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Abstract

Over the years, online processing of data has become more important. In inventory
management, monitoring and financial applications data is generated in streams
that are processed on the fly instead of being stored in a repository and proces-
sed offline later. As data volumes increase, processing has to be offloaded from
the central stream processing engine. Processing either has to be moved to the
data sources or to specialized accelerators placed between data source and engine.
Stream processing platforms thus become heterogeneous. The problem is how to
optimize query execution when it spans different streaming systems.

This thesis discusses stream processing on two different platforms: wireless
sensor networks and field-programmable gate arrays (FPGAs). Both are typically
connected to traditional server-class streaming processors. Driven by the different
optimization goals (e.g., throughput, latency, resource consumption) operators ha-
ve to be carefully placed. In some cases it is more efficient to place operators,
for example, into the sensor network. Other operators that require a substanti-
al amount of state are better placed on the server. The problems addressed in
this work is the design of the underlying execution platforms that facilitate the
operator placement, strategies, and cost-models used for optimization.

In the first part of the thesis SwissQM is presented. SwissQM is a stream
processing platform for wireless sensor networks and is based on a small virtual
machine that is deployed on resource-constrained sensor nodes. Declarative que-
ries submitted by the user are translated into short bytecode sequences and are
disseminated in the network. The bytecode programs implement streaming opera-
tors that are executed at the data source in the network. The remaining operators
of the queries are placed onto the base station that connects the wireless sensor
network to, e.g., the Internet. The base station also performs multi-query optimi-
zation of multiple user queries that are executed concurrently. The thesis proposes
an energy-based cost model and presents optimization strategies that rely on the
cost model. Multi-query optimization maximizes utilization of the network infra-
structure such that expensive deployments can be accessed by several users and
applications concurrently.

The second part of the thesis applies the same techniques to FPGAs, i.e., the
automated compilation of queries into digital circuits that can be placed onto
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iv ABSTRACT

FPGAs. First, a stream processing algebra is defined, which is later used to ex-
press stream execution plans. Glacier, a library of hardware components and a
set of translation rules is presented as compositional approach to translate que-
ries into FPGAs circuits. A key property of the generated hardware circuits is
the well-defined performance behavior. The dissertation also presents optimizati-
on techniques to trade-off various parameters on the FPGAs such as throughput,
latency, and chip space.

The thesis proposes a common solution for both the sensor network and the
FPGA domain, which allows users to specify queries in the same declarative lan-
guage. As such, it increases the level of abstraction on both platforms from em-
bedded systems programming and hardware description languages to a high-level
language. As a domain-specific language it makes this technology available to broa-
der range of users.



Kurzfassung

Die Online-Datenverarbeitung hat in den letzten Jahren an Bedeutung gewon-
nen. Lagerverwaltungs- und Überwachungssysteme sowie Anwendungen aus dem
Finanzsektor verarbeiten Daten, sogenannte Datenströme, zunehmend ohne vor-
gängiges Speichern. Mit steigendem Datenvolumen muss ein Teil der Verarbeitung
vom Streamprozessor ausgelagert werden. Die Verarbeitung wird entweder in die
Datenquelle selbst oder auf einen Hardware-Beschleuniger im Datenpfad zwischen
Quelle und Streamprozessor ausgelagert. Die Streamverarbeitung erfolgt somit auf
einer heterogenen Plattform. Das Problem besteht nun darin, die Verarbeitung zu
Optimieren, auch wenn diese unterschiedliche Systeme umschliesst.

Im Rahmen dieser Dissertation werden zwei Streamverarbeitungplattformen
vorgestellt: drahtlose Sensornetzwerke und FPGAs (Field-Programmable Gate Ar-
rays). Beide sind üblicherweise mit einem bestehenden, Server-basierten Stream-
verarbeitungssystem verbunden. Unterschiedliche Optimierungsziele (z.B. Durch-
satz, Latenz, Resourcenverbrauch) bestimmten das Platzieren der Operatoren. In
bestimmten Fällen ist es effizienter, einen Operator in das Sensornetzwerk zu
verschieben. In anderen Fällen werden Operatoren, die üblicherweise sehr spei-
cherintensiv sind, sinnvollerweise auf dem leistungsfähigeren Server ausgeführt.
Das Design der Ausführungsplattform, welche das Verschieben von Operatoren
ermöglicht, sowie die entsprechenden Platzierungsstrategien und Kostenmodelle
für die Optimierung werden in dieser Dissertation behandelt.

Im ersten Teil der Arbeit wird SwissQM vorgestellt. SwissQM ist eine Stream-
verarbeitungsplattform für drahtlose Sensornetzwerke, die auf einer virtuellen Ma-
schine (VM) basiert. Diese VM wird auf den Sensorknoten installiert. Deklarative
Anfragen, die Anwender an das System stellen, werden in kurze Bytecodesequen-
zen übersetzt und im Netzwerk verteilt. Die Bytecodeprogramme implementie-
ren diejenigen Streamoperatoren, welche ins Sensornetzwerk verschoben wurden.
Die übrigen Verarbeitungsschritte werden auf der Basisstation ausgeführt, welche
das Sensornetzwerk mit beispielsweise dem Internet verbindet. Die Basisstation
führt ebenfalls Multiquery-Optimierung durch, d.h., parallele Anfragen von meh-
reren Anwendern werden optimiert und gleichzeitig ausgeführt. Dadurch kann die
üblicherweise äussert teure Installation von mehreren Benutzern oder Endanwen-
dungen gleichzeitig verwendet und die Kosten entsprechend aufgeteilt werden.
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vi KURZFASSUNG

Im zweiten Teil werden diese Techniken auf FPGAs angewendet, d.h., die au-
tomatische Übersetzung von Anfragen in digitale Schaltung für FPGAs. Zuerst
wird eine Streamalgebra eingeführt, anhand deren Anfragepläne dargestellt wer-
den können. Anschliessend wird Glacier vorgestellt. Es handelt sich dabei um eine
Bibliothek aus Hardwarekomponenten und einen Satz von Regeln, anhand derer
die Anfragepläne durch Einsatz von Komposition in FPGA-Schaltungen übersetzt
werden können. Eine wichtige Eigenschaft der erzeugten Hardwareschaltungen ist
das wohldefinierte Verhalten bezüglich Latenz und Durchsatz. Die Arbeit stellt
weiter Optimierungstechniken vor, die es erlauben, verschiedene Parameter wie
beispielsweise, Durchsatz, Latenz und die erforderliche Chip-Fläche gegeneinander
abzuwägen.

In dieser Dissertation wird eine allgemeine Lösung vorstellt, die sowohl für
Sensornetzwerke als auch für FPGAs eingesetzt werden kann. Benutzer können
Anfragen in deklarativer Form stellen. Als solche, entspricht diese einer domänen-
spezifischen Sprache, welche den Abstraktionsgrad vom Programmieren eingebet-
teter Systeme und dem Design von Schaltungen auf die Ebene einer Hochsprache
erhöht. Das macht die Plattformen für einen weiteren Benutzerkreis verwendbar.
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1
Introduction

1.1 Motivation

Data Stream Systems. The proliferation of information systems as led to high
data volumes that have to be transferred, processed, and stored. Databases in-
crease in size and number, ranging from Google-scale systems to a large number of
small federated databases in small and medium-sized enterprises. Next to tradi-
tional databases, data is increasingly available as (data) streams. Data streams are
generated from many different sources, such as deeply embedded sensors, network
monitoring systems, and financial systems.

One approach to implement data stream processing is to use existing database
technology as illustrated in Figure 1.1(a). The streams are stored in tables of a
traditional database system such that conventional query processing can be per-
formed through queries. There is, however, a steadily increasing amount of data
produced. Figure 1.2 shows the development of the generated data volume and
storage capacity as predicted by Gantz et al. [GCM+08]. There is a widening gap
between the information generated and the available storage. This trend has led
to data stream processing systems. Data streams are directly fed into the engine as
shown in Figure 1.1(b) and processed on the fly through in a network of data op-
erators. There are already many commercial stream processing systems available
today [Str,Mic,Ora,Syb,Tru].

The approach used in these systems, as sketched in Figure 1.1(b), is based on
two assumptions: (a) the streams can be brought into the engine, that is, there

1
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Figure 1.1: Architectures for stream processing systems

is enough I/O bandwidth available, and (b) the engine has enough resources to
process the data.

If this is not the case, part of the processing has to be offloaded. Stream
processing typically contains filter operations, e.g., predicate queries, that select
only a subset of the data and, hence, reduce data. This type of data reduction
functionality can be ideally offloaded, as it not only removes part of the processing
load from the central engine but also because it reduces the amount of data that
needs to transferred. In practice, offloading means pushing part of the processing
to the data sources as shown in Figure 1.3(a) or to an intermediary between the
sources and the engine. Such an intermediary can be considered an accelerator
that that sits on the data path between source and engine (Figure 1.3(b)). In the
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Figure 1.2: Data Volume vs. Storage Capacity by Gantz et al. [GCM+08]

context of database processing these accelerators have been used on the I/O path
to disks [Net09] or to the network [Net].

Streaming systems thus become heterogeneous as they not only include the
core engine but also the accelerator and the actual data source. A query planner
and optimizer needs to span multiple entities: the engine, an accelerator, and the
data source. The ultimate goal is to have a common solution that autonomously
distributes operations onto the elements of a such a heterogeneous system (Fig-
ure 1.4).

This thesis focuses on data stream processing on those heterogeneous platforms.
It studies the problem of how the different characteristics of the individual subsys-
tem can be be hidden from the user such that a general interface can be provided.
It contributes to a unified stream processing solution that considers the costs and
properties of the underlying platforms when generating query execution plans.
Heterogeneous systems typically have very different cost models. An optimizer
thus has to be able to decide where to place an operator in the query execution
graph. This thesis contributes towards such a solution by extending stream pro-
cessing onto two different execution platforms: wireless sensor networks (WSNs)
and field-programmable gate arrays (FPGAs).

Embedded Systems. Moore’s Law has not only resulted in faster CPUs and
multi-core technology on commodity computers but had an impact on the embed-
ded computing space. Small microcomputer systems equipped with sensor and ra-
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dio communication modules and powered by batteries have been deployed as wire-
less sensor networks [JOW+02,KDD04,LBV06,MCP+02,SJ04,THGT07,TPS+05].
They are not only capturing sensor data. Their microprocessors provide sufficient
computation power such that they can also process data (e.g., filtering, smoothing,
etc.) and selectively report data if the sensors detect an interesting pattern. As
such they can contribute to stream processing. In the first part of this dissertation
the wireless sensor networks are used for offloading query processing to the data
source as illustrated in Figure 1.3(a).

The second part of the thesis discusses the accelerator approach shown in Fig-
ure 1.3(b). The accelerator is implemented on a field-programmable gate array
(FPGA). FPGAs are “programmable” hardware that provide a number of logic
gates that can be configured to implement any arbitrary digital circuit. They are
widely used in the embedded system world. Programming, in this context means
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essentially how to map data processing steps into digital circuits and onto FPGAs.
FPGAs offer a high flexibility at a very low level and, unlike sensor networks, they
cannot be programmed in the traditional way. Furthermore, they exhibit very
different properties that have to be accounted for when designing FPGA circuits.

The thesis describes the different execution platforms and cost models used for
query compilation for sensor networks and FPGAs. The goal for sensor network
is maximizing the utilization of a deployment, i.e., providing concurrent access
to multiple users, while minimizing the energy consumption or equivalently max-
imizing battery life. The optimization goal for FPGA-based accelerators is the
minimization of latency or maximizing throughput. At the same time chip con-
sumption has to be minimized.

1.2 Contributions

In this dissertation the heterogeneous system shown in Figure 1.4 is envisioned.
Users can submit queries, which are then partitioned on the underlying execution
platforms, the main-memory stream engine, an FPGA, and the wireless sensor
network. The type of execution plans depends on the platform. For FPGAs they
are hardware circuits, for the sensor network they are bytecode programs. In
summary, the thesis makes following contributions:
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Virtual Machine. As embedded systems, sensor networks are difficult to pro-
gram. To large extend low-level programming is needed. In our approach we
increase the abstraction level by providing a virtual machine that is deployed
in the sensor network. We propose SwissQM, a stack-based virtual machine for
resource-constrained sensor nodes. SwissQM was specifically designed and tailored
to facilitate stream processing tasks. SwissQM can be used as application-specific
virtual machine. Its instruction set can be extended with application-specific in-
structions. In general, SwissQM raises the abstraction level of network program-
ming. Instead of using low-level programming languages, data processing tasks
can be implemented using high-level bytecode macros.

Query-to-Bytecode Compiler. The SwissQM virtual machine is used as an
execution platform for streaming queries. Users can submit data collection tasks
in the form of continuous queries to a gateway device that is connected to the
sensor network. Queries are automatically compiled into bytecode sequences and
are disseminated in the network. This first of all provides an even higher level
of abstraction to the end-user. Since a declarative interface is used, no program
has to be written at all. Second, the dissemination of execution plans as bytecode
programs is very efficient and very flexible. For example, complex expressions and
user-defined function can easily be compiled into bytecode.

Cost Models. Accurate cost models are built from a detailed analysis of the
characteristics of the underlying hardware technology. For sensor networks we
provide an energy-based cost model. Its parameters are identified by measurements
of an real hardware.

Multi-query Optimization Strategies. Using the cost model we provide dif-
ferent strategies to perform multi-query optimization to maximize utilization in
sensor networks. We evaluate the strategies using different workloads and provide
the resulting heuristics for an optimizer.

Characterization of FPGA Computing. We use sorting networks as a use
case to characterize the properties of FPGAs as a processing platform. We present
and validate a cost model of the chip usage in this context. We discuss the trade-
offs of the different attachment methods of FPGAs to conventional computing
systems. We also provide a set of design guidelines for the design of FPGA-based
computing solutions.

Query-to-Hardware Compiler. We introduce a compositional algebra for data
stream processing that can be used to express streaming queries. The algebra con-
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sists of well-defined operators. The thesis describes Glacier, a hardware component
library, that provides the necessary operators. The library provides operators for
selection, projection, windowing, grouping, and window joins. Finally, a set of
translation rules is presented that can be used to automatically translate plans
expressed in this algebra into hardware circuits for FPGAs. This translation step
for queries to FPGA-circuits is similar to the query-to-bytecode translation for
sensor networks. In both cases, the abstraction level is raised from low-level, in
case for FPGAs gate-level, programming to a high-level declarative interface.

1.3 Structure

The outline of the dissertation follows the architecture Figure 1.4. In detail, the
dissertation is structured as follows:

Chapter 2 introduces wireless sensor networks. It describes the hardware plat-
form, the constraints, and limitations. Through experiments we describe the be-
havior of the wireless communication channel and the implication on the design of
the software stack.

Chapter 3 describes the design and implementation of the SwissQM virtual
machine and the gateway system that performs the query-to-bytecode translation.
The power and flexibility of SwissQM is illustrated through several examples of
increasing complexity. The chapter also provides an evaluation of SwissQM in
terms of execution performance, bytecode flexibility, and communication cost for
program distribution.

Chapter 4 first introduces an energy-based cost model for sensor networks.
Then it describes how several user queries can be combined into a single query.
The problem of merging queries with different sampling rates is also addressed.
In our approach, multi-query optimization is implemented in the query processor
at the gateway. The query processor considers both execution costs as well costs
for propagating workload updates into the network. Finally, different multi-query
optimization strategies are presented and evaluated using sets of random queries.
This completes the declarative query execution platform SwissQM for wireless
sensor networks.

Chapter 5 opens up the venue for the FPGA part. It provides an introduction
into FPGAs and describes the building blocks that are used later in chapters 6
and 7.
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Chapter 6 evaluates FPGAs as a computing platform using sorting networks as
an example. It describes how sorting networks can be implemented on FPGA logic.
The impact of different implementation strategies on the overall performance and
space requirement is analyzed. Two different use cases are provided that show
how the FPGA can be used in a complete system. For both systems we measure
the end-to-end performance. The chapter provides insight in the design space of
FPGA solutions. Techniques developed and evaluated in this chapter serve as a
basis for the design of query-to-hardware compiler.

Chapter 7 introduces the operator algebra for streaming queries. A set of trans-
lation rules is provided that can be used in a compositional way to translate queries,
i.e., query plans expressed in this algebra, into hardware circuits. A number of
operators is presented that are part of our Glacier component library. We pro-
vide optimization guidelines for the circuits that allow balancing latency against
throughput. This chapter also presents Handshake Join our novel approach to
window-based stream joins. An evaluation shows that this pipelining-based tech-
nique has excellent scalability characteristics. The chapter completes the FPGA
aspect of the heterogeneous solution outlined in Figure 1.4.

Chapter 8 takes up the original vision and contrasts it with the results obtained
from SwissQM and Glacier. The chapter summarizes the thesis and discusses
possible future work directions.
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Data Stream Processing in
Wireless Sensor Networks

9





2
Data Processing in Wireless Sensor

Networks

Thanks to Moore’s law, the IT industry has seen computers getting smaller,
cheaper, and more powerful during the last three decades. Now and in the coming
years, computers are increasingly being enhanced with powerful sensing devices.
Following Mark Weiser’s Pervasive Computing paradigm [Wei99] computing de-
vices are embedded into the physical world. They are extended with sensors and
combined into sensor networks to tackle larger data acquisition tasks, e.g., moni-
toring the behavior of a large population of animals [MCP+02] or the climate of
a large territory [THGT07]. Commercial applications of sensor networks include
supply chain management [KDD04], support of elderly people [SJ04], and security
facilities for manufacturing sites and homes.

Sensor networks typically employ wireless communication although there are
several examples of wired sensor networks too. For example, wired sensors can
be found in structural health monitoring applications and cars. In the context of
the dissertation the nature of the wireless communication is explicitly considered.
Properties related to sampling, and the quality of sensor readings, however, are
equally important for wired sensor networks. In this dissertation only wireless
sensor networks (WSN) are considered. For clarity the term “sensor networks” is
often used interchangeably for WSNs.

Despite the numerous existing use cases, building and deploying sensor net-
works remain elusive and difficult tasks. Most existing deployments use application-
specific, hard-coded software. Typically, there is little support for data indepen-
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dence, high level abstractions, multiple users, and, above all, integration with the
higher layers of the data processing chain. Systems are also very rigid on how
sensors can be programmed and what the sensor network can do.

In this chapter, we describe the characteristics of wireless sensor networks and
introduce data processing for wireless sensor networks. The discussion begins with
the different hardware platforms. Then we illustrate the properties of wireless
communication and the resulting network architecture before we turn to data
processing and declarative interfaces to WSNs, in particular, query processing.
Section 2.3 covers the relevant related work.

2.1 Wireless Sensor Nodes

Wireless sensor networks consist of many—ranging from 10s to 100s, possibly
1000s—nodes. Each node has limited computing and communication capabilities.
The nodes build a network using wireless communication that collectively perform
a data acquisition or event detection task.

2.1.1 Hardware

The use of tiny wirelessly connected computing devices equipped with sensors was
envisioned as Smart Dust by Hahn et al. in 1999 [KKP99]. They explored whether
an autonomous sensing, computing, and communication system can packed into a
device of a cubic-millimeter volume. Considering the small size they referred to the
nodes as motes (small particles or specks). Their prototype was a microelectro-
mechanical system (MEMS) with an optical communication component. Commu-
nication was implemented through small movable mirrors that deflect and modu-
late a laser beam. While “Smart Dust” was an interesting case study the design
was highly experimental. Sensor nodes used later on were significantly larger in
size, had more powerful microcontrollers, and used radio communication instead.
Although roughly the size of a matchbox those later nodes were still called motes.

Many different note platforms are deployed today. In this dissertation the
three different hardware types shown in Table 2.1 were used. The platforms have
different properties. They contain different microcontrollers, communication chips
and sensors. The microcontrollers used in Mica2 and Tmote Sky nodes provide
comparable processing power. The amount of volatile memory used for program
data is in the order of a few kilobytes. Tens of kilobytes of flash memory are
available for program storage. The amount of RAM and flash memory directly
limits the complexity of the software stack that can run on a node. Specific
embedded operating systems and applications have the be carefully designed in
order to fit onto these resource constrained devices. The newer Intel Imote2 node
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Table 2.1: Characteristics of sensor node types used in this dissertation

Mica2 Tmote Sky Imote2

microcontroller Atmel ATmega128L TI MSP430 Intel PXA271
RAM 4 kB 10 kB 32 MB

Flash storage 128 kB 48 kB 32 MB

radio chip CC1000 CC2420 CC2420
communication 916 MHz, FSK IEEE 802.15.4 IEEE 802.15.4

radio bandwidth 19.2 kbit/sec 250 kbit/sec 250 kbit/sec
max. power 5 dBm (3 mW) 0 dBm (1 mW) 0 dBm (1 mW)

sensors light light light
temperature photo light photo light
microphone temperature 3D acceleration
(separate board) humidity 4 channel ADC

(onboard) (separate board)

manufacturer Crossbow moteiv Intel/Crossbow
price CHF 290 CHF 140 CHF 640

introduction 2002 2005 2006

shown in Table 2.1 contains a full-featured ARM CPU (PXA271) and significantly
more memory. It is even able to run Linux and applications that use the Microsoft
.NET Micro Framework.

Wireless sensor network typically operate in unlicensed ISM frequency bands.
The motes shown in Table 2.1 use two different communication technologies. The
older Mica2 platform uses a proprietary radio that operates in the 900 MHz ISM
band. It uses Frequency-shift Keying (FSK) and Manchester coding. Operating
at a symbol rate of 38.4 kbaud the resulting gross bit rate is 19.2 kbit/sec. The
newer Tmote Sky and Imote2 nodes use a more energy-efficient radio technology
and a physical layer that follows the IEEE 802.15.4 standard for personal area
networks. Relying on a common standard permits interoperability between device
families. The CC2420 transceivers operands on the 2.4 GHz ISM band that is
shared with traditional 802.11bgn wireless LAN and Bluetooth. The transceiver
complexity of the CC2420 is significantly larger than of the CC1000. It uses
Direct-Sequence Spread Spectrum (DSSS) communication. Four bits are encoded
into a pseudo-random sequence consisting of 32 chips. The chip sequences are
modulated using Offset Quadrature Phase-shift Keying (OQPSK) at a rate of
2 MChips/sec resulting in a gross bandwidth of 250 kbit/sec. The use of spread-
spectrum communication in the CC2420 instead narrow-band radio in the CC1000
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provides additional robustness against noise and interference. This reduces the bit
error rate and increases the overall reliability of the communication channels in
the wireless network. Additional robustness is necessary as the same frequency
band is occupied by different radio technologies (802.11 and Bluetooth, microwave
ovens, etc.). However, the wireless communication channel is nevertheless much
less reliable than communication over a wire. In the wireless case not only noise
has to be considered but also fading effects, i.e., temporary fluctuations in the
channel attenuation [TV05]. The packet loss probability can be reduced at the
cost of increased overhead by reducing the packet sizes. For example, the low-
power personal area network standard IEEE 802.15.4 specifies a maximum payload
length of 115 bytes of a single packet [IEE03]. The actual usage of the channel is
133 bytes (≈ 16 % overhead) including additional header and footer information.
In contrast, traditional wireless LAN (unencrypted 802.11) supports payloads of
up to 2304 bytes [IEE97]. The overhead per frame in 802.11 is 58 bytes including
header and preamble bits (≈ 2.5 % overhead).

Sensor nodes are typically battery powered. In some cases they also use energy
scavenging techniques. Most common is photovoltaic energy conversion through
solar cells. Mechanical energy has also been used (vibrations and piezoelectric
converters [RWR03]). In order to mitigate the difficulties of intermittent power
generation the electrical energy is stored in secondary batteries or high capac-
ity capacitors on the nodes. Wireless nodes have to be designed and—equally
important—used very energy efficiently. This is particularly relevant for systems
whose energy supply is based on primary batteries since replacing drained batteries
is often difficult, e.g., in Alpine deployments [THGT07], or at all impossible.1 In
general, the lifetime of a deployment is given by the battery lifetime of its nodes.
Therefore, all components of the notes have to be duty-cycled, i.e., turned off when
they are not used in order to save energy. We provide a detailed analysis of the
power breakdown for one hardware platform in Chapter 4.

The motes shown in Table 2.1 contain different sensors capturing various phys-
ical phenomena. Together with the built-in sensors the nodes can be considered
as prototype systems that can be used in research. The quality of the sensors is in
general not sufficient for scientific measurements. For example, the temperature
sensors do not provide the necessary resolution and since they are mounted on the
circuit boards the thermal coupling to the measurement environment is difficult.
Nevertheless, the nodes can be used to acquire real measurements for prototype
applications is system research focusing on routing and data processing. Specific

1The Swiss Avalanche Research Institute operates a deployment of acoustic sensors (geo-
phones) at the Wannengrat near Davos Switzerland. The sensors are covered by several meters
of snow during the winter season. Digging out the sensors for a battery replacement would
irreversibly damage the snow pack and destroy the measurement setup.
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deployments such as the permafrost measurements in the Swiss Alps [THGT07]
require custom designs and can only make limited use of off-the-shelf components.
Experiments performed during this dissertation are done in a controlled lab setup
using commodity nodes.

There is a debate about the size and capabilities of a sensor node. The notes
presented here differ significantly in size. While the Mica2 and Tmote Sky nodes
only provide a few kilobytes of memory the Imote2 is equivalent to a PDA and can
run a general purpose operating system. Following Moore’s Law technology can
follow two different paths. Either sensors nodes with severely limited capabilities
such as Mica2 shrink in footprint size, or alternatively, more powerful processors
and radios become available with the same footprint. Currently limiting tech-
nology parameters such as RAM size may disappear in the future allowing for
additional abstractions that simplify the engineering effort and ultimately make
general purpose computing possible on sensor nodes. Another possibility is to
combine different node types in the same network provided that their radio is
compatible, for example, using TMote Sky and Imote2 nodes. An approach ex-
plored in Tenet [GJP+06] is to build a hierarchical multi-tiered networks where
each of the more powerful nodes, e.g., the Imote2 nodes, controls a small num-
ber of smaller and less expensive nodes, e.g., Tmote Sky nodes. Future sensor
networks may also consist of cell phones equipped with sensors. Devices such as
the iPhone currently are already viable candidates for a sensing platform. It was
already used in the SoundSense system [LPL+09]. Thiagarajan et al. use mobile
phones in cars to track trajectories in the VTrack system [TRL+09]. Although the
computing platform is more powerful than the mote-scale devices some important
problems remain such as noisy sensor data and energy consumption. We focused
on mote-scale hardware that was available in 2006. Abstracting from absolute
performance numbers, we believe that the conclusions drawn in this dissertation
are independent of the parameters of the actual technology used.

2.1.2 Programming

Programming wireless sensor networks is equivalent to programming networked
embedded systems. Developing embedded systems is a nontrivial task, in particu-
lar, in case of wireless sensor networks that provide several constraints (memory,
energy consumption, unreliable radio communication). Due to the resource con-
straints specialized operating systems and programming models have been used.
Initially, event-based systems were used (TinyOS [HSW+00], Contiki [DGV04]).
Multi-threading was very limited (Nut/OS + BTnut [Beu06]) or believed impos-
sible at all given the amount of RAM available. Han et al. [BCD+05] showed that
is still possible to implement and multi-threading using only a limited amount of
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thread state. Applications were originally written in C language and required a
significant amount low-level programming. TinyOS uses a specialized version of
C, called nesC (Network Embedded Systems C) [GLvB+03]. It extends the C
language by component model and provides constructs for the event-driven pro-
gramming model of TinyOS. Throughout this dissertation work TinyOS/nesC was
used for network implementations.

Compiled application programs are linked against operating system libraries to
system images that are downloaded onto the sensor nodes, i.e., the binary images
are written to the program flash. Downloading the application onto the nodes
typically happens before deployment as it requires physical access to the device.
Reprogramming the nodes after the deployment hence is difficult. However, in
order to still be able to fix software bugs after the initial deployment, the ability to
perform in-network reprogramming is important in any practical setting. Hui and
Culler propose Deluge [HC04] an in-network programming solution for mote-scale
devices such as the Mica2 and the Tmote Sky platform. New program images can
be injected and propagated through the network. Despite its usefulness in-network
reprogramming introduces two problems. First, microcontrollers for embedded
systems are radically different than general purpose CPUs. For example, the
Atmel ATmega128L controller is based on a Harvard memory architecture, i.e.,
it uses two different memory spaces for instructions and data. Hence, programs
that are received over the air and thus are stored in the data memory cannot be
directly executed by the CPU. The program image that is received in fragments
eventually needs to be written into the node’s flash memory. This has to be done
in a coordinated fashion. The second problem are the high energy costs for the
program dissemination in the network.

The following simple calculation illustrates the energy cost. Hui and Culler
report [HC04] that Deluge is able to propagate 90 bytes/sec in the network (using
the CC1000 radio). A first observation is that this only corresponds to ≈ 4 %
of the gross bandwidth of the CC1000 radio. Replacing the entire 128 kB flash
image of a single Mica2 node requires 24 minutes (in ideal situations when no
retransmissions due to packet loss are necessary). According to the datasheet,
the CC1000 transceiver consumes 76 mW during transmission and 29 mW while
receiving. A simplifying assumption is that each node receive the entire program
and will also resend it to its neighbors. This results in an ideal energy cost of 150 J
for the entire program image. The cost for the CPU and writing to flash memory
is not included. The Mica2 node is powered by two AA batteries. Consider a
standard industrial alkaline Leclanché battery that provides 2.65 Ah at an average
discharge voltage of 1.2 V. This results in a total energy capacity of a Mica2 node
of 23 KJ. 2 Therefore, exchanging a full program image uses at least 0.7 % of the

2For comparison, McDonalds reports a food energy of 2071 KJ for a Big Mac® hamburger.
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total energy. In order to put this number into perspective assume that the sole
purpose of a network is to be reprogrammed once every day. Using the energy
consumption of the back-of-the-envelope calculation the life time of the network
is at most 5 month. Typically we observe a higher energy consumption caused by
retransmissions due to transmission failures.

The programming costs can be reduced by either sending deltas or using virtual
machine-based approaches that typically result in more concise program descrip-
tions. Panta and Bagchi propose Hermes [PB09] that uses an version of the Rsync
algorithm on two different code images and computes the delta between the ver-
sion. One important technique they use is indirection tables for function calls.
Virtual machines for WSNs execute high level byte code can be replaced with
less transmissions than binary images. Levis and Culler in Maté [LC02] and in
SwissQM, which is a key contribution of this dissertation.

2.2 Architectures of Wireless Sensor Networks

The specific wireless technologies used in embedded nodes give rise to distinct
network architectures. In contrast to traditional cellular and wireless local area
networks, such as the IEEE 802.11 protocols, WSNs typically are not infrastructure
based, that is, the do not rely on a central access point that arbitrates access and
communication over the shared medium. Sensor networks built in such a way are
called infrastructure-less or Ad-hoc Networks. Although IEEE 802.11 also defines
an ad-hoc operation mode its not used for mote-scale devices because traditional
802.11 requires too much power and requires a complex protocol stack. Radio
technologies for WSNs are specifically designed to fit into the resource constrained
environment. There is a noteworthy exception; the ETH BTnote platform [Beu06]
by Beutel et al. that uses Bluetooth technology. However, the designers have noted
that it is difficult to build larger networks based on Bluetooth alone [BDMT05].
In fact, the BTnode platform provides two different radio solutions. Next to the
Bluetooth radio the nodes contain a CC1000 chip that is also used in the Mica2
nodes.

2.2.1 Wireless Communication Links

Radio links used in sensor and ad-hoc networks have very different characteristics
than wire-based communication. The most important property is the higher bit
error rate due to the significantly lower signal-to-noise ratio (SNR) in radio links.
Even worse, interference caused by other transmitters in the vicinity of the receiver
aggravate the reliability of the wireless link. Interference contributes to the noise at

This corresponds to energy equivalent of 90 AA batteries.
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the receiver. Therefore, for multiple-access systems the signal-to-interference-plus-
noise-ratio (SINR) that explicitly considers interference. SNR is typically used for
point-to-point links. The lower SNR (or SINR) translates into a higher bit error
rate. Packet-based communication uses checksums to detect data corruption. Data
packets that are received with an incorrect checksum are discarded. Hence, a low
SNR leads also to a high packet loss at the receiver. Higher-level measures such
as retransmission, forward error correction, and erasure codes mitigate loss at the
price of latency and complexity. The absolute bit error values, however, depend on
the design of the physical layer, e.g., the modulation scheme used, the sensitivity of
the detector at the receiver, and the transmitter power. Environment effects such
as the length of the signal path, hence, the signal power at the receiver, as well
as channel noise, and interference further affect the bit error rate. Unfortunately,
the bit error rate is not directly correlated with the communication distance in
practice. This renders the deployment of a sensor network a nontrivial task.

In theoretical work on routing in sensor networks simplified radio models such
as the Unit Disk Propagation Model are chosen. The model assumes that a trans-
mission can be successfully decoded within a circle round the transmitter. The
transmission cannot be heard outside the circle. Experiments show that such mod-
els are incorrect. The first reason is that the communication range is not a circle.
Scattering and interference yield more complex coverage areas. Second, the proba-
bility of a successful is not uniform inside the circle and there is no sharp boundary
at the edge of the disk. Third, transmitters can cause interference even if they
are out of the communication range. Halkes and Langendoen provide practical
guidelines [HL10] for theoretical work. Under these considerations this disserta-
tion focuses on experimental verification using real deployments instead of relying
on simulation.

2.2.2 Link Quality Measurements

In order to quantify the link quality that can be found a real deployment an exper-
iment was conducted under laboratory condition at ETH Zurich. 33 Tmote Sky
nodes were placed in an large room. The network was deployed in an old chemistry
lab room (CAB F31) at ETH Zurich that is under protection order and currently
serves as a museum. The nodes were placed on the lab tables. The 33 nodes are
deployed on an area of 8 × 16 m2 over three years. The floor plan is shown Fig-
ure 2.1. Initially 36 nodes were deployed. However, during the experiments three
nodes (10, 17, and 32) had to be removed due to hardware failure. The Tmote Sky
nodes provide a USB port that can be used for downloading the application image
and for communication purposes, e.g., logging. All nodes of the deployment are
connected to a desktop computer through a USB tree. This permits programming
and logging of each node individually in a reliable manner. The deployment is
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used for multiple experiments for this dissertation.

The goal of the first experiment is to measure the Packet Loss Rate in the de-
ployment using the standard TinyOS networking stack with a direct node-to-node
communication. The experiment was designed with the following requirements
that should reflect a traffic pattern of a real application.

� The communication pattern is random, i.e., each node randomly selects a
destination node it sends a message to.

� The nodes send messages simultaneously and independently. This intention-
ally leads to interference.

� In order to obtain a maximum coverage area the nodes’ transmitters are set
to the highest output power of 0 dBm (1 mW).

The experiment is performed in rounds. At the beginning of each round every
node i generates a random permutation of the other nodes’ IDs. It will then
process this list sequentially and sends Ping message to next destination node j
in the list. When a node j successfully received a message from a node i it records
this fact in its sender vector sj by setting entry (sj)i = 1. Each round begins with
a zero sender vector. The beginning of a round is started by dedicated beacon
node (node 0 in Figure 2.1). At the end of each round the nodes send their sj the
data logger computer that is connected via USB.

The experiment uses all 33 nodes of the deployment. N = 32 nodes participates
exchange Ping messages. The size of a Ping message is 15 bytes. Node 0 is
only used to signal the start of a round. It is placed in the center of the room
and is operating at full radio power. Further more, at the beginning no node
is transmitting before the round starts, hence, the start signal can be received
without interference caused by other nodes. During each round, every node sends
a Ping message to the 31 other nodes. It does not send a message itself. At the
end of the round the N sender vectors are s1, . . . , sN are combined into an N ×N
matrix

S =
[

s1 s2 · · · sN
]
.

