture taken from [11]

in its functional behavior to a simple one. This technique
known as regression verification does not require a func-
tional correctness specification and in many cases features a
favorable pragmatics.

3 VerifyThis 2012 challenge 2: prefix sum
(PREFIXSUM, 90 min)

3.1 Background

The concept of a prefix sum is very simple. Given an integer
array a, store in each cell a[i] the value a[0]+...+a[i-1].

Example 1 The prefix sum of the array

[3, 1, 7, 0, 4, 1, 6, 3]

is

[0, 3, 4, 11, 11, 15, 16, 22].

Prefix sums have important applications in parallel vector
programming, where the workload of calculating the sum
is distributed over several processes. A detailed account of
prefix sums and their applications is given in [7]. We will
verify a sequentialized version of a prefix sum calculation
algorithm.

3.2 Algorithm description

We assume that the length of the array is a power of two.
This allows us to identify the array initially with the leaves
of a complete binary tree. The computation proceeds along
this tree in two phases: upsweep and downsweep.

During the upsweep, which itself proceeds in phases, the
sumof the child nodes is propagated to the parent nodes along
the tree. A part of the array is overwritten with values stored
in the inner nodes of the tree in this process (Fig. 1, left9).

9 The original challenge description contained an illustrating excerpt
from a slide deck on prefix sums.

123

http://fm2012.verifythis.org
http://fm2012.verifythis.org

652 M. Huisman et al.

After the upsweep, the rightmost array cell is identified with
the root of the tree.

As preparation for the downsweep, a zero is inserted in the
rightmost cell. Then, in each step, each node at the current
level passes to its left child its own value, and it passes to its
right child the sum of the left child from the upsweep phase
and its own value (Fig. 1, right).

3.3 Verification task

We provide an iterative and a recursive implementation of
the algorithm (shown in Appendix 7). You may choose one
of these to your liking.

1. Specify and verify the upsweep method. You can begin
with a slightly simpler requirement that the last array cell
contains the sum of the whole array in the post-state.

2. Verify both upsweep AND downsweep—prove that the
array cells contain appropriate prefix sums in the post-
state.

If a general specification is not possible with your tool,
assume that the length of array is 8.

3.4 Organizer comments

Eight submissions were received at the competition. Though
the upsweep and downsweep algorithm were not complex,
it was challenging to build a mental model of what is hap-
pening. The VeriFast solution was the only one judged as
sufficiently correct and complete.

In this recursive solution, upsweep and downsweep are
specified in terms of recursive separation logic predicates,
allowing the proofs to consist of explicit unfolding and fold-
ing of the relevant predicates. A simple final lemma was
proved by induction. After the competition, the KIV and the
combined Why3 teams also provided complete versions of
both upsweep and downsweep. These solutions are presented
in detail in the papers corresponding to each tool within this
special issue.

The main “technical” problem in this challenge was rea-
soning about powers of two. The GNATprove team was the
only team to make use of the bounded array simplification
proposed in the challenge description. It was also the only
team that attempted to verify the iterative version of the algo-
rithm and not the recursive one during the competition (the
KIV team developed an iterative solution in the aftermath).
In this issue, the GNATprove team report that, as a follow-up
to the competition, they also generalized the specification in
both SPARK 2005 and SPARK 2014 as a useful exercise in
comparing the new and old version of the tools.

The ability of the GNATprove tool to test the requirement
and auxiliary annotations by translating them to run-time

checks was helpful in this challenge. This feature won the
distinguished prize of user-assistance tool feature awarded
by the jury of the VerifyThis competition. The Why3 paper
makes an observation that a facility to “debug the specifica-
tions” would have assisted greatly in developing a solution.
The KIV team states that “inspecting (explicit) proof trees of
failed proof attempts” was an invaluable help in finding out
which corrections were necessary during the iterative devel-
opment process.