This matrix can be regarded as the Adjacency Matrix of the communication graph
for that particular round. By averaging the sender matrix over multiple rounds
we can estimate the link quality as the probability of a successful transmission
between two nodes. We define the Link Quality Matrix Q as the average of S over
R rounds

Q :=
1

R

R∑
k=1

Sk .
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Figure 2.1: Sensor network testbed consisting of 33 Tmote Sky nodes. The nodes
are deployed in an old chemistry lab (CAB F31) at ETH Zurich.
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Figure 2.2: Adjacency matrix of link reliability indicates the estimated probability
a successful transmission between any two nodes in the testbed

Q is used for illustration of the communication properties in a wireless sensor net-
work. A graphical representation of the link quality matrix is shown in Figure 2.2
it was computed from R = 170 rounds. Of the 32× 31 = 992 messages that were
sent in each round, 197.6 were received on average. This corresponds to an success
probability of 0.2 in the network or equivalently to a packet loss rate of 80 %.

An additional observation is that the matrix is not symmetric, as can be seen
from the following metric

‖Q−QT‖2
‖Q‖2

≈ 3 ,

that measures the deviation from a symmetric matrix. Asymmetry in the link
quality matrix corresponds to asymmetric communication links. In other words,
a good communication link from node i to node j does not necessarily imply an
equally good reverse channel from j to back i. One reason for asymmetrical links
in practice, are different SINR at the receivers, e.g., different levels of interference.
Figure 2.2 also shows that there are “bad senders” (node 34), i.e., nodes whose
message are not received very well by the others. A more detailed analysis of these
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(a) Mesh Network (b) Tree Network

Figure 2.3: Different network topologies

nodes identifies a hardware issue as the most likely cause. Some Tmote Sky nodes
seem to have a mismatched antenna and hence have a limited transmission range.
In summary, we can conclude that although this experiment uses an artificial com-
munication pattern wireless sensor networks are very unreliable. The experiment
illustrates the properties and difficulties of wireless communication.

2.2.3 Network Architectures

Two important factors contributed to the significant packet loss. First, all nodes
where operating at the maximum transmission power setting. Second, all nodes
where transmitting simultaneously after receiving the beacon message that starts
each round. This causes, significant contention on the shared radio channel. The
solution is a “desynchronization” of the transmissions and a reduction of the trans-
mitter power. Multi-hop communication is then needed to make sure that nodes
in the network remain connected.

Mobile ad-hoc networks (MANETs) use a mesh network structure as shown in
Figure 2.3(a). This multi-hop routing structure allows each node to send messages
to any other node in the network. The network is thus fully connected. Establish-
ing routing links in such networks is a complex task. Many different routing proto-
cols have been suggested in by the research community such as AODV [PBRD03],
a reactive routing protocol, or OLSR [CJ03], a proactive protocol. Mesh net-
works can support any point-to-point communication pattern. The flexibility of
the communication pattern, however, comes at a cost. The routing tables have to
be maintained and exchanged among nodes, which adds complexity to the system.

Sensor networks operating on more constrained devices than the 802.11-based
MANETs usually exhibit simpler communication pattern. Sensor data is generated
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Figure 2.4: System Architecture of tree-based sensor network with gateway node
at the root of the collection tree. The gateway node connects the sensor network
to the Internet.

spatially distributed over the network. The sensor data is then collected at a
central location in the network. Hence, rather than a dedicated one-to-one routing
in MANETs the traffic pattern here is many-to-one. This can be be implemented
using fewer links and less state per node using a spanning tree over the network
as shown in Figure 2.3(b). In a tree routing network the routing decision is fairly
simple. A node can only send a message to one single node, its parent. The root
of the tree is located where the data is recorded. Due to the specific role of the
root node it also called Base Station or Gateway. As such, it provides access to
the sensor network, e.g., from the Internet. In practice, the gateway node is either
a more powerful sensor node or an embedded or standard computer system that
is connected to a sensor node over a fixed wire connection. Figure 2.4 depicts the
system architecture used in this dissertation. In the laboratory testbed shown in
Figure 2.1 the role of the gateway is carried out by a Pentium-III server running
Linux. The gateway is also connected to the USB-based backbone network that
provides a programming and logging infrastructure to each node.

2.2.4 Collection Tree Routing

Data collection tasks in sensor network lead to many-to-one communication that is
implemented through tree routing. An initial protocol MintRounte was introduced
by Woo et al. [WTC03] for TinyOS 1. Gnawali et al. developed the Collection
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Tree Protocol (CTP) [GFJ+09], an improved protocol for TinyOS 2 that can better
handle higher link dynamics in the 2.4 GHz spectrum. Both protocols dynamically
maintain a routing tree that is rooted at the gateway node. A sophisticated link
quality estimator is used such that each node can select the currently best parent
node it sends messages through towards the root. The application implementations
that were completed in the context of this dissertation used CTP available in the
TinyOS 2 distribution or MintRoute available in TinyOS 1.

Like the link quality measurements in Section 2.2.2, the behavior of the tree
collection routing protocol is analyzed on the ETH testbed (Figure 2.1). The goal
of the experiment is to determine the reliability of the CTP-based routing and
compare it with the direct communication. A TinyOS 2 application is implemented
that builds on top of CTP. In this application each node periodically reports its
current parent tree. Such a report tuple has the following schema

(nodeid, seqnr, parentid)

nodeid and parentid contain 16-bit node addresses. A per node sequence number
seqnr enumerates the report message. Report messages are forwarded along the
tree. Each report tuple is sent as a separate message. Different report tuples are
not merged into one single message. Including the MAC header and the CTP
routing information the 16-byte report tuple is sent as a 27-byte network message.

Experiment Setup. The experiment is repeated on the 33-node testbed for
different reporting intervals. The reporting interval determines the traffic volume
in the network. The range of the reporting interval is chosen between 100 ms
and 10 s. The high packet loss in link quality measurements in Section 2.2.2 was
explained by the fact that all nodes were transmitting at the same time. Thus, in a
more realistic setup the reporting instants of the individual nodes where randomly
distributed inside the reporting interval. In this setup the radio receivers where
always active (idle listening). The random distribution of the transmission instants
represents and ideal setting because contention in the network is minimized. As a
second parameter the influence of the transmitter power is analyzed. The power
is varied in the full scale supported by the CC2420 transmitter between -25 dBm
(3µW) and 0 dBm (1 mW). The experiment is repeated for each power and report
interval setting.

The experiment determines the Coverage in the network, which is defined as
the ratio of the number of report tuples received at the base station and the to-
tal number sent. In the sensor network literature the term Yield is also used.
Coverage, thus, can be considered as the average probability of a successful trans-
mission from a node along the tree to the base station. By modeling this process
as a Bernoulli trial we can determine the number of tuples to send, hence, the
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Figure 2.5: Average coverage using Collection Tree Protocol for different data rates
and transmission power setting measured in CAB F31 testbed

duration of each experiment, in order to obtain a given confidence level. Using
the Clopper-Pearson [CP34] method we can determine that if at least 400 reports
per node and experiment are collected the error in the estimated coverage value is
±0.1 at confidence level 95 %. The experiment runs are completely independent.
Before each experiment all network nodes are reset. After the reset a delay of
two minutes allows CTP to build up the routing tree before the message exchange
starts.

Figure 2.5 depicts the coverage for different reporting periods and power set-
tings. The figure shows that reporting intervals greater 2 s the coverage is > 90 %.
This is a significant improvement over the average 20 % success rate of a one-hop
link from previous experiment in Section 2.2.2. The figure also indicates that cov-
erage does not strongly depend on the power setting. The 2D plot in Figure 2.6(a)
shows the coverage for the minimum and maximum power setting. Note that even
though the power difference is 25 dB there is no significant difference in the cov-
erage curves. The coverage, however, drops for intervals < 1 s. In this range the
network is saturated and packet loss increases because of congestion. Figure 2.6(b)
shows the average hop count of the messages for different intervals and power set-
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Figure 2.6: Average coverage and hop count using Collection Tree Protocol for
different data rates and power settings

tings. The graphs confirm the expected behavior, that the number hops increase
as the transmitter power is reduced. The “noise” in the hop count for short in-
tervals < 1 s is again an effect of contention. The packet loss increases, hence,
the quality of links estimator decreases. CTP uses the ETX link quality estimate
introduced by De Couto et al. [CABM03]. The value captures the expected num-
ber of transmissions, i.e., 1/1−p where p is packet loss probability. The ETX values
along multi-hop paths to the root increase due to contention. This in turn causes
the nodes to most likely pick a direct link to the root node and the average hop
count decreases.

Comparing the single hop experiment from Section 2.2.2 with the CTP routing
one can see one reason why multi-hop routing in wireless sensor networks is used
even when a direct link to the data sink is possible. The packet loss is reduced.
Additional techniques such as acknowledgment messages and retransmissions, and
adding redundancy either by sending a message over multiple links or using coding
techniques can further reduce the data loss. CTP can use acknowledgment frames
from IEEE 802.15.4 MAC. However, in our work we experienced various issues
with the implementation of acknowledgment mechanism in TinyOS. In fact, they
are disabled by default in the TinyOS messaging. We did not enable acknowl-
edgments because the coverage for reasonable large tuple intervals is good enough
without.
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Figure 2.7: Taxonomy of programming models for sensor networks. Adapted from
Sugihara and Gupta [SG08].

2.3 Data Processing in Sensor Networks

The processing capabilities of the embedded CPUs can be also be used for data
processing, e.g., data fusion, cleaning of noisy sensor data, or even perform signal
processing. The low-level programming described earlier in Section 2.1.2 is non-
trivial and typically too difficult for the users interested in sensor networks for field
science studies or high-level inventory management applications. Several research
projects are addressing some of these limitations. In this section, we provide an
overview of the relevant related work in the field. We first consider the program-
ming and system space and then focus on work that is related to the two key ideas
in the data processing platform developed during in this dissertation.

2.3.1 Programming Models

Sugihara and Gupta [SG08] introduce a classification of various programming mod-
els and systems used in wireless sensor networks. This taxonomy is shown in
Figure 2.7 adapted with the SwissQM system. At a high level the programming
models are classified by the abstraction level. Node-level programming refers to
the lowest possible programming model. Here all nodes are programmed sepa-
rately, i.e., the programs are executed directly by the nodes and, hence, have to
written at node granularity. Communication among nodes is explicit. Group-level
programming no longer considers individual nodes. Programs are written for a set
of nodes. Communication is explicit only between node sets. At the highest level
of the abstraction the network is programmed as a single entity (Network-level).
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There is no notion of individual nodes or explicitly addressed groups.

Node-level Programming. At the lowest level sensor networks can be pro-
grammed to run on bare hardware or limited sensor network operating systems
such as TinyOS [HSW+00], Contiki [DGV04], or MANTIS OS [BCD+05]. The
programs are written in low-level C or in case of TinyOS in nesC [GLvB+03], a
specialized version of C. Virtual Machines (VMs) on top of sensor network op-
erating systems provide an additional abstraction layer. Application programs
are written in bytecode and distributed in the network. The advantage of this
approach is that due to the high-level interface and a powerful instruction set
complex programs can be written with few instructions.

Group-level Programming. Approaches that allow implementing programs
using group concepts can be categorized depending on how the groups are formed.
Neighborhood-based groups are defined on the physical closeness while logical groups
are formed using predicates on node properties. Abstract Regions by Welsh and
Mainland [WM04] provides a TinyOS API with group primitives. The API allows
applications to discover when neighbors join or leave the group, to enumerate the
group members, to share data in the group in key-value store, and provides a
reduction operation that combines the values of a shared variable to a common
result (e.g., sum, max, etc.)

Römer et al. [RFMB04] propose a role-based programming model where each
node will take specific role (e.g., leaf or cluster-head) and performs a computation
accordingly. A program consists of a set of a common rules that are evaluated by
every node. The rules allow clustering depending on dynamic node properties such
as sensor reading. Clustering rules can refer to properties within a neighborhood
and lead to a localized communication pattern similar to Abstract Regions. Mot-
tola and Picco [MP06] propose SPIDEY, which also introduces node attributes
that can be statically assigned at compile time as well as dynamic attributes on
sensor readings. The logical group is defined by a predicate on the node attributes.
Primitives for in-group communication are also available in SPIDEY.

Network-level Programming. Programs written at the network-level treat the
entire network as single abstract entity. A translation system is available that con-
verts the global specification into node-specific instructions. A common approach
used in data-centric applications is to consider the network as a Database. Net-
work programs are queries written in a declarative query language, e.g., a SQL-like
dialect in TinyDB [MFHH05]. For more general applications, where the expres-
siveness of the query language—for example SQL itself is not Turing-complete—is
insufficient a different approach called Macroprogramming can be used. The Regi-
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Figure 2.8: System space for wireless sensor networks

ment system by Newton and Welsh [NMW07] uses a functional language similar to
Haskell. The use of a functional language also allows hiding state in the programs
from the programmers and let the system decide how to parallelize computation
and how to assign state to nodes. Kairos (Gummadi et al. [GGG05]) is a program-
ming language extension that makes remote data access possible. Kairos allows
to access a variable on a remote node using the syntax variable@node. A differ-
ent approach is used in COSMOS (Awan et al. [AAJG07]). A macro program is
expressed as a dataflow abstraction. The functional components in the data flow
graph are then dynamically mapped onto sensor nodes. COSMOS can also be
used in heterogeneous networks. The same idea is also used in WaveScope (Lewis
et al. [GMN+07]).

2.3.2 System Space

An overview of the sensor network system space is shown in Figure 2.8. The
system are classified by the programming level, the system architecture level and
the application domain. At a very high abstraction level WSN applications are
categorized into the stream processing or the event processing domain (shown
as planes in Figure 2.8). We consider any application that continuously produces
data to belong into the stream processing domain. In the event processing scenario
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nodes only exchange data if some event happens (e.g., a fire is detected and an
alert message is sent). The SwissQM system covers the stream processing domain.
The SwissEM is an Event Machine that was derived from the SwissQM system
was implemented by Li [Li08]. It executes finite automata for event detection
problems as bytecode programs in the network.

The position along the architecture axis indicates at which level in system
stack the solution is located. Consider for example the Oscilloscope application
which is an example application that ships with the TinyOS source distribution.
Oscilloscope periodically samples a set of sensors and forwards the samples along
a collection tree to the basestation using CTP. Oscilloscope itself is a low-level
program written in nesC and is executed by all nodes. It is therefore located in the
lower left corner of the stream processing plane. Regiment, Kairos and the COS-
MOS macroprogramming system can be used for both stream and event processing,
hence, they are present on both planes. The SwissQM virtual machine itself works
at the node-level (and including dedicated instructions such as merge) also at the
group-level. Together with the SwissQM/Gateway it builds a declarative interface
for the sensor network, similar to TinyDB. Since the SwissQM gateway system is
built out of modular components and uses a service architecture, it is extensible
and also considered as an application framework. Therefore, the SwissQM VM
including the gateway system covers the shaded space in the stream processing
domain in Figure 2.8. In the next sections we describe the related work of the VM
component and the gateway system that provides the declarative query interface.

2.3.3 Virtual Machine-based Approaches

Virtual Machines (VMs) on top of sensor network operating systems provide an
additional abstraction layer. The Maté VM by Levis and Culler [LC02] is a tiny
virtual machine for nodes running TinyOS. The advantage of this approach is that
due to the high-level interface and a powerful instruction set complex programs
can be written with few instructions. Hence, the programs that are disseminated
in the network are relatively short compared to the binary native images. Re-
programming a sensor network by exchanging small bytecode programs is more
efficient than replacing entire binary system images using Deluge [HC04]. Maté is
a stack-based virtual machine similar to the Java Virtual Machine [LY98]. Maté
bytecode programs split into a number of code capsules. Code capsules are bound
to events. They are invoked whenever the corresponding event occurs. For exam-
ple, if a timer fires or a data packet was received or sent. In other words, the Maté
VM provides an event-based execution model that nicely matches the event-based
TinyOS operating operating system. A single code capsule fits into one single
TinyOS message. This allows atomic code updates and thus avoids buffering par-
tial code updates and the use of a consistency protocol. However, the code size,
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i.e., the length of a code capsule is also limited (up to 24 instructions). Code
capsules are explicitly forwarded by programs by invoking a send instruction. The
footprint size of the bytecode interpreter is 7 kB in code size and 600 B in data.
Levis released Maté in the TinyOS 1 source distribution as Bombilla VM.

Levis et al. later extended the VM approach to Application Specific Virtual
Machines (ASVMs) [LGC05]. In an ASVM the bytecode instruction set can be
extended by application-specific instructions. This allows a flexible boundary be-
tween virtual application code and the interpreter engine. The developer decides
at deployment time which functionality to add to the instruction set. Similar to
traditional programming where commonly used functionality is implemented as
subroutines that are invoked when needed. These additional instructions can be
invoked like macros from the bytecode. The SwissQM virtual machine draws from
this idea too as it can be regarded as application-specific machine if the in-network
aggregation operations are considered as application-specific extensions. However,
SwissQM uses a specific VM architecture that facilitates stream processing and an
atomic code distribution mechanism for the entire program unlike individual code
capsules in Maté.

The Melete virtual machine for sensor networks by Yu et al. [YRBL06] follows a
similar approach as used Maté but allows multiple concurrently executing bytecode
programs. It also uses a passive program forwarding approach similar to Levis’
ASVM. Yu et al. present an implementation that provides space for up to five
concurrent programs that can run on a Tmote Sky node [YRBL06]. SwissQM also
permits concurrent execution multiple bytecodes. It also allows to trade-off the
amount of per-program state with the number of concurrently executing programs.

2.3.4 Declarative Interfaces

Most relevant to the work of this dissertation are systems that provide a declar-
ative interface to the user. The idea of querying the physical world using a de-
vice database was introduced by Bonnet et al. [BGS00, BGS01]. A prototype of
query engine running on a sensor nodes was shown by Fung et al. [FSG02]. The
COUGAR project [YG02] started at around 2000 at Cornell focuses on tasking
sensor networks through a declarative query interface. It concentrates query op-
timization aspects. A Query Proxy [YG03] running on the sensor nodes executes
streaming queries according to the template:
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SELECT {attributes, aggregates}
FROM {sensordataS}

WHERE {predicate}
GROUP BY {attributes}

HAVING {predicate}
EVERY time span e

A network query is executed once every e time span. The queries can also
contain aggregate expressions such as avg, count, max. These operands spatially
aggregate data, i.e., fuse data from different sensor nodes. Spatial aggregation can
be efficiently computed in-network. Common aggregates (distributive aggregates
with a constant amount of state) can typically be evaluated more efficiently in-
network than at the base station. An efficient method called Tiny AGgregation
(TAG) was presented by Madden et al. [MFHH02]. In common cases, it reduces
the number of messages that have to be sent across the routing tree to one mes-
sage per tree edge. The COUGAR project has not publicly released any system
implementation. The first generally available implementation of a query processor
for sensor network was TinyDB [MFHH05] developed by Madden et al. TinyDB
is built on top of TinyOS and provides a declarative query interface (SQL dialect)
to the sensor network as well as some capabilities for in-network data processing
and aggregation. Buonadonna et al. [BGH+05] combined TinyDB with a gateway
appliance (embedded ARM-based Linux system running Java) into TASK (Tiny
Application Sensor Kit), which has been used as a platform in may different field
research projects. The SwissQM/Gateway system was designed to cover the same
space. However, due to the modular design that is based on OSGi components
and services SwissQM/Gateway can also be used as a research platform itself. For
example, Doman et al. [DPD10] used the SwissQM platform and extended it to
implement a fuzzy query processing model.

Levis et al. outline in their ASVM paper [LGC05] a method to implement
an application-specific VM for query processing. The QueryVM is developed for
TinyDB-like in-network data collection tasks. SQL queries are translated into
Motlle (MOTe Language for Little Extensions) programs. Mottle is a Scheme-
inspired script language. These programs are then executed by the QueryVM.
Incomplete parts of the system are available in the TinyOS 1 tree. According to
one of its authors, David Gay, “it fell by the way side” and was not completed.
Even though the VM bytecode interface allows more flexibility for the queries it
does make use of it. Like TinyDB it does not allow arbitrary expressions in the
queries. SwissQM/Gateway is the first complete system that is publicly available
that contains virtual machine for sensor networks and compiler that translates
general queries into bytecode programs.



2.4. SUMMARY 33

On overview of the network query processing of the COUGAR approach and
TinyDB is given by their authors Gehrke and Madden in [GM04]. In general, a
declarative interface makes it easier for inexperienced users to use sensor networks
for data acquisition tasks. Writing a high-level database query is expected to
be easier than developing a low-level software for networked embedded systems.
This approach, however, also has a number of disadvantages. First, not every
sensor network application can be expressed as a query. While this approach
works well for data stream tasks, applications that require collaborative event-
processing cannot be implemented as queries. Second, the expressiveness of SQL
is limited, as it is by itself not Turing-complete. Third, due to resource constraints
on the sensor nodes the functionality of the query processor is severely limited, for
example, TinyDB does not support queries with user-defined functions (UDFs).
The SwissQM system addresses these issues. Instead of a query processor a virtual
machine is deployed on the sensor node and queries are compiled in to bytecode
sequences at the SwissQM/Gateway. This allows the integration of additional
functionality such as UDFs while maintaining a declarative interface to the user
through the gateway.

2.4 Summary

This chapter provided an introduction to wireless sensor networks. The most
important observation made was that mote-scale sensor nodes are very resource
constrained. This must be considered when developing query execution plans
running on those nodes. First of all, the very limited amount of memory available
implies that state must be carefully managed. For example, large data windows
as used in aggregation queries cannot be kept on the sensor nodes.

Second, sensor networks are highly distributed systems. However, in contrast
to Internet-based systems, the wireless ad-hoc networks are much less reliable. A
data processing solution needs to account for comparatively low data rates and
lost data due to the message corruption. Fortunately, the simpler communication
pattern in such networks lessens the implications. Instead of a mesh network where
every node exchanges data with every other node, in practice, data is forwarded
along a multi-hop tree to a base station. Maintaining a multi-hop tree is less
complex than a fully connected mesh network. Thus, any algorithm used for data
processing in wireless sensor networks should adhere to this communication pattern
and not rely on a mesh structure. More precisely, message exchange between any
arbitrary two nodes should be prevented.

The chapter also discussed different programming modes for sensor networks.
In general, developing software for sensor networks is non-trivial as it involves low-
level programming and, due to the constraints, many cross-layer optimizations. For
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an end-user perspective the sensor network should be programmable at a higher
level of abstraction. Instead of considering individual nodes, programs should be
written at the global network level. Declarative interfaces through query-based
approaches make the technology available to a broader range of users. This aspect
also needs to be considered when building a data processing platform.



3
The SwissQM Approach

As part of this thesis a comprehensive platform was built that supports the entire
data cycle in sensor networks: from data acquisition to data processing and stor-
age, including deployment, optimization, routing, and embedding within end-user
devices. This chapter describes how data processing is implemented on top of Swis-
sQM (Scalable WIreleS Sensor network Query Machine) [MAK07a,MAK07b]. In
short, SwissQM is intended as the next generation architecture for data acquisi-
tion and data processing in sensor networks. Its main objectives are to provide
richer and more flexible functionality at the sensor network level, a more powerful
and adaptable interface to the outside world, data independence, query language
independence, optimized performance in a wider range of settings than current
systems, and smooth integration with the rest of the data processing architecture.

3.1 Query Platform for Sensor Networks

SwissQM is based on a specialized virtual machine that runs optimized bytecode
rather than queries. As a result, SwissQM does not make any assumptions about
the query language used (e.g., SQL or XQuery), about the deployment strategy
of the underlying sensor network (e.g., one single network or multiple networks),
and can easily provide highly efficient multi-user support. Compared to existing
systems, SwissQM provides a generic high-level, declarative programming model
(it can support both SQL and XQuery) and imposes no data model (e.g., rela-
tional or XML). We believe that the use of a declarative interface simplifies the

35
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specification of data acquisition tasks for end-users. Furthermore, optimization
in a declarative system is much easier than in an imperative approach. SwissQM
is also Turing-complete and supports user-defined functions, windowing queries,
complex event generation at the sensor level, an extensible instruction set, sophisti-
cated optimizations, sensor over-provisioning, and overlapping but distinct sensor
networks. All these features make it possible to implement many and important
optimizations in SwissQM that are either not possible or rather cumbersome to
implement in existing systems.

3.1.1 Design Considerations

SwissQM has been designed with several requirements in mind:

1. Separation of sensors and external interface: SwissQM should not implement
any particular query language. The programming model should be indepen-
dent of the query language used. It must also be dynamically adaptable. As
a result, the sensor nodes should not contain application-specific functional-
ity (e.g., the ability to parse SQL or join operators). Such functionality is
treated as a dynamically deployable extension.

2. Dynamic, multi-user, multi-programming environment: SwissQM should not
impose restrictions on the query submission and change rate, nor in the num-
ber of queries that can be run concurrently (beyond the inherent limitations
of the underlying hardware).

3. Optimized use of the sensors: The only processing at the sensor nodes should
be that related to capturing, aggregating, and forwarding data. Anything
else should be there only because it has been pushed down from above. This
increases the memory available for data and leaves room for more queries
and/or more sophisticated processing such as event generation or user defined
functions.

4. Extensibility: SwissQM should be programmable to include the ability to
implement user-defined functions and the ability to push down functionality
from higher data processing layers. Extensibility also refers to SwissQM
itself: It should be possible to extend and modify the behavior of SwissQM
as needed.

3.1.2 System Architecture

A SwissQM sensor network is built out of a gateway node and one or more sensor
nodes. The gateway node is assumed to have sufficient computing power and no
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SELECT patch, AVG(temp)
FROM sensors

GROUP BY patch
EVERY 5 min
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Figure 3.1: Sensors nodes are organized in a tree topology with the root node
connected to the gateway

energy or memory restrictions. The gateway acts as the interface to the system.
The sensor nodes are assumed to be resource constrained devices, running on
batteries. The sensors perform the actual data acquisition.

The sensor nodes are organized in a collection network, i.e., a tree that routes
data towards the root, where the gateway node is located as shown in Figure 3.1.
This is the same strategy as used in, e.g., TinyDB, since a tree facilitates in-network
aggregation and reduces the amount of routing state a node has to keep. The rout-
ing tree is built ad-hoc using the Collection Tree Protocol (CTP) [GFJ+09]. The
protocol assigns each node a link to a parent closer to the root node. The root node
of the tree (node 0 in Figure 3.1) is connected to a gateway node. It is equipped
with more memory and a more powerful CPU and runs the SwissQM/Gateway
system. It is connected to the Internet through an Ethernet or Wifi link and
provides access to the sensor networks to multiple users and applications.

3.1.3 SwissQM Gateway

Requirements 1 and 2 have led to a more radical separation between the function-
ality of the sensor nodes and the gateway that is typically encountered in sensor
networks. Since all sensor networks require such a gateway, SwissQM has been
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designed to exploit the gateway as much as possible. Unless dictated by opti-
mization strategies (e.g., minimization of data transfer), everything that can be
done at the gateway is done there rather than at the sensor nodes. Thus, the
gateway provides all external interfaces, as well as query optimization and compi-
lation facilities. At the sensor nodes one finds only the code that is strictly needed
to capture, aggregate, and propagate the data. Any additional code, e.g., user-
defined functions, is located at the sensor nodes only if explicitly pushed down by
the gateway. The resulting architecture has considerable advantages. SwissQM
can support a wide variety of interfaces (as dictated by requirement 1, e.g., SQL,
XQuery, Web services). These interfaces can change over time without requiring
changes to the code in the sensor nodes. Sophisticated optimization strategies can
be implemented at the gateway without affecting the performance of the sensor
nodes. The gateway is also the natural place to implement data cleaning pipelines
and virtualization such as those described by Jeffery et al. [JAF+06].

Figure 3.2 shows query processing system located at the gateway. It consists
of a Query Processor and a Stream Processor. The gateway processes user queries
submitted to the system. The user queries can be expressed in various languages.
The gateway processes and combines the user queries into a smaller, more opti-
mized subset of virtual queries. The virtual queries are expressed in an internal
format suitable for multi-query optimization, query merging, subexpression match-
ing, window-processing optimization, etc. The optimized virtual queries are then
transformed into execution plans. Two different types of plans are generated, Net-
work Execution Plans and Stream Execution Plans. The former are sent into the
sensor network and are executed by the sensor nodes. They are bytecode programs
run by the SwissQM virtual machine. Each program generates a data stream that
is fed through the collection tree to the gateway. Operators that are not pushed
down into the network are applied on the stream processor as part of a stream
execution plan running on a traditional main-memory stream processing engine.
Its result streams are returned to the users. This three-tier mechanism virtualizes
the sensor network, and permits multi-query optimization (requirement 2) across
user queries for a more efficient use of the sensor network. Thanks to the virtual
query step, it is also possible to use multi-query optimization on queries submitted
in different query languages, e.g., SQL or XQuery.

3.1.4 The Query Virtual Machine

Requirements 3 and 4 motivated us to implement the sensor nodes as a virtual
machine, the Query Machine (QM) (the name emphasizes the dual role of query
engine and virtual machine). The query machine is a stack-based integer vir-
tual machine. We chose a stack-based machine based on the results presented
by [SCAG08]. A stack-based VM has typically smaller bytecodes for the same
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Figure 3.2: Architecture of SwissQM query processing system

program than a register-based VM. Programs of a register-based VM need less in-
structions than programs of a stack-based VM because no instructions are needed
to put the operands onto the top of the stack. However, instructions can be repre-
sented in a much more compact way in a stack-based VM since the location of the
operands is implicit, resulting in an overall more compact bytecode of programs
for stack-based VMs. A compact representation of instructions is important in
order to reduce the size of the bytecode for application programs. A small byte-
code program consumes less memory and less bandwidth when it is disseminated,
and it also increases the reliability of program dissemination. The particularly
compact bytecode format is also relevant for future sensor nodes that will contain
more powerful processor and are less memory-constrained. A compact program
representation during transmission is still important since low-power ad-hoc ra-
dio technologies are unlikely to improve significantly in terms of bandwidth and
reliability in the next years. For example, the newer ARM-based Intel Mote2 plat-
form (see Table 2.1 on page 13) still contains the same IEEE 802.15.4 CC2420
radio as the memory-constrained Tmote Sky platform. Only if the proliferation
of 3G cellular technologies also reaches the sensor networks domain the use of a
traditional platform such as Java may be more important than custom-designed
bytecode format. However, when comparing power requirements of current 3G
devices with current CC2420-based nodes this is unlikely to happen soon.
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Figure 3.3: Query Machine Components

SwissQM was designed as an interpreting virtual machine. A just-in-time com-
piler (JIT) that translates the SwissQM bytecode into native code that can be
directly executed by the microcontroller requires additional resources (code and
data memory) on the device. An interpreter has a lower footprint size than a
corresponding JIT-based solution. Even given abundant amount of resources, e.g.,
when performing the JIT operation at the less constrained base station, the mem-
ory architecture of microcontrollers such as the ATmega128L makes it difficult to
use jitting. Controllers typically have different memories for code and data (Har-
vard architecture). It is thus difficult to execute code that was computed as data
by a JIT compiler or was received over the network.

Another design consideration is the number of instructions available in the
bytecode. There is an obvious trade-off between expressiveness and size: the more
instructions are supported, the larger the encoding. The instruction set of the QM
is a small subset of the Java Virtual Machine [LY98] extended with specialized
instructions to reduce the size of the programs. The QM uses a uniform type to
simplify the implementation and reduce the footprint of the QM. All data types
are represented as 16-bit signed integer types (Booleans are represented using
C-style semantics). Floating point types are not supported to keep the size of
the instruction set as small as possible (the necessary conversion can be easily
done at the gateway and that way all operations at the QM are on integers—see
requirement 3).

The QM includes the following components shown in Figure 3.3: An Operand
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Stack that stores 16-bit elements used as operands and results of instructions.
A Transmission Buffer that temporarily holds data that are to be sent or were
received but not yet processed. It is accessed through an index over the 16-bit
data elements. A Synopsis data structure is used to maintain state for aggregation
queries. The sensor nodes can exchange both the synopsis and the transmission
buffer via radio. The sensors data is acquired to through a number of sensor
instructions. Similar to load instructions the samples are stored onto the operand
stack. A number of QM Programs expressed in QM bytecode (produced at the
gateway from the user submitted queries) can be installed simultaneously on a
node.

A design decision that made very early was to implement a dedicated SwissQM
virtual machine instead of building a system on top of the Maté VM [LC02] or
the publicly available Bombilla implementation. The Maté approach has several
properties that render it unusable as SwissQM’s execution platform. (1) In Maté
programs are broken up into capsules of 24 instructions and disseminated in an
epidemic-like approach. A capsule is attached to an event (reception of message
or a timeout of a timer) or installed as a subroutine. A compiled query would thus
consist of multiple capsules, which have to forward themselves in a viral manner
through the network. Execution of a capsule starts as soon as it is received.
This may lead to difficulties to achieve a coordinated execution. SwissQM uses
atomic dissemination of the bytecode. The scheduling of a program is chosen
such that the program starts no sooner than most of the network nodes are ready
to execute the program, i.e., they have received all messages of that particular
program. This minimizes potential inconsistencies in the results caused by the
dissemination. (2) Maté provides one single variable (one word) that can be shared
among contexts, i.e., code from different capsules. The SwissQM virtual machine
provides specific memories such as the transmission and the synopsis buffers, which
can be used similar to a traditional heap. (3) Maté can only run one single program
at any time. In order to run multiple concurrent queries the SwissQM execution
platform must be able to run multiple independent bytecode programs.

3.1.5 Query Execution

The following example illustrates the stages in SwissQM query execution platform.
Assume that a user submits the following sliding window query to the gateway.

SELECT nodeid, SWINDOW(temp, 6 h, AVG)
FROM sensors

WHERE nodeid < 10
EVERY 30 s
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The query returns the average temperature 6 h sliding average of the temperature
sensors on the first 10 nodes according to a static node enumeration at deploy
time. The sensors are sampled every 30 seconds. A sliding window is kept for
each of the sensors. It is evaluated after each new sample, i.e., every 30 seconds.
Therefore, each window contains 360 min × 2 samples/min = 720 samples. This
query could potentially be directly executed in the network as it is uses local data
and requires only simple arithmetic operations. However, the 16-bit data words
the 720 samples of each window occupy ≈ 1.4 kB of memory. This exceeds the
size of the available heap (synopsis). Hence, the sliding-window aggregate needs
to evaluated at the gateway where memory is available for all 10 windows. The
gateway splits the query into a network execution plan corresponding to the non-
aggregation query

SELECT nodeid, temp
FROM sensors

WHERE nodeid < 10
EVERY 30 s .

It also generates a stream execution plan it feeds to the stream engine running at
the gateway (Figure 3.2), which will compute the aggregate on the (nodeid, temp)-
stream. The aggregate stream is then returned to the user as a result to the
submitted query.

3.2 SwissQM Implementation

In this section we provide a detailed description of SwissQM virtual machine imple-
mentation. The initial version was developed for Mica2 nodes running TinyOS 1
[MA06]. A second development branch was started later supporting both Mica2
and the newer Tmote Sky platforms on TinyOS 2.

3.2.1 Data Types

In order to reduce the number of instructions and the footprint size of the imple-
mentation, the query machine provides only a single data type: a signed 16-bit
integer type. Boolean types used, e.g., in conditional branch instructions are
interpreted following the C language rule, 0 for false and any other value for
true. Floating-point types are currently not supported. When memory capacity
increases in the future, floating-point support, i.e., a new data type and the corre-
sponding instructions, can be added easily. The lack of floating-point processing is
not too restrictive. First, most processors used in sensor networks do not feature
a floating-point unit so that the computations need to be emulated in software
anyway. Second, the raw data returned by sensors is typically an integer value
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Figure 3.4: Memory layout in SwissQM with two programs (program 0 requires a
synopsis, program 1 does not)

from an A/D converter; sensors rarely generate floating point values. Third, the
evaluation of floating-point expressions can easily be carried out at the gateway.
For example, an average value of some sensor readings can be computed as the
quotient of the sum and the count, which are both integer values.

3.2.2 Memory Layout

It is important to differentiate between the SwissQM application itself and the
user programs that are executed by SwissQM. We use the term program to refer
to the latter. Both the SwissQM application and the bytecode programs must be
stored in memory, but the requirements are different.

The memory of sensor nodes typically consists of persistent memory (Flash)
and volatile data memory (SRAM) and is organized as shown in Figure 3.4. The
SwissQM application code resides in the Flash memory. The volatile data memory
in SRAM stores the global state of the SwissQM application. This memory region
is further divided into two sections, the initialized data section (.data), which
holds initialized global variables and constants, and the uninitialized data section
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(.bss), which holds uninitialized global variables of the SwissQM application. The
content of the initialized data section is copied from Flash into SRAM during the
boot process. The implementation of SwissQM for the Tmote Sky platform and
the full instruction set requires 4.5 kB of SRAM memory. The remaining 5.5 kB
SRAM is used as stack for the SwissQM application.

SwissQM allocates a 384 byte sized heap in the volatile .bss section. When
a new program is loaded, memory is allocated on this heap in order to store the
dynamic data structures for this program as well as its bytecode. Every program
has its own stack (16 bytes deep) and transmission buffer (16 bytes wide). If re-
quested by a program, another 16 bytes can be allocated for the synopsis structure.
Figure 3.4 depicts the application heap for two concurrently executed programs; a
synopsis is only allocated for Program 0.

SwissQM keeps a fixed list of eight program descriptors. Each descriptor con-
tains information about its associated program, e.g., the sampling period, the
current epoch counter value, and the length of the program. Most importantly,
the descriptor keeps a pointer to the program’s data structures (stack, synopsis,
and transmission buffer) on the heap. When a program is stopped, its program de-
scriptor is invalidated and the heap memory deallocated. For managing the heap,
a memory allocator is integrated into the SwissQM system. The complexity of this
memory allocator is low because all memory allocation is static at the time when a
program is loaded. That is, programs cannot dynamically allocate memory (there
is no malloc instruction in SwissQM). Since all references to heap data use an
indirection, a simple compacting allocator was implemented for SwissQM because
compacting the heap only requires updating a single reference for each program.

Footprint aside, the main reason to use only static memory allocation is to allow
the gateway to perform program admission control. With static allocation, the
gateway knows exactly how much memory a program needs and can thus forward
to the network only as many programs as can physically run on the nodes. The
gateway can perform similar resource calculations for other parameters (timing,
sampling intervals, etc.). This greatly simplifies the code at the nodes; programs
do not need to check for any overflow condition and do not need to make allowances
for thrashing situations.

The sizes of the application heap, the stack, synopsis and transmission buffer,
and the maximum number of programs are deploy-time parameters. The sizes can
be adjusted depending on application needs, allowing to trade off the number of
programs that can be installed simultaneously onto the VM and the amount of
state available for each program.
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Table 3.1: Instruction set of the Query Machine (Tmote Sky configuration)

# instructions

stack operations 16
load/store instructions 9
arithmetic and logic operations 11
control instructions 13
transmission instructions 2

sensing instructions 11

aggregation instructions 2

Total 64

3.2.3 Instruction Set

SwissQM uses a small subset of the integer and control instructions of the Java
Virtual Machine (JVM) specification [LY98]. Table 3.1 shows the basic set of
instructions of the QM for the Tmote Sky platform. The latest implementation
of the system for the Tmote Sky platform contains 64 bytecode instructions. 37
instructions are identical to the JVM specification. The instructions are grouped
by functionality in Table 3.1. The first group includes instructions for stack-
manipulation operations, load/store, arithmetic and logic operations, and control
instructions such as conditional and unconditional jumps. Together with two trans-
mission instructions this first group represents the core instruction set of the VM.
The remaining 27 instructions provide access to the sensors or are used for ac-
cessing the synopsis and the transmission buffer. The complete set of SwissQM
instructions for the Mica2 platform is listed in Table 3.2. The difference is between
the two instruction sets are the platform-dependent sensor instructions. Eleven
sensor instructions for Tmote Sky and seven for Mica2, as well as a number of
application-specific instructions extend the core set. The sensor instructions ac-
cess the physical sensors or system parameters and push the obtained value onto
the stack. Two transmission instructions are provided: send_tb sends the content
of the transmission buffer whereas send_sy sends the current aggregation state
stored in the synopsis. Finally, the SwissQM platform provides two specialized ex-
tensions for in-network aggregation based on the TAG approach [MFHH02]. The
aggregation instruction merge is described in Section 3.2.6.

Each bytecode instruction is encoded using one single byte, which imposes a
limit of 256 instructions. Total instruction length including operands can be one,
two, or three bytes, depending on whether the instruction has implicit operands
(e.g., iadd), an 8-bit immediate operand (e.g., ipushb=push byte immediate), or a
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16-bit immediate operand (e.g., ipushw=push word immediate). The implementa-
tion of instructions is modular to enable extensibility. Each group is implemented
as a separate nesC component. The groups of the current SwissQM design and the
space each group requires both in ROM (i.e., program Flash) and RAM memory
is shown in Table 3.2.

Table 3.2: The complete SwissQM instruction set (Mica2 configuration)

Bytes in
Instruction Description a Time ROM RAM

S
ta

ck
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st
ru

ct
io

n
s

dup α, x ⇒ α, x, x 15.2 µs 1,562 0
dup_x1 α, y, x ⇒ α, x, y, x 43.6 µs
dup_x2 α, z, y, x ⇒ α, x, z, y, x 59.0 µs
dup2 α, y, x ⇒ α, y, x, y, x 51.0 µs
dup2_x1 α, z, y, x ⇒ α, y, x, z, y, x 67.0 µs
dup2_x2 α,w, z, y, x ⇒ α, y, x, w, z, y, x 83.0 µs
pop α, x ⇒ α 14.4 µs
pop2 α, y, x ⇒ α 23.6 µs
swap α, y, x ⇒ α, x, y 37.6 µs
iconst_0 α ⇒ α, 0 12.0 µs
iconst_1 α ⇒ α, 1 12.0 µs
iconst_2 α ⇒ α, 2 12.0 µs
iconst_4 α ⇒ α, 4 12.0 µs
iconst_m1 α ⇒ α,−1 12.0 µs
ipushb <int8> α ⇒ α, sign ext(i) 13.4 µs
ipushw <int16> α ⇒ α, i 13.4 µs

B
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ct
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iload <int8> α ⇒ α, buf[i] 20.8 µs 1,528 44
iload α, i ⇒ α, buf[i] 29.4 µs
istore <int8> α, x ⇒ α and buf[i] = x 23.4 µs
istore α, x, i ⇒ α and buf[i] = x 31.0 µs
iload_sy <int8> α ⇒ α, syn[i] 21.8 µs
iload_sy α, i ⇒ α, syn[i] 30.2 µs
istore_sy <int8> α, x ⇒ α and syn[i] = x 23.8 µs
istore_sy α, x, i ⇒ α and syn[i] = x 31.4 µs
send_tb send transmission buffer 22–42 ms
send_sy send synopsis 22–42 ms

aFor each instruction the state of the operand stack before and after the invocation is specified
on the left and the right of ⇒ respectively. α is used to designate the remainder of the stack
that is left unchanged by the instruction.
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continued from previous page
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iadd α, y, x ⇒ α, y + x 41.0 µs 1,056 0
isub α, y, x ⇒ α, y − x 41.0 µs
imul α, y, x ⇒ α, y ∗ x 42.0 µs
idiv α, y, x ⇒ α, by/xc 71.0 µs
irem α, y, x ⇒ α, ymodx 73.0 µs
ineg α, x ⇒ α,−x 30.8 µs
iinc α, x ⇒ α, x+ 1 30.0 µs
idec α, x ⇒ α, x− 1 30.8 µs
iand α, y, x ⇒ α, y&x 40.4 µs
ior α, y, x ⇒ α, y|x 41.6 µs
inot α, x ⇒ α,∼x 31.2 µs

C
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if_icmpeq <int8> α, y, x ⇒ α, jump if y = x 34.2 µs 1,278 0
if_icmpneq <int8> α, y, x ⇒ α, jump if y 6= x 36.2 µs
if_icmplt <int8> α, y, x ⇒ α, jump if y < x 35.0 µs
if_icmple <int8> α, y, x ⇒ α, jump if y ≤ x 36.4 µs
if_icmpgt <int8> α, y, x ⇒ α, jump if y > x 34.4 µs
if_icmpge <int8> α, y, x ⇒ α, jump if y ≥ x 35.2 µs
ifeq <int8> α, x ⇒ α, jump if x = 0 25.2 µs
ifneq <int8> α, x ⇒ α, jump if x 6= 0 23.4 µs
iflt <int8> α, x ⇒ α, jump if x < 0 22.6 µs
ifle <int8> α, x ⇒ α, jump if x ≤ 0 25.8 µs
ifgt <int8> α, x ⇒ α, jump if x > 0 23.8 µs
ifge <int8> α, x ⇒ α, jump if x ≥ 0 25.8 µs
goto <int8> α⇒ α, jump always 6.5 µs

S
en
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s get_nodeid α ⇒ α, nodeid 12.1 µs 1,854 5
get_parent α ⇒ α, parent 13.4 µs
get_light α ⇒ α, light 342 µs
get_temp α ⇒ α, temp 348 µs
get_noise α ⇒ α, noise 3.38 ms
get_tone α ⇒ α, tonecount 3.38 ms
get_voltage α ⇒ α, batteryvoltage 804 µs

A
gg
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s merge α, aggopm, . . . , aggop1,m, n ⇒ α # transmission 1,064 0
n: number of grouping exprs
m: number of aggregates
aggopi: ith agg. operation 30µs/row

clear_sy clear synopsis 6.9 µs

Instead of providing a dedicated instruction for each sensor, sampling could also
be implemented using a virtual function call. For example, an instruction similar
to invokevirtual available in the Java virtual machine could be used instead. The
actual sensor to be accessed is specified as an index into a vtable-like structure,
similar to the index into the constant pool in Java. Although, this introduces
the ability of “overwriting”, i.e., redefining sensors, it has two disadvantages that
render this approach inapplicable for SwissQM. First, the size of the instruction is
larger since space for the function index must be provided in the immediate field.
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For example, invokevirtual in Java uses a two-byte index. The chosen solution
uses one single byte to express all sensing instructions. Second, the sampling code
can lo longer be easily dispatched by the virtual machine. Since every SwissQM
instruction is one full byte it can be used to directly dispatch an instruction.
This is implemented in nesC using a parameterized interface with the instruction
byte as a parameter. This allows a loose coupling of instruction’s implementation
components to the VM core by using one single wiring statement in the nesC
configuration module of the VM.

Following requirement 4, the instruction set is modular. As need dictates (or
device capabilities evolve), additional instruction classes can be added or removed
(e.g., more sophisticated aggregation or floating point support). Additionally,
when SwissQM is ported to a different platform the sensing instructions have to
be adapted in order to reflect the physical sensors (humidity, barometric pressure,
acceleration, etc.) that are available on that particular platform. It is also pos-
sible to extend the initial instruction set with more powerful instructions. For
instance, if an application ends up generating programs in which a long sequence
of instructions appears often, it is possible to encode that sequence into a single
bytecode instruction, as already suggested by Muller et al. [CSCM00]. In general,
such optimizations are application-specific and involve language optimizations and
memory trade-offs that must be taken into account by the compiler. Nevertheless,
the possibility of extending the bytecode instruction set and implementing such
optimizations is one of the key advantages of SwissQM. As an example, additional
application-specific instructions were added to SwissQM for example by Doman et
al. [DPD10] that provide functionality to evaluate the fuzzy membership functions.

3.2.4 QM Programs

Data acquisition tasks in sensor networks are performed according to one of the
following two sequences of well defined phases. The first sequence is used when no
in-network aggregation takes place, i.e., a node operates only on its own data and
forwards it. The phases in this sequence are sampling, processing, and sending.
The second sequence is applied when nodes aggregate their data with the data
received from other nodes before forwarding the result. This second sequence has
four phases: sampling, processing, merging received data, and sending.

The program structure in SwissQM is divided into three sections that are com-
bined to implement these different processing phases. The sections are similar to
code capsule handlers in Maté [LC02]. The difference in SwissQM is it initializes
the context, i.e., the content of the transmission and the synopsis buffer, depend-
ing on the section that is invoked when the corresponding event occurs. SwissQM
supports the following sections:
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Delivery Section. The instructions of the delivery section of a program are peri-
odically executed in response to a timer event. Associated with the delivery
section is an execution interval, called sampling period that determines the
time between two invocations of this section. The delivery section is in-
tended to be used for instructions that sample the sensors and generate a
stream of data tuples that is sent towards the gateway node. Result messages
generated in the delivery sections contain an epoch number that associates
the data of the message with a particular invocation of the delivery section.
The epoch number is incremented after the execution of the delivery section
is completed. By default, the epoch number is always added to the data
sent by an application. An optional argument specifies whether the synopsis
is to be implicitly cleared at the end of each execution (section argument
"epochclear") or whether the clear_sy instruction must be used to explic-
itly clear the synopsis (section argument "manualclear"). Any valid QM
program must at least contain a delivery section.

Reception Section. This section is executed when a node receives a message
from any of its children. The section is optional and is used to intercept the
message, e.g., in order to aggregate data obtained from the children. If no
reception section is present in a QM program, a node simply forwards the
data to its parent.

Init Section. This section is executed once at the beginning before the delivery
and reception sections are executed for the first time. It is optional and can
be used to initialize the synopsis.

Figure 3.5 shows the life cycle of a QM program. After a new program is loaded
its init section is executed. Depending on a timer interrupt and the reception of
a message the delivery and reception sections are scheduled until the program is
stopped. A QM program is identified by its program number. Messages generated
by the program contain this identification number to allow nodes to correlate
messages and programs. The program number is used to identify the program
whose reception section has to be scheduled after a message is received.

3.2.5 Simple Program Examples

Basic Sampling and Sending. A first example of a SwissQM program is a
simple program that samples the temperature once every minute. Every node
reports the temperature and its node ID. Intermediate nodes simply forward the
messages from their children. The corresponding QM program is as follows:

1 .section delivery, "@60s"

2 get_nodeid # read the node’s ID
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Figure 3.5: Life cycle of a QM program

3 istore 0 # store it at pos. 0
4 get_temp # read temperature sensor
5 istore 1 # store it at pos. 1
6 send_tb # send transmission buffer
7

8 .section reception

9 send_tb # forward tuple from child

Lines 1 and 8 declare the two sections (delivery and reception) defined in this
QM program. In the delivery section the node ID is read and pushed on the
operand stack (Line 2). This node ID is copied to the first position of the trans-
mission buffer (Line 3). Next, the temperature sensor is read and its value is copied
into the second position of the transmission buffer (Lines 4 and 5). The content
of the transmission buffer is sent to the parent node (Line 6). The QM knows the
size of the transmission buffer from the indices used in previous instructions to
copy data into the transmission buffer.

In this example, the reception section can be omitted because the default be-
havior of simply forwarding incoming messages from the children to the parent is
sufficient. For presentation purposes, Lines 8 and 9 of the example program show
how this default behavior can be implemented in a SwissQM program. A use case
for the reception section is to filter out messages received from the children and not
forwarding them by adding a conditional branch around the send_tb instruction
on Line 9. This example program requires 8 bytes and can be disseminated to the
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sensor nodes using one single message.
This simple example already illustrates two important properties of SwissQM.

First, any code section can write to the data transmission buffer. As a result,
SwissQM must take care of race conditions. SwissQM avoids race conditions by
executing each code section in an atomic way. This mutual exclusion is enforced
through global variables. Second, several obvious optimizations are possible. For
instance, a node could merge its data with the data received from its children
into a single message. This approach reduces the number of messages even if no
aggregation is carried out.

Control Instructions. A second example illustrates how to generate and propa-
gate events. In this example, the nodes sample their light and temperature sensors
every 10 seconds. If at least one of these readings exceeds a given threshold, the
node reports its ID. This behavior corresponds to the query:

SELECT nodeid
FROM sensors

WHERE light > 100 OR temp > 60�
EVERY 10 s .

A possible use of this program is the detection of fire and its localization (assuming
the position of the nodes is known at the gateway). The program is as follows:

1 .section delivery, "@10s"

2 get_light # read light sensor
3 ipushw 900 # push light threshold value
4 if_icmpgt send # jump to send if greater
5 get_temp # read temp sensor
6 ipushw 500 # push temp threshold value
7 if_icmpgt send # jump to send if greater
8 goto skip # skip sending
9 send: get_nodeid # get the node’s ID

10 istore 0 # store it at pos. 0
11 send_tb # send transmission buffer
12 skip:

The code is largely self-explanatory. The reception section has been omitted
because the default behavior is sufficient. The bytecode of this program consists
of 18 bytes and can be disseminated using two messages. An important aspect of
this example is the execution time. When a message is sent, the program can take
up to 65 ms; the bulk of the time is spent by the send_tb instruction in Line 11
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as the MAC layer needs to be accessed and the data sent over the low bandwidth
radio. If no message is generated, the program takes 22 ms. In this case, most
of the time (10 to 20 ms) is spent by the TinyOS sensor code, which enforces
a delay between two samples of different sensors. The TinyOS code specifies a
10 ms delay; in practice, however, the delay can be up to 20 ms due to timing
issues in the TinyOS event scheduler. This type of complex overhead calculations
for the programs is one of the reasons to perform the planning of the execution
of concurrent programs at the gateway. The bottom line is that these subtle but
crucial problems are one of the reasons to use SwissQM in the first place: Having
a well characterized bytecode language makes the cost analysis feasible and the
predictions over the resources consumed by a program sufficiently accurate.

Keeping State. A third example illustrates how a program can keep state across
different invocations. Such state cannot be kept in the transmission buffer because
the transmission buffer is flushed after the execution of a code section. To keep
state across invocations of a code section, a program must declare the use of a
synopsis. In this example, every node samples its light sensor every five seconds. In
order to smooth noise from the sensors, a user-defined function with an exponential
weighted moving average (EWMA) filter is applied to the readings (smoothing
factor α = 0.8), i.e., the filter produces

yk = αyk−1 + (1− α)uk k > 0 ,

where yk is the new output value, yk−1 is the value produced in the last iteration,
and uk is the actual sensor reading. The 1st order filter is initialized as y0 = uk.
The nodes generate a stream of tuples containing the value of yk and their ID.

1 .section init

2 get_nodeid # get the node’s ID
3 istore_sy 0 # store it in synopsis pos. 0
4 get_light # sample u0
5 istore_sy 1 # store it as y0 in synopsis
6

7 .section delivery, "@5s","manualclear"

8 get_light # sample uk
9 iload_sy 1 # read yk−1

10 isub # uk − yk−1
11 ipushb 5 # push 5 on stack
12 idiv # (uk − yk−1)/5
13 iload_sy 1 # read yk−1
14 iadd # yk−1 + (uk − yk−1)/5
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15 istore_sy 1 # update synopsis yk−1 ⇐ yk
16 send_sy # send synopsis

In addition to the delivery section, this program also contains an init section that
is called once before the delivery section is run for the first time. In this example,
the synopsis is used to store the filter output yk. It also shows that the synopsis
can be used as buffer for the result message to be sent (Line 16). An interesting
optimization that a compiler could take advantage of is to store data that must
be sent in every invocation but never changes (e.g., the node ID) in the synopsis.
In the program, the node ID is setup once in the init section (Lines 2–3) when
the synopsis is first initialized. Lines 4 and 5 sample the sensor and store it in
the synopsis to provide an initial value y0. Since the synopsis state has to be
kept between invocations of the delivery section, the argument "manualclear"

is specified in the section declaration (Line 7). This declaration implies that a
synopsis will be allocated when the program is loaded. In the delivery section the
light sensor is sampled (Line 8), and yk−1 is read from the first position of the
synopsis (Lines 9 and 13). Lines 10–14 compute yk such that the errors introduced
by integer arithmetic are minimal. The synopsis is updated (Line 15) and the
complete synopsis (node ID at position 0 and yk at position 1) is sent to the
parent (Line 16). The size of the complete program is 19 bytes and fits into two
TinyOS messages.

The execution of the delivery section requires 23–43 ms. The execution time
without send_sy is only 940 µs. Thus, computation costs are negligible compared
to the cost of sending a message. This observation is a clear indication that the
processing capacity of the nodes can be used without significantly interfering with
energy consumption or the time-budget of a program. In general, the computation
is only limited by the amount of memory available. Again, one of the important
advantages of SwissQM is that it makes memory consumption (only static alloca-
tion) as well as time and energy consumption of programs predictable so that all
planning can be carried out at the gateway.

3.2.6 In-network Aggregation

In-network data processing has the potential to reduce the number of messages
sent to the gateway [MFHH02]. The most relevant form of in-network processing
is data aggregation. SwissQM implements it using the synopsis and a specialized
merge instruction.

Synopsis. In SwissQM, the synopsis is a fixed size buffer of 16 bytes allocated on
demand when a program is loaded. As shown in the previous examples, SwissQM
has several instructions to manipulate and send the synopsis. The synopsis can
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Table 3.3: Aggregates supported by the merge instruction

Aggregate State Initializer Merger Finalizer

COUNT c c = 1 c = c1 + c2 = c
MAX m m = expr m = max(m1,m2) = m
MIN m m = expr m = min(m1,m2) = m
SUM s s = expr s = s1 + s2 = s
AVG (s, c) (expr, 1) (s1 + s2, c1 + c2) = s/c
VARIANCE (s, t, c) (expr, expr2, 1) (s1 + s2, t1 + t2, c1 + c2) = t/c− s2/c2

be used in two ways. In raw mode, the synopsis is regarded as an array of 16-bit
elements, like the transmission buffer, that can be accessed over an element index.
The instructions iload_sy and istore_sy are used to load data from the synopsis
onto the stack and store data from the stack into the synopsis. The EWMA filter
example shown in Section 3.2.4 uses this mode of operation. In managed mode,
the synopsis is accessed through the merge instruction that combines data from
the transfer buffer with the synopsis.

Merge Instruction. The merge instruction is used to express a complex oper-
ation with a single bytecode instruction. As such, it is an example of the type of
powerful instructions that can be included in SwissQM to capture what otherwise
would be a repetitive sequence of instructions (since the type of aggregation per-
formed tends to be similar across many applications). merge is a parameterized
instruction that implements the aggregate operations shown in Table 3.3. Which
one it performs depends on the parameters that it finds on the stack. The merge

instruction has the following parameter format:

merge(n,m, aggop1, . . . , aggopm) .

The first parameter is the number of grouping expressions n. The second parameter
m is the number of aggregation expressions that follow. The parameter aggopi are
constants that specify the aggregation operations (first column in Table 3.3). m,
n, and the aggregation type constants are pushed on the stack immediately before
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calling the merge operation.

ipushb aggopm # last aggregate operation
...

ipushb aggop2 # 2nd aggregate operation
ipushb aggop1 # 1st aggregate operation
ipushb m # number of aggregate expressions
ipushb n # number of grouping expressions
merge # invoke merge

In Table 3.3, the state column shows the 16-bit variables used for each type of
aggregation. Following the TAG [MFHH02] approach, aggregation involves three
functions. The initializer function of an aggregate is used to create the initial
aggregation state, e.g., the state that represents the data sampled by a node from
its own sensors. This state is then merged with the aggregation state received
from its children using the merger function. The initializer and merger functions
run on the nodes. In SwissQM, the finalizer function is applied on the gateway.
The finalizer computes the final value of the aggregation from the received data
(see example below and Figure 3.6). Although not strictly necessary, executing
the finalizer at the gateway allows more complex aggregation functions to be im-
plemented without having to worry about the impact of such operations on the
sensor nodes (e.g., lack of floating point support or complex math processing).

Merge example. The example illustrates the use of the merge instruction and
how query processing à la TinyDB can be implemented in SwissQM. By gener-
alizing this implementation, it is easy to see how a system like TinyDB could be
implemented on top of SwissQM. Consider the following TinyDB query:

SELECT parent, MAX(light)
FROM sensors

GROUP BY parent
EVERY 10 s .

This query returns the maximum light value among all nodes that have the same
parent node in the tree. Leaf nodes simply send their synopsis containing the light
value sampled every ten seconds and the ID of their parent. Intermediate nodes
send a synopsis that includes: (1) its own parent and its own light value and (2)
a pair (node ID, MAX(light)) for every non-leaf node in its subtree. In the query,
parent is the grouping expression and MAX(light) the aggregate expression. In
general, there can be more than one grouping expression that forms the aggregation
groups, as well as multiple aggregate expressions.
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Figure 3.6: Merging aggregation state from the transmission buffer to the local
synopsis

In “managed mode”, the synopsis is organized as a table. Each line of the
synopsis contains information about one group, i.e., a parent ID and the maximum
light reading for that ID. Figure 3.6 shows an example routing tree and the
synopsis of node 2. Node 3 sends its synopsis to node 2, which will copy the
message into the transmission buffer. Using its own synopsis and the transmission
buffer, node 2 updates the synopsis and replaces the entry for parent 2. The update
of the local synopsis is carried out by the merge instruction. Next, node 2 forwards
the updated synopsis to node 0, which in turn carries out the same calculations in
order to report the final result to the gateway.

The TinyDB query and the in-network aggregation is translated into the fol-
lowing SwissQM bytecode program.

1 .section delivery, "@10s","epochclear"

2 get_parent # get ID of this node’s parent
3 istore 0 # store it as group expression
4 get_light # read light sensor
5 istore 1 # store it as partial agg. state
6 iconst_2 # aggregate type MAX=2
7 iconst_1 # number of aggregate expressions
8 iconst_1 # number of group expressions
9 merge # merge transmission buffer

10 send_sy # send synopsis
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11

12 .section reception

13 iconst_2 # aggregate type MAX=2
14 iconst_1 # number of aggregate expressions
15 iconst_1 # number of group expressions
16 merge # merge transmission buffer

The aggregation state added by a node is created in the delivery section. Since
the merge instruction always merges data from the transmission buffer to the local
synopsis, the transmission buffer must be prepared before the merge instruction is
invoked. The same layout must be used in the transmission buffer as in the synop-
sis. The initial aggregation state consists of a single line with two 16-bit elements,
the ID of the node’s parent and the reading from the light sensor. The transmission
buffer is prepared in Lines 2–5. The merge instruction looks for its parameters on
the stack. The first parameter at the top of the stack is the number of grouping
expressions (in the example, it is 1, the parent ID). The second parameter, as we
proceed down the stack, is the number of aggregate expressions (in the example,
it is 1, MAX(light)). The third parameter is a numeric code indicating the aggre-
gation operation to perform (1=COUNT, 2=MAX, etc.). If there are more aggregate
expressions (the second parameter is > 1), the stack contains one entry indicating
the operation for each aggregate expression. 2 These parameters are pushed onto
the stack in Lines 6–8. In order to merge the partial aggregation state received
from the children, the merge instruction is executed a second time in the reception
section (Lines 13–16). A message to the parent containing the aggregation state of
a node (i.e., the synopsis) is only sent in the delivery section; incoming messages
are merged into the synopsis but never forwarded to the parent. The delivery
section is declared with the epochclear directive; epochclear specifies that the
synopsis is to be cleared when the delivery section completes. The bytecode of
this program is 15 bytes in size and can be sent in one program message. For
comparison, TinyDB, disseminates this query in three messages using 168 bytes.

Managing aggregation. The aggregation example above can be used to illus-
trate several of the complex system problems associated to in-network processing.
The first one is that, as it is done in the example, the synopsis is only sent in
the delivery section. This prevents a synopsis being forwarded every time a child
sends its data. For the procedure to be correct, when a delivery section of a node
is executed, it should have received all the synopses of its children. This leads to a
staged execution schedule in which nodes deeper in the tree need to be activated
before their parents. In other words, the delivery section must be scheduled earlier

2The same mechanism is used in C to implement open parameter lists.
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the deeper a node is in the tree, such that the execution of the delivery section
of a node overlaps with the time its parent is listening for results. This requires
synchronized program execution of all nodes in the tree. In SwissQM nodes con-
stantly exchange routing information (see Section 3.2.8). With this information,
a node knows the depth of its position in the tree. Each node then uses a simple
algorithm for shifting its schedule according to its position in the tree. Such a
mechanism is needed by any implementation of the TAG approach [MFHH02] for
in-network data aggregation. The advantage of SwissQM is that the timing char-
acterization can be made more precise because of the well characterized building
blocks involved.

The second problem is what to do when a node runs out of space and is not able
to store the whole aggregation state. In the example of the previous subsection, the
aggregation state becomes larger as the aggregation proceeds up the tree. If the
network is deep, the whole aggregation state possibly does not fit in the synopsis
of a node that is at a high level in the routing tree. As mentioned earlier, SwissQM
does not support dynamic memory allocation and that for good reasons: Given
the memory constraints of mote-scale sensor nodes, dynamic memory allocation
would not solve the problem anyway; instead it would make things worse because
the resources consumed of a QM program could not be predicted. The SwissQM
solution to this problem is as follows: Once the synopsis of a node is full, the merge
operation notices this and simply forwards all the synopses it receives without
merging. The final aggregation is then performed at the gateway. In such cases,
the SwissQM approach to in-network aggregation reduces the number of messages
invoked by nodes at the lower layers of the routing tree and SwissQM does as well
as possible.

The execution time of the merge instruction depends both on the size of the
synopsis and the state stored in the transmission buffer. Nevertheless, and in
spite of its complexity, the merge instruction is not too expensive. Initializing
the synopsis (i.e., merging the transmission buffer with a previously empty synop-
sis) requires about 90 µs depending on the grouping and aggregation expressions.
Each additional aggregation row adds another 30 µs to the overall execution time.
In other words, merging m rows in the transmission buffer with an n-row local
synopsis takes approximately nm · 30 µs.

3.2.7 Multiprogramming

Multi-query support is provided on two layers: first, by merging different user
queries and second, by multi-programming in the QM. Multi-programming in the
QM is done through sequential execution of the programs. The execution duration
of a program is typically short compared to the sampling interval. Program exe-
cution including data capturing and merging is in the order of microseconds. Data
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transmission is in the order of milliseconds. Sampling periods are in the order of
seconds or larger. Thus, without any further optimization, it is possible to run a
number of programs even with the shortest sampling period of one second. For
instance, in the examples shown in Section 3.2.5 the execution of the reception sec-
tion takes in the order of 30 ms on Mica2 sensor nodes, with a sampling period in
the order of tens of seconds. From a CPU point of view there is room for over 100
such queries. Of course, there is a trade-off between the number of programs that
can be executed and the memory available to each program, i.e., the size of the
synopsis for storing aggregation state, the size of the stack and the transmission
buffer. When combined with query-merging and multi-query optimizations it is
possible to support a relatively large number of user queries we run over hundred
user queries as we will show in Chapter 4.

3.2.8 Topology Management

The SwissQM routing tree is formed using the Collection Tree Protocol (CTP)
[GFJ+09] on TinyOS 2 and the MintRouting protocol [WTC03] in the implemen-
tation for TinyOS 1. The MintRouting protocol is also used in TinyDB. The tree
provides the routing structure to send results back to the gateway. Every node
in the tree maintains a link to a parent node closer to the root. Thus, a result
message is sent to the parent node, which will then forward the message to the
next node closer to the root.

A novel aspect of SwissQM is the embedding of clock synchronization infor-
mation into the routing messages of the network layer. This piggy-backing avoids
the cost of separate time-synchronization messages such as those used in TinyDB.
Clock synchronization plays a key role in program scheduling, particularly when
aggregation is involved. Every routing message is timestamped by the sender.
Whenever a routing message is received from its parent, a node adjusts its clock
to the time found in the time stamp of the received message minus an average
transmission delay (18 ms, a deployment parameter). Experiments show that this
simple protocol is accurate enough. An alternative would be to use a more accu-
rate but more complex protocol such as TPSN [GKS03] that requires an explicit
two-way message exchange.

3.2.9 Program Dissemination

QM programs are split into several fragment messages. Every fragment message
contains the identification number of the program as well as an enumeration num-
ber of the fragment. The first fragment message contains metadata of the program,
i.e., the length of the init, delivery, and reception section, the sampling period, and
a number of program flags such as the presence of a synopsis, the synopsis-clear
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Figure 3.7: Message mapping: fragment message→ broadcast message→ TinyOS
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mode (“manualclear” or “epochclear”) as well as the time when the delivery sec-
tion is invoked the first time. This program header information uses 10 bytes in the
first fragment, leaving 16 bytes for the bytecode of the program. Starting with the
second and following fragments, the fragment messages only contain the program
and the fragment ID (2 bytes), leaving 24 bytes for the program bytecode. The
fragment messages are sent as payload over the broadcast layer. The payload size
of a broadcast message is 26 bytes. The broadcast layer adds a sequence number
to the message. A sequence number in the broadcast message guarantees that a
node rebroadcasts a message exactly once. The size of a broadcast message header
is three bytes. A broadcast message is stored as the payload of a TOS message,
the basic message type provided by TinyOS. The size of a TOS message is 36
bytes (the default message size on TinyOS). The message mapping between the
layers is shown in Figure 3.7.

Since wireless ad-hoc networks expose a high bit-error rate, messages are often
corrupted and/or lost. SwissQM uses two mechanisms to alleviate the effects of
lost messages that contain program fragments. The first mechanism is based on a
timeout for program reception and the second on snooping result messages.

When the first fragment message is successfully received, the number of out-
standing fragments is computed from the lengths of the program sections contained
in the first fragment. Next, the dynamic program structures (stack, transmission
buffer, synopsis) are allocated on the heap and a timer is started. When this timer
times out after two seconds before all fragments of this program are received, a
node sends a program request message to its neighbors and restarts the timeout
timer. The request message contains the program ID and the missing fragments
encoded as a bit-mask (16 bits). A node that receives this message and has the
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specified program, generates the requested fragments for the program. The node
then sends each fragment in a program reply message back to the requesting node.
The reply message also contains the current epoch count and the relative offset to
the start of the next scheduled execution. This allows a node to join in even if the
program execution has already started in the meantime.

In addition to this mechanism and in order to accommodate nodes that join
late, nodes snoop on the result messages. If a node sees a result message with
a program identifier it is not aware of, it sends out a request for all program
fragments. Since it is unable to determine the number of fragments of the program,
it sets all bits in the 16-bit fragment bitmap of the request message. As soon as it
receives fragment 0, it will recompute this mask from the section lengths found in
that fragment. This snooping approach is also used in TinyDB. The difficulty of
getting a program disseminated to all nodes is the reason why SwissQM places so
much emphasis on compact bytecode and the use of highly expressive instructions,
such as merge.

3.3 SwissQM Gateway

The SwissQM/Gateway system is implemented in Java as a set of OSGi [OSG09]
components and services. OSGi allows the life cycle of Java components, the so-
called bundles. The use of OSGi has an additional advantage that services can be
easily be accessed remotely through R-OSGi [RAR07]. This allows a tighter inte-
gration into a client than possible by, for example, a traditional JDBC integration.
Components can be easily migrated from the gateway to fat clients such as the
SwissQM plug-in available for the Eclipse platform, which can be used to control
the sensor network, register queries and user-defined functions. Thin clients only
need to access the Gateway service to issue a query.