The AutoProof team’s main difficulty with this challenge
was expressing how the original array ismodified at each iter-
ation. In this issue, they explain how this would have been
overcome if old expressions could be used in loop invariants
(in iterative solutions) or in postconditions within the scope
of bounded across quantifier (in recursive solutions). Using
workarounds, such as making copies of the initial arrays
for future reasoning, or defining specific predicates for each
property, resulted in a verification that was too difficult for
AutoProof in its early stage of development.10 A full report
is provided in this issues’ AutoProof paper.

While modular verification remains the main goal of tool
development, the advantages of the possibility to fall back to
non-modular verification are now gaining wider recognition.
In the absence of specifications, tools like KIV, KeY, and
AutoProof can verify concrete clients by inlining the bodies
of functions called in the client code or exhaustively unrolling
bounded loops. This establishes that the implementation is
correct for the given client. Although a generalized proof
is not obtained at first, this “two-step verification” process
helps speed up the debugging of failed verification attempts
and guides the generalization of partial verification attempts.

After the competition, the KeY team provided a partial
solution to this challenge, with a recursive implementation
and a partial specification concerned only with the rightmost
element after the upsweep phase. A complete specification
for upsweep is also provided in their solution presented in this
issue, although its proof is not completed. Challenges were
reasoning about sums and the exponential function. The KIV
and Why3 teams benefited in this challenge as their libraries
already included a formalization of the exponentiation oper-
ator. The Why3 team also imported the sum function, and its
associated proofs, from their tool’s standard library.

Another hot topic of the past is the ability to check the
absence of integer overflow. Currently, all the participating
tools have the capabilities to do so. Now, the flexibility to
enable or disable such checks (potentially in a fine-grained
way) has become an important property. The support of ghost
variables proved useful formany teamswhen expressing loop
invariants and passing arrays to the downsweep procedure.

10 AutoProof has been significantly improved since its 2013 version
used here.

123

VerifyThis 2012 653

The KeY team also reported that using frames with KeY’s
built-in data type of location sets added structure to the proof.

This challenge demonstrated the requirement for user
interaction during proof construction. This interaction comes
via both textual and non-textual (point-and-click) interaction
styles, with some tools, e.g., KeY and KIV combining both
styles.While the textual interaction paradigm has advantages
w.r.t. effort reuse across proof iterations, the point-and-click
style can at times offer greater flexibility.

3.5 Future verification tasks

A verification system supporting concurrency could be used
to verify a parallel algorithm for prefix sum computation [7].

4 VerifyThis 2012 challenge 3: iterative deletion
in a binary search tree (TREEDEL, 90 min)

4.1 Verification task

Given: a pointer t to the root of a non-empty binary search
tree (not necessarily balanced). Verify that the following pro-
cedure removes the node with the minimal key from the tree.
After removal, the data structure should again be a binary
search tree.

(Tree, int) search_tree_delete_min (Tree t) {
Tree tt, pp, p;
int m;
p = t->left;
ififif (p == NULLNULLNULL) {

m = t->data; tt = t->right; dispose(t);
t = tt;

} elseelseelse {
pp = t; tt = p->left;
whilewhilewhile (tt != NULLNULLNULL) {

pp = p; p = tt; tt = p->left;
}
m = p->data; tt = p->right;
dispose(p); pp->left = tt;

}
returnreturnreturn (t,m);

}

Note: When implementing in a garbage-collected lan-
guage, the call to dispose() is superfluous.

4.2 Organizer comments

This problem has appeared in [33] as an example of an iter-
ative algorithm that becomes much easier to reason about
when re-implemented recursively. The difficulty stems from
the fact that the loop invariant has to talk about a complicated
“tree with a hole” data structure, while the recursion-based
specification can concentrate on the data structure still to be
traversed, which in this case is also a tree.

A solution proposed by Thomas Tuerk in [33] is that of
a block contract, i.e., a pre-/post-style contract for arbitrary
code blocks. A block contract enables recursion-style for-
ward reasoning about loops and other code without explicit
code transformation.

Only the VeriFast team submitted a working solution to
this challenge within the allotted time. The KIV team sub-
mitted a working solution about 20 min after the deadline.
After the competition, the combined Why3 teams, the KeY
team, and the ESC/Java2 team also developed a solution for
this challenge. These solutions are discussed in detail within
the corresponding papers in this issue.