The gateway is designed as a modular unit to allow the user to dynamically add
new components such as language parsers or query optimizers even at runtime. The
service-oriented architecture also allows to use different optimizers and translation
workflows for different queries or users. Like the SwissQM virtual machine the
gateway was also designed as an extensible research platform that can be used for
a wide range of data-centric applications for wireless sensor network.

3.3.1 Architecture

The architecture of the query front end and the basic query processing workflow
is shown Figure 3.8. A user query or a user-defined function (UDF) is submitted
by a client through the Gateway Service. SwissQM provides two query interfaces
the user can choose: SQL and XQuery. The queries and the UDFs are parsed and
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Figure 3.8: Architecture of the SwissQM/Gateway

transformed into a language-independent intermediate representation. OSGi bun-
dles are generated out of the user queries and functions. The bundles are generated
through the ASM Java bytecode manipulation framework [BLC02]. Wrapping both
queries and UDFs into bundles allows the user to make direct use of the life cycle
management provided by OSGi.

This translation process performs both merging and rewriting of queries as de-
scribed in Chapter 4. Virtual queries are finally mapped into network execution
plans, which are then disseminated into network in form of bytecode programs
through the TinyOS Mote Communication Interface. Virtual queries can be re-
assigned to different network queries, thus, allowing for online changes in the
parameter set of the query.

3.3.2 Query Interfaces

The gateway system supports two different query interfaces: SQL and XQuery.
Users can submit queries via a webserver-based user interface or through the
Eclipse IDE running the SwissQM plug-in. A client application such as a smart
home application (Mueller et al. [MRDA07]) can submit a query by invoking the
Gateway Service through R-OSGi.
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SQL Interface. SwissQM provides the same SQL-like query interface as TinyDB.
Queries have the following format.

SELECT {attributes, aggregates}
FROM sensors

WHERE {predicate}
GROUP BY {attributes}

HAVING {predicate}
EVERY time span e

The select-clause can contain sensor attributes and spatial aggregates, but un-
like TinyDB it supports general expressions and even user-defined functions. User
defined functions have to previously submitted registered in the gateway system.
SwissQM supports both spatial and temporal aggregation. Spatial aggregates are
evaluated every sampling period (epoch). They aggregate data across nodes (spa-
tially). The supported aggregation functions are shown in Table 3.3 (page 54).
Grouping of aggregates is also supported through the group by clause. Tempo-
ral aggregation is provided by additional functions that can be used in the select
clause. For sliding windows the function SWINDOW(expr, length, aggop) and for
tumbling windows TWINDOW(expr, length, aggop) are available. expr refers to ex-
pression whose value is to be aggregated. length determines the size of the window.
This parameter can be specified in time units or number of tuples. In the context of
fixed-interval samples such as in SwissQM, time-based and tuple-based windows
are equivalent. Sliding windows are evaluated for each sampled tuple whereas
tumbling windows are evaluated every length tuples or time. aggop determines
the evaluator function of the window. SwissQM supports AVG, COUNT, MAX, MIN,
VARIANCE, and SUM.

XQuery Interface. The XQuery language accepts XQuery FLWOR expres-
sions. The XQuery front end is based on the XML schema illustrated in Figure 3.9.
The concept of sampling is introduced by a function qm:sample(). The following
example shows a SQL query and the corresponding FLWOR query.

SELECT nodeid
FROM sensors

WHERE light < 100
EVERY 4 s

for $n in qm:sample(’4s’)/nodeid

where $n/light lt 100

return $n/nodeid

Submitted UDFs can be used in both XQuery and SQL queries. In XQuery they
are mapped into the udf: space. The following example shows spatial aggregation
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. . .
<node>

<nodeid> 0 </nodeid>

<light> 323 </light>

<temp> 21 </temp>

. . .
</node>

<node>

<nodeid> 1 </nodeid>

. . .
</node>

. . .
<node>

<nodeid> 0 </nodeid>

. . .

epoch e

epoch e+ 1

node 0

node 1

Figure 3.9: XML Schema for XQuery front end

query with a UDF ewma.

SELECT parent, AVG(ewma(light)), COUNT(*)
FROM sensors

GROUP BY parent
EVERY 5 s

The corresponding FLWOR query is a bit more verbose. It uses an element con-
structor in the return clause that will explicitly generate a result tuple that contains
the group value and the two aggregates.

for $n in qm:sample(’5s’)/nodeid

group $n as $siblings by $n/parent as $parent

return

<tuple>

<parent>$parent</parent>

<avg>{udf:ewma($siblings/light)}</avg>

<count>{count($siblings)}</count>

</tuple>

3.3.3 User Defined Functions

SwissQM provides an additional language interface for user-defined functions. Af-
ter a UDF is submitted it is parsed, translated into a bundle, and registered. It
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can then be used in any query (in SQL or the XQuery front end). The SwissQM
C language interface supports a subset of C. The implementation allows only one
single data type int that maps to the signed 16-bit data type of the SwissQM
virtual machine. Due to the lack of subroutine calls (there is no such instruction
in SwissQM) recursion in UDFs is not allowed. Non-recursive function calls are
inlined by the compiler. Functions can have side effects, i.e., external state. UDF
modules can make use of this through global variables and the static keyword in-
side a function. The following example UDF implements the exponential weighted
moving average EWMA filter used in the previous example query.

1 int ewma(int u) {

2 static int y1 = 0;

3 int y;

4 y = (4*y1+u)/5;

5 y1 = y;

6 return y;

7 }

State that is maintained over multiple invocations, such as the variable y1 in
the example, is allocated on the synopsis buffer if the UDF is pushed into the net-
work. This requires exclusive access to the synopsis (the such called “raw” mode),
therefore the synopsis cannot be used otherwise at the same time, e.g., for aggrega-
tion. The gateway then decides which of the operation is pushed into the network
and which is executed at the base station. The expression AVG(ewma(light)) from
the previous example query would use the synopsis for the both aggregation and
the UDF. In this case, the gateway decides to push the UDF into the network and
perform the aggregation operation in the stream engine at the gateway.

3.3.4 Query Life Cycle Management

Mapping both queries and functions into bundles has the advantage that they
can benefit from the life cycle management provided by the OSGi container. Life
cycle management is particularly important for long running continuous queries
SwissQM was designed for. It is, for instance, possible to temporarily disable a
query and restart it after some time or even replace an existing query with a new
one. As an example, a query can be updated with a more selective one or by
one making use of more sophisticated filtering of the sensor data. This has the
advantage over submitting a new query that this modification is transparent to
the client that receives the data stream. 3 This extensive query management

3Should the schema of the result stream be changed by a query update, the client of course
is also affected and the update is no longer transparent.
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Figure 3.10: Life cycle of a Query

functionality can be implemented due to strict decoupling of network operations
from queries.

Figure 3.10 shows the life cycle of a query. A query update can be initiated on
a running or a suspended query. The client can update the query by modifying
the query string. The query is parsed again and the changes are committed to
the network and the execution platform. Exposing the life cycles has a further
advantage: the gateway configuration including the queries can be made persistent.
SwissQM runs on the Concierge OSGi container [RA07], which persistently stores
the bundles. For example, when the SwissQM/Gateway is shutdown all query and
UDF bundles in the system are stored onto persistent storage. After are restart
of the gateway the bundles are loaded and can be resumed by the user. For the
sensor network, the gateway will treat this operation equivalent to a query update
that results in a bytecode program that is sent to the nodes.

3.4 Examples

In this section we present a few more complex use cases for the SwissQM virtual
machine and illustrate how high-level queries and programs are translated into
bytecode sequence by the SwissQM/Gateway.
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3.4.1 Conventional Streaming Queries

The following query is specified in a streaming variant of SQL and is used to ana-
lyze the correlation between temperature and brightness (light) readings. Assume
that the light sensor produces only unprocessed raw values from the A/D con-
verter. Further assume that the light sensor has an offset reading that needs to
be accounted for. The goal of the query is to average temperature readings of
sensor nodes that have similar brightness readings. The groups are built by first
removing the offset and then forming bins by applying integer division.

SELECT (light− 512)/10, AVG(temp)
FROM sensors

GROUP BY (light− 512)/10
EVERY 30 s

This simple query illustrates very well key differences between SwissQM and
TinyDB. The query contains expressions to be computed as part of the query
evaluation. TinyDB does not encode complete expression trees. Instead, all ex-
pressions must match a fixed format of the form:

〈attribute〉
| 〈aggregate〉

(
〈attribute〉 〈operation〉 〈constant〉

)
This limits the range of expressions supported by the current version of TinyDB.
In SwissQM, the query can easily support arbitrarily complex expressions (within
the inherent limits of memory available to QM programs) since we do not impose
a hard-coded expression format. In order to compare with TinyDB, we simplified
the grouping expression from (light − 512)/10 to light. TinyDB then uses three
query messages (120 bytes in total) to disseminate the query. In our case the
corresponding QM program requires only 20 bytes (two fragment messages). The
bytecode for the original query is as follows:

1 .section delivery, "@30s"

2 get_light

3 ipushw 512

4 isub

5 ipushb 10

6 idiv

7 istore 0 # store group expression
8 get_temp

9 istore 1 # sum := temp
10 iconst_1

11 istore 2 # count := 1
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Figure 3.11: Layout of synopsis and transmission buffer (during delivery section)
for the grouping aggregation query

12 ipushb 5 # agg: AVG = 5
13 iconst_1 # number of agg expr: 1
14 iconst_1 # number of grp expr: 1
15 merge

16 send_sy

17

18 .section reception

19 ipushb 5 # agg: AVG = 5
20 iconst_1 # number of agg expr: 1
21 iconst_1 # number of grp expr: 1
22 merge

Figure 3.11 shows the layout of the synopsis for this example. A group is identi-
fied by the value of the grouping expression. The aggregation state for AVG consists
of a sum/count pair. Figure 3.11 also shows the layout of the transmission buffer
as is used in delivery section. The aggregate state contributed by the own sensors
is prepared and merged to the local synopsis in the delivery section. When the
reception section is executed the transmission buffer contains the partial aggrega-
tion state received from the descendant nodes. The size of the program including
the complex grouping expression is only 27 bytes (two fragment messages).

3.4.2 In-Network Event Generation

Assume that a sensor network deployed in a building is used to detect potential fire
related alarms. It is reasonable to assume that the presence of a fire is correlated
with a sudden increase in temperature. In the following example the IDs of the
nodes whose temperature reading increased by more than 10 % during the last 10
minutes are returned. The corresponding query is:
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SELECT s.nodeid
FROM sensors AS s,

(SELECT nodeid, SWINDOW(temp, 10 min, MIN) AS mintemp
FROM sensors

GROUP BY nodeid
EVERY 2 min) AS w

WHERE s.temp > 1.1*w.mintemp AND s.nodeid = w.nodeid
EVERY 2 min

In the inner query, a sliding-window of the temperature reading is created for
every node. The query returns the smallest temperature values observed during
the last 10 minutes for every node. These values are then compared with the
current temperature reading in the outer query. First, observe that the window is
maintained locally for each node, i.e., no aggregation state needs to be exchanged.
Second, in contrast to a centralized approach where the event detection is done at
the gateway, a message needs to be sent to the gateway only if the predicate in
the where-clause is satisfied.

The QM program implementing this query uses a window that contains the last
five temperature samples. This window is advanced every two minutes, resulting in
a total window width of 10 minutes. The window entries are stored in a five element
ring buffer. The buffer is implemented as an array and an index next_insert

that is used to determine where to insert the next element. Figure 3.12 shows the
layout and the initial state of the synopsis where the ring buffer is stored. The
array occupies positions 0–4, the next_insert index position 5. The bytecode
listing of the corresponding QM program is shown below.

The synopsis is initialized in the init section. Initially, the ring buffer elements
are set to 32767. This is the largest positive value that can be represented using
a 16 bit signed integer type.

1 # initialize synopsis
2 # set syn[0..4]:=MAX (0x7fff)
3 .section init

4 ipushb 4 # i := 4
5 l1: dup

6 iflt l2 # exit if i<0
7 dup

8 ipushw 0x7fff # push MAX
9 swap

10 istore_sy # syn[i] := MAX
11 idec # i := i-1
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12 goto l1

13 l2: pop

14 iconst_0 # next insert := 0
15 istore_sy 5

16

17 .section delivery, "@2min","manualclear"

18 # find min(syn[i], i=0..N-1)
19 iload_sy 4 # establish invariant
20 ipushb 4 # setup variant
21

22 # loop variant i on top of stack, invariant below
23 # stack content: min(syn[j],j=i..4), i
24 l3: dup

25 iflt l5 # exit loop if i<0
26 dup_x1 # → i,x,i
27 iload_sy # → i,x,syn[i]
28 dup2 # → i,x,syn[i],x,syn[i]
29 if_icmplt l4 # → i,x,syn[i] jump if x<syn[i]
30 swap # → i, min(x,syn[i]),max(x,syn[i])
31 l4: pop # → i,min(x,syn[i])
32 swap # → min(x,syn[i]),i
33 idec # i := i-1
34 goto l3

35 l5: pop

36 # stack content at the end of loop: min(syn[i],i=0..4)
37

38 # insert new element into window
39 get_temp # read new sensorvalue
40 dup # → min temp,temp,temp
41 iload_sy 5 # get next insert
42 istore_sy # syn[next insert] := temp
43

44 # advance next insert
45 iload_sy 5 # get next insert
46 iinc # next insert := next insert+1
47 ipushb 5

48 irem

49 istore_sy 5 # next insert := next insert%5
50

51 # current stack content: .., min,temp
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Figure 3.12: Layout and initial state of synopsis for “in-network event generation”
example

52 swap # →temp,min
53 dup # → temp,min,min
54 ipushb 10

55 idiv # → temp,min,min/10
56 iadd # → temp,min+min/10
57 if_icmple l6 # skip if temp≤min+min/10
58 get_nodeid # read nodeid
59 istore 0

60 send_tb # send nodeid
61 l6:

The reception section is invoked every two minutes, i.e., when the window needs to
be advanced. Then the minimum value of the ring buffer elements is determined
(lines 18–35). Then the temperature sensor is sampled and the value obtained
stored at the next insert position of the synopsis (lines 39–42). Afterwards, the
next insert position is advanced (lines 45–49). Lines 52–57 evaluate the predicate
temp > 1.1 ·mintemp. If the predicate evaluates to true, an event is detected and
the node sends its ID to the root.

The size of the bytecode is 62 bytes, which can be disseminated in 3 fragment
messages. The execution of the delivery section takes 40 ms on the Mica2 imple-
mentation. The reception section is empty as data does not need to be aggregated
between nodes.

3.4.3 Adaptive Sampling

In principle, it is sufficient if sensor nodes only send data when the observed
physical phenomena change. This allows answering queries directly at the gateway
rather than fetching every tuple from the network. A similar idea has already been
proposed by Deshpande et al. in the BBQ system [DGM+05] where a statistical
model is run at the gateway. Whenever the prediction of the model does not reach
the confidence level specified in the query, the gateway actively requests additional
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data from the sensors in order to update the model parameters and thus increase
the quality of the prediction. In BBQ, the model at the gateway decides when to
acquire additional data. As an extension of this idea, one can consider running
a replica—or at least a simpler, less complex model—at the sensor nodes that
allows the node to decide on its own when the model at the gateway is outdated
and requires new data to update its parameters. By moving from a pull-based to
a push-based mode of operation, the number of messages can further be reduced
since no explicit requests have to be sent.

We illustrate how a trivial strategy for adaptive sampling can be implemented
in SwissQM. The idea is very simple: increase the sampling rate if the phe-
nomenon changes rapidly, otherwise decrease the sampling rate. The following C
code snippet illustrates how to implement adaptive sampling.

1 int period = 0;

2 int count = 0;

3 int oldval = getlight();

4

5 executeEvery2min() {

6 int newval;

7 if (count == 0) {

8 newval = getlight();

9 if (abs(newval-oldval)>oldval/10) {

10 // change > threshold → decrease period
11 if (period > 0) {

12 // don’t change period if already fastest
13 period = period - 1;

14 }

15 } else {

16 period = period + 1; // increase period
17 }

18 oldval = newval;

19 send(getnodeid(),newval);

20 count = period;

21 } else {

22 // no sampling required
23 count = count - 1;

24 }

25 }

As the pseudo code shows, the program applies adaptive sampling on the light
sensor. The routine executeEvery2min (line 5) is scheduled every two minutes,
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which determines the shortest possible sampling period. For larger sampling pe-
riods a variable count is introduced. When the routine is scheduled the variable
is decremented (line 23). Sampling is only done when count reaches zero (line 8).
Thus, all sampling periods are multiples of 2 minutes. The initial value assigned
to count is the current sampling period stored in period. This period is increased
or decreased depending on the difference between two consecutive samples newval
and oldval. When the difference is larger than ± 10% the period will be decre-
mented (line 9 in the pseudo code). Otherwise the period is increased. After each
sample the node sends its ID and the sensor value to the root (line 19). The C
code snipped can be translated into the following bytecode program.

1 # initialize synopsis
2 .section init

3 iconst_0

4 istore_sy 0 # period := 0
5 iconst_0

6 istore_sy 1 # count := 0
7 get_light

8 istore_sy 2 # oldval := getlight();
9

10 .section delivery, "@2min", "manualclear"

11 iload_sy 1 # load count
12 ifneq l1 # jump if count 6= 0
13 get_light # → light
14 dup # → light,light
15 iload_sy 2 # → light,light,oldval
16 isub # → light,light-oldval
17 dup # → light,light-oldval,light-oldval
18 ifge l3 # skip ineg if ≥ 0
19 ineg # → light,abs(light-oldval)
20

21 l3: iload_sy 2 # → light,abs(light-oldval),oldval
22 ipushb 10 # → light,abs(light-oldval),oldval,10
23 idiv # → light,abs(light-oldval),oldval/10
24 if_icmple l4 # within limit then increase period
25 iload_sy 0 # → light,period
26 dup # → light,period,period
27 ifeq l5 # skip if already fastest
28 idec # decrement period
29 dup # → light,period-1,period-1
30 istore_sy 0 # period := period-1
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31 goto l5

32 l4: iload_sy 0 # increment period
33 iinc

34 dup # → light,period,period
35 istore_sy 0 # period := period+1
36

37 # stack content: light,period
38 l5: istore_sy 1 # count := period
39 dup # → light,light
40 istore_sy 2 # oldval := light
41

42 istore 1 # send nodeid and light
43 get_nodeid

44 istore 0

45 send_tb

46 goto l2 # go to end of section
47

48 l1: iload_sy 1 # sampling skipped
49 idec # count := count-1
50 istore_sy 1

51 l2:

The length of the resulting QM program is 64 bytes. It can be sent using three
program messages. In the bytecode, the state kept by the program is stored in
the three global variables, which are placed in the synopsis: period at position 0,
count at position 1, and oldval at position 2. The initialization is done in the
init section.

3.5 Evaluation

3.5.1 Execution Time

Table 3.2 (page 46) lists the average execution time of each instruction imple-
mented in Mica2 configuration of SwissQM. The execution time of each instruction
was measured by instrumenting the SwissQM application code and set of micro
benchmarks. For each bytecode instruction executed, the instrumented code sets
an I/O register at the start and at the end. Setting a bit in an I/O register takes 2
clock cycles (i.e., 270 ns) on the ATmega128 micro-controller. Thus, the overhead
of the instrumentation (which is included in the measurements) is small compared
to the execution time of the actual bytecode instruction. The execution duration
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was measured as the resulting pulse length of the signal observed with a digital
oscilloscope connected to the I/O port.

As shown in Table 3.2, most instructions are in the order of tens of micro-
seconds. Exceptions are instructions for sending messages and certain instructions
for reading sensor data. Both of these kinds of instructions are in the order of
milliseconds. The execution times for the send_tb instruction, which sends the
contents of the transmission buffer to the network, and for the send_sy instruction,
which sends the synopsis, depend on the amount of data that needs to be sent.
Furthermore, since a contention-based MAC layer for the radio communication
is used, additional random delay is introduced. For example, we measured 22–
42 ms for sending a full transmission buffer (send_tb instruction). The execution
time for sensor sampling instructions depends on the type of sensor. For the
sensors on the Mica sensor board, the execution times for the sampling instructions
vary between 0.3 and 3.4 ms. Reading the light and temperature sensors uses
a single A/D conversion and requires about 0.3 ms. Accessing the microphone
takes longer (3.4 ms) because the A/D converter is accessed 10 times and the
largest value obtained is returned. Reading system attributes (e.g., get_nodeid
and get_parent) is faster and in the order of microseconds because no physical
sensors need to be accessed.

This evaluation shows that even though SwissQM uses an interpreting VM in-
stead of just-in-time compilation (JIT) the performance penalty is not significant.
A frequently occurring stack manipulation instruction such dup requires 109 cy-
cles CPU cycles, which is acceptable for embedded computing. Computationally
more intensive operations, however, can be added natively as application-specific
instructions such that the price of the interpreter overhead does not have to be
paid. The approach chosen in the SwissQM makes use of the lower complexity of
an interpreting VM and provides solution to mitigate the effects on performance
by an extensible instruction set.

3.5.2 Concurrent programs

A direct consequence of the optimized use of resources and the use of a well char-
acterized bytecode to represent programs is that SwissQM can support a higher
level of multi-programming than more traditional platforms for programming sen-
sor networks. As part of the evaluation of the platform, we have performed an
experiment in which six different programs are concurrently run on a single node.
The experiment is performed on a single Mica2 mote. The purpose is to inves-
tigate whether the six moderately complex programs can run concurrently on a
mote. The space requirements for the six programs can be easily determined by
analyzing the bytecode. In this experiment the timing aspect is analyzed.

The programs are characterized in Table 3.4; lk represents a light reading, tk
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Table 3.4: Six QM programs used for multi-program execution experiment

Description Function Period Size #Msgs

p0 raw light yk = lk 2 s 4 B 1
p1 raw temperature yk = tl 2 s 4 B 1
p2 arith. operation yk = 1

2
(lk + tk) 4 s 8 B 1

p3 max. temperature yk = maxi=0,...,i ti 4 s 15 B 1
p4 EWMA filter yk = αyk−1 + (1− α)lk 4 s 16 B 1

p5 window average yk = 1
5

∑4
i=0 tk−i 8 s 46 B 3

a temperature reading. Each program computes a different function of the light
and temperature readings. Each program uses a different sampling period, but
all programs produce a single value yk for each epoch k. Although it is possible
to compute the results for p2, . . . , p5 from the results returned p0 and p1 all six
programs are run by the motes. The redundancy in the data is used to verify the
results.

The experiment is performed on a single Mica2 mote. The experiment ran for
four hours in the afternoon until dusk in order to capture a drop in temperature
and light. A lamp was turned on and off during two intervals in order to produce
clearly identifiable changes in light and temperature. Figure 3.13 shows the data
obtained by programs p0, p1, p2, and p3. The results produced by programs p4 and
p5 are similar to those of p0; these results are shown in Figure 3.14 (using a different
scale to highlight the differences). The results obtained show 100 % coverage of
the data. Note that a since single node is used that is directly connected to the
gateway the results are not transmitted over the radio. The reliability of the
serial connection is high enough such that packet loss can be ignored. The full
coverage indicates that the delivery sections of the programs could be scheduled
at the right moment. If a program delays execution it prevents running another
program, which in the end results in missing tuples.

This experiment also illustrates several important advantages of SwissQM.
First, the curves confirm observations made by Jeffery et al. [JAF+06]: There
is a great deal of noise in sensor data. This noise can be seen in the graph for p0
in Figure 3.14. This noise can be reduced by applying filter functions such as p4
and p5. The efficient in-network implementation of these functions motivates the
design of a powerful and flexible platform for programming sensor networks such
as SwissQM. Programs that just capture and send sensor data are not enough.
In practice, the need for keeping state and specifying complex control flow in a
program is even larger.
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Figure 3.13: Complete results for p0, p1, p2 and p3

The second advantage illustrated by this experiment is the ability of SwissQM
to run programs concurrently. The implementation of the six programs in this
experiment was carried out manually (not using a high-level language) and pur-
posefully in a näıve way. As a result, the execution is extremely inefficient: Every
program samples the light and temperature sensors separately; the readings are not
shared between the programs. The gateway would generate one single program
sames sample both sensors every two seconds and compile much more efficient
bytecode that allows the sharing of the sensor data in all programs. Neverthe-
less, despite these inefficiencies, the six programs run perfectly well and without
interfering with each other, which shows the robustness of the SwissQM engine.

3.5.3 Program Distribution

This section analyzes the program distribution in a large scale network. In order
to perform this experiment under controlled conditions as well as due to the lack
of such a large number of sensor nodes, the experiment is run in the TinyOS
Simulator (TOSSIM) [LLWC03] rather than on real Mica2 nodes. The simulator
is run on a standard Intel-based PC. The advantage of TOSSIM and the nesC
compiler is that the same software running on the Mica2 nodes can be executed
natively on the platform that runs the simulator. TOSSIM is able to accurately
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Figure 3.14: Detailed zoom for programs p0, p4 and p5

simulate the network behavior of many nodes. The simulator uses a probabilistic
bit error model for the radio links.

The experiment consists of a 10× 10 grid of 100 sensors with a 4.5 m spacing
between the nodes. The average transmission range is set to 15 m. The bit error
rates used in the radio links are computed based on empirical data from a study
by Ganesan et al. [GKW+02] and the distance between two nodes. The root
node is located in one corner of the grid and injects a program into the network.
Figure 3.15 shows gird layout and the program dissemination starting from the
lower right corner at different time instants.

In this experiment, we measured how long it takes to distribute a program that
fits into a single message. We ran a statistically significant number of experiments
and picked the best and worst case. The results are shown in Figure 3.16, which
shows the percentage of nodes that received the program as a function of time.
The program was disseminated using one single fragment message. In the best
case, all nodes get the program in about 5 s. In the worst case, only 2 % of the
nodes (the root node and one of its neighbors) successfully received the program
during the initial flooding phase. All other nodes must resort to the snooping
protocol in order to recognize that they have missed the program and then request
it from other nodes. For the program in Figure 3.16 clearly shows the steps in the
network coverage after every 5 seconds, i.e., when a result message is generated,



3.5. EVALUATION 79

(a) t = 0.5 s (b) t = 1.5 s (c) t = 3.0 s

Figure 3.15: Snapshots taken during program dissemination show which nodes
have received the program
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Figure 3.16: Program coverage during program distribution over time

nodes overhear it and realize that they have not received the program. In the
worst case, 100 % coverage is reached after 53.6 seconds.

Flooding is an aggressive method to distribute data in networks. A slower
approach to information distribution is Trickle by Levis et al. [LPCS04]. Trickle
was developed for code dissemination in wireless sensor networks. It uses “polite
gossip” where nodes periodically broadcast a summary, e.g., of the programs they
are currently running, to local neighbors. When a node hears an older summary it
initiates a local broadcast and sends an update. Gossip-based approaches typically
trade-in latency against transmission cost. Flooding in SwissQM also provides a
method for synchronization the query execution.
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3.5.4 Comparison with TinyDB

These experiments shown in the previous section illustrate a well known limitation
of ad-hoc wireless networks: the difficulty of achieving reliable communication.
This lack of reliability is the reason why SwissQM puts so much emphasis on
compact bytecode. If the results are so poor for a single message, distribution of
a program that requires 2, 4, or even more messages is quite challenging. In fact,
in our experiments such programs almost never reached 100 % coverage and often
reach only a small fraction of the network. Note that this is a problem of the
network. SwissQM (or other platforms) cannot solve it, it can only minimize its
effects by minimizing the bytecode and running protocols that are aware of such
failures.

To illustrate the advantages of a design like SwissQM over existing systems, we
compared the program sizes of TinyDB and SwissQM. The interesting observation
about this comparison is that TinyDB, unlike SwissQM, uses a (SQL-like) declar-
ative representation of programs; in theory, a declarative representation should
be more compact. In all our experiments, however, the optimized bytecode of
SwissQM results in programs that are not only more expressive but also far more
compact. TinyDB uses a rather verbose representation format. One message is
used for each field and clause expression. Table 3.5 shows the sizes of several
TinyDB queries and the sizes of the equivalent SwissQM programs. The queries
shown cover the design space of TinyDB. Overall, SwissQM programs use less
messages and less bytes than the corresponding TinyDB queries. In addition,
TinyDB developers increased the TinyOS message size to 56 bytes in order to sup-
port larger packets. SwissQM uses 36 bytes (default on TinyOS). Hence, SwissQM
not only uses less messages, but also smaller messages. Larger message sizes have
the problem that they increase the message loss rate. Results would be worse for
56 byte messages, since the probability for packet corruption is larger.

At this point it also has to be noted that the current implementation of Swis-
sQM lacks some features that are available in TinyDB. For example, TinyDB
allows storing samples in a memory and then issue a query containing a join
between the current sensor reading and the history data stored as a relation in
memory. This functionality as well as access to flash memory, used to can store
log data, can be provided as additional application-specific instructions. Similar
to the merge instruction for spatial aggregation a join instruction can be provided
that implements a join of the streaming data from the sensors and the relation
stored in flash. In order to generate the corresponding bytecode programs, the
query model of the gateway needs to be expanded accordingly.



3.6. SUMMARY 81

Table 3.5: Number of messages (and bytes) transmitted for SwissQM programs
and TinyDB queries generating the same data

Query TinyDB SwissQM
msgs bytes msgs bytes

SELECT nodeid,light,temp 3 168 1 20
FROM sensors

SELECT nodeid,light FROM 5 280 2 30
sensors WHERE temp<512

AND nodeid>50

SELECT MAX(light) 2 112 1 22
FROM sensors

SELECT parent,MAX(light) 3 168 1 25
FROM sensors

GROUP BY parent

3.6 Summary

In this chapter, the SwissQM virtual machine for sensor network was presented.
The example queries demonstrated that SwissQM is a flexible execution platform
for query processing in wireless sensor networks. The use of a bytecode interface
increases the abstraction level at the network border. Furthermore, the expres-
siveness and, in fact, the Turing-completeness of SwissQM allows performing even
complex task in-the network. As motivated in previous chapters the resource con-
strained sensor nodes alone cannot perform all the query processing work. Instead
in the SwissQM approach, the work is shared between the more powerful gateway
and the network nodes. The operations are split between the gateway and the
nodes depending on the capabilities of the nodes and the communication costs.
Having described the execution platform, the next chapter describes the query
processor running at the gateway and how the execution platform is used in a
cost-efficient manner.
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4
Query Optimization for Sensor Networks

4.1 Motivation

Existing work on query processing for wireless sensor networks (WSNs) does con-
sider the possibility of concurrently running more than one query in the sys-
tem [YG02, MFHH05, GM04]. However, the majority of the deployments and
much of the research work focuses on single application (single query) systems
(e.g., [MCP+02, LBV06, JOW+02, TPS+05]). Interestingly, the current cost of a
sensor network deployment is still very high and it is unlikely that it will signifi-
cantly decrease in the near future. For instance, Langendoen et al. [LBV06] report
on a 100+ node deployment in an agricultural project that requires one full year of
planning and a budget in excess of e300,000. In such a deployment, economically,
it makes sense to design the system so that it can efficiently support concurrent
queries.

The challenge behind multi-user support lies in resolving the trade-off between
efficient operation of the network (reduced traffic, sparse duty cycles at the sen-
sors, avoiding redundancy in measurements and messages) and the number of
independent user requests for data that need to be supported (each one interested
in a potentially different set of sensors and acquisition rate). The difficulty with
multi-query optimization is that while in many cases merging queries is a good
strategy [MA06, XLTZ07], there are enough cases where alternatives like query
splitting, and query rewriting are better options. In this chapter, the different al-
ternatives and approaches are discussed. An important conclusion of this work is
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that multi-query optimization in sensor networks needs to include more than just
query merging. We explore the design space for a query optimizer whose input are
SQL-like queries and its output a set of execution plans (e.g., bytecode programs)
to be run in a sensor network. Queries can be submitted and withdrawn at any
time. We start the discussion of query optimization by using a simple cost met-
ric on the message complexity, i.e., the number of messages transmitted. Later,
we expand the discussion to a more general cost model that includes the overall
energy consumption.

An additional complexity is the dynamic nature of query processing. Users
can submit and withdraw queries at any time, hence, the query processing and
optimization problem cannot solved upfront in a static manner. There is an in-
herent trade-off between an efficient execution of the individual queries and the
costs required to account for changes in the query load. This leads to different
optimization strategies, such as eager optimization that tries to minimize the total
execution cost and lazy strategies that minimize the update cost after a change.
In this chapter, these strategies are described and compared for different query
workloads. In general, query optimization may use the following mechanisms:

Merging. Combining two or more queries into a single execution plan. Then
extracting the results for each query from the combined data stream.

Splitting. Dividing a query into sub-queries so that the sub-queries can either be
answered from already existing result data streams or better merged with
other queries. Then reconstructing the result data stream from all the dif-
ferent pieces.

Parallelizing. If the overlap of queries is too small it can be better not to merge
queries but to run them separately.

4.2 Data Model and Operators

The basic data model is a virtual stream, equivalent to that used in existing work
by Madden et al. [MFHH05] and Yao et al. [YG02]. The stream contains tuples
with time stamp indicating when the tuple was issued and a set of attributes.
Traditional stream processing operators are then applied on the data stream.

4.2.1 Data Model

In response to a query, each node produces a data stream, i.e., a ordered sequence
of tuples. The tuples contain the values that correspond to the expression listed
in the select clause of the query. The attributes are typically raw sensor readings



4.2. DATA MODEL AND OPERATORS 85

although more complex expressions such as aggregates are also possible. Each node
periodically samples all sensors that are specified in a query and generates a tuple
that is then processed as in a traditional stream processing engine. However,
the combination with sampling gives rise to specific properties that cannot be
observed in traditional stream processing systems. Essentially, sampling can be
considered as filtering along the time axis. The model assumes that all sensors of
a node requested in a query are sampled at virtually1 the same time instant. The
model further assumes that the clocks of the nodes are also synchronized such that
samples taken on different sensor nodes can be correlated. Similar to TinyDB, the
result tuples contain a time stamp, called epoch, that enumerates the tuple, and
hence, the samples taken from each sensor on that node. The epoch attribute
is added implicitly to the result stream even if it is not specified in the query.
Additional non-sensor attributes can also be specified in queries. These attributes
can be statically assigned values, such as the nodeid, a geographic location of an
immobile node, a room number where node is deployed, etc. Additional dynamic
attributes describe the state of a node, e.g., its current parent or depth in the
routing tree, or the current battery voltage of a node.

Example. Consider the following query issued in sensor network, consisting of
three nodes with nodeid 0, 1, and 2.

SELECT nodeid, temp, light
FROM sensors

WHERE temp > 30�
EVERY 15 s

In this non-aggregation query the nodes sample their light and temperature
sensors every fifteen seconds. The predicate in the where clause makes sure that
only tuples that contain temperature readings above 30� are present in the result
stream. Assume that after sampling and before applying the predicate in the
where clause, the stream shown in Figure 4.1(a) is generated. The model assumes
that this virtual stream is received at some central location such as the gateway
where the additional operators such as selection defined in the where clause is
applied. In practice, however, the selection is pushed into the network in order
to reduce the number of radio transmissions. Note that although the tuples are
ordered by the epoch number, no ordering is assumed for tuples within an epoch.
This is motivated by properties of the multi-hop tree routing. Tuples from nodes

1In practice is not possible to access multiple sensors at the same time, in particular, if they
share the same bus (e.g., I2C). However, the delay between samples of different sensors on a
node is in the order of milliseconds. This is negligible compared to a sampling interval in the
order of seconds as considered in this work.
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materialized readings

epoch nodeid temp light

0 2 23 165
0 1 33 235
0 0 25 173

1 1 29 215
1 2 24 165
1 0 24 129

2 2 25 166
2 1 31 218
2 0 23 165

...
...

...
...

(a) Raw sensor readings

result stream

epoch nodeid temp light

0 1 33 235

2 1 31 218

...
...