During the competition, the VeriFast team developed a
solution based on (an encoding of) a “magic wand” operator
of separation logic, which describes how one property can
be exchanged or traded for a different property. In this chal-
lenge, the magic wand operator is used to describe the loop
outcome11, which captures the “tree with a hole” property: if
the magic wand is combined with the subtree starting at pp,
then a full tree is re-established.

In VeriFast, the magic wand operator is encoded by a
predicate-parameterized lemma describing the transforma-
tion that is done by the magic wand. A similar solution was
developed by the ESC/Java2 team. In fact, during the com-
petition, the team worked out this solution on paper, but as
ESC/Java2 did not provide sufficient support for reasoning
about pointer programs, they did not attempt any tool-based
verification. After the competition, the team extended their
VerCors tool set for the verification of concurrent software
using permission-based separation logic [4], with support for
magic wand reasoning.

The VerCors tool set translates annotated Java programs
into annotated Chalice, which is a a small, class-based lan-
guage that supports concurrency via threads, monitors, and
messages, and then uses Chalice’s dedicated program ver-
ifier. The translation encodes complex aspects of the Java
semantics and annotation language. The paper that Blom and
Huisman contributed to this special issue shows howparame-
trized abstract predicates and magic wands are encoded into
Chalice, by building witness objects that enable manipula-
tion of the encoded assertions. They illustrate their encoding
by verifying the tree delete challenge, using a loop invari-
ant that is similar to the loop specification used by VeriFast.
However, the difference is that in their approach, the user
is directly manipulating a magic wand, and the encoding is
done by the tool, while in VeriFast the user has to encode the
magic wand themselves.

11 This specification uses a loop contract. If the tool supported contracts
for arbitrary code blocks, then the modification after the loop could be
included and a simpler solution as proposed by Tuerk would have been
possible.

123

654 M. Huisman et al.

The VeriFast team also developed an alternative post-
competition solution, which does not use the magic wand
operator, but instead defines a recursive tree-with-a-hole
predicate coupling the concrete data structure and two
abstract trees. Using this predicate, a loop invariantmaintains
that the original tree can be decomposed into a tree with “a
hole at pp”, and another complete tree, starting at pp. When
the loop finishes, and the left-most element is removed, this
decomposition is used to create the final tree. The VeriFast
team’s contribution to this special issue describes both solu-
tions.

The KIV team is the only team that applied “forward
reasoning”, which is the most efficient solution to this chal-
lenge, to the full extent. In KIV, the forward argument was
not shaped as a block contract annotation and rule, but as
induction over the number of loop iterations during the proof.
While a loop invariant can only talk about the loop body, the
induction hypothesis can cover both the loop and the follow-
ing tree modification. It can thus be easily expressed using
the standard tree definition only. The correctness proof in
KIV is furthermore structured in two parts: at first, a cor-
respondence between the iterative pointer program and a
recursive functional program operating on abstract trees is
proved (here, the above-mentioned induction is performed).
Then, the functional program is proved correct w.r.t. the
requirement (removing the minimal element).

The Why3 teams developed a solution to the challenge
after the competition, which is based on the notion of Huet’s
Zipper [20]. A zipper is a special data structure that can be
used to encode arbitrary paths (and updates) in aggregate
data structures. Since in the tree delete algorithm, always
the left branch of a tree is chosen, the Why3 team used a
simplified version of the zipper. From a zipper and a subtree,
the complete tree can be recovered. The zipper is maintained
in the program as a ghost variable, which makes it thus an
operational and constructive encoding of the “tree with a
hole”.

Finally, the KeY team describe a post-competition solu-
tion to the problem in this issue. They use a quite different
approach to handle this challenge. Their specifications are
written in terms of an “abstract flat representation of the tree”.
In addition, they use the notion of footprint to capture that the
tree is indeed a tree, and that the tree structure is preserved
throughout the iteration. To prove that theminimal element is
removed by the algorithm, they maintain a loop invariant on
the abstract flat representation of the tree, using the currently
visited node to separate the upper part, i.e., the nodes that do
not have to be examined anymore, and the lower part, i.e., the
nodes that still may be changed by the deletion operator. The
key property is that the footprint of the upper part is strictly
disjoint from the footprint of the lower part; thus changes in
the lower part will not affect the upper part.