...
...

(b) Result stream

Figure 4.1: Stream of raw sensor readings and result stream after applying where
clause predicate

closer to the root arrive earlier than tuples from nodes further way. The sampling
intervals are assume to be larger than the transmission latency to the root. This
guarantees that tuples of a given epoch are received at the gateway when the next
epoch starts. Figure 4.1(b) shows the result tuples, that satisfy the predicate in
the where clause of the query, i.e., those with a temperature attribute above 30�.
�

Spatial Aggregation. The stream model also allows aggregation queries. One
type of aggregation are spatial aggregates that fuse data from different sensors
captured during the same epoch. The following query computes the maximum
temperature sensed by any node during each epoch.

SELECT epoch, MAX(temp)
FROM sensors

GROUP BY epoch
EVERY 15 s

The same query can also be rewritten without group by.

SELECT MAX(temp)
FROM sensors

EVERY 15 s
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This deviates from the traditional SQL semantics. We allow this because (1) the
virtual stream is assumed infinite, hence, the aggregation operator would block
infinitely, (2) the epoch attribute is implicitly added to result stream, and (3) the
query model does not allow direct correlation of tuples from different epochs.

Temporal Aggregation. Window-based aggregation can be used to combine
tuples from different epochs. Two window modes are considered: sliding windows
and tumbling windows. The windows are specified in a query using the functions
SWINDOW for sliding windows and TWINDOW for tumbling windows. The query

SELECT nodeid, SWINDOW(light, 10, AVG)
FROM sensors

PARTITION BY nodeid
EVERY 15 s

computes the average light value over sliding window that contains the samples
from last ten epochs. Note the partition clause splits up the virtual stream based on
the nodeid attribute. This essentially generates substreams, which can be locally
computed on the nodes. Since aggregation of locally generated data is often used
in practice, e.g., for data cleaning purposes such as outlier removal, a shortcut
notation is provided. The partition-by-nodeid clause can be dropped. Like in the
case for spatial aggregation strictly speaking this notation is incorrect:

SELECT nodeid, SWINDOW(light, 10, AVG)
FROM sensors

EVERY 15 s .

4.2.2 Query Operators

Sampling Operator τ . The sampling operator τ is a temporal operator that
materializes the virtual stream at the specified sampling intervals. For example,
τ15 s() generates a tuple stream that contains readings of all sensors of every node
sampled once every fifteen seconds.

Rate Conversion Operator ρ. The rate conversion operator ρ is a temporal
operator that changes the sampling rate of a tuple stream. Here, we discuss
only down-sampling of the tuple stream (increasing the rate of the tuple stream
is possible by interpolation [SY07] or model based sampling [DM06]). Down-
sampling in sensor networks is nontrivial due to inaccurate timers and jitter as
we will show later in this chapter. Without loss of generality we can assume that
down-sampling is implemented as a simple rate-based m:1 sampling, e.g., ρm:1

implies that only every m-th incoming tuple is forwarded.
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Shift Operators ζ. The data streams coming from the sensors have time (epoch)
information attached to them that relate to the network query. The time and epoch
shift operators set the counters to 0 when a user query starts and transforms the
epoch information of already existing data streams so that to the user it looks like
the system just started producing data for that user query.

Projection π and Selection Operators σ. As with traditional query algebra,
we use projection π and selection σ operators to remove sensor attributes and
to apply filter predicates. There is one significant difference, though. In sensor
networks data is generated by sampling and not read as records from disk. Thus,
for energy reasons, the sampling operator and the first projection operator are
always fused in the execution plan. Consider, for example, the query

SELECT nodeid, temp
FROM sensors

EVERY 6 s ,

which can be represented as πnodeid,temp (τ6s()). The dynamics of selection and
projection are different than in conventional query algebras. The reason is that
selection and projection are not made over real attributes in a table but over
sensors that need to be sampled. Hence, projection and sampling are fused such
that only the required sensors need to be sampled.

Window Operator ω. In addition to the standard selection and projection
operators, our approach also uses temporal operators that filter on the time axis.
The window operator is a temporal operator. It can be implemented either as
a sliding window (SWINDOW ωs,n) or a tumbling window (TWINDOW ωt,n), with n
representing the size of the window. The supported operators over windows include
AVG, MAX, MEAN, MIN, and SUM.

The use of windows in stream setup with an equidistant tuples as generated
by the sampling operator time and tuple-based windows can be considered equiva-
lently. Here, we treat them as tuple-based windows. The sliding window operator
is evaluated for each incoming tuple whereas the tumbling window operator pro-
duces an output tuple only ever every n tuples. As an example, the following two
queries

u1 : SELECT nodeid, SWINDOW(light, 10, MAX)
FROM sensors

EVERY 5 s

u2 : SELECT nodeid, TWINDOW(light, 10, MAX)
FROM sensors

EVERY 5 s
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can be represented as follows in the operator algebra:

u1 : π
(
ωs, 10, MAX

(
τ5 s()

))
u2 : π

(
ωt, 10, MAX

(
τ5 s()

))
.

The different evaluation strategies of the operators result generate result streams
with different tuple rates. Tuples generated by ωs, 10, MAX(τ5 s()) have an interval five
seconds while for ωt, 10, MAX(τ5 s()) a node emits a tuple only every 50 seconds.

Fusion Operator µ. The data fusion operator µ performs spatial aggregation,
i.e., it aggregates data from several sensor nodes. However, it does not keep
history state beyond the current epoch. The µ operator performs traditional in-
network aggregation and can be implemented using the TAG approach [MFHH02].
The operator can compute one or more aggregates. As in the group by clause of
traditional SQL, the tuples can be grouped by one or more attributes. In this work
we consider the SQL aggregates AVG, COUNT, MAX, MIN, STDDEV, SUM, and VARIANCE.

Summary and Notation. Table 4.1 summarizes the notational conventions as
needed for the discussion in this chapter. The operators are designated by Greek
symbols. The symbols are defined as they are introduced in the following sections.

4.3 Query Merging

Query merging happens at the gateway of the system. Users can request data from
the sensors by posing User Queries to the SwissQM/Gateway system, which then
can merge multiple of these queries into one network execution plan that is sent
as a bytecode program into the sensor network and executed by SwissQM virtual
machine. Result tuples generated by the network execution plan are extracted
tuples the network and fed to a stream processing network engine (see Figure 3.2
on (page 39) query to produce result tuples for all associated user queries.

Example. To illustrate how user queries are merged into a network query and
how the result data is extracted, we use a simple example. Consider the following
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Table 4.1: Notation summary of operators and symbols used in this chapter

symbol description

ζ shift operator
µ fusion operator
π projection operator
ρ rate conversion operator
σ selection operator
τ sampling operator
ωs sliding window operator
ωt tumbling window operator

a attribute (sensor on a node)
u user query u = (uA, us, uP )

uρ, uσ set of stream processing operators for query u
p execution plan p = (pA, ps, pP )
P predicate

s, us, ps sampling interval (seconds)
A, uA, pA set of attributes A = {a1, a2, . . .}
uP , uσ, pP set of predicates {P1, P2, . . . , } used as conjunction P1 ∧ P2 ∧ . . .

uρ rate conversion ratio, e.g., n : 1
P set of execution plans P = {p1, p2, . . .}
U set of user queries U = {u1, u2, . . .}
Ca cost of sampling and transmitting attribute a
Cm cost for sending the message header

Cr(p) cost for removing plan p
Cs(p) setup cost for plan p
CT tree topology parameter CT = Nh̄
E expression

E@r annotated expression
Ei@r|P (Ej) annotated expression Ei with predicate P (Ej)

U update set U = {E1@r, E2@r, . . .}
h̄ average tree depth

m(p) number of program messages used to represent plan p
N total number of nodes
Px power (Watt) spent for operation x
r tuple rate (1/s)
σ̄ average selectivity of a predicate
tx duration (seconds) of operation x
T tuple
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four user queries:

u1 : SELECT nodeid, light
FROM sensors EVERY 5 s

u2 : SELECT nodeid, light
FROM sensors EVERY 15 s

u3 : SELECT light
FROM sensors EVERY 50 s

u4 : SELECT nodeid, light, temp
FROM sensors

WHERE nodeid = 1 AND temp > 20�
EVERY 50 s .

In spite of the fact that these queries are requesting different data with different
sampling periods, they can be merged into one single network execution plan that
generates the necessary data.

p1 : SELECT nodeid, light, temp
FROM sensors

EVERY 5 s

This network query, will deliver data on nodeid, light and temp every 5 seconds.
The stream returned by p1 however cannot be provided as answer to the user
queries. Not all stream operators have been applied yet. For each query a set
of operators are configured in a stream processing plan that is executed at the
gateway will apply the remaining operations. For u1 and u2 the temp attribute
needs to be dropped. In user query u2 a different sampling interval was specified.
Hence, a rate conversion operator ρ3:1 is inserted that only forwards one out of
every three data points in order to enlarge the sampling interval to 15 seconds.
For u3, the light data must be extracted from one out of each 10 data points to
produce light measurements every 50 seconds, i.e., the operator ρ10:1 is added. u4
receives data from all sensors but the predicate still needs to be applied. This can
be done by inserting a selection operator σnodeid=1∧ temp>20�. Before the selection
operation, the rate of the stream is matched to u4 by adding a rate conversion
operator ρ4:1 that selects every fourth tuple.

Assume that the queries are submitted in sequential order, i.e., u1 is submitted
first, u4 is the last query. Further assume that only one network execution plan
is run. Then the network execution plan needs to be replaced twice. Therefore,
the epoch count of the tuples that are returned to the user need to be adjusted
such that the first tuple of a new query has epoch number 0 even tough it is
connected to an already running plan. This is achieved by adding shift operators
ζ. Figure 4.2 shows the resulting operator plan that implements the post processing
of the stream generated by p1 required by four user queries. �
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u1 u2 u3 u4

π1
nodeid,
light

π2
nodeid,
light

π3light σ1
nodeid = 1∧
temp > 20�

ζ1 ζ2 ζ3 ζ4

ρ13 : 1 ρ210 : 1 ρ34 : 1

p1

sensor network

Figure 4.2: Stream execution plan implements post processing of result stream
generated by the network execution plan

We now provide a more formal background for the mapping of multiple user
queries into a single network execution plan. We will refer to the set of user queries
as U = {u1, u2, . . . , um}. The network execution plan is denoted by p. Let A be
a set of attributes A = {a1, a2, . . .} where a is a sensor that can be selected by
a query. Then uA is the set of attributes selected by user query u and, similarly,
pA the set of attributes returned by the network execution plan p. The sampling
period used in the queries and the plan is us and ps, respectively. We assume that
predicates P1, P2, . . . appear in the where clause of a query in conjunctive normal
form (CNF), e.g., P1∧P2∧ . . .. The reason for choosing CNF is that each predicate
by itself can be considered as a filter stage. Furthermore, since predicates can be
applied in any order we can collect them in a set uP = {P1, P2, . . .} for a user
query and similarly for a plan pP . Hence, a query u can be represented as a triple
(uA, us, uP ) and a plan p as (pA, ps, pP ).

A first requirement to meet is that the set of attributes pA of the network plan
must be a superset of the attribute set uA of any user query associated with plan
p. This leads to the first condition that must hold if a set U of user queries is
mapped to a plan p:

∀u ∈ U : pA ⊇ uA (4.1)

The next condition involves the sampling periods. The sampling period ps
must evenly divide the sampling interval us of all its user queries. This guarantees
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that the data stream provided by p can be used to answer all queries u associated
with p, thus,

∀u ∈ U : ∃ku ∈ N : us = ku · ps . (4.2)

One way to enforce this condition is to make ps the greatest common divisor (GCD)
of all user query sampling periods. Note that if the sampling intervals of two user
queries are relative prime then ps = 1, which is certainly undesirable. Also, in
many cases, forcing an exact arithmetic match is too restrictive. Thus, instead
of the above condition, we allow for a relative error in the sampling period up to
some ε. Instead of using the GCD algorithm for determining the common sampling
period we then use a “Tolerant” Greatest Common Sampling period (TGCS) such
that for all user queries the effective sample period observed is within ε of what
the user requested. The TGCS algorithm is described later in Section 4.3.4. Thus,
instead of Equation (4.2) we require:

∀u ∈ U : ∃ku ∈ N : (1− ε)us ≤ ku · ps ≤ us (4.3)

Note that in some cases, the application submitting the user query may request
data to be delivered exactly at the specified time intervals. This can be achieved
through operators that cache the result for a short period of time until it is time
to send it to the user. Given the uncertainties in some of the measurements
and the lack of precision of most sensor networks today, such time shifts in the
measurements should be acceptable in most applications, specially if they can
be constrained within a well specified error margin. Also, the formulation just
provided adjusts towards the requested period since it is easier to cope with more
data than with missing data. The implementation of rate conversion of the tuple
stream is described in Section 4.3.4.

Selection queries—as implied by the predicate in the where clause—require
special treatment. As explained above we require that they must be written in
conjunctive normal form to emphasize the filtering property. For u4 from the
previous example we have u4P = {nodeid = 1, temp > 20�} A query can be
represented in general as a selection over a conjunction of predicates pi, pj followed
by a projection on a set of attributes A from the set of sensor attributes uA. So
for any two queries ui and uj in the algebra:

ui : πAi

(
σPi1

∧Pi2
∧...∧Pin

(τuis())
)

uj : πAj

(
σPj1

∧Pj2
∧...∧Pjm

(
τujs()

))
.

In order to allow sharing of common operations, the selection predicates of any
two queries must be brought in relation. We define the relation “uj is at least as
selective as ui” as ui � uj where we use

ui � uj := Pi1 ∧ Pi2 ∧ . . . ∧ Pim ⇒ Pj1 ∧ Pj2 ∧ . . . ∧ Pjn .
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p1 p2 p2 pu
first query

new query new query

withdraw
query

withdraw
query

new queries

withdraw
queries

towards universal network plan

energy costs

Figure 4.3: Moving between specific network plans and the “universal” network
plan as user queries are submitted and withdrawn

This leads to the last condition that must be met by the network query. The
network plan p must be “at least as selective” as any of its user queries u, i.e.,
u � p, or in other words, return at least as many tuples as requested by any user
query, thus,

∀u ∈ U : u � p . (4.4)

Summarizing Equations (4.1), (4.3), and (4.4) we obtain the following rules for
mapping a set of user queries to a network execution plan:

∀u ∈ U : pA ⊇ uA ∧ u � p ∧ ∃ku ∈ N : (1− ε)us ≤ ku · ps ≤ us (4.5)

4.3.1 Universal Network Execution Plan

The idea behind merging queries into a common execution plan arises from the
following observation. There is always a limit to the maximum amount of data
that can be obtained from a sensor network: sampling at the highest possible
frequency, i.e., at the lowest possible interval, and capturing data from all the
sensors of every node. We refer to a such request as the Universal Query as it
materializes the complete virtual stream such that it contains all the data ever
needed to answer any user query. The universal query

SELECT *

FROM sensors
EVERY ε

translates into the universal network plan. It has the highest possible selectivity
since it returns all available data. We use ε to describe the shortest possible
sampling interval that is supported. SwissQM schedules programs on a granularity
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of 1 millisecond. Hence, theoretically, we have ε = 1 ms. In practice, however, the
high network traffic that is generated at high data rates leads to a significant
amount of loss as we explained earlier in Section 2.2.4 (page 23) and illustrated in
Figure 2.5. Due to the low reliability the networks exhibit under heavy load, we set
the minimum sampling period to one second. Operating the sensor network at such
high rates without knowing whether the data is used at all is highly inefficient.
Nevertheless, the intuitive notion of a universal query seems to indicate that it
should be possible to merge a set of user queries into a single plan that will produce
the data needed to answer all of the outstanding user queries.

In order to reduce the amount of data that flows through the network, the goal
is to find the least selective plan that allows to answer all outstanding user queries.
Thus, as new user queries arrive, the resulting network plan is progressively ex-
panded (it is made more selective) according to the new user queries. Ultimately,
the system could end up expanding to the universal network plan. Conversely,
when user queries are withdrawn, the system must in turn decrease the selectivity
of the network plan so that it captures only the necessary data. This process of
increasing selectivity (or moving toward the universal plan as new user queries ar-
rive) and decreasing selectivity as user queries are removed is shown in Figure 4.3.
Performing such a process dynamically and in an efficient manner is the main
challenge in SwissQM/Gateway.

4.3.2 Adding a new User Query

Condition (4.5) states when a network query can be used to answer a given user
query. The challenge however is how to dynamically manage a network query as
user queries arrive (later on we will discuss what to do when user queries are with-
drawn). For the moment we assume in order to simplify the discussion that data
acquisition system (SwissQM or TinyDB) has limited support for multiple concur-
rent execution plan. Further assume that we are forced to map all user queries to
a single network plan. A second network plan is used during the transition phase,
i.e., when a new user query is added or withdrawn, and the network query has
to be replaced. The detailed procedure for adding a new user query is shown in
Figure 4.4. On line 2, if no network query is running, the system makes the user
query the network query. Otherwise the system checks if the network query that
currently delivers data matches the condition (4.5) described above. If this is the
case, the existing network plan p can be used to answer u. The query processor
then adjust the rate conversion operator uρ in the stream execution plan for u and
inserts selection operators for all predicates that are not part of the network plan
p (line 8). In this case, the new user query can be accommodated without any
change in the sensor network.

Now assume that the current network plan does not satisfy condition (4.5).
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input: new user query u
if no network plan running then1

create new network plan p with pA := uA; ps := us; pP := uP ;2

inject plan p into the network ;3

set operators for queries uρ := 1 : 1; uσ := ∅ ;4

U := U ∪ {u} ;5

else6

if uA ⊆ pA ∧ u � p ∧ TGCS(us, ps) = ps then7

uρ := us/ps : 1; uσ := uP\pP ; // connect to existing plan8

U := U ∪ {u} ;9

else10

// setup new plan and migrate queries

create new network plan p′ ;11

p′A :=
⋃
uj∈U ujA ;12

p′s := TGCS({u} ∪ U) ;13

p′P :=
⋂
uj∈U ujP ;14

inject p′ into the network;15

uρ := us
p′s

: 1; uσ := uP\p′P ; // connect to new plan16

wait until p′ has generated tuples ;17

foreach uj ∈ U do18

ujρ := ujs/p′p; ujσ := ujP\p′P ; // migrate query to new plan19

U := U ∪ u ;20

remove old plan p ;21

p := p′ ;22

Figure 4.4: Adding a new user query
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This happens if the sampling period of the plan does not match the one specified
in the new user query, the new user query request additional sensor attributes or
has fewer predicates. The system now has to replace the current network plan p by
a new plan p′ such that condition (4.5) is met (lines 11–14). The sampling period p′s
of new network query is determined by computing the “tolerant” greatest common
sampling period on all user queries (including the new query u). The attributes
and the selection predicates of p′ are also chosen based on sets present in the user
queries. The attribute set is the union of the attribute sets of all user queries and
the selection predicate is the largest common set, i.e., the intersection set of all
user query predicates. Next, the down-sampling and selection operators of the new
user query u are configured for new network plan p′, which is then injected into the
network. It is immediately used to return tuples for user query u. While p′ is being
disseminated the old plan p continues to deliver tuples. As soon as p′ has been set
up (detected by counting the received tuples, line 17) the remaining user queries
are migrated from the old plan p to p′ (line 19). This requires reconfiguration of the
rate conversion operators ujρ to the new common sampling period. Additionally,
the insertion of selection predicates into ujσ between the user query and the new
plan p′ might be necessary since the new network plan can be more selective. In
order to simplify the discussion we do not explicitly list attribute projections for
the queries. These would be necessary as the new attribute set p′A can be larger
than pA. Afterwards, the old plan p is removed and p′ becomes the new network
plan.

4.3.3 Withdrawing a User Query

What we have discussed so far allows new queries to be submitted to the system.
It remains to be seen how to deal with user queries that are withdrawn. The algo-
rithm shown in Figure 4.5 performs this step. This routine is called periodically. It
is possible to call the routine as soon as a user query is stopped, however changing
the network query too often would create too much traffic in the network. By
calling the routine periodically with a sufficiently large interval the overhead is
minimized. Recall that the query executed by the sensor network can be changed
in two different ways. First, the network query can be replaced by a different
query. Second, the sampling period of the running network query can changed
directly. Since any modification is associated with a cost, the algorithm first an-
alyzes whether it is cost effective to change the network query. The algorithm is
based on a penalty function that indicates how well the current network execution
plan matches the user queries. The first penalty function fr(p,U) compares the
sampling periods of all user queries from the set U with the one of network plan p.
The shorter the sampling period ps of the network query compared to the “toler-
ant” common sampling period of the user queries, the larger is the penalty value.
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if f(p,U) > φm then1

create new network plan p′ ;2

p′A :=
⋃
u∈U uA ;3

p′s := TGCS(U) ;4

p′P :=
⋂
u∈U uP ;5

inject p′ into the network;6

wait until p′ has generated tuples ;7

foreach u ∈ U do8

uρ := us/p′s; uσ := uP\p′P ; // migrate query to new plan9

remove old plan p ;10

p := p′ ;11

Figure 4.5: Strengthening the network execution plan after withdrawing a new
user query

We define this penalty function as follows

f(p,U) =

(
TGCS(U)

ps
− 1

)
+ α ·

∣∣∣∣∣pA \⋃
u∈U

uA

∣∣∣∣∣+ β ·

∣∣∣∣∣⋂
u∈U

uP \ pP

∣∣∣∣∣ .
The first term the sum is zero if and only the actual sampling period of the plan

p corresponds to the best common sampling period as determined by TGCS from
the current set of user queries. The second term in the penalty function determines
the overall matching of the selected attributes. It counts the number of attributes
selected by the network query that are no longer needed by any user query. This
is done by computing the difference set of the network query’s attribute set and
that of every user query. The third term describes the matching of the selection
predicates by counting the predicates all user queries have in common that do
not appear in the network query. For example, these predicates might have been
missing in a previous user query, thus preventing their inclusion in the network
query. The value of penalty function f(n, U) is a weighted sum of these three
terms.

The parameters α and β are tuning parameters that are initially chosen to
reflect the characteristics and the desired behavior of the sensor network. Replac-
ing a network plan and migrating the user queries to the new network query is
associated with a migration cost threshold φm. If the value of the penalty function
is larger than the cost threshold, the change is performed. The cost threshold is
set at configuration time and is chosen to reflect the characteristics of the network
and the desired behavior of the system. For example, if the sensor network is not
very reliable, i.e., many messages are lost, and the energy consumption for setting
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input : user queries u1, . . . , um, resolution R, min. period smin, tolerance ε
output: common sampling interval pR

p :=

⌊
minui uis

R

⌋
;

1

while pR > smin ∧ ¬
(
∀uis : ∃ki ∈ N : (1− ε)uis ≤ pRki ≤ uis

)
do2

p := p− 1 ;3

common sampling interval is pR ;4

Figure 4.6: Algorithm to compute the “tolerant” greatest sampling period (TGCS)

up a new query is large, larger values for the cost threshold φm are chosen, such
that updates are performed less frequently.

4.3.4 Combining Sampling Rates

In the previous sections, the effects of different sampling periods specified in the
user queries were discussed. When assigning different user queries to the same
network plan a common sampling rate needs to be determined. This is done
using the TGCS method. The data stream that is generated by that plan does
not necessarily have to match the rate of every user query, hence, rate-conversion
needs to be performed on the stream before it can be returned to the user. In this
section we describe TGCS and the implementation of the down-sampling operator
ρ.

A “tolerant” algorithm for determining the greatest common sampling
period. The “tolerant” greatest common sampling period determination algo-
rithm (TGCS) is related to the Euclidean greatest common divisor algorithm
(GCD). The algorithm is shown in Figure 4.6. The problem is to find the great-
est common sampling period for a set of user queries U = {u1, u2, . . . , um} with
sampling periods u1s, u2s, . . . , ums milliseconds each.

In embedded systems, scheduling is typically performed in discrete time steps.
This granularity is given by the resolution R of the underlying hardware timer.
For example, TinyOS provides a millisecond timer for the Mica2 and Tmote Sky
platforms. This timer is driven by an external 32.768 kHz clock crystal and runs at
1,024 Hz. Hence, one clock tick approximately corresponds to 0.977 ms. SwissQM
supports scheduling of queries at the timer resolution R = 0.977 ms. TinyDB uses
a resolution of R = 256 ms. The resulting common sampling period therefore has
to be quantized to integer multiples of the timer resolution.

The key idea of a “tolerant” version is to allow an error in the effective sampling
period in anticipation of a higher common sampling period (even if some buis

R
c are
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relative prime). The largest relative error that can be tolerated is specified by a
constant ε. In SwissQM, this parameter is used for all queries but could just as well
be specified for every query individually. We enforce that the effective common
sampling period ps of the network query remains within the error bounds such
that condition (4.3) holds. Note that the constraint allows the common sampling
interval to be less but never larger than any uis because the user application is more
likely to be able to handle a surplus of data than missing tuples. Condition (4.3)
states that there must be a sampling period within the interval [(1−ε)uis, uis] that
is evenly divisible by ps. Since the “tolerant” greatest common sampling period
ps cannot be larger than the shortest user interval, ps ≤ min (uis) must hold,

resulting in at most bmin(uis)
R
c “candidate” lengths for ps. The TGCS algorithm

then iterates over all possible candidate lengths and checks if condition (4.3) is
satisfied, as sketched in Figure 4.6. In the worst case, the largest candidate length
is returned because the algorithm starts with the largest “candidate” interval and
then stepwise reduces the period until the shortest common sampling interval smin

is reached, which can be specified as additional system parameter. It prevents the
system from entering an inefficient mode of operation due to congestion of the
network when the sampling interval of a network query is chosen too small.

The TGCS algorithm requires at most bmin(uis)
R
c− smin

R
iterations. During each

iteration, condition (4.3) has to be checked for all m user queries. The time
complexity (for the range checks) therefore is O (m ·minui{uis}). Although the
algorithm is in principle expensive, our experimental evaluation has shown that
the overhead is acceptable and completely hidden behind other costs (e.g., sending
a network query to the sensor network).

Implementing down-sampling. Due to merging of different queries a network
execution plan typically generates data at a higher rate than specified by the
queries. The tuple stream received from the network must be down-sampled before
being delivered to the users. This is done by down-sampling by the rate-conversion
operator ρ operator that is placed in stream execution plan between the network
and the user query (see the earlier example in Figure 4.2 on page 92). Two different
intervals are distinguished: the incoming sampling period, i.e., the sampling period
of the tuples originating from the network plan and the outgoing sampling period,
i.e., the sampling period at which the user requests tuples. A valid implementation
of a down-sampling operator must solve two problems: (1) how forwarded tuples
are selected from the incoming stream and (2) how the epoch value of the forwarded
tuples is (re-)computed. The approach presented here uses time stamp information
obtained at the arrival of previous tuples to determine which element is to be
forwarded.

Tuples sent by the sensor nodes do not contain fine-grained time stamps. The
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coarse-grained epoch value only allows to associate a tuple to a specific sampling
epoch. As the sampling period chosen by the user can be arbitrary large, the time
information in the epoch number too coarse and insufficient for down-sampling. A
time stamp can be added when a tuple arrives at the gateway node. The down-
sampling operator remembers the time stamp tk of the last forwarded tuple and
then forwards the first tuple that arrives at a time tl such that tl − tk ≥ uis where
uis is the sampling period specified in user query ui. The operator also remembers
the epoch value e of the last tuple forwarded. It then increments e and assigns
this value to the forwarded tuple, yielding a correct epoch value for the user query
stream. However, as simple as this idea appears at first, it has two problems:

1. If there is more than one sensor mote that generates tuples, the down-
sampling does not work as expected. Assume there are N sensor motes.
If no tuples are lost or filtered by a predicate in the where clause, N result
tuples are received per epoch. Thus, the arrival time between tuples from
the same epoch is less than period of the network query. Therefore the down-
sampling operator as sketched above would only return at most one tuple
out of an epoch consisting of N tuples.

2. Slightly too short sampling periods caused by clock drift lead to a large error
in the effective sample period seen by the user. The problem is that tuples
that arrive too early are simply dropped. The next tuple forwarded will then
be late, introducing a large error in the effective sampling period.

There are remedies for these problems. The difficulty in the first problem is
that the time stamp and epoch count of the last forwarded tuples has to be stored
for every node in the network. This modification introduces two new difficulties.
First, it requires additional storage for each node in the network. Two integer
numbers need to be kept for each node, the epoch value and the time stamp of the
last forwarded tuple. Second, this approach requires that the nodeid attribute is
always present in the result field. If the network query does not select the nodeid
field, then there is no way for the operator to associate a result with a node. A
solution is to include the nodeid by implicitly on every network query the same
way as the epoch attribute was defined.

The second problem can be alleviated by caching the latest tuple that arrives
before its expected time instead of dropping it. The tuple found in the cache,
i.e., the latest tuple, is then forwarded when the tuple is due, as specified in the
user query. After being forwarded, the tuple is removed from the cache. Caching
reduces the number of tuples that are intentionally dropped.

The effect is shown in Figure 4.7. The histogram shows the measured inter-
tuple intervals for user query tuples and for the corresponding network execution



102 CHAPTER 4. QUERY OPTIMIZATION FOR SENSOR NETWORKS

0 2 4 6 8 10
0 %

5 %

10 %

15 %

20 %

25 %

tuple interval [seconds]

%
of

al
l

tu
p
le

s

network execution plan
user query

Figure 4.7: Histogram of measured inter-tuple intervals of a network execution
plan with a sampling period 6,144 ms and the user query after 3 : 1 down-sampling
(2,048 ms)

plan. The sampling interval specified in the network execution plan is 2,048 ms.
The down-sampling operator implements a 3 : 1 rate conversion and uses caching.
This translates into a user sampling interval of 6,144 ms. It can be seen that the
specified user query sample period indeed is the lower bound of the measured tuple
interval. Unfortunately, even the caching implementation of the operator cannot
fully compensate jitter present in the incoming data stream. This is because tuples
are dropped, i.e., overwritten in the cache, if they arrive within the same user query
period. A dropped tuple typically results in a longer period for the next epoch.

4.3.5 Evaluation Merging Techniques

In this section evaluate the multi-query merging strategy on top of TinyDB running
on small deployment consisting of three Mica2 nodes. The goal is to measure the
effect of the TGCS algorithm on the resulting inter-tuple intervals seen by the user.
As mentioned earlier, at the moment, we merge all queries onto one single network
execution plan. This restriction is removed in the next sections of the chapter. A
second network execution plan is used during the transition phase when replacing
plan.
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Figure 4.8: Error in sampling period (measured from 120 random queries)

Experiment Setup. The shortest sampling period the network reliably delivers
data is 1,024 ms. Thus, this period was configured as limit smin for the TGCS
algorithm. Its relative error tolerance ε was chosen as 10 %. In order to model
the behavior of the users, i.e., submitting and canceling queries, we implemented
a random query generator. The size of the attribute set was uniformly distributed
and well as the selection of the attribute fields. The user queries were created
from a Poisson process at with an arrival rate of 1 query/min with an exponen-
tially distributed sampling interval (average 30 s) and an exponentially distributed
execution duration (average 10 min). Data was gathered for 120 queries, then
the average sampling interval between consecutive tuples as seen by the user was
measured for each query individually.

Sampling Interval Error. The average relative error in the sampling interval,
measured as the interval between two tuples with consecutive epoch numbers is
shown in Figure 4.8(a). The figure shows the average for each of the 120 queries.
Similarly, Figure 4.8(b) shows the absolute sampling errors in milliseconds. The
largest error for a measured query interval was −7.42 %. This demonstrates that
the sampling period error indeed was bounded by the specified 10 % error margin
specified and that the system is able to process the given query load.

Sampling Interval of Network Plan. Figure 4.9 shows the sampling rate of
the network execution plan throughout the experiment. Starting with the fourth
user query, the network query contained all five sensor attributes. In total 22
different network execution plans were used. The changes of the sampling period
of the network query are depicted in Figure 4.9. In the figure the highest sampling
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Figure 4.9: Sample period ps of the network execution plans during experiment
(120 random queries) with TGCS and GCD algorithm

rate with 1,024 ms period was only used during 26.4 % of the experiment time
(when the TGCS algorithm is used to determine the common sampling frequency).
The largest sampling period reached during the test is 4,608 ms. This corresponds
to an improvement by a factor 4.5 compared to using the sampling period of the
universal network query.

For evaluating the TGCS algorithm against the basic GCD algorithm, the
sampling period of the network plan computed using GCD is also depicted in Fig-
ure 4.9. Starting from the second user query, GCD always returned the sampling
period of the universal network query. This has a significant impact on the number
of messages that are sent.

Message Count. Figure 4.10 represents the number of messages that were sent
through the network. The bar on the left in Figure 4.10 indicates the number of
messages that would have been sent if the user queries had been directly broadcast
into the network without merging. Since TinyDB itself is not capable of executing
a large number of queries concurrently, the message count for the non-merging case
was computed based on the queries’ sample period and execution duration. The
right bar in the figure shows the message count for the merged queries that were
sent into the network using merging and TGCS. It can be seen that by applying
merging and the TGCS algorithm the number of result messages is reduced by
35 %.
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Figure 4.10: Number of tuple messages sent during the experiment

Further Optimizations. The moderate reduction of number of messages by
35 % shown above is due to the fact in this evaluation all user queries are merged
into a single network query. This is not always the best option. Consider, for
example, two user queries with sampling periods u1s = 7 s and u2s = 5 s and the
timer resolution R = 1 s. The common sampling period for the network query
determined by the TGCS algorithm using ε = 0.1 is then ps = 1 s as any other
choice would violate the specified error boundaries. Hence, one message per second
is sent by every node in the network. However, when executing the two queries
separately only 12

35
≈ 0.34 messages/s are sent per node. Thus, merging queries

does not always reduce the message count. As a consequence alternative strategies
have to be developed. In the next section, we introduce a detailed cost model
that includes not only the number of messages sent but also the overall energy
consumption in the sensor network, such as the energy required to access the
sensors. Using this cost model, we develop more complex optimization strategies
that are able to build optimal groups of user queries. User queries within a group
are then merged using the algorithms described in this section and sent into the
network.

4.4 Energy-based Cost Model

In the previous analysis the cost metric used was the number of messages that
generated in the network. The simple model does not consider the individual size of
the messages, e.g., transmitting shorter messages is cheaper than longer messages,
the cost for accessing the sensors, and the network topology. The topology plays
an important role for non-aggregation queries if the generated tuples are sent as
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separate messages. We introduce the cost model and identify the parameters for
the Tmote Sky platform by measurements. Using these parameters we define
a tuple-based cost model, which we then extend to an overall cost model that
includes both network topology as well as the query types, i.e., aggregation and
non-aggregation queries.

4.4.1 Power Consumption of a Tmote Sky Sensor Node

The power required by each component, such as the CPU, radio transmitter and
receiver as well as sensors must be considered when planning the power budget
of an application. Hence, the power consumption of each component must be
quantified beforehand. The power consumption usually cannot be measured in
real time. For example, the Tmote Sky sensor platform does not have hardware
support to measure the supply current. We measured the power consumption of
the Tmote Sky sensor node using lab equipment. The sensor platform contains
a Texas Instruments MSP430 16-bit micro-controller. The radio is implemented
by a monolithic Chipcon CC2420 chip. Two Hamamatsu light sensors are avail-
able. The first sensor has a larger sensitivity range that corresponds to the total
solar radiation. The sensitivity of the second is in the photosynthetically active
range. Both sensors are photodiodes directly connected to the A/D converter of
the micro-controller. A Sensirion SHT11 sensor is available to measure relative
humidity and temperature. This sensor is connected to the general purpose inputs
of the controller. The Sensirion sensor chip uses a binary I2C-like protocol for
communication with the processor.

Measurement Setup. A 1 Ω (±1 %) metal film resistor placed in the power
supply circuit, i.e., between the laboratory power supply and the Tmote Sky sensor
node. This shunt resistor measures the overall supply current used by the node.
The voltage drop across the resistor is measured using a Tektronix TDS2014 digital
storage oscilloscope. For synchronization, e.g., in order to detect when a new
message is received, a general purpose output of the node is connected to the
trigger input of the oscilloscope.

The current consumption of a Tmote Sky sensor is varies between 1–20 mA.
This gives rise to a 1–20 mV drop across the shunt resistor. There is a considerable
amount of noise in the current measurements (even when using a metal film resistor
instead of a carbon film resistor). As a countermeasure the acquired samples are
averaged, that is, rather than taking a single waveform 128 waveforms are acquired
and averaged. A precise synchronization of the subsequent waveform acquisitions
is realized by using the synchronization signal as a trigger source. The single noisy
waveform is shown in the left plot of Figure 4.11. The right plot shows the average
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Figure 4.11: left: single wave form, right: average of 128 waveforms

computed out of 128 waveforms. It can clearly be seen that the zero-mean noise
is successfully removed.

Based on the current measurements i(t), the instantaneous power consumption
P (t) can be computed as P (t) = U · i(t) from constant supply voltage (U = 3 V).
The energy (in Joules) Ek of operation can be computed by integrating over the
duration time

Ek =

∫ tk

0

P (t) dt = U

∫ tk

0

i(t) dt

MSP430 Micro-controller. For measuring the power consumption of CPU
intensive workloads on the Tmote Sky node a solver for a linear system (Gauss
elimination) of equations is used as a representative work-load. The actual CPU
workload does not have a large influence on the power used due to absence of
out-of-order execution and caches. All calculation are performed in 32-bit single
precision arithmetic (float) that is emulated in software due to the lack of a
floating input unit.

Whenever the micro-controller is not used, i.e., the TinyOS task queue is empty
and no interrupts have to be served, no communication over the UART takes place,
and no sensor is currently being sampled, the processor is put into low-power mode.
It is awakened by the next interrupt. The power consumed in low-power mode is
dominated by the static power required by the components that remain active. The
measurements where obtained by a simple application that disables the interrupts
and puts the controller into low-power mode. Figure 4.12(a) shows the static power
consumption. The supply current is constant at a level of 0.88 mA, resulting in a
static power consumption of 2.64 mW.

Figure 4.12(b) shows the current consumption when execution the Gauss elim-
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Figure 4.12: Supply current of the MSP430 microcontroller

ination for an 8 × 8 system. The algorithm starts at time t = 0. The current
increase for t < 0 is due to the fact that the CPU is also active when preparing
the system matrix and the constant vector. It takes requires 84 ms to initialize the
system in addition to the 207 ms for solving it (resulting in an emulated floating-
point performance of 2.3 kflops). The supply current peak is 2.92 mA, resulting in
an active CPU power consumption of 8.76 mW.

Radio Receiver. These measurements show the amount of power used when
receiving a TinyOS message with 2 byte payload (total size 13 bytes). When the
receiver is turned on the CC2420 chip draws 18.8 mA according to the datasheet.
This such called idle listening cost occurs independent whether a message is cur-
rently received. As the current measurements in Figure 4.13(a) show this current
is only exceeded by a small amount when a message is actually received. When
the receiver is idle the overall supply current drawn is 19.8 mA (this includes the
0.88 mA static current identified earlier), resulting in a idle power of 59.4 mW.
In Figure 4.13(a) the reception of a single message is shown. The reception is
signaled to the application at time t = 0. The surge in current consumption of
approximately 2.2 mA starts at t = −1.75 ms. The peak disappears at t = 0.27 ms.
This gives a lower bound time it required to receive a message trx ≥ 2.02 ms where
the receiver must be active. Of course, in order to compensate clock skews in
the synchronization of sending and receiving node, as well as MAC back-off (and
retransmit if available) the receiver usually operated at a much larger duty cy-
cle. In the interval [−1.75 ms, 0.27 ms] the charge transport, i.e., the integral is
42.7µAs. This leads to a lower bound of the energy for receiving a single message
Erx/msg ≥ 128.1µJ. Averaging that over trx gives a mean power consumption of
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Figure 4.13: Supply current of CC2420 radio chip

Prx = 63.4 mW.

Radio Transmitter. In order to the measure the power consumption of the ra-
dio transmitter, a TinyOS application was written that periodically sends a single
30 byte message (41 bytes including header). The CC2420 radio is configured to
operate at the highest output setting 0 dBm (1 mW).

The average current is shown in Figure 4.13(b). Since the message transmission
is non-deterministic, for example, channel assessment, back-off, etc. the cumulative
probability density function (F (t) is shown (ramp curve in the figure) that indicates
the probability that the transmission has been completed by then. Completion is
signaled to the application, which then sets a general purpose output connected
to the oscilloscope. The message transmission is initiated by the application at
time t = 0. Since F (t) = 0 for t < 5 ms it follows that at least 5 ms are required
for the transmission. On the other hand, after at most 14.07 ms the transmission
is complete since F (t) = 1 for t ≥ 14.07 ms. From the density function d

dt
F (t) the

expected transmission duration can be determined.

t̄rx =

∫ 14.07ms

t=0

t · d
dt
F (t) dt

= 14.07 ms−
∫ 14.07ms

t=0

F (t) dt ≈ 9.63 ms

In average, the transmission is completed after t̄tx = 9.63,ms. The average charge
used for a transmission can be computed as the integral of current and the density
function.
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Figure 4.14: Supply current of sensors

∫ 5ms

0

i(t) dt+

∫ 14.07ms

5ms

d

dt
p(t)

[∫ t

5ms

i(τ) dτ

]
dt

≈ 196.11µAs

This results into an energy cost of Etx/msg = 589µJ per message. Divided by t̄tx
the average power consumption for sending is Ptx = 61.07 mW.

Light Sensors. The light sensors are implemented as photodiodes that are op-
erated in zero bias mode. The dark current of the diode generates a voltage drop
over a measurement resistor. This drop is directly measured by the A/D converter
of the microcontroller. The cost for accessing the light sensors is therefore only
given by the cost of operating the A/D converter. The readings for the two light
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sensors are thus identical (Figure 4.14(a) and 4.14(b)). In both cases the sampling
requires 17.48 ms. In order to determine the latency of reading the sensors the
general purpose output is used for signaling again. The pin is set immediately
before the sampling is initiated. The pin is cleared as soon as the sensor data is
ready.

From the two Figures 4.14(a) and 4.14(b) is can be seen that after the sampling
is initiated the circuit is oscillating. This behavior is difficult to explain. In order
to compute the charge used for the sampling only the interval from t = 0 until
t = 17.48 ms is considered ignoring the oscillations. For the total solar sensor the
parameters are as follows:

Qtsr = 28.80µAs

Etsr = 86.43µJ

ttsr = 17.48 ms

Ptsr = 4.94 mW

For the photosynthetically active radiation sensor the parameters are:

Qtsr = 29.18µAs

Etsr = 87.53µJ

ttsr = 17.48 ms

Ptsr = 5.01 mW

Temperature and Humidity Sensor. The Sensirion SHT11 temperature and
humidity is connected to the general purpose I/O pins of the processor. For com-
munication a protocol similar to the serial I2C-bus is used. Hence, reading this sen-
sor requires much more time than sampling the light sensors as the Figures 4.14(c)
and 4.14(d) show. Two large transients can be seen both at the beginning of the
sample acquisition and at the end. As in the previous case, the general purpose I/O
pin is used to measure the duration of the sampling process. For the temperature
sensor (Figure 4.14(c)) the parameters are as follows:

Qtsr = 317.0µAs

Etsr = 951µJ

ttsr = 220.4 ms

Ptsr = 4.32 mW
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For the humidity sensor (Figure 4.14(d)) the identified parameters are:

Qtsr = 103.2µAs

Etsr = 310µJ

ttsr = 72.36 ms

Ptsr = 4.28 mW

Power Parameters. The results confirm current assumptions about sensor net-
works:

1. Power consumed by the CPU/microcontroller is almost negligible, at least
compared to the power spent for radio communication. In absence of timing
constraints CPU work can be considered free.

2. Sampling, at least using the primitive sensors built-in on the Tmote Sky
node is free.

3. Power consumption is dominated by the radio. In particular, having the
receiver turned uses most of the power. Transmission overhead is negligible
compared to receiving.

A summary of the power parameters of the Tmote Sky node is shown in Ta-
ble 4.2. The sensors approximately require the same amount of power, although
the time required to acquire a sample varies considerably. Processing costs and
sensor access are both negligible compared to the radio cost, which is dominated
by the receiver. Whereas for transmission an average transmission time t̄tx can
be specified, the duration the receiver is activated depends on the activation. A
longer activity increases the overlap between sender and receiver and hence can
increase the data yield. This duty cycle needs to be chosen carefully.

4.4.2 Per-Tuple Costs

The ultimate optimization goal is to minimize the total power consumption over
all nodes. We start by calculating the cost of acquiring and transmitting a tuple
to the base station. The energy consumption ET of a sensor node for a single tuple
is given by the following expression.

ET =
∑
sk∈S

tskPsk︸ ︷︷ ︸
sampling

+ trxPrx︸ ︷︷ ︸
reception

+ ttxPtx︸ ︷︷ ︸
transmission

+ tcpuPcpu︸ ︷︷ ︸
CPU active

+ tiPi︸︷︷︸
idle

(4.6)
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Table 4.2: Measured parameters for energy model for the Tmote Sky platform

Parameter Value Unit

Broad-band light sensor Ptsr 4.94 mW
ttsr 17.5 ms

Narrow-band light sensor Ppar 5.01 mW
tpar 17.48 ms

Temperature sensor Pt 4.32 mW
tt 220.4 ms

Humidity sensor Ph 4.28 µW
th 72.36 ms

Radio transmitter Ptx 61.1 mW
Sending message (41 byte) t̄tx 9.63 ms
Radio receiver Prx 63.4 mW
Receiving message (min) trx ≥ 2.02 ms

CPU active Pcpu 8.76 mW
Idle power Pi 2.64 mW

The expression captures the cost of sampling, receiving and transmitting, running
the CPU, and the power consumed while idle. The cost of sampling a sensor is
the product of the time tsk to take a sample and the power consumption Psk of
each sensor. The overall sampling cost is the sum over all sensors sampled. For
message transmission and reception we use the time the transmitter and receiver
circuits are active multiplied by the power consumption for sending and receiving.
The same applies to the CPU. The idle power consumption Pi is the power used
by the node when the radio is powered-off and the CPU is in the lowest power
mode.

Table 4.2 shows the values for the parameters we have obtained through shunt-
measurements on the Tmote Sky sensor platform as described in the previous
section. For some of these parameters, what we have measured is the minimum
value. The real values of these parameters are affected by the software running on
the node. For instance, the receiving time trx is application dependent (it depends
on the duty cycle, message length, and size of the network). In SwissQM we have
measured the real value to be 50 ms.

Table 4.2 indicates as it also noted throughout the literature that energy con-
sumption is dominated by the transmission costs. In fact, the major power drain
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occurs in the radio receiver.2 For the model we assume a MAC layer that performs
the necessary duty-cycling of the receiver. Thus, without any significant loss of
accuracy, we can simplify the model by considering only the cost of transmitting
tuples and disseminating network execution plans. Although our implementation
uses messages of different sizes and supports tuple bundling in one message, in the
cost model we assume each tuple costs at least one message. Some tuples are too
long to fit into one message, hence, the cost c(T ) for sending a single tuple T that
contains n attributes is given as follows:

C(T ) = Cm

⌈n
8

⌉
+ Can (4.7)

Cm is the fixed cost for sending a message. In our system the fixed costs are the
25 header bytes of for each full 41 byte result message. Ca is the cost of sending
a single 16-bit attribute. The fraction 1/8 comes from the maximum number of
attributes we can fit into a message (in other systems and configurations this value
may be different). Cm and Ca can be inferred from the bit-transmission cost. With
our hardware we measured Cm ≈ 359µJ and Ca ≈ 28.7µJ. In the following, we
take the simplifying assumption that a tuple is not split across multiple messages,
i.e., n ≤ 8. As an approximation we use Cm ≈ 12Ca. All energy calculations are
done in units of Ca.

4.4.3 Overall Cost Model

Sensor networks typically resort to multi-hop routing to transmit messages to
the base station. This is the basis for in-network data aggregation algorithms,
e.g., [MFHH02].

There are several strategies to define the routing topology. For instance, in
Directed Diffusion [IGE+03] the routing depends on the data and task at hand.
To calculate the cost model we assume a tree routing topology that is independent
of the queries and data collected. There are many possible tree topologies. The
actual topology determines the number of messages required to get a tuple to the
basestation. Figure 4.15 illustrates different topologies that each consist of six
sensor nodes and a basestation. For the balanced tree, 10 messages are exchanged
per epoch. The star requires with six messages the least number of transmissions.
The chain topology has the worst message complexity of 21 messages. In general,
for N -node topologies in Figure 4.15, the total number of messages is of the or-
der of O(N2) for the chain, O(N log(N)) for the binary tree, and O(N) for the
star. This overhead changes if aggregation is performed in the network. If the

2The sensors of the Tmote Sky node platform we are using do not have a significant energy
consumption. For different sensors (e.g., gas sensors) sampling cost may no longer be negligible.
In this case, the sampling cost has to be included in the parameter Ca.
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Figure 4.15: Different collection tree topologies

aggregation state, i.e., the summary data that is used to compute the value of
the aggregate, is of constant size, which is the case for non-holistic aggregates as
described in [MFHH02], the number of messages that have to be sent is propor-
tional to the number of edges in the routing graph, thus, O(N). Ideally, only one
message needs to be sent over an edge in the tree.

To derive a cost model for the average power consumption over all nodes, we
need to distinguish between spatial aggregation and non-aggregation queries. In
the following, tp is used for the sampling interval, CT is a parameter describing the
topology, and N is the number of nodes in the network. With Equation (4.7) as
a basis, Equation (4.8) describes the costs for the non-aggregation case, whereas
Equation (4.9) is used for aggregation queries. The execution cost C(p) for a given
plan is the total electrical power used by the sensor nodes (physical units mW) to
execute that plan:

C(p) = CT
1

tp

[
Cm + Can

]
(4.8)

C(p) = (N − 1)
1

tp

[
Cm + Can

]
(4.9)

In [XLTZ07] similar equations are proposed. However, because they cannot
determine the actual topology, the cost model they use is based only on Equa-
tion (4.9) (the lower bound). In SwissQM we can determine the value of the CT
parameter as follows. A node h hops away from the basestation leads to h mes-
sages being sent towards the base station. For the average energy consumption
one can consider the average hop-distance h̄ of a node. Together with the number
of nodes, the topology parameter is then CT = Nh̄, i.e., the average number of
hops to the base station multiplied by the number of nodes. For example, for
the tree graphs shown in Figure 4.15 h̄ is 5/3 for the balanced tree, 1 for the star
graph, and 7/2 for the chain graph. In modern sensor networks the topology is
typically dynamic. In our system we can obtain the current value h̄ directly from
the network by executing the following query in the background at a sufficiently



116 CHAPTER 4. QUERY OPTIMIZATION FOR SENSOR NETWORKS

Plan
Generator

Plan
Optimizer

new
query update set

plan
updates
to network

current stream execution plans

current network execution plans

new stream
execution plan

match
expressions

add/remove
(replace)

Figure 4.16: Query processor consisting of a plan generator and plan optimizer

large frequency to react properly to changes:

SELECT AVG(depth)
FROM sensors

EVERY 1 min

This value is used by the query optimizer to constantly keep the cost model up to
date. In Section 4.5.5 we extend this cost model to include query selectivity.

4.5 Query Processor

Submitted queries are passed to the query processor, which then generates network
execution plans and stream execution plans. Network execution plans are submit-
ted to the sensor network and each one of them produces a data stream. These
result data streams are processed by the stream execution plans that extract the
final result streams for the user queries.

The query processor consists of a plan generator and a plan optimizer. Fig-
ure 4.16 illustrates these two components and how they operate. New queries
arrive at the plan generator. The plan generator uses the new query and the set
of current plans (the plans currently running in the network) as input and pro-
duces a stream execution plan and an update set. The update set specifies what
additional data needs to be requested from the network to answer the new query
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(note that the update set can be empty). The update set is given as an input to
the plan optimizer. The plan optimizer takes the update set and the set of current
plans and produces a new set of current plans. It also forwards any changes to the
current plans to the sensor network for execution.

Query optimization happens in two stages. The plan generator tries to answer
the new query by using the result data streams already being produced. If it
cannot, it generates the update set. The plan optimizer uses different cost model
based strategies (Section 4.5.2) to minimize the cost of propagating changes and
running the set of current plans.

The plan optimizer does not need to generate network execution plans that
acquire exactly the data asked by the queries. Depending on the optimization
strategy, there might be redundant data (two separate plans return overlapping
data sets) and orphan data (data obtained from the network for which there is
currently no user query). The latter reduce the cost of removing plans if they are
no longer needed. Leaving them around for a while may better than removing
them and having to re-insert them shortly afterwards.

4.5.1 Plan Generator

A new query is sent to the plan generator after it has been parsed. The generator
looks up all possible subexpressions of the query in the set of current plans. When
no match is found, the corresponding expression is added to the update set, which
is then passed to the plan optimizer.

Ignoring selective queries (queries with filter predicates are described later in
Section 4.5.5) a query can be regarded as a collection of expressions {E1, E2, . . .}.
Such an expression can either be a stream operator (as presented in Section 4.2.1)
or an arithmetic expression. Every expression has an additional property in our
stream processor, the tuple rate r. It determines how often the operator is expected
to produce tuples. We explicitly note the rate r together with the expression as
an annotated expression E@r.

Matching expressions from a query with the ones from the execution plans
involves comparing both expression subtrees and their rates. We define a binary
matching relation � for annotated expressions:

Ei@ri � Ej@rj ⇐⇒
(
Ei = Ej

)
∧
(
rj mod ri ≡ 0

)
According to this definition Ej@rj matches Ei@ri if, and only if, it contains the
same subexpression and produces tuples at an integer multiple rate of Ei@ri, i.e.,
a superset of the tuples of the left hand side, hence the � symbol. Note that � is
not symmetric.

We can now provide a more formal definition of a query and a network execu-
tion plan. A query q is a set of annotated expressions: q = {E1, E2, . . . , Ek}@r.
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input : new query q, set of existing network execution plans P
output: update set U
U := ∅ ;1

forall E@r ∈ q do2

(Mi, Ui) := MatchSubExpr(E@r,P) ;3

subscribe q with all plans p ∈Mi ;4

U := U ∪ Ui ;5

return update set U ;6

Function ComputeUpdateSet

Figure 4.17: Algorithm to compute the Update Set

This notation emphasizes that all expressions of the query have the same rate r,
determined by the every clause. The set is computed from the operator tree and
contains one element for each expression in the select clause.

Similarly, a network execution plan is also a set of annotated expressions:
p = {E1, E2, . . . , Ek}@r. The difference to a query is that each execution plan
maintains a list of queries that currently use data generated by the plan. This list
can be used as a reference counter. When the list is empty a plan may be removed.
We use P =

⋃
p to denote the set of all plans p.

Figure 4.17 shows the function ComputeUpdateSet that determines the
update set for a query q considering the set P of currently executing plans. The
function begins with an empty update set U and then iterates over all expres-
sions in the given query q and calls MatchSubExpr to recursively match the
subexpressions.

MatchSubExpr returns a pair (M,U) where M contains the plans associated
to those subexpressions that could be matched by any expression from the current
set of plans. The function is listed in Figure 4.18. U contains the unmatched
subexpressions. The function first checks if the entire tree E@r is matched by
some plan (line 1 in Figure 4.18). If not, the function is recursively applied on the
subexpressions (line 6). The matching set Mi and update set Ui obtained from
each subexpression tree are combined (line 7). If no match was found (M = ∅)
for any subexpression, the entire subexpression is added to the update set and
returned (line 9). Otherwise, the union of the matching plans M and the update
set U is returned (line 11). In ComputeUpdateSet the query q is registered
with all matching plans p ∈ M . The update set passed to the query optimizer is
the union of the update sets Ui obtained for each expression.

While matching the expressions of the update set with the current plans, the
plan generator also creates a stream execution plan. For each match found, the
attribute in the result stream of the corresponding network plan is extracted and,
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input : annotated expression E@r, set of plans P
output: pair (M,U) of two sets. Set M contains plans with matching

expressions. Set U contains unmatched annotated expressions.
if ∃p ∈ P : ∃Ej@rj ∈ p : E@r � Ej@rj then1

// match found in plan

return (p, ∅) ;2

else3

M := ∅; U := ∅ ;4

forall subexpressions Ei@ri of E@r do5

// recursively match subexpressions

(Mi, Ui) := MatchSubExpr(Ei@ri,P) ;6

M := M ∪Mi; U := U ∪ Ui ;7

if M = ∅ then8

return (∅, {E@r}) // no subexpression matches9

else10

return (M,U) ;11

Function MatchSubExpr

Figure 4.18: MatchSubExpr recursively matches an annotated expression in a
set of plans P

if necessary, some additional processing applied, e.g., down-sampling or applying a
filtering operator. In order to join two result streams, e.g., computing E1+E2 from
two streams that provide E1 and E2, the tuples are combined using an equi-join.
For spatial-aggregation queries the join is performed on the grouping attributes
(specified in the group by clause). In all other cases, tuples that originate from
the same node are joined, i.e., the join is performed on the nodeid attribute. We
can save communication cost by extracting the nodeid attribute from the origin
field of a result tuple message through the routing layer. Alternatively, the nodeid
attribute could be added implicitly to every execution plan. However, this enlarges
the size of a result tuple.

Example. As an illustration of ComputeUpdateSet consider the example
shown in Figure 4.19. Given is a query consisting of a single expression E0@r =
E1@r+ωt,10(a1@10r). Let E1@r be an unspecified expression tree, ωt,10 a tumbling
window operator with a window size of 10 tuples, and a1 a sensor attribute. Assume
that there are currently two execution plans p1, p2 in the system.

First, the possible subexpressions are compared with the plans. Since for E0@r
no match was found, the subexpressions E1@r and E2@r = ωt,10(a1@10r) are
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Figure 4.19: Plan Generator Example

analyzed (line 6). A match for the E1@r is found in p1, hence, p1 is added to the
set M and the recursion stops at this point. For E2@r, no match can be found.
Thus, recursion continues to E3@10r = a1@10r. Also in this case, no match is
found. The algorithm considers the entire branch E2@r to be unmatched and
adds it to the update set (line 9). This update set needs to be passed to the
optimizer, which then modifies P such that results for E2@r are retrieved from
the network. This is explained in the next section. The streams from E1@r and
E2@r are joined in the stream execution plan by adding an addition-operator. In
that step the query also subscribes with the existing plan p1. �

4.5.2 Plan Optimizer

Unmatched expressions that are passed to the optimizer by the plan generator
need to be included into some execution plan (see Figure 4.16, page 116). The
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optimizer has two choices how to deal with the update set. Either it can add it as
a new plan or merge it with an existing plan. All changes in the set of execution
plans are associated with a cost. Hence, not only the execution of the plans but
also the set up and removal costs of the plans have to be considered. There are
different strategies the optimizer can apply, depending on the cost-aspect.

4.5.3 Cost of Submitting Queries

Before we describe the possible optimization strategies we first state our assump-
tions on network execution plans:

(1) Execution plans are immutable, i.e., they cannot be modified after they
have been generated. The reason is that the execution platform does not support
modifications of plans. A modification (besides changing the sampling interval,
which is possible in, e.g., TinyDB) could in principle consist of large changes. The
coordination of these distributed updates is difficult (global snapshot semantics
on the state of a plan is required), therefore, we decided not to support updates
on plans. The immutability implies that in order to update a plan it has to be
replaced.

(2) The execution of a plan results in a power drain C(p) in mW (Section 4.4.3).
The actual energy consumption (Joules) depends on how long a plan is executed.

(3) Setting up a new execution plan gives rise to an energy cost Cs (in Joules).
This energy is spent in disseminating the plan through radio messages. These
costs depend on the size of the network and the complexity of an execution plan.
Our implementation uses a flooding mechanism, hence, a given plan message is
retransmitted once by every node. This results in m ·N transmissions for a plan
that is disseminated with m messages. We measured an energy consumption of
589µJ for sending a full radio message. Let m(p) denote the number of messages
required for representing plan p. Then the setup cost is

Cs(p) = 589µJ ·Nm(p) .

(4) For stopping and removing an execution plan an additional energy cost
Cr (in Joules) is defined. In our implementation a plan is removed when a stop
message is received. Cr is the cost for broadcasting one single message and is
independent of the plan. Thus, Cr = 589µJ ·N .

(5) The number of execution plans that can be run concurrently in the sensor
network is limited. This limitation is not only due to the limited bandwidth
available for the transmission of result tuples but also to the limited CPU/memory
on the sensor node. Our implementation on the Tmote Sky sensor nodes can
execute up to 8 plans concurrently.

(6) Finally, as already mentioned in the previous section, all annotated expres-
sions Ei@r of a given plan must have the same rate r.
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Obviously, there is a trade-off between cheap execution costs, i.e., “good” plans
that best match the current set of queries, and a low update cost due to less
frequent changes of the plan. The goal that is consistent with maximizing the
battery life time is to minimize the energy used to process a given query load. The
query load is characterized by the set of queries it consists of and the submission
and withdrawal times of each query. In a realistic scenario we cannot assume
that withdrawal times are known beforehand. Nevertheless, the execution time
of a query plays an important role, e.g., for a long running query it might be
worthwhile to update execution plans as the update costs are amortized by the
long running queries.

4.5.4 Optimizer Rules

We study different strategies for the optimizer. The optimization strategy deter-
mines how the optimizer modifies annotated expressions from the set P of execu-
tion plans and the update set U . In general, the optimizer can modify P based on
following rules:

1. If an expression Ej@rj is not matching expression Ei@ri, i.e., Ei@ri 6�
Ej@rj, because only their rates are incompatible while Ei = Ej, the rate
of both expressions can be adapted to the least common multiple lcm(ri, rj).
The expressions can then be merged.

E@ri, E@rj −→ E@lcm(ri, rj)

In order to adapt the rate of the result streams rate conversion operators ρ
have to be added to the stream execution plan. For the stream of E@ri the
down-sampling ratio is lcm(ri, rj)/ri : 1.

2. If E@r is a composite expression, i.e., an operator op, then the composite
expression E@r = Ek@rk opEl@rl, it is replaced by the subexpressions, i.e.,
Ek@rk and El@rl. The operator op is added to the stream execution plan
such that the two streams are joined into a stream for E@r.

3. If E@r is an aggregate expression, remove the aggregate. This is a special
case of Rule 2. Example: max(E1 +E2)@r is expanded into E1@r +E2@r.
This transformation has a profound impact on the execution cost as now
the aggregate MAX has to be computed at the base station and therefore a
tuple from every node needs to be sent to the base station. If a stream for
(E1 +E2)@r is already available no additional costs occur. In fact, the costs
are reduced as no processing is required in the network.
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4. Combine common subexpressions in P and U . If, e.g., E1@r opE2@r is in a
current execution plan p and E1@r ∈ U , then plan p can be replaced by a
plan p′ that contains {E1@r, E2@r} instead.

4.5.5 Queries with Predicates

In this section, we extend the expression annotation introduced in Section 4.5.1 to
include filter predicates, i.e., queries with σ operators. Just as with the sampling
rate r, we also annotate the selection predicate P (Ej) with the expression. Multiple
predicates are represented in conjunctive normal form. The resulting annotated
expression is:

E@r|P (Ej) ∧ . . . ∧ P (Ek)

For example, for the single query the annotated expressions in the execution plan
are:

SELECT nodeid, (light+ lightpar)/2
FROM sensors

WHERE humidity < 50 %
EVERY 1 s

.

p = {nodeid@1 s|(humidity < 50 %), (light+ lightpar)/2@1 s|(humidity < 50 %)}

When the matching relation is redefined appropriately, the plan generator does
not have to be changed. The matching operator � for predicates is redefined as:

Ei@ri|P (Ek) � Ej@rj|P (El) ⇐⇒
Ei = Ej ∧ rj mod ri ≡ 0 ∧ P (Ek)⇒ P (El)

The superset condition still holds. If P (Ek) ⇒ P (El) the stream Ej@rj|P (El) is
a superset for Ei@ri|P (Ek). For the plan optimizer, we add the following rewrite
rule.

5. If an expression Ei@ri|P (Ej) is bound to a predicate P (Ej) the predicate is
removed. The predicate P (·) is then computed at the base station, i.e., it is
added as a σ operator to the stream execution plan. In order to evaluate the
predicate at the base station, a stream for the predicate expression Ej has
to be available, thus, it also has to be added to the expression set together
with Ei:

Ei@ri|P (Ej) −→ Ei@ri, Ej@ri
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For the query above the humidity attribute is also added to the rewritten annotated
expressions.

nodeid@1 s, (light+ lightpar)/2@ 1s, humidity@1s

The plan generator needs to first decide on the evaluation order of a list of predi-
cates E@r|P (Ej)∧ . . .∧P (Ek), and whether a predicate is applied in the network
execution plan at all, i.e., whether rule (5) should be applied.

Again, the cost model is used. However, since execution plans now can contain
selective expressions, the tuple cost depends on the average selectivity σ̄ of a
predicate. Hence, the cost Equations (4.8) and (4.9) are redefined as

C(p) = CT
σ̄

tp

[
Cm + Can

]
(4.10)

C(p) = (N − 1)
σ̄

tp

[
Cm + Can

]
. (4.11)

In order to apply this model, the optimizer needs to know the selectivity of the
predicates in the execution plans. As stated earlier, we use the origin field in the
result message to associate a tuple with a sensor node, hence, the selectivity of a
predicate can be estimated at the base station for every sensor node by counting
the number of received tuples. This estimate is inherently affected by message
loss, as missing tuples (due to lost messages) cannot be distinguished from filtered
tuples. The optimizer uses the average σ̄ over all nodes, thus reducing the influence
of individual losses. Additionally, the decision on whether it makes sense to con-
tinuously use a selective plan, and thereby reducing reuse for different queries, is
made if the selectivity is very low, e.g., < 10 %. This makes mispredictions due to
message loss negligible as the delivery probability of a message is sufficiently high
(0.8 − 0.95). In order to determine σ̄ for selective in-network aggregation plans,
the number of fused readings needs to be explicitly counted (e.g., the number of
values that contributed to a MAX aggregate). This statistical data has to be sent
along with the aggregate state. Only for AVG and COUNT this information can
be directly deduced from the aggregate state. SwissQM/Gateway currently does
not estimate the selectivity of aggregation plans. The optimizer assumes always
assumes σ̄ = 1 leading to worst-case cost estimates.

4.6 Optimizer Strategies

How optimization rules are applied is determined by the optimization strategy.
We study the following strategies:
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Min-Execution Cost Strategy. (Section 4.6.1) The optimizer aggressively re-
organizes the current execution plan so that the execution cost

∑
p∈P C(p) is min-

imized. Costs for the updates, i.e., setting up and removing plans are not con-
sidered. This strategy is motivated by the fact that update costs are negligible
compared to the execution costs for long running queries, or for query workloads
with low arrival rates.

Delta-Plan Strategy. (Section 4.6.2) For each update set a new plan is created.
When a new plan is added, the existing plans are not reorganized. This, of course
only works up to a maximum number of plans that can be executed concurrently.
A plan is removed if no query has subscribed to the plan. It obviously minimizes
the update-costs, however, it can lead to orphan data being returned as a long
running query might be subscribed with several query plans that, therefore, cannot
be removed. These query plans can also return data not required by this query.

Single-Plan Strategy. (Section 4.6.3) leads to a single execution plan, such
that all queries are answered from a single stream. This approach corresponds
to the merging approach described in Section 4.3. As new queries are added,
the selectivity of the network execution plan increases until it corresponds to the
Universal Query. From this point on, inserting additional queries does not require
any updates in the network. In order to include queries with different sampling
intervals, the period of the resulting plan has to be set equal to the greatest
common divisor of the queries’ sampling interval. As the evaluation in Section 4.7
will show, the resulting sampling interval quickly approaches rate of the universal
query, leading to redundant data.

TTMQO Strategy. This strategy was described by Xiang et al. [XLTZ07]. We
have implemented TTMQO for comparison purposes. In the TTMQO strategy,
instead of merging all queries to one single plan, a query q is merged with the
“most beneficial“ existing plan. The benefit of a plan p is defined as C(p)+C(q)−
C({p, q}), i.e., the savings when merging p with the query q compared to creating
a new plan for q and running it together with p. In Xiang et al. only propose
merging. Splitting a query and assigning it to different plans is not considered.
Thus, their approach essentially bypasses the plan generator such that the update
set contains all expressions of the submitted query. In the TTMQO strategy, a
plan is not immediately removed as soon as the last query that uses data from it
is withdrawn. Instead, a plan is kept, and produces orphan data. The idea is to
save update costs as a new query might be submitted that could make use of that
plan. When such a plan is removed is determined by an aggressiveness parameter
0 ≤ α ≤ 1. Xiang et al. do not describe how to choose that parameter. Their
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experiments indicate that the choice for parameter α does not affect the results
significantly.

4.6.1 Min-Execution Cost Strategy

In this section we describe how to map queries such that the execution costs are
minimized. The min-execution cost strategy tries to aggressively minimize the
execution costs

∑
p∈P C(p) of the plans. Costs for starting and removing plans are

not considered. As soon as query is added or withdrawn the set of current plans
is recomputed and plans are replaced where necessary. This strategy works best
if the query is in the system for a sufficiently long time as long execution times
amortize update costs.

Before describing the strategy we motivate why the update costs can be ig-
nored in a first approximation. When comparing the cost for updating a plan
with the execution duration, it can be observed that in the worst case a plan is
amortized soon after it has produced data as a simple calculation shows (ignoring
selective plans and retransmissions). A plan update (broadcasting a stop com-
mand message and disseminating the new plan p using m(p) messages) leads to
N(m(p)+1) transmissions, assuming that each node forwards each message exactly
once. A worst case plan is a plan with the lowest possible execution cost, which
is either a spatial aggregation plan, or a non-aggregation plan in a star topology
(see Figure 4.15(b)), leading both to N transmissions per epoch. Hence a plan is
amortized after > m(p) + 1 epochs. In SwissQM the plan size m(p) is typically
less than 5 messages even for complex queries with simple user-defined functions.
Thus, update costs can considered being amortized after having produced data for
about 10 epochs. In the common case, the average depth of the tree is� 1. Then
the update cost is amortized even earlier.