5 Prizes, statistics, and remarks

5.1 Awarded prizes and statistics

The main results of the competition are as follows:

– Best team: Bart Jacobs, Jan Smans (VeriFast)
– Best student team: Gidon Ernst, Jörg Pfähler (KIV)
– Distinguished user-assistance tool feature: integration of
proving and run-time assertion checking in GNATprove
(team member: Yannick Moy)

– Tool used by most teams: prize shared between Dafny
and Why3 (both tools had 2 user teams)

– Best (pre-competition) problem submission: “Optimal
Replay” by Ernie Cohen

Statistics per challenge:

– LCP: Eleven submissions were received, of which eight
were judged as correct and complete and two as correct
but partial solutions.

– PrefixSum: eight submissions were received, of which
one was judged correct and complete.

– TreeDel: seven submissions were received, of which
one was judged correct and complete.

The VerifyThis 2012 challenges have offered a substantial
degree of complexity and difficulty. The competition has
also demonstrated the importance of strategy. Starting with
a simplified version of the challenge and adding complex-
ity gradually are often more efficient than attacking the full
challenge at once.

5.2 Postmortem session

The postmortem session, on the day after the competition,
was much appreciated both by the judges and by the partic-
ipants. It was very helpful for the judges to be able to ask
the teams questions to better understand and appreciate their
submissions. At the same time, the other participants were
having a lively discussion about the challenges, presenting
their solutions to each other and exchanging ideas and com-
ments with great enthusiasm. We would recommend such a
postmortem session for any on-site competition.

5.3 Session recording

The artifacts produced and submitted by the teams during the
competition only tell half of the story. The process of arriving
at a solution is just as important. The organizers have for some
time already planned to record and analyze this process (on
a voluntary basis). The recording would give insight into the

123

VerifyThis 2012 655

pragmatics of different verification systems and allow the
participants to learn more from the experience of others.

Acknowledgments The organizers would like to thank Rustan Leino,
Nadia Polikarpova, and Mattias Ulbrich for their feedback and support
prior to the competition.

6 LCP/LRS source code

1 publicpublicpublic classclassclass SuffixArray {
2

3 privateprivateprivate finalfinalfinal intintint[] a;
4 privateprivateprivate finalfinalfinal intintint[] suffixes;
5 privateprivateprivate finalfinalfinal intintint N;
6

7 publicpublicpublic SuffixArray(intintint[] a) {
8 thisthisthis.a = a;
9 N = a.length;
10 suffixes = newnewnew intintint[N];
11 forforfor (intintint i = 0; i < N; i++) suffixes[i] = i;
12 sort(suffixes);
13 }
14

15

16 publicpublicpublic intintint select(intintint i) {
17 returnreturnreturn suffixes[i];
18 }
19

20

21 privateprivateprivate intintint lcp(intintint x, intintint y) {
22 intintint l = 0;
23 whilewhilewhile (x+l<N && y+l<N && a[x+l]==a[y+l]) {
24 l++;
25 }
26 returnreturnreturn l;
27 }
28

29

30 publicpublicpublic intintint lcp(intintint i) {
31 returnreturnreturn lcp(suffixes[i], suffixes[i-1]);
32 }
33

34

35 publicpublicpublic intintint compare(intintint x, intintint y) {
36 ififif (x == y) returnreturnreturn 0;
37 intintint l = 0;
38

39 whilewhilewhile (x+l<N && y+l<N && a[x+l] == a[y+l]) {
40 l++;
41 }
42

43 ififif (x+l == N) returnreturnreturn -1;
44 ififif (y+l == N) returnreturnreturn 1;
45 ififif (a[x+l] < a[y+l]) returnreturnreturn -1;
46 ififif (a[x+l] > a[y+l]) returnreturnreturn 1;
47

48 throwthrowthrow newnewnew RuntimeException();
49 }
50

51

52 publicpublicpublic voidvoidvoid sort(finalfinalfinal intintint[] data) {
53 forforfor(intintint i = 0; i < data.length + 0; i++) {
54 forforfor(intintint j = i;
55 j > 0 && compare(data[j-1], data[j])
56 > 0; j--) {
57 finalfinalfinal intintint b = j - 1;
58 finalfinalfinal intintint t = data[j];
59 data[j] = data[b];
60 data[b] = t;
61 }
62 }
63 }
64

65

66 publicpublicpublic staticstaticstatic voidvoidvoid main(String[] argv) {
67 intintint[] arr = {1,2,2,5};

68 SuffixArray sa = newnewnew SuffixArray(arr);
69 System.out.println(sa.lcp(1,2));
70 intintint[] brr = {1,2,3,5};
71 sa = newnewnew SuffixArray(brr);
72 System.out.println(sa.lcp(1,2));
73 intintint[] crr = {1,2,3,5};
74 sa = newnewnew SuffixArray(crr);
75 System.out.println(sa.lcp(2,3));
76 intintint[] drr = {1,2,3,3};
77 sa = newnewnew SuffixArray(drr);
78 System.out.println(sa.lcp(2,3));
79 }
80

81 }
82 / / Based on code by Robert Sedgewick and Kevin Wayne.

1 publicpublicpublic classclassclass LRS {
2

3 privateprivateprivate staticstaticstatic intintint solStart = 0;
4 privateprivateprivate staticstaticstatic intintint solLength = 0;
5 privateprivateprivate staticstaticstatic intintint[] a;
6

7 publicpublicpublic staticstaticstatic voidvoidvoid main(String[] args) {
8 a = newnewnew intintint[args.length];
9 forforfor (intintint i=0; i<args.length; i++) {
10 a[i]=Integer.parseInt(args[i]);
11 }
12 doLRS();
13 System.out.println(solStart+"->"+solLength);
14 }
15

16

17

18 publicpublicpublic staticstaticstatic voidvoidvoid doLRS() {
19 SuffixArray sa = newnewnew SuffixArray(a);
20

21 forforfor (intintint i=1; i < a.length; i++) {
22 intintint length = sa.lcp(i);
23 ififif (length > solLength) {
24 solStart = sa.select(i);
25 solLength = length;
26 }
27 }
28 }
29

30 }
31 / / Based on code by Robert Sedgewick and Kevin Wayne.

7 PrefixSum source code

Recursive version

1 importimportimport java.util.Arrays;
2

3 classclassclass PrefixSumRec {
4

5 privateprivateprivate intintint[] a;
6

7 PrefixSumRec(intintint[] a) {
8 thisthisthis.a = a;
9 }
10

11

12 publicpublicpublic voidvoidvoid upsweep(intintint left, intintint right) {
13 ififif (right > left+1) {
14 intintint space = right - left;
15 upsweep(left-space/2,left);
16 upsweep(right-space/2,right);
17 }
18 a[right] = a[left]+a[right];
19 }
20

21

22 publicpublicpublic voidvoidvoid downsweep(intintint left, intintint right) {
23 intintint tmp = a[right];
24 a[right] = a[right] + a[left];
25 a[left] = tmp;
26 ififif (right > left+1) {
27 intintint space = right - left;

123

656 M. Huisman et al.

28 downsweep(left-space/2,left);
29 downsweep(right-space/2,right);
30 }
31

32 }
33

34

35 publicpublicpublic staticstaticstatic voidvoidvoid main (String[] args) {
36 intintint[] a = {3,1,7,0,4,1,6,3};
37 PrefixSumRec p = newnewnew PrefixSumRec(a);
38 System.out.println(Arrays.toString(a));
39 p.upsweep(3,7);
40 System.out.println(Arrays.toString(a));
41 a[7] = 0;
42 p.downsweep(3,7);
43 System.out.println(Arrays.toString(a));
44 }
45

46 }
47

48

49 /∗
50 [3 , 1 , 7 , 0 , 4 , 1 , 6 , 3]
51 [3 , 4 , 7 , 11 , 4 , 5 , 6 , 25]
52 [0 , 3 , 4 , 11 , 11 , 15 , 16 , 22]
53 ∗ /