Example. Consider a set of queries that leads to the following annotated expres-
sion set :

E1 : (a+ b)@2r
E2 : (a+ b)c@4r
E3 : ω10(c)@r
E4 : b@2r

In this example a, b, and c correspond to sensor attributes whereas @r specifies
the requested tuple rate (frequency). The goal is to find the cheapest execu-
tion plans for the expression set. This also includes deciding how to split the
expressions into execution plans pi, that each produces a stream of tuples Ti at
one particular rate ri. The tree for the expressions Ei can be presented as a
graph (Figure 4.20(a)). In the graph we add an edge (dashed arrows) starting
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(b) Weighted graph model for ILP
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(c) Construction of ILP in-
equalities

Figure 4.20: Graph representations for ILP construction for the example

from every matching expression to all expressions it matches. For example, since
(a+b)@2r � (a+b)@4r, we add an edge from (a+b)@4r to (a+b)@2r. The doubly
encircled nodes are the root nodes of the expressions Ei. Values corresponding to
these root nodes are requested by some user query. �

Graph Modeling. The graph in Figure 4.20(a) can be extended as shown in
Figure 4.20(b). We refer to call this extended digraph G = (V,E) consisting of
a set of vertices V and edges E. An artificial root node t is added to the graph.
The expressions are grouped by their rate ri. Also, for each group a new node ti
is introduced. Since for each rate (corresponding to a network execution plan or
bytecode program) a fixed header cost has to be spent regardless of the number
of selected attributes, a weighted edge (t, ti) is added between the artificial root
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node t and the common group nodes ti. The edge weight is set as c(t, ti) = riCm
and accounts for the header cost Cm when using a plan at rate ri. Additional
edges (ti, u) are added between the group nodes ti and the remaining nodes u
of the expressions. These edges are weighted by the costs w(ti, u) = riCa. The
weights reflect the cost of a field in the result message. Note, since Cm � Ca, as
soon as a rate is selected, adding fields to a tuple is relatively cheap. All other
edges, including the “matching expression” edges have zero weight. The idea is
that evaluating an expression from an expression that is reached over a zero-weight
edge is free. The operand values can be retrieved from the tuple that is sent to the
base station. When following dashed lines (see Figure 4.20(b)), costs are actually
saved as redundancy in the expression set is exploited.

The goal is to select a subset S ⊆ E of edges such that the corresponding
induced graph is connected, and all expression roots Ei can be reached from t. For
optimality, the minimum cost subset S is of interest. This leads to the following
constraint optimization problem:

min
S

∑
(u,v)∈S

c(u, v) (4.12)

0-1 Integer Linear Programming. The optimization problem can be mapped
to an 0-1 Integer Linear Programming Problem (ILP). A 0/1 variable xe is intro-
duced for each edge e. The edge e ∈ S if and only if xe = 1. The objective
function is expression (4.12). Connectivity and reachability from t is modeled
using the constraint inequalities. The procedure is as follows:

Consider a node u (shown in Figure 4.20(c)). This node represents a binary
operator, e.g., x + y. Hence, it is connected to the two operand nodes x and y.
In order to evaluate the expression the edges (x, u) and (y, u) have to be selected,
i.e., the operands x and y have to be available. The dashed edges from w1, w2,
and w3 are from “matching expressions” that provide x + y, at a rate that is an
integer multiple of the one requested by u. Node u also has two outgoing edges to
v1, and v2. The connectivity rules for the inner nodes are given by the following
condition.

(u, vi) ∈ S ⇐⇒

((x, u) ∈ S) ∧ ((y, u) ∈ S) ∨
∨
wj

((wj, u) ∈ S) (4.13)

In other words, an outgoing edge (u, vi) is in S if and only if the operand edges
(x, u), (y, u) are in S or u is reachable by at least one “matching expression” edge
(wj, u) ∈ S. Note that the condition must hold for each outgoing edge (u, v1) and
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Figure 4.21: Variables xe = 1 correspond to selected edges e ∈ S in ILP

(u, v2). The constraints for expression roots (double circled nodes in Figure 4.20)
introduce a similar constraint: either all operand edges have to be in S or at least
one “matching expression” edge.

In a second step, the set of conditions (4.13) can be rewritten as linear inequal-
ities by introducing a structural variable x(u,v) for each edge (u, v). The equation
corresponding to expression (4.13) is:

x(x,u) + x(y,u) + 2
∑
wj

x(wj ,u) − 2x(u,vi) ≥ 0 (4.14)

It can easily be verified that inequality (4.14) corresponds to (4.13) by substituting
the structural variables x by values 0 and 1. The number of variables is equal to
the number of edges |E|. For each out-bound edge there is a constraint inequality.
An additional inequality is obtained for each root node of the expressions. The
objective function of the ILP problem to be minimized is expression (4.12).

Example Continued. The assignment of variables x to edges is shown in Fig-
ure 4.21. For the example, 22 variables x1, . . . , x22 ∈ {0, 1} are introduced. The
weights wi are defined as indicated in Figure 4.20(b). The objective function to
be minimized is

z(x1, . . . , x22) =
22∑
i=1

xiwi .
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The constraints for the expression roots Ei are:

x13 + x14 + 2x10 + 2x19 ≥ 2
x5 + x21 ≥ 1

x17 + x18 + 2x12 ≥ 2
x9 + x22 ≥ 1

The remaining constraints are:

x1 − x4 ≥ 0
x1 − x5 ≥ 0
x1 − x10 ≥ 0
x2 − x6 ≥ 0
x2 − x7 ≥ 0
x2 − x8 ≥ 0
x2 − x11 ≥ 0
x2 − x12 ≥ 0
x3 − x9 ≥ 0

x4 + x20 − x13 ≥ 0
x5 + x21 − x14 ≥ 0

x6 − x15 ≥ 0
x6 − x21 ≥ 0
x7 − x16 ≥ 0
x7 − x20 ≥ 0
x8 − x18 ≥ 0
x8 − x22 ≥ 0

x15 + x16 + 2x11 − 2x17 ≥ 0
x15 + x16 + 2x11 − 2x19 ≥ 0

The problem is solved, e.g., using the GNU Linear Programming Kit (GLPK)
solver, and the following optimal integer solution can be found.

x2 = x6 = x7 = x8 = x13 = x14 = . . . = x21 = x22 = 1

x1 = x3 = x4 = x5 = x9 = x10 = x11 = x12 = 0

z(x1, . . . , x22) = 60

The selected edges S and the induced graph are shown in Figure 4.22. The solution
contains the two “matching subexpression” edges x20 and x21 for the operands of
a + b@2r as well as the edge x19 for the expression itself. This can be considered
as a sort of redundancy, but since the “matching subexpression” edges have zero
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Figure 4.22: Induced graph given by selected edges S, i.e., edges e where xe = 1

weight they do not add a cost. The solution is plausibly minimal in terms of the
cost z.

In a second stage the graph is traversed from t in order to determine the
expressions that are executed in the network, i.e., the expressions for the tuples
fields. This is done by traversing the graph from t and stopping at a node that
either is the root of an expression Ei or has an outgoing “matching expression”
edge ∈ S. The expression rooted at this stop node is then used for that particular
tuple field. The expressions are then assigned to plans by their common rate ri.
Concluding the example, the expressions E1,. . . ,E4 can be computed using a single
plan p = {a, b, c}@4r. �

Spatial Aggregation Queries. For aggregation queries the mapping from the
annotated expressions to the graph has to be extended. As shown by Equations
(4.8) and (4.9) (in Section 4.4.3) spatial aggregate plans have smaller costs, as only
a single message has to be sent over an edge in the data collection tree. Therefore,
both the fixed costs as well as the attribute cost depend on whether the spatial
aggregation is performed in-network or at the base station.

The graph model has to reflect these two choices. The model is extended as
follows: First, the cost in the graph, i.e., the edge weights, are specified as the
total cost including the topology parameter CT , rather than just riCa and riCm
(topology independent). Second, for each rate group ri that contains at least one
spatial aggregation expression, the group node ti is split into two nodes ti and
ti,agg. If the latter is reachable over an edge ∈ S the plan will be executed using a
spatial aggregation plan. The weights for the edges (t, ti) and (t, tt,agg) represent
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the header cost for running a non-aggregation plan at rate ri and, respectively, an
aggregation plan at the same rate. Thus, using the cost metrics from Equations
(4.8) and (4.9) the weights are:

w(t, ti) = rCTCm

w(t, ti,agg) = r(N − 1)Cm

Next, the aggregation expressions are duplicated in the graph. The second
level edges (ti, a) to attributes model the costs of a field in a result tuple, which is
also different for spatial aggregation expressions agg(a). In an aggregation plan,
leaf nodes are always aggregation expressions agg(a) and never the single attribute
a, as attributes cannot be part of an aggregation plan by definition. The weight
costs are as follows:

w(ti, a) = rCTCa

w(t, f(a)) = r(N − 1)sfCa

Here sf is used to denote the size of the aggregation state of aggregate f . For
example: 1 for MIN, MAX, SUM, 2 for AVG, 3 for VARIANCE, and STDDEV,
etc. Finally, the graph is extended by the corresponding edges from the non-
aggregation component to the aggregation component. As an example consider
the following two expressions:

E1 : max(a)@r

E2 : (a− b)@10r

In this example, E1 is a spatial aggregation expression. The optimizer has
to decide whether the expressions are to be computed using two separate plans
max (a)@r, {a, b}@10r, or whether they are merged into a single non-aggregation
plan {a, b}@10r. The graph model is shown in Figure 4.23. The aggregation
expression E1 the group nodes tr is split into tr and tr,agg (dotted rectangle). Also
observe the different weights for (t, tr) and (t, tr,agg). A “matching expression” edge
from a@10r to the a@r node of the non-aggregation component of E1 is added as
well. As it can be easily verified that as long as

CT >
1

10
(N − 1)

(
1 +

Cm
Ca

)
it is more efficient to run the two plans max(a)@r, (a−b)@10r than to run a single
non-aggregation plan {a, b}@10r.
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Figure 4.23: Graph for spatial aggregation queries

Limit on the number of concurrent plans. The number of concurrent plans
that are generated is equal to the number of selected edges (t, ti) ∈ S. If the sensor
network imposes a limit of at most NPmax, this limit can be enforced by adding
another inequality ∑

i

x(t,ti) ≤ NPmax .

If this constraint is added, it is in principle possible that the linear program has
no feasible solution, i.e., the constraints lead to an empty feasible region. In this
case, the optimizer learns that a cost-optimal solution is not possible. Instead, a
sub-optimal solution is sought that uses fewer plans but inevitably leads to data
not requested by any query. The optimizer iteratively reduces the number of rate
groups and, hence, possible plans, by combining groups ti and tj until a feasible
solution is found. Assume that in group i the set of selected sensors attributes is
Ai and Aj for group j then the amount of superfluous data obtained when merging
the groups is estimated as

lcm(ri, rj)

ri
|Ai\Aj|+

lcm(ri, rj)

rj
|Aj\Ai| .

The optimizer now greedily combines groups that introduce the least amount of
superfluous data until a feasible solution is found.

The ILP-based solution for the min-execution cost optimization problem is
NP-hard [Kar72]. We believe that there is no efficient solution for this problem.
Nevertheless, for the number of queries that is reasonable to run in a wireless
sensor network, this approach is feasible in practice.
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4.6.2 Delta-Plan Strategy

For each update set U that is generated when a query is added a new plan will
be created. Plans are not reorganized once they are started. The idea for this
strategy is to include the update set with as few updates as possible, which is
clearly the case if the entire set is added as a new plan. A plan is always removed
as soon as no more query is subscribed to an expression of this plan.

This strategy has two problems. First, a plan might produce large amounts
of orphan data. Consider, for example, a plan producing tuples that consist of
ten attributes. Assume that all queries are removed until the last query, which
only extracts one single field of the tuples. This results in resulting in nine orphan
attributes in the plan. Unfortunately, the plan is not removed and orphan data
can significantly increase the cost. In TTMQO [XLTZ07] Xiang et al. consider
this as an advantage, as new queries might request one of the orphan fields. In
that case, the queries can be answered directly without any update costs. Xiang
et al., unlike in the delta-plan approach, even propose not to strictly remove that
contain only orphaned attributes. They are intentionally left in the sensor network
for this reason. TTMQO provides a tuning parameter that allows adjusting how
aggressively orphaned plans are removed. The second problem of the delta-plan
strategy is large number of plans in the system. Because each update set leads
to a new plan the number of concurrent execution plans rapidly increase. The
approach works only up to the maximum number of concurrent plans. If the limit
is reached, the plans have to be reorganized, e.g., using the min-execution cost
strategy.

4.6.3 Single-Plan Strategy

This strategy is based on the query merging introduced in Section 4.3 and is
motivated by the notion of the universal query that returns all attributes of the
sensor nodes in the entire network at the highest possible rate. As new queries
arrive, the selectivity of the single execution plan is gradually increased towards
the universal query (see Section 4.3.1). If a query is withdrawn, a plan is gradually
made less selective, i.e., more specific to the queries.

This approach works well for a workload with many concurrent queries, in par-
ticular if there is large overlap in the requested attributes. The disadvantage is that
the result rate is the least common multiple of all user queries. For example, if the
sampling intervals specified in the queries are relative prime, the greatest common
divisor is one, leading to a plan with the shortest possible sampling interval. The
“tolerant” greatest common sampling period algorithm described in Section 4.3.4
introduces a slack in the resulting sampling interval (a tolerant sampling interval).
The optimizer then can freely pick any sampling intervals within the tolerance
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window specified such that the sampling rate of the resulting execution plan is
minimized.

4.7 Evaluation of Strategies

In order to assess the performance of the different optimization strategies a sim-
ulation setup is used. Queries are continuously submitted to the query processor
and withdrawn at predefined times. Based on the strategy the query processor
generates a sequence of network execution plans, which are inserted and with-
drawn from the network. The execution cost of each plan is estimated using the
cost model introduced in Section 4.4.3. The energy spent for issuing and stopping
network execution plans is also included in the model. The cost of all execution
plans issued during the evaluation run is summed up into a total execution cost.
Lacking a benchmark for query processing in sensor networks, we use a set of ran-
domly generated queries. For each query in the workload, a submission time and
execution duration is given.

4.7.1 Query Workload

The queries are selected from a considerably large query space consisting of ap-
proximately 2 · 1013 possible queries. The expressions of the queries are composed
using elements that are randomly picked from a predefined set. In this analysis we
are not considering selective queries as results depend on the actual sensor values.
Furthermore, choosing useful predicates that are repeatable despite the varying
nature of the sensor readings is difficult. The workload set consists of three dif-
ferent types of queries: (1) spatial aggregation queries, (2) temporal aggregation
queries and (3) non-aggregation queries. Not all queries from the available space
are equally likely to occur in practice. A reasonable assumption is that exotic
queries such as

SELECT (temp+ light/3)*nodeid
FROM sensors

EVERY 17 s

occur less frequently and that sampling intervals will most likely take values from
an “even” range, such as 1 s, 5 s, 15 s, 30,s, 1 min, 5 min, 30 min, 1 h, etc. The query
components, number of selection expressions, sensor attributes, and subexpressions
are thus selected using a non-uniform distribution. The sampling intervals take
one of 17 possible values. We are aware of the fact that sampling intervals that
are integer multiples of each other greatly increases reuse of execution plans for
multiple queries. Constraining the possible sampling intervals actually corresponds
to applying TGCS on unconstrained intervals.
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Table 4.3: Query Workloads

Query Workload WL1 WL2

non-aggregation queries 50 % 20 %
spatial aggregation queries 30 % 60 %
temporal aggregation queries 20 % 20 %

As shown in Section 4.4.3 the cost for running spatial aggregation queries is
very different from the cost for non-aggregation queries. We use two different
query workloads with different query mixes (Table 4.3) to investigate these effects.
In workload WL1 non-aggregation queries dominate, whereas WL2 is dominated
by spatial aggregation queries. For illustration purposes the first 16 queries of the
two randomly generated workloads are shown in Table 4.4 (page 145) for WL1 and
Table 4.5 (page 146) for WL2.

The submission and withdrawal times of each query are determined using two
random models. First, we rely on the common assumption that the query arrivals
are Poisson distributed. Second, the time a query is run until it is withdrawn by
the user is exponentially distributed. The expected number of queries present in
the system in steady state can be estimated by Little’s Law. Assuming a query
arrival rate λ and an average execution duration D there are λD queries expected
in the systems. This does not consider the ramp-up phase at the beginning and
the ramp-down phase at the end after the last query has been submitted. A
simple calculation shows that the expected number of queries in the ramp up
phase is λD(1 − e−

t
D ). For t → ∞ this leads to the asymptotic case of Little’s

Law. For the ramp-down phase started at t0 the number of queries decrease as

λD(1 − e−
t0
D )e−

t−t0
D . The system is ergodic during steady state phase, hence, it

is possible to estimate statistic characteristics (averages) using a time average,
i.e., by choosing a sufficiently large execution window. In the following, it is thus
sufficient to consider a single (large) query set for a given set of parameters.

4.7.2 Few Concurrent Queries

We consider a workload of 10 concurrent queries in average. We select the average
arrival rate λ = 1/100 queries/s and the average execution time D = 1000 s. This
leads to 10 concurrent queries on average. The number of queries in a workload set
is chosen sufficiently large such that the duration of the steady state phase is large
compared to ramp-up and ramp-down times. When choosing workload sizes of 200
queries the expected duration of the three phases is distributed as follows: 19 %
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for ramp-up, 62 % for steady state, and the remaining 19 % for ramp-down phase.
We consider steady state after > 9.9 (expectation) queries are in the system.

We determine the execution costs for the workloads for four different topologies
in a sensor network consisting of 32 battery powered sensor nodes and one base
station. The first three are the topologies shown in Figure 4.15. The average hop-
distance in the chain is h̄ = 16.5 graph, in the binary tree (h̄ = 3.375), and in the
star graph h̄ = 1. The fourth topology is obtained from the dynamic tree routing
protocol CTP (see Section 2.2.4, page 23) on the sensor testbed deployment at ETH
(Figure 2.1, page 20). The structure established by the protocol with h̄ = 59

32
≈ 1.8

is close to the star topology.

We implemented the min-execution cost, delta-plan, and the single-plan strat-
egy, as well as the TTMQO by Xing et al. [XLTZ07]. For the latter we set the
aggressiveness parameter to α = 0.5. We also determined the execution cost when
no optimization would be used by plugging-in the duration and topology into the
cost model. We use these values as a baseline for comparison. Additionally, we
computed the cost of running the universal query SELECT * EVERY 1s for the pro-
cessing duration of entire workload set. For this evaluation we are considering all
costs, i.e., costs for execution, setup and removal. Figure 4.24 shows the total
energy relative to the non-optimization scenario for both workloads. A first ob-
servation is that all strategies except min-execution cost lead to a higher energy
consumption than running each query with a separate plan. As further analysis
showed that for the delta-plan and TTMQO strategies few active plans and many
orphan expressions remain in the network. For the single-plan strategy, the result-
ing network plan does have orphan expressions but it runs at a very short interval
(1–5 s), already close or equal to shortest possible interval. From Figure 4.24 one
can see that switching to the universal query is not beneficial. Compared with the
single-plan strategy, the universal query not only runs at a too high sampling rate,
it also returns sensor attributes not asked by any query. The figure also shows the
influence of the mixture of the query load as well as the topology. The energy costs
of suboptimal are worsened by in a deep network, e.g., the chain graph compared
to a star.

As expected, in WL2, dominated by spatial-aggregation queries, the improve-
ment of the min-execution cost algorithm is smaller than for WL1. For the chain
topology the min-execution cost strategy actually requires slightly (5 %) more en-
ergy than the no-optimization strategy. The reason is not completely clear to us.
Obviously, the update costs are higher for min-execution cost strategy. In the no-
optimization strategy each query is mapped into a separate plan, which is never
replaced. For the chain topology, if a spatial aggregation query is executed by a
non-aggregation plan, h̄ = 16.5 more messages are generated than by an aggrega-
tion plan. Thus, deciding to do aggregation outside of the network is most heavily
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Figure 4.24: Total execution costs for workloads WL1 and WL2 using different
strategies and topologies. The costs is shown relative to the no optimization case
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Figure 4.25: Absolute update costs for WL1

penalized in the chain topology. Figure 4.24 also shows that the TTMQO has a
very high energy consumption, in particular for WL2.

Figure 4.25 shows the absolute update costs for plan submission and removal
when executing WL1. 3 As expected, the aggressive updating of plans by the
min-execution cost strategy leads to largest fraction of update costs. The other
strategies have lower update costs than the non-optimization case. This is due to
the orphan expressions and plans, which suppress creation of new plans when new
queries arrive.

Figure 4.26 shows the maximum number of concurrent plans produced by the
individual strategies. As described earlier, the delta-plan strategy may lead to a
large number of concurrent plans as they are not reorganized. In TTMQO there
are relatively few plans in the network but for a long time, which also leads to
orphan data and, hence, high energy costs (as seen in Figure 4.24).

4.7.3 Many Concurrent Queries

The results for WL1 and WL2 with 10 concurrent queries on average indicate that
the min-execution cost strategy performs well. In order to study the behavior
for smaller and larger sets the number of concurrent queries is varied within the
interval 1–50. In this run, the 200 queries from WL1 and WL2 with the same
execution duration D are used except that the arrival rate λ is chosen such that
on average λD queries are in the system.

3The plot for WL2 is omitted as it has similar update cost, although, as Figure 4.24 indicates,
different total costs.
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Figure 4.26: Maximum number of concurrent plans

Figure 4.27 shows the total execution costs for each of the optimization strate-
gies for query loads WL1 and WL2. For just a few queries (around less than 5),
running the optimizer does not pay off. The queries should be run independently.
The delta-plan strategy obviously has a bad performance over the entire interval,
although it works better for WL2. Thus, a strategy that solely tries to minimize
update costs is not sufficient. The single-plan strategy becomes very efficient as
the number of queries increase. The TTMQO strategy performs exponentially bad
for less than 20–25 concurrent queries. Starting with n ≥ 23 queries for WL1 and
n ≥ 33 for WL2 TTMQO outperforms the min-execution cost strategy. This an
artifact of the experiments that actually favors TTMQO as the workloads used in
the benchmark generate a constant query load. In this case, orphan expressions
can quickly be reused by new queries and safe update costs that have to be paid
for the min-execution cost strategy. TTMQO will perform worse on bursty loads
or when the query arrival rate is not high enough to quickly reuse orphans. When
comparing the graphs from Figure 4.27 only the min-execution cost plan and the
single-plan strategies show the same characteristics for both loads.

Optimizer Heuristics. As a consequence from these measurements, the opti-
mizer should choose between (1) no optimization, (2) min-execution cost, and (3)
eventually the single-plan strategy. The decision can be made based on the number
of queries that are present in the system. For a few concurrent queries it should
generate a separate plan for each query. For 5 < n ≤ 30 the min-execution cost
strategy should be applied. For n > 30, the best strategy is probably the single-
plan as it does not involve any optimization overhead. TTMQO can be used for
a large number of queries if the load is of the right type, but its effectiveness is



4.7. EVALUATION OF STRATEGIES 141

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  10  20  30  40  50

en
er

g
y
 c

o
n
su

m
p
ti

o
n
 [

J]

number of concurrent queries (average)

Total energy consumption (WL1)

No Optimization
Delta-Plan

Single-Plan
Min-Exec Cost

TTMQO

(a) Workload 1

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  10  20  30  40  50

en
er

g
y
 c

o
n
su

m
p
ti

o
n
 [

J]

number of concurrent queries (average)

Total energy consumption (WL2)

No Optimization
Delta-Plan

Single-Plan
Min-Exec Cost

TTMQO

(b) Workload 2

Figure 4.27: Total energies for different numbers of concurrent queries (arrival
rates) using CTP topology
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highly dependent on the query arrival rate, the aggressiveness factor and the speed
at which orphan expressions can be reused. It is not a general solution. Switching
from min-execution to a different strategy for larger n has the advantage that it
prevents the optimization problem from being intractable. For large n the ILP
problem that results from the min-execution cost strategy is hard to compute. By
avoiding large problem instances difficulties of the NP-hardness of ILP are not
observed in practice.

4.8 Related Work

Processing of continuous queries is a well known problem in data streaming sys-
tems. Madden et al. [MSHR02] propose an adaptive multi-query processing sys-
tem CACQ for streams that is based on Eddies [AH00] from conventional database
systems. Our approach is different, as in contrast to traditional data streaming
systems, data streams in sensor networks are pulled into the stream processing
engine rather than pushed. In our case, execution plan generation also involves
creating the data stream at the source nodes in the sensor network.

Crespo et al. describe query merging [CBGM03] in a publish-subscribe system
in a multi-cast environment. They provide a solution for a “battlefield awareness
and data dissemination” scenario where several client submit subscriptions for
events with geographically overlapping ranges. Although completely different in
nature, there is a similar trade-off between processing inside the network and
outside (at the clients) for query areas.

Multi-query optimization for sensor networks for spatial aggregation queries is
shown by Trigoni et al. [TYD+05]. Query execution is performed in rounds, where
the plans are recomputed and disseminated every round. Queries and sensors are
represented in a vector space. This representation leads to a reduction of the
amount of data transmitted if the concurrent queries are linearly dependent. The
number of queries that are actually processed is equal to the number of dimensions
of the subspace spanned by the query vectors. The linearity property leads to a
reduction of transmission costs for aggregation queries. The evaluation in the paper
is limited to queries having the same aggregate and the same sampling frequency.
Additionally, the representation chosen makes it difficult to use predicates other
than on node IDs.

Xiang et al. [XLTZ07] propose a two-way multi-query optimization system
called TTMQO. The first stage is performed at the base station by query rewrite
in order to reduce redundancy in the executed queries. The second stage is per-
formed in the sensor network using query-aware routing and the properties of
the broadcast medium. The work does not consider the network topology. They
state that the topology is hard to predict and the authors opt for a lower bound
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for transmitted messages, essentially assuming in-network aggregation or a star
topology. Additionally, they do not consider splitting queries. We implemented
the TTMQO strategy. The results using our implementation indicate that this
strategy is only applicable when the query load contains many concurrent queries
and there is a constant stream of new queries. Otherwise, the strategy does not
pay off and leads to worse performance than if no optimization is used.

Silberstein and Yang [SY07] discuss the efficient evaluation of multiple spatial
aggregates on a subset of source nodes is discussed. In contrast to our setup
the aggregate values are not sent to the base station. Instead, they are sent to
destination nodes inside the network, e.g., to control actuators. The proposed
solution minimizes communication costs while the sharing of partially aggregated
values is maximized. In their work, they assume a multi-cast tree rooted at every
destination node that connects the corresponding source nodes. This is a much
stronger requirement for the routing layer than the single collection tree.

4.9 Summary

In this chapter, we introduced a data model for pull-based streaming queries in
sensor networks and defined corresponding data processing operators. The model
supports both aggregation (spatial and temporal) and non-aggregation streaming
queries. We tackle the problem of efficiently executing multiple concurrent queries
from a dynamic workload by performing multi-query optimization. An energy-
based cost model was presented, which served as the optimization metric for multi-
query optimization. The parameters for the model were identified from a real
sensor platform.

Multi-query optimization for sensor networks is different than in traditional
streaming systems where data from external sources is pushed into the system.
In our discussion we explicitly include data generation by sampling sensors. A
merging approach is used to combine related queries in order to reduce the number
of queries that are executed by the resource constrained sensor nodes and avoid the
acquisition of redundant data. Query merging, however, also introduces problems.
Depending on the sampling periods specified in the individual queries, the resulting
period after merging can be substantially higher than for the original queries. We
proposed TGCS, a method for computing the common sampling period when a
bounded error on inter-tuple timing can be tolerated by the user.

The two-tiered query processing of SwissQM generates two execution plans.
One is executed in the network and contains the operations that are pushed into
the network while the other runs in a traditional stream processing engine at
the base station. Based on the cost model, several strategies are presented that
partition the work between gateway and sensor network. We showed that different
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Figure 4.28: Heterogeneous stream engine consisting of SwissQM virtual machine
and gateway component extends query processing to the data source

strategies have different effects on the total execution cost. Furthermore, there
is no single strategy that performs best for any number of concurrent queries.
Instead, the query optimizer should choose the best strategy based on the multi-
programming level. A set of heuristics was presented to guide the optimizer to pick
the best strategy. We discussed the min-execution cost strategy, which aggressively
reorganized the plans using the cost model and 0-1 integer linear programming.
This strategy performs well across a wide range of multi-programming levels and
takes into account important factors like network topology.

The SwissQM virtual machine and gateway consisting of a compiler that uses
optimization techniques described in this chapter represents a complete query pro-
cessing platform as shown in Figure 4.28. Queries including user-defined functions
can be submitted and are partitioned onto the sensor network and the stream en-
gine. In the second part of the dissertation these concepts are extended onto the
FPGA platform.
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Table 4.4: First 16 queries of Workload WL1

ID Query

0 SELECT humidity/temp, temp, light*temp, light EVERY 2min

1 SELECT TWINDOW(temp, 3, MEAN) EVERY 60s

2 SELECT SWINDOW(voltage, 20, MIN) EVERY 30s

3 SELECT light/temp EVERY 5min

4 SELECT temp+light, light-temp, light EVERY 2min

5 SELECT lightpar*parent EVERY 60s

6 SELECT depth/light,temp,parent,humidity/lightpar EVERY 2min

7 SELECT SWINDOW(parent, 3, SUM) EVERY 5min

8 SELECT depth EVERY 2s

9 SELECT parent*parent, humidity EVERY 30s

10 SELECT COUNT(*) EVERY 30s

11 SELECT AVG(light) EVERY 5min

12 SELECT SUM(humidity) EVERY 2min

13 SELECT MIN(humidity) EVERY 2min

14 SELECT MAX(depth) EVERY 2min

15 SELECT temp/humidity, lightpar EVERY 5s
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Table 4.5: First 16 queries of Workload WL2

ID Query

0 SELECT TWINDOW(humidity, 5, SUM) EVERY 15s

1 SELECT light EVERY 15s

2 SELECT MIN(parent) EVERY 10s

3 SELECT COUNT(*) EVERY 30s

4 SELECT COUNT(*) EVERY 15s

5 SELECT COUNT(*) EVERY 30s

6 SELECT TWINDOW(depth, 5, SUM) EVERY 5s

7 SELECT AVG(light) EVERY 60s

8 SELECT nodeid, depth-depth EVERY 30s

9 SELECT temp, temp EVERY 30s

10 SELECT MAX(nodeid) EVERY 4s

11 SELECT parent, depth, depth EVERY 2s

12 SELECT parent*parent, humidity EVERY 30s

13 SELECT COUNT(*) EVERY 30s

14 SELECT AVG(light) EVERY 5min

15 SELECT SUM(humidity) EVERY 2min
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5
Field Programmable Gate Arrays

Taking advantage of specialized hardware has a long tradition in data processing.
Some of the earliest efforts involved building entire machines tailored to database
engines such as the direct database machine by DeWitt [DeW79]. More recently,
graphic processors (GPUs) have been used to efficiently implement certain types
of operators, e.g., sorting [GGKM06] or general query processing [GLW+04].

Parallel to these developments, computer architectures are quickly evolving
toward heterogeneous many-core systems. These systems will soon have a (large)
number of processors, e.g., Intel’s Single-chip Cloud Computer (SCC) [HDH+10].
Not all processors will be identical. Some will have full instruction sets, while the
instruction set of others will be reduced or contain specialized instructions. The
heterogeneous cores may operate at different clock frequencies or exhibit different
power consumption. Floating point and arithmetic-logic units will be available in
different numbers on the cores. Some cores will not have a floating point unit, while
others may have additional units such as specialized vector units. An example
of such a heterogeneous system is the Cell Broadband Engine [GHF+06], which
contains, in addition to a general-purpose core, multiple special execution cores
(synergistic processing elements, or SPEs).

It is possible that reconfigurable hardware will be available in the form of
highly specialized cores [GS08,MVB+09]. Reconfigurable hardware provide a num-
ber of configurable logic primitives and a flexible interconnect in-between. These
resources can be used to implement very efficient application-specific processing
cores. Essentially, the same ideas already discussed in the context of application-
specific virtual machines in Chapter 3 are also applicable. Reconfigurability may

149
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be offered at different levels of granularity. Field-programmable gate arrays (FP-
GAs) provide reconfigurability at the gate level. Massively parallel processor arrays
(MPPAs) such as the Ambric Am2045 [But07] offer hundreds of very small CPU
cores and memory elements on a single chip. The CPUs can be programmed in-
dependently and connected through a reconfigurable communication interconnect.
MPPAs offer reconfigurability at a coarser level than FPGAs. The processor ar-
rays, however, have not been widely use so far. In contrast, the FPGA market
has a significant size. McGrath estimates the FPGA market to exceed $2.7 billion
by 2010 [McG06]. FPGA have been used since the 1990s in the embedded system
space. A few years ago they started being used for high-performance computing
applications.

Another reason besides the investigation of the potential the FPGAs offer for gen-
eral purpose computing are the current limitations of modern CPU architectures.
The limitations are well known: high power consumption, heat dissipation, net-
work bottlenecks, and the memory wall. These problems add up when the CPU
is embedded in a complete computer. For instance, if applications are not care-
fully designed, CPUs can spend much of their time waiting for data from memory
or disk. Getting data in and out of the system often results in high latency, to
the point that any algorithmic advantages may become irrelevant. In addition,
a modern server CPU consumes over 100 Watts of electrical power, not counting
necessary peripherals such as memory, disks, or cooling equipment. In the search
for possible solutions, FPGAs have been proposed as a way to extend existing com-
puter architectures. They add processing elements that help alleviate or eliminate
some of these problems. FPGAs are particularly interesting today because they
can be either added as additional processing cores in heterogeneous multi-core ar-
chitectures [GS08, Kic09] and/or embedded in critical data paths (network-CPU,
disk-CPU) to reduce the load and amount of data that hits the CPU [Net09].

What makes FPGAs interesting for designing data processing systems is that
they are not bound to the classical von Neumann architecture. Thus, they can
be used to avoid the memory wall, to implement highly parallel data processing,
and to provide support that would be very expensive otherwise, e.g., content-
addressable memory. They can also guarantee extremely low latencies and high
throughput rates. For instance, they can process data from the network at wire-
speed, without having to bring it to memory and the CPU first. In addition, and
not least important these days, FPGAs feature a far lower power consumption
than CPUs, making them ideal complements to general-purpose CPUs in many-
core architectures.

In the second part of this dissertation we focus our attention on FPGAs and their
use as a data processing platform. It is as yet unclear how the potential of FPGAs
can be efficiently exploited. In this chapter we introduce FPGAs. The next chap-
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ter discusses properties of the FPGAs as a computing platform. We use sorting
networks that are well suited for an implementation in hardware to illustrate the
trade-offs in designs for FPGAs. Chapter 6 also provides a set of guidelines for
how to make design choices. In Chapter 7 we present a compositional approach to
translate streaming queries into digital circuits for FPGAs. Essentially, we provide
a similar tool as the query-to-bytecode compilation in SwissQM. The chapter will
describe Glacier a hardware component library for stream operators and a com-
piler that translates queries into hardware circuits by instantiating components
from the library. Chapter 7 also presents a new operator for window-based stream
joins and its implementation on FPGAs.

5.1 Related Work

A number of research efforts have explored how databases can use the poten-
tial of modern hardware architectures. Examples include optimizations for cache
efficiency (e.g., MonetDB [MBK00]) or the use of vector primitives (“SIMD in-
structions”) in database algorithms [ZR02]. The QPipe [HSA05] engine exploits
multi-core functionality by building an operator pipeline over multiple CPU cores.
Likewise, stream processors such as Aurora [ACc+03] or Borealis [AAB+05] are
implemented as networks of stream operators. An FPGA with database function-
ality could directly be plugged into such systems to act as a node of the operator
network.

The shift toward an increasing heterogeneity is already visible in terms of tailor-
made graphics or network CPUs, which have found their way into commodity
systems. Govindaraju et al. demonstrated how the parallelism built into graphics
processing units can be used to accelerate common database tasks, such as the
evaluation of predicates and aggregates [GLW+04].

The use of network processors for database processing was studied by Gold et
al. [GAHF05]. The particular benefit of such processors for database processing
is their enhanced support for multi-threading. We share our view on the role of
FPGAs in upcoming system architectures with projects such as Kiwi [GS08] or
Liquid Metal [HHBR08]. Both projects aim at off-loading traditional CPU tasks
to programmable hardware. Mitra et al. [MVB+09] recently outlined how FPGAs
can be used as co-processors in an SGI Altix supercomputer to accelerate XML
filtering.