Iterative version

1 importimportimport java.util.Arrays;
2

3 classclassclass PrefixSumIter {
4

5 privateprivateprivate intintint[] a;
6

7 PrefixSumIter(intintint[] a) {
8 thisthisthis.a = a;
9 }
10

11

12 publicpublicpublic intintint upsweep() {
13 intintint space = 1;
14 forforfor (; space < a.length; space=space*2) {
15 intintint left = space - 1;
16 whilewhilewhile (left < a.length) {
17 intintint right = left + space;
18 a[right] = a[left] + a[right];
19 left = left + space*2;
20 }
21 }
22 returnreturnreturn space;
23 }
24

25

26 publicpublicpublic voidvoidvoid downsweep(intintint space) {
27 a[a.length - 1] = 0;
28 space = space/2;
29 forforfor (; space > 0; space=space/2) {
30 intintint right = space*2 - 1;
31 whilewhilewhile (right < a.length) {
32 intintint left = right - space;
33 intintint temp = a[right];
34 a[right] = a[left] + a[right];
35 a[left] = temp;
36 right = right + space*2;
37 }
38 }
39 }
40

41

42 publicpublicpublic staticstaticstatic voidvoidvoid main (String[] args) {
43 intintint[] a = {3,1,7,0,4,1,6,3};
44 PrefixSumIter p = newnewnew PrefixSumIter(a);
45 System.out.println(Arrays.toString(a));
46 intintint space = p.upsweep();
47 System.out.println(space);
48 System.out.println(Arrays.toString(a));
49 p.downsweep(space);
50 System.out.println(Arrays.toString(a));
51 }
52

53 }
54

55

56 /∗
57 [3 , 1 , 7 , 0 , 4 , 1 , 6 , 3]
58 [3 , 4 , 7 , 11 , 4 , 5 , 6 , 25]
59 [0 , 3 , 4 , 11 , 11 , 15 , 16 , 22]
60 ∗ /

References

1. Ahrendt, W., Beckert, B., Bruns, D., Bubel, R., Gladisch, C., Gre-
bing, S., Hähnle, R., Hentschel, M., Klebanov, V., Mostowski, W.,
Scheben, C., Schmitt, P.H., Ulbrich, M.: The KeY platform for
verification and analysis of Java programs. In: Giannakopoulou,
D., Kroening, D., Polgreen, E., Shankar, N., (eds) Proceedings,
6th Working Conference on Verified Software: Theories, Tools,
and Experiments (VSTTE), Vienna, July 2014, LNCS. Springer
(2014)

2. Bormer, T., Brockschmidt, M., Distefano, D., Ernst, G., Filliâtre,
J.-C., Grigore, R., Huisman, M., Klebanov, V., Marché, C., Mona-
han, R., Mostowski, W., Polikarpova, N., Scheben, C., Schellhorn,
G., Tofan, B., Tschannen, J., Ulbrich, M.: The COST IC0701 veri-
fication competition 2011. In: Beckert, B., Damiani, F., Gurov, D.,
(eds) International Conference on Formal Verification of Object-
Oriented Systems (FoVeOOS 2011), LNCS. Springer (2012)

3. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Let’s verify
this withWhy3. Int. J. Softw. Tools Technol. Transfer (in this issue)
(2015)

4. Blom, S., Huisman, M.: The VerCors tool for verification of con-
current programs. In: Formal Methods of LNCS, vol. 8442, pp.
127–131. Springer (2014)

5. Blom, S., Huisman, M.: Witnessing the elimination of magic
wands. Int. J. Softw. Tools Technol. Transfer (in this issue) (2015)

6. Beyer, Dirk, Huisman, Marieke, Klebanov, Vladimir, Monahan,
Rosemary: Evaluating software verification systems: benchmarks
and competitions (Dagstuhl Reports 14171). Dagstuhl Rep 4(4),
1–19 (2014)

7. Guy, E.: Blelloch. Prefix sums and their applications. In: Reif, John
H. (ed.) Synthesis of parallel algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco (1993)

8. Broy,M.,Merz, S., Spies, K.: (ed) Formal systems specification. In:
The RPC-Memory Specification Case Study of LNCS, vol. 1169.
Springer (1996)

9. Bruns, D., Mostowski, W., Ulbrich, M.: Implementation-level ver-
ification of algorithms with KeY. Int. J. Softw. Tools Technol.
Transfer (in this issue) (2015)

10. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Michał-
Moskal, S., Thomas, S., Wolfram, T.S.: VCC: a practical system
for verifying concurrent C. In: Proceedings of the 22Nd Interna-
tional Conference on Theorem Proving in Higher Order Logics,
TPHOLs ’09, pp. 23–42. Springer-Verlag (2009)

11. Chong, N.: Scalable verification techniques for data-parallel pro-
grams. PhD thesis, Imperial College London (2014)

12. Cok, D.R., Kiniry, J.R.: Esc/java2: Uniting ESC/Java and JML. In:
Proceedings of the 2004 International Conference on Construction
and Analysis of Safe, Secure, and Interoperable Smart Devices,
CASSIS’04, pp. 108–128. Springer-Verlag (2005)

13. Craigen, D.: Strengths andweaknesses of program verification sys-
tems. In: Proceedings of the 1st European Software Engineering
Conference on ESEC ’87, pp. 396–404. Springer-Verlag (1987)

14. Dross, C., Efstathopoulos, P., Lesens, D., Mentré, D., Moy, Y.:
Rail, space, security: Three case studies for SPARK 2014. In: 7th
Europen Congress on Embedded Real Time Software and Systems
(ERTS2 2014) (2014)

123

VerifyThis 2012 657

15. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV:
overview and VerifyThis competition. Int. J. Softw. Tools Technol.
Transfer (in this issue) (2015)

16. Filliâtre J.-C., Paskevich, A.:Why3: where programsmeet provers.
In: Proceedings of the 22ndEuropeanConference on Programming
Languages and Systems, ESOP’13, pp. 125–128. Springer-Verlag
(2013)

17. Filliâtre, J.-C, Paskevich, A., Stump, A.: The 2nd verified soft-
ware competition: experience report. In: Klebanov, V., Biere, A.,
Beckert, B., Sutcliffe, G. (eds) Proceedings of the 1st International
WorkshoponComparativeEmpiricalEvaluationofReasoningSys-
tems (COMPARE 2012) (2012)

18. Huisman, M., Klebanov, V., Monahan, R.: On the organisation of
program verification competitions. In: Vladimir, K., Bernhard, B.,
Biere A., Sutcliffe, G. (eds) Proceedings of the 1st International
WorkshoponComparativeEmpiricalEvaluationofReasoningSys-
tems (COMPARE), Manchester, UK, June 30, 2012, of CEUR
Workshop Proceedings. vol. 873, CEUR-WS.org (2012)

19. Hoang, D., Moy, Y., Wallenburg, A., Chapman, R.: SPARK
2014 and GNATprove. A competition report from builders of an
industrial-strength verifying compiler. Int. J. Softw. Tools Technol.
(Transfer, in this issue) (2015)

20. Huet, G.: The zipper. J Funct Program 7, 549–554 (1997)
21. Jacobs, B., Smans, J., Piessens, F.: Solving the VerifyThis: chal-

lenges with VeriFast, p. 2015. J. Softw. Tools Technol. Transfer,
(in this issue, Int) (2012)

22. Klebanov, V., Müller, P., Shankar, N., Leavens, G.T., Wüstholz,
V., Alkassar, E., Arthan, R., Bronish, D., Chapman, R., Cohen, E.,
Hillebrand, M., Jacobs, B., Leino, K.R.M., Monahan, R., Piessens,
F., Polikarpova, N., Ridge, T., Smans, J., Tobies, S., Tuerk, T.,
Ulbrich,M.,Weiß, B.: The 1st verified software competition: expe-
rience report. In: Michael, B.,Wolfram, S., (eds) Proceedings, 17th
International Symposium on Formal Methods (FM) of LNCS, vol.
6664. Springer (2011)

23. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array con-
struction. In: Proceedings of the 30th International Conference on
Automata, languages and programming, ICALP’03, pp. 943–955,
Berlin, Heidelberg, Springer-Verlag (2003)

24. Leino,K.R.M.:Dafny: an automatic programverifier for functional
correctness. In: Proceedings of the 16th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning,
LPAR’10, pp. 348–370. Springer-Verlag (2010)

25. Lewerentz, C., Lindner, T.: Case study “production cell”: a com-
parative study in formal specification and verification. In:Manfred,
B., Stefan, J., (eds) KORSO: Methods, Languages, and Tools for
the Construction of Correct Software of LNCS, vol. 1009, pp. 388–
416. Springer (1995)

26. Leavens, Gary T., Leino, K.Rustan M., Müller, Peter: Specifi-
cation and verification challenges for sequential object-oriented
programs. Form. Asp. Comput. 19, 159–189 (2007)

27. Leino, K.R.M., Moskal, M.: VACID-0: verification of ample cor-
rectness of invariants of data-structures, edn 0. In: Proceedings of
Tools and Experiments Workshop at VSTTE (2010)

28. Liu, Y., Sun, J., Dong, J.S.: Developing model checkers using PAT.
In: Proceedings of the 8th International Conference on Automated
Technology for Verification and Analysis, ATVA’10, pp. 371–377.
Springer-Verlag (2010)

29. Philippaerts, P., Mühlberg, J.Tobias, Penninckx, W., Smans, J.,
Jacobs, B., Piessens, F.: Software verification with verifast. Sci.
Comput. Program. 82, 77–97 (2014)

30. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured spec-
ifications and interactive proofs with KIV. In: Wolfgang, B.,
Peter H.S. (eds) Automated deduction—a basis for applications
of applied logic series, vol. 9 , pp. 13–39. Springer, Netherlands
(1998)

31. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley,
USA (2011)

32. Tschannen, J., Furia, C.A., Martin, N.: AutoProof meets some ver-
ification challenges. Int. J. Softw. Tools Technol. Transfer (in this
issue) (2015)

33. Tuerk, T.: Local reasoning about while-loops. In: Müller, P., Nau-
mann, D., Yang, H. (eds) Proceedings VS-Theory Workshop of
VSTTE, pp. 29–39 (2010)

34. Woodcock, J.: First steps in the verified software grand challenge.
Computer 39(10), 57–64 (2006)

35. Weide, B.W., Sitaraman, M., Harton, H.K., Adcock, B.M., Bucci,
P., Bronish, D., Heym, W.D., Kirschenbaum, J., Frazier, D.: Incre-
mental benchmarks for software verification tools and techniques.
In: Shankar, N., Woodcock, J. (eds) Proceedings verified software:
theories, tools, experiments (VSTTE) of LNCS, vol. 5295, pp. 84–
98. Springer (2008)

123

	VerifyThis 2012
	A Program Verification Competition
	Abstract
	1 Introduction
	1.1 About VerifyThis
	1.2 VerifyThis 2012 participants and tools used
	1.3 Papers presented in this special issue
	1.4 Related efforts and activities

	2 VerifyThis 2012 challenge 1: longest common prefix (LCP, 45 min)
	2.1 Verification task
	2.2 Organizer comments
	2.3 Advanced verification tasks

	3 VerifyThis 2012 challenge 2: prefix sum (PrefixSum, 90 min)
	3.1 Background
	3.2 Algorithm description
	3.3 Verification task
	3.4 Organizer comments
	3.5 Future verification tasks

	4 VerifyThis 2012 challenge 3: iterative deletion in a binary search tree (TreeDel, 90 min)
	4.1 Verification task
	4.2 Organizer comments

	5 Prizes, statistics, and remarks
	5.1 Awarded prizes and statistics
	5.2 Postmortem session
	5.3 Session recording

	Acknowledgments
	6 LCP/LRS source code
	7 PrefixSum source code
	Recursive version
	Iterative version

	References