The advantage of using customized hardware as a database co-processor is well
known since many years. For instance, DeWitt’s direct system comprises of
a number of query processors whose instruction sets embrace common database
tasks such as join or aggregate operators [DeW79]. Similar ideas have been com-
mercialized recently in terms of database appliances sold by, e.g., Netezza [Net09],
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Table 5.1: Selected characteristics of FPGAs chips used in this dissertation

Virtex-5 Virtex-6

LX110T FX130T LX550T LX760

lookup tables (LUTs) 69,120 81,920 343,680 474,240
flip-flops (1-bit registers) 69,120 81,920 687,360 948,480
slices (4 LUTs, 4/8 flip-flops) 17,280 20,480 85,920 118,560
block RAM (36 kbit blocks) 148 298 632 720
25× 18-bit multipliers 64 320 864 864
PowerPC cores – 2 – –
I/O pins 800 840 1,200 1,200
release year 2006 2006 2009 2010

Kickfire [Kic09], or XtremeData [Xtr09]. All of them appear to be based on special-
ized, hard-wired acceleration chips, which primarily provide a high degree of data
parallelism. Our approach can be used to exploit the reconfigurability of FPGAs
at runtime. By reprogramming the chip for individual workloads or queries, we
can achieve higher resource utilization and implement data and task parallelism.
By studying the foundations of FPGA-assisted database processing in detail, this
work is an important step toward the goal of building such a system.

5.2 Overview of FPGAs

Field-programmable gate arrays (FPGAs) are re-programmable hardware chips for
digital logic. FPGAs provide logic gates on a 2D array that can be configured to
construct arbitrary digital circuits. FPGAs, informally sometimes referred to as
“programmable logic”, are general-purpose hardware chips. In contrast to ASICs
(application-specific integrated circuits), FPGAs have no pre-determined function-
ality. Rather, they can be configured to implement arbitrary logic by combining
gates, flip-flops, and memory elements. Initially, FPGA were designed to be used
for prototyping ASICs. By using FPGAs instead custom silicon chips (ASICs)
design costs and the time-to-market can be significantly reduced.

The circuits are specified using either circuit schematics or hardware description
languages such as Verilog or VHDL. A logic design on an FPGA is also referred to
as a soft IP-core (intellectual property core). Existing commercial libraries provide
a wide range of pre-designed cores, including those of complete CPUs. More than
one soft IP-core can be placed onto an FPGA chip.
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Figure 5.1: Simplified FPGA architecture: 2D array of CLBs each consisting of
2 slices. IOBs connect the FPGA fabric to the pins of the chip. Additionally
available in silicon are: two PowerPC cores, BRAM blocks and multipliers .

5.2.1 FPGA Architecture

Figure 5.1 sketches the chip layout of the Xilinx Virtex-5 FX130T FPGA [Xil09a,
Xil09b]. The FPGA is a 2D array of configurable logic blocks (CLBs). Each logic
block consists of 2 slices that contain logic gates (in terms of lookup tables, see
below) and a switch box that connects slices to the FPGA interconnect fabric.

In addition to the CLBs, FPGA manufacturers provide frequently-used func-
tionality as discrete silicon components, called hard IP-cores. Such hard IP-cores
include block RAM (BRAM) elements, each containing 36 kbit fast dual-ported
memory cells, as well as 25×18-bit multiplier units. A number of input/output
blocks (IOBs) link to pins, e.g., used to connect the chip to external RAM or net-
working devices. Two on-chip PowerPC 440 cores are directly wired to the FPGA
fabric and to the BRAM components. Each PowerPC core has dedicated 32 kB
data and instruction caches. The caches have similar latency as the BRAM mem-
ory and are intended to speed-up accesses to external memory with longer latency.
The superscalar cores implement the 32-bit fixed-point subset of the PowerPC
architecture. The embedded PowerPC 440 cores are also used in the IBM Blue
Gene/L supercomputer where they perform all non-floating point operation.
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Table 5.1 shows a summary of the characteristics of the FPGA used in this
dissertation. The table shows both Virtex-5 and Virtex-6 devices. The Virtex-6 is
the latest Xilinx device family. For experiments only Virtex-5 devices were used
due to the lack of Virtex-6 devices. Designs that used the Virtex-6 chips where
simulated using the Xilinx simulation tools. In VLSI design it this is a acceptable
method to estimate the performance characteristics of a circuit. Table 5.1 also
illustrates the improvements between devices and device families. The largest chip
of the Virtex-6 family the LX760 provides 6.9× more lookup tables and 13.7×
more flip-flops than the four-year-old Virtex-5 LX110T used in the experiments.

Configurable Logic Blocks (CLBs) are further split into slices. On the Virtex-5
each CLB is made up of two slices. Each slice contains four lookup tables (LUTs)
and four flip-flops. Figure 5.2 depicts one of the four LUT–Flip-flop configurations
a Virtex-5 slice. LUTs can implement arbitrary Boolean-valued functions that
can have up to six independent Boolean arguments. Traditionally, a LUT has
one output. On the Virtex-5 a LUT has two outputs (identified as O5 and O6
in Figure 5.2). A Virtex-5 LUT either implements a single function on output
O6 that uses up to six inputs or, alternatively, two functions on O5 and O6 that
in total use five inputs. The outputs O5 and O6 are fed to two multiplexers that
configure which signals appear on the output of the slice and are fed to the flip-flop.
The flip-flop acts as a register that can store one single bit. The design of a slice
provides dedicated elements for carry logic that allow an efficient implementation
of, e.g., adders and comparators. The carry logic connects the LUTs inside a slice
and different slices in an FPGA column.

Certain LUTs on the Virtex-5 can also be used as 16- or 32-element shift
registers or as 32 × 1-bit or 64 × 1-bit RAM cells. Memory instantiated through
LUTs configured as RAM cells is referred to as distributed memory. In contrast to
the aforementioned block RAM (BRAM) distributed memory can be instantiated
on finer scale, however, at a significantly lower density.

5.2.2 FPGA Design Flow

Digital circuits for are typically specified using a hardware description language
(HDL) although there are also specialized languages, for example, Lola [Wir98,
Wir96] by Niklaus Wirth used in education or Lava [BCSS99] by Per Bjesse et al. to
express layouts. The most commonly used languages are Verilog and VHDL. There
are also high-level programming approaches to FPGAs such as Kiwi [GS08] and
various C-to-hardware compilers. In this work we are studying the direct impact
of the algorithms on the resource consumption on the chip. We therefore preferred
the low-level HDL programing approach to better understand the behavior of the
designs and the FPGA.
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The HDL sources are compiled through a tool chain to a bitstream file that
is the programmed onto the chip and defines the function of the configurable
hardware components, such as LUTs and the interconnect fabric of the chip. The
workflow is depicted in Figure 5.3. The HDL sources are compiled into a device-
independent format. The following mapping stage maps the device-independent
primitives into device resources. During place and route (PAR) the resources are
mapped onto chip locations and the signal routing in the interconnect determined.
Finally, the fully routed design is serialized into a binary format, i.e., bitstream.
At different stages in the design flow non-functional specifications can be added.
These external constraints are considered in the workflow and include, for example,
pin locations, in order to make sure that the I/O ports of the FPGA circuits match
the hard-wired signals to the chip pins. Timing constraints are added to force the
tools to produce a design that meets well-specified clock and latency requirements.
In the following chapter we will make heave use of timing constraints.

5.2.3 Hardware Setup

FPGAs are typically available pre-mounted on a circuit board that includes addi-
tional peripherals. Such circuit boards provide an ideal basis for the assessment
we perform in this work. Quantitative statements in this dissertation are based
on two different hardware platforms.

Xilinx XUPV5-LX110T Development Board. This development board is
distributed as part of the Xilinx University Program. The board design is based
on a Xilinx ML505 evaluation board. For the XUPV5 edition the LX50T chip of
the ML505 board is replaced by a larger LX110T chip. The chips are architecture-
wise identical but the LX110T provides more than twice as many logic gates and
thus can be used for larger designs. The FPGA is mounted on a PCI-Express
printed circuit board and contains an on-board 256 MB DDR2 RAM module. For
communication, one gigabit Ethernet port and a serial RS-232 UART interface are
available. For universities the board is sold for $750.

Xilinx ML510 Development Board. The ML510 development board contains
a Virtex-5 FX130T FPGA chip. It not only provides more configurable logic gates
than the LX110T but also contains two embedded PowerPC cores. The board
has an ATX form factor and a DDR2 DIMM socket, which we populated with two
512 MB RAM modules. For terminal I/O of the software running on the PowerPC,
a RS-232 UART interface is available. The board has two gigabit Ethernet ports.
The ML510 board costs $3,995.



5.2. OVERVIEW OF FPGAS 157

Port A

Addr. A
NA

Data in A
MA Data out A

MA

Port B

Addr. B
NB

Data in B
MB Data out B

MB

(a) 36 kbit Block RAM

Address Data
width N width M

15 1 32 k× 1
14 2 16 k× 2
13 4 8 k× 4
12 9 4 k× 9
11 18 2 k× 18
10 36 1 k× 36

(b) Port configurations

Figure 5.4: Dual-ported Block RAM (BRAM) element on Virtex-5

Both boards are clocked from a 100 MHz crystal. From this external clock addi-
tional clocks are generated for the various clock regions on the chip and for the
external I/O connectors, such as the DDR RAM. The PowerPC cores are clocked
at 400 MHz. The RAM module, gigabit port and the UART interface are hard-
wired to a set of FPGA pins. The FPGA designs are volatile on the chip, i.e.,
they are lost after a power loss. The designs thus have to be loaded into the chip
after each power-up of the board. The bitstreams can be downloaded to the chip
through a JTAG programming interface or loaded from a Compact Flash card.

5.2.4 Dual-Ported Block RAM

In several places we will exploit the high configurability of the available Block
RAM (BRAM). On Virtex FPGAs, each BRAM block provides 36 kbit of on-
chip memory. Unlike in commodity systems, the word size of each block can
be configured: the 36 kbit of BRAM can be partitioned into, for instance, 1,024
words of 36 bit, 4,096 words of 9 bit, or 32,768 single-bit words. The possible
configurations are shown in Figure 5.4(b). In some configurations the full 36 kbit
cannot be used. Multiple BRAM blocks can be wired together to obtain larger
memories and/or larger word sizes.

All BRAM blocks are dual ported. Figure 5.4(a) shows the two ports (A and B)
of the BRAM block. The two fully independent ports provide access to the same
physical data as truly concurrent operations.1 Moreover, the word size of both
ports can be configured independently; data might be written, e.g., as two 8-bit

1The semantics for two conflicting write operations is undefined.
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words on one port, later accessed as a single 16-bit word using the other port. We
will make use of this feature to implement content addressable memory (CAM) in
the next section.

5.3 Content-Addressable Memory

The main advantage of using FPGAs for data processing is their intrinsic paral-
lelism. Among others, this enables us to escape from the von Neumann bottleneck
(also called the memory wall) that classical computing architectures struggle with.
In the common von Neumann model, memory is physically separated from the pro-
cessing CPU. Data is acquired from memory by sending the location of a piece
of data, its address, to the RAM chip, then receiving the data back. In FPGAs,
flip-flop registers and block RAM are distributed over the chip and tightly wired
to the programmable logic. In addition, lookup tables can be re-programmed at
runtime and thus be used as additional distributed memory. As such, the on-chip
storage resources of the FPGA can be accessed in a truly parallel fashion.

A particular use of this potential is the implementation of content-addressable
memory (CAM). Other than traditional memory, content-addressable memory can
be accessed by data values, rather than by explicit memory addresses. Typically,
CAMs are used to resolve a given data item to the address it has been stored at.
More generally, the functionality can implement an arbitrary key-value store with
constant (typically single-cycle) lookup time.

CAM Example. Consider a 10 × 32 CAM that can store 10-bit keys in 32
different locations. This CAM can be implemented using a single dual-ported
36 kbit BRAM block as shown in Figure 5.5(a). The CAM provides two interfaces:
(a) a put interface that to store a 10-bit key at one out 32 address locations (value),
and (b) a get interface to look up all address locations for a given key. Port A is
configured for the put operation while port B is used for the get. Port A uses bit
addressing The address is determined by concatenation of the key and the value
bits. More precisely, the bit address used for port A is AddrA = 32× key + value.
Assume the key 256 is stored at location one, then address used for port A is
AddrA = 32 × 256 + 1 = 8, 193. Figure 5.5(b) shows the address space through
port A after setting key and address location.

For reading, port B is addressed by the key, i.e., each 10-bit address then refers
to 32 data bits. Note that both ports refer to the same data. The mapping is
chosen such that each bit-address used in port A maps to a bit-position in port
B. A read on port B returns all locations where the key may be stored (in a
bitmap encoding). Figure 5.5(c) depicts the memory space seen through port B.
It shows that at address 256 the bit at location 1 is set. Note that due to the one-
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(a) BRAM configuration for CAM
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(b) Port A

addr 31 . . . 2 1 0
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...
255 0 . . . 0 0 0
256 0 . . . 0 1 0
257 0 . . . 0 0 0

...
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...
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1,023 0 . . . 0 0 0

(c) Port B

Figure 5.5: Example CAM with storage capacity for ten 32-bit values. Memory
content as seen through the two ports after storing a data item (key = 256 and
value = 1).

hot encoding a key can be stored at multiple locations. The data word read on
port B can optionally be converted into a binary encoding through an additional
combinatorial circuit, e.g., if multiple bits are set, it returns the binary address of
the lowest bit set in the data word. �

By combining multiple BRAM blocks the key width as well number of locations,
i.e., the depth of the CAM can be increased. We refer to the work of Guccione
et al. [GLD00] or the documentation provided by Xilinx [Xil99] for details on
FPGA-based CAM implementations. In Section 7.3.7, we use content-addressable
memory to implement lookups during ‘group by’ execution. The access pattern
in this context, frequent lookups with rare updates, suggests the use of a CAM
implementation that is based on lookup tables. It excels with very high lookup
speeds (a fraction of a clock cycle), but has a 16-cycle latency for updates. As
an alternative, a block RAM-based implementation would require a full cycle for
lookups and two cycles for updates.

5.4 Network Interface

FPGA-based accelerators need to be integrated into a full system solution. Input
data needs to transferred FPGA and results read back. One way to achieved this
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Figure 5.6: Network attachment of accelerator core. The core is connected to
a gigabit Ethernet network through a UDP/IP core that is implemented on the
FPGA fabric.

is by using a network attachment, i.e., the accelerator on the FPGA is connected a
network. The architecture is shown in Figure 5.6. Data is sent to the FPGA board
in form of UDP datagrams. A medium access controller (MAC) is provided as a
hard-IP core on the FPGA. This controller provides direct access to the underlying
Ethernet frame. We designed a UDP/IP engine that implements necessary the
protocol stack of IP and UDP in order to extract the payload data for received
datagrams and that generates the Ethernet frames for the outgoing data. The
gigabit network the MAC and the protocol engine are clocked at 125 MHz. Data
is transmitted over a 8-bit communication channel, resulting in the necessary on
chip bandwidth of 1 Gb. Essentially, this attachment provides direct access to
the wire. As we will show later this has important consequences for low-latency
processing.

5.5 FPGA Co-Processor

An additional attachment we considered in this work is the use of the FPGA as
a co-processor to a conventional CPU. Here we studied the use of the embedded
PowerPC core and the direct connection to the FPGA fabric. Additional possible
co-processor attachments in PC-based systems are through the PCI-Express Bus
[Bit09] or a connection over the HyperTransport Bus. Building a PCI-Express
attachment is a very daunting task as a complex protocol needs to be implemented
not only in hardware but also as part of the driver in the host system.

5.5.1 Bus Attachment

Similar to traditional microcomputer systems the embedded CPU on the FPGA
also requires memory and peripheral components for I/O. The components and
the CPU are connected to different on-chip buses. The Xilinx platform uses two
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different types of bus systems: the processor local bus (PLB) and the on-chip
peripheral bus (OBP). The former is designed to be used to connect comparatively
fast components such as CPU, memory, and network chips whereas the latter is
used for slow peripheral components, such as terminal UART.

The custom core is treated as any other component of the microcomputer
system. It is also connected to bus system. An architecture used later on the
ML510 board is shown in Figure 5.7. All components including the CPU are
connected to the PLB bus. As small amount of Block RAM is used to store the
program that is executed by the CPU. The data to be processed is stored in the
larger off-chip DDR2 memory bank. A UART is used to connect to a terminal
console. The connection between the external components and the PLB is made
through controllers, i.e., a muli-port memory controller (MPMC) for the memory
and a UART controller for the serial port. The acceleration core is attached
over a bus interface called IP interface (IPIF), which is provided by Xilinx for
all different bus systems. Hence, the developer of the application core does not
need worry about the details of the bus protocol. The IPIF essentially maps the
accelerator core into an unused memory space such that it been accessed by the
CPU.

One processing model we use in later chapters corresponds to the bus attach-
ment that is shown in Figure 5.7. First, input data is loaded into the accelerator
core in step (1). Depending on the implementation of the accelerator core, the
data can be processed online as is streamed in or it needs to be stored in a small
cache-like memory structure in the accelerator. The data is then processed in step
(2). The result data is written back to memory in step (3). Signaling to the CPU
is either interrupt-based or implemented through polling. The transfers (1) and
(3) do not necessarily involve the CPU as the accelerator core can be configured
to initiate the transfers. The IPIF provides sophisticated bus operations such as
direct memory access (DMA) between the accelerator core and the memory.

5.5.2 Attachment to CPU Execution Pipeline

Instead of connecting an accelerator core over the PLB and mapping the core into
the main memory seen by the CPU we can implement the accelerator core as an
Auxiliary Processor Unit (APU). The APU is directly connected to the execution
pipeline of the PowerPC 440 CPU. It was designed by IBM as a PowerPC extension
to connect a floating-point unit (FPU) to the embedded core. For example, the
FPUs of the IBM Blue Gene/L supercomputer are connected to the PowerPC 440
core through the APU interface. The APU does not have access to memory bus
but the design benefits from a short communication path to the embedded CPU.

The APU processor is accessed through a set of additional machine instructions.
These additional instructions include load/store, floating-point and as well as user-
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Figure 5.7: Architecture of the on-chip system that uses a bus attachment of the
accelerator core.

defined instructions. The APU processor can contain its own register file. The
load/store instructions can then be used to transfer data between memory and
APU register file. Since the APU is directly connected to the memory unit of
the CPU the APU can also benefit from the data cache, which makes sharing
data between CPU and APU very efficient. The user-defined instructions can
be used to pass data from the CPU register to the APU. Figure 5.8 shows the
architecture. The APU consists of a controller implemented in hard silicon and
co-located with the CPU core and the custom-defined fabric co-processor module
(FCM) implemented using FPGA components. The APU connects to the CPU at
different points of this simplified 5-stage RISC pipeline. The APU controller first
decodes APU-specific instructions (ID stage). Supported instructions are user-
defined instructions such as udi0fcm Rt,Ra,Rb and FCM load/store instructions.
The necessary operands are provided to the FCM during the execution phase (EX
stage), e.g., values for the two register operands Ra and Rb or the computed
memory address for loads and stores. For user-defined instructions, the FCM
computes the result and returns it to the CPU where it is into the target register
Rt in the CPU’s register file. For load instructions the CPU provides the data from
memory up to 16 bytes in parallel. For stores, the data returned by the FCM is
written back to the memory. The connection between the APU controller and the
FCM is implemented through a well-defined interface that contains the necessary
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signals that allow the CPU-side APU controller to control the FCM and exchange
data.

5.6 Summary

This chapter provided an introduction into the FPGA technology. An outline of
the design flow for was given. Designing an FPGA-based system is very different
from building traditional software systems. First of all, circuits have to be mapped
onto primitives provided by the FPGAs such as lookup tables and flip-flops, then
they are placed on the chip. Finally, on-chip signals paths are routed. Although,
this is typically handled by design tools the developer nevertheless has to be aware
of this as design choices significantly affect the success of the tools. The chap-
ter also introduced architecture features that are specific to FPGA. For example,
content addressable memory (CAMs) can be used as hash tables with fixed guaran-
tees. Furthermore, FPGA can be used in many different configurations of system
architectures. In the chapter the use of an FPGA in the network path as well as a
co-processor to an conventional CPU is described. The system architectures will
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turn out to have a major impact on the end-to-end performance of the hardware
solution. The next chapter discusses the trade-offs of the attachment methods of
FPGA to conventional systems. The following chapter also evaluates FPGAs as a
computing platform, i.e., how they can be used to perform computing tasks.



6
Sorting Networks on FPGAs

In this chapter, we first study the design trade-offs encountered when using FPGAs
for data processing tasks. In particular, we look at sorting networks that are well
suited for an implementation in hardware. Second, we provide a set of guidelines
for how to make design choices such as:

(1) FPGAs have relatively low clock frequencies. Näıve designs will exhibit a large
latency and low throughput. We show how this can be avoided by a careful
design using synchronous circuits and circuits that use combinational logic.
While the former increase throughput the latter reduce latency.

(2) Building combinational circuits is difficult to design than synchronous circuits.
This has led to a preference for synchronous circuits in studies of FPGA usage
[GS08]. Using the example of sorting networks, we illustrate systematic design
guidelines to create combinational circuits that solve database problems.

(3) FPGAs provide inherent parallelism whose only limitation is the amount of
chip space to accommodate parallel functionality. We show how this can be
managed and present how the chip space consumption of different implemen-
tation can be estimated.

(4) FPGAs can be very useful as database co-processors attached to an engine
running on conventional CPUs. This integration is not trivial and opens up
several questions on how an FPGA can fit into the complete architecture. In
two use cases, we demonstrate an embedded heterogeneous multi-core setup.

165
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In the first use case we connect the custom logic over a bus to an embedded
CPU. The second uses a tighter integration to the CPU, implemented though
a direct connection to the CPU’s execution pipeline. For both approaches we
study the trade-offs in FPGA integration design.

(5) FPGAs are attractive as co-processors because of the potential for tailored
design and parallelism. We show that FPGAs are also very interesting in
regard to power consumption as they consume significantly less power, yet
provide at a performance comparable to the one of conventional CPUs. This
makes FPGAs good candidates for multi-core systems as cores where certain
data processing tasks can be offloaded.

To illustrate the trade-offs in system integration we present two applications
scenarios that are based on sorting networks. The first is the implementation
of a median operator. In the second use case we evaluate a hardware/software
co-design on a FPGA. A 8-element sorting co-processor is implemented in the
FPGA logic and combined with a merge sort algorithm running on the embedded
CPU. Through an extension of the CPU’s instruction set we show how the FPGA
accelerator can be used in heterogeneous setup together with existing CPU code.
Our experiments show that FPGAs can clearly be a useful component in a modern
data processing system, especially in the context of multi-core architectures.

Outline. We start our work by setting the context with related work (Sec-
tion 6.1). After introducing the necessary background on sorting networks in Sec-
tion 6.2, we show how to implement sorting networks on an FPGA (Section 6.3).
We evaluate several implementations of different sorting networks in Section 6.4.
While this allows an in-depth analysis of FPGA-specific implementation aspects
it does not provide any insight of how the FPGA behaves in a complete system.
We make up for that in Sections 6.6 and 6.7 where we illustrate two complete
use cases. In Section 6.6 we illustrate the implementation of a median operator
using FPGA hardware. The second use case (Section 6.7) consists of a sorting
co-processor that is directly connected to the execution pipeline of the embedded
PowerPC CPU.

6.1 Related Work

Sorting is an important problem in computer science and has been extensively
studied. We reference relevant work on modern hardware below.

GPUTeraSort [GGKM06] parallelizes a sorting problem over multiple hardware
shading units on the GPU. Within each unit, it achieves parallelization by using
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SIMD operations on the GPU processors. The AA-Sort [IMKN07], CellSort
[GBY07], and MergeSort [CNL+08] algorithms are very similar in nature, but
target the SIMD instruction sets of the PowerPC 970MP, Cell, and Intel Core 2
Quad processors, respectively.

FPGAs are being successfully applied in signal processing, and we draw on some
of that work in Sections 6.6. The particular operator that we use in Section 6.6
is a median over a sliding window. The implementation of a median with FPGAs
has already been studied by Wendt et al. [WCG86], but only on smaller values
than the 32 bit integers considered in this paper. Our median implementation is
similar to the sorting network proposed by Oflazer [Ofl83].

Claessen et al. [CSS03] present a FPGA-based sorter as a use case for their Lava
language [BCSS99]. Lava is a hardware description language embedded in Haskell
that provides programming level abstractions for circuit composition including
layout. Regular structures such as sorting network can be expressed in Lava and
then automatically placed on the chip.

6.2 Sorting Networks

Some of the most efficient traditional approaches to sorting are also the best op-
tions in the context of FPGAs. Sorting networks are attractive in both scenar-
ios, because they (i) do not require control flow instructions such as branches
and (ii) are straightforward to parallelize (because of their simple data flow pat-
tern). Sorting networks are suitable for relatively short sequences whose length
is known a priori. Sorting networks have been extensively studied in literature.
For a detailed treatment see [Knu98, Bat68, CLRS01]. On modern CPUs, sort-
ing networks suggest the use of vector primitives, which has been demonstrated
in [GBY07,GGKM06, IMKN07].

The circuits of the sorting networks are composed of horizontal wire segments
and vertical comparators. We represent the comparator elements using the widely
known Knuth notation . The unsorted elements are applied at the left, one element
per wire (Figure 6.6). The sorted output then appears on the right side. Wire
segments connect the different compare-and-swap stages. Each wire segment can
transfer an m-bit number. The comparator elements perform a two-element sort,
such that the smaller of the two input values leaves the element on the right side
through the upper output wire and the larger value through the lower wire.

In the following, we describe two systematic methods to build sorting networks.
The first method is based on Even-odd Merging networks, the second on Bitonic
Merging networks. Both were proposed by K. E. Batcher [Bat68].
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Figure 6.1: Recursive definition of even-odd sorter Eos(2N)

6.2.1 Even-odd Merging Networks

Even-odd merging networks are built following a recursive definition that is as-
sumed to be efficient when number of elements N = 2p is a power of two [Knu98].
We use the exponent p to describe the size of a network. At the heart of the
networks are even-odd merging elements that combine two sorted subsequences
a0 ≤ · · · ≤ aN−1 and b0 ≤ · · · ≤ bN−1 into a single sorted sequence c0 ≤ · · · ≤
cN−1 ≤ cN ≤ · · · ≤ c2N−1. Using these merging elements a sorting network can be
built recursively as shown in Figure 6.1. The input sequence of size 2N is split into
two sequences of size N . Each of these sequences is sorted by an even-odd sorter
Eos(N). The sorted outputs are then merged using an even-odd merger Eom(N)
of size N . The recursive definition of Eos(N) is depicted in Figure 6.1(b). Fig-
ure 6.1(a) shows the basis of the recursion where a single comparator is used to
sort the two elements.

The even-odd merging elements Eom(N) that combine the two sorted se-
quences of length N are defined in a similar recursive form. The basis of the
recursion Eom(1) is a single comparator as shown in Figure 6.2(a). The recursion
step illustrated in Figure 6.2(b) works as follows: Given are two sorted input se-
quences a0, a1, . . . , a2N−1 and b0, b1, . . . , b2N−1 for an even-odd merger Eom(2N).
The N even-indexed elements a0, a2, . . . , a2k, . . . , a2N−2 are mapped to the a-inputs
of the “even” merger. The N odd-indexed elements a1, a3, . . . , a2k+1, . . . , a2N−1 are
mapped to the a-inputs of the “odd” merger. The b inputs are routed similarly. As
it can be easily shown the inputs of the even and odd mergers are sorted, hence,
each produces a sorted sequence at the output. The two sequences are then com-
bined by an array of 2N − 1 comparators as shown in Figure 6.2(b). By unrolling
the recursion of Eos(N) and Eom(N) a sorting network consisting of comparators
is created. An example of an even-odd merging network that is able to sort eight
inputs is shown in Figure 6.6(a).
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Figure 6.2: Recursive definition of Even-odd merger Eom(N) for 2×N elements

6.2.2 Bitonic Merging Networks

In CellSort [GBY07] and GPUTeraSort [GGKM06] sorting is based on Bitonic
Merging networks. A bitonic sequence can be regarded as a partially sorted list that
consists of two sorted monotonic subsequences, one ascending the other descending.
For example, 1, 4, 6, 5, 2 is a bitonic sequence whereas 1, 4, 6, 5, 7 is not.

A bitonic sequence can be transformed into a sorted monotonic sequence using
a Bitonic Sorter [Bat68]. Figure 6.3 shows the recursive definition of a bitonic
sorter Bs(2N) that transforms the 2N bitonic input sequence z0, z1, . . . , z2N−1
into a sorted output sequence.

The reason for introducing bitonic sequences in the first place is that they can
be easily generated from two sorted sequences a0, . . . , aN−1 and b0, . . . , bN−1. It
can be shown that concatenating a0, . . . , aN−1 and the sequence bN−1, . . . , b0, i.e.,
the a sequence with the reversed b sequence, yields a bitonic sequence. This bitonic
sequence can then be sorted by a bitonic sorter Bs(2N). This process generates
a network that merges two sorted input sequences of length N . The resulting
Bitonic Merging network is shown in Figure 6.4(a). Using the fact that reversing
a bitonic circuit is also bitonic the circuit can be redrawn without wire-crossings
in Figure 6.4(b).

Following the divide-and-conquer approach bitonic merger in Figure 6.4 can
be recursively applied producing a complete sorting network. Such a network is
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Figure 6.5: Sorting networks based on Insertion Sort and Bubble Sort are equiva-
lent
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(b) Bitonic Merging Network

Figure 6.6: Sorting networks for 8 elements

shown in Figure 6.6(b) for size N = 8.

6.2.3 Bubble and Insertion Sort Networks

Sorting networks can also be generated from traditional sorting algorithms. Fig-
ure 6.5 shows two networks that are generated from Bubble and Insertion Sort.
When comparing the two circuits diagrams 6.5(a) and 6.5(b) it can be seen that
the resulting networks are structurally equivalent. Like their algorithmic counter-
parts these sorting networks are inefficient. Networks generated by this approach
require many comparator elements.

6.2.4 Sorting Networks Comparison

In general, the efficiency of a sorting network can be measured in the number of
comparators required and the number of stages, i.e., steps, through the sorting
network. Table 6.1 shows the resulting number of comparators C(N) of a sorting
network of size N and S(N) the number of stages.
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bubble/insertion even-odd merge bitonic merge

exact C(N) = N(N−1)
2 C(2p) = (p2 − p+ 4)2p−2 − 1 C(2p) = (p2 + p)2p−2

S(N) = 2N − 3 S(2p) = p(p+1)
2 S(2p) = p(p+1)

2

asymp- C(N) = O(N2) C(N) = O
(
N log2(N)

)
C(N) = O

(
N log2(N)

)
totic S(N) = O(N) S(N) = O

(
log2(N)

)
S(N) = O

(
log2(N)

)
N = 8 C(8) = 28 C(8) = 19 C(8) = 24

S(8) = 13 S(8) = 6 S(8) = 6

Table 6.1: Comparator count C(N) and depth S(N) of different sorting networks
of size N . For sizes N = 2p the exponent p is given.

Bitonic Merge and Even-odd Merge sorters have the same depth and the same
asymptotic complexity. However, asymptotic behavior is of little interest here,
as we are dealing with relatively small array sizes. An interesting result was
published in [AKS83] that proposes a sorting network with a better asymptotic
complexity C(N) = O

(
N ln(N)

)
and depth S(N) = O

(
ln(N)

)
. However, the

constant dropped in the O-notation is too big and thus renders it unsuitable for
practical sorting networks [Knu98].

Despite requiring more comparators bitonic merge sorters are frequently used
because they have two important properties: (1) all signal paths have the same
length and (2) the number of concurrent compares for each stage is constant. For
example, in the Bitonic Merging network in Figure 6.6(b) every wire undergoes six
compares. In contrast, consider the uppermost wire of the even-odd merging sorter
in Figure 6.6(a). The path x0  y0 passes only through three comparator stages,
whereas x2  y2 passes through all 6 stages. This has the disadvantage that differ-
ent signal lengths must be considered, for example, if the data is clocked through
the network, i.e., one stage every clock, additional registers may be necessary of
buffering intermediate values.

In a bitonic merging network, N/2 compares are present in each stage. For
even-odd mergers the number is not constant. In Figure 6.6(b) for example, stage
1 has 4 concurrent compares, whereas stage 3 has only 2. A constant number of
comparisons is useful to efficiently implement the sorting network in a sequential
form using a fixed number of comparators M given by the architecture, e.g., the
SIMD vector length. A single stage can be executed in N/(2M) steps. If a stage
is not using all operators, some comparators remain idle. This fact is exploited
in [GBY07,GGKM06].
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Figure 6.7: Implementation approaches for digital circuits

6.3 Implementing Sorting Networks

The sorting networks shown in Section 6.2 can be implemented in several ways
using different technologies. In this context we study two implementations in
FPGA hardware and a CPU-based implementation. For the hardware variant
we differentiate between three types of circuits: combinational, synchronous, and
pipelined implementations. Before diving into the implementation details we first
discuss the key properties of these circuit types.

6.3.1 Combinational vs. Synchronous Pipelined Circuits

Purely combinational circuits are operated without a clock signal. They consist
of combinatorial logic only. Figure 6.7(a) illustrates the combinatorial logic as a
cloud between a pair of registers. Input signals are applied from a register on
the left. The signals travel through the combinatorial logic that comprises the
sorting network. The comparators are implemented primarily using FPGA lookup
tables (combinatorial logic). The signals travel through the sorting stages without
following a synchronization signal such as a clock. At some predetermined time
instants the signals at the output are read and stored in another register. The key
characteristics of combinational circuits is the absence of registers.
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In implementations of sorting networks that are using combinational logic only
one single N -set can reside in the network at any given time. 1 The next N -set
can only be applied after the output signals for the previous set are stored away
in a register following the sorting network. Hence, both the latency and the issue
interval are determined by the length of the combinatorial signal path between the
input and the output of the sorting network. More precisely, they are given by the
longest delay path L from any input to any output. The throughput of the design
that uses combinational only is 1/L N -sets per second. The path delay is difficult
to estimate in practice, as it involves not only the delay caused by the logic gates
themselves but also the signal delay in the routing fabric. The maximum delay
path L directly depends on the number stages S(N) but also on the number of
comparators C(N) as they contribute to the routing pressure and further increase
latency. In Section 6.4, we measure the propagation delay for different network
sizes. For an even-odd merging network with N = 8 and m = 32 we measure
L = 18 ns for the FX130T–2 chip. The throughput of the combinational circuit is
1/L N -sets per second. For the example circuit this translates into 56 M 8-sets/sec,
which corresponds to a processing rate of 1.66 GB/s.

By introducing registers in the combinatorial circuit the length of the signal
path can be broken up. The computation of the circuit is thereby divided into
stages that are separated by registers (see Figure 6.7(b)). The resulting circuit is
called synchronous since a common clock is used to move the data through the
network from stage to stage at specific instants. Clearly, both types perform the
same computation, hence, the combinatorial logic is conceptually identical. The
crucial difference are the registers. They require additional space but have an
interesting advantage.

A natural way is to place the register after each stage in the sorting network.
Since the path delays between registers are smaller than the delay in the entire
network consisting of purely combinational logic it can be clocked faster. The
highest possible clock frequency is now determined by a shorter maximal path. The
overall latency of the synchronous circuit is S(N)fclk where fclk is the frequency
of the clock that drives the registers. The registers can be inserted arbitrarily in
the combinatorial signal paths, not necessarily at the end of each sorting stage,
allowing to trade-off the latency S(N)fclk with the operational clock speed fclk. In
VLSI design this technique is known as register balancing. In this work, we assume

1A technique known as wave pipelining [BCKL98] can be used to send several items through
a combinatorial network. The signals travel through the network as multiple waves. In wave
pipelining the temporal spacing between the signals is less than the longest path in the circuit.
Although wave pipelining can significantly reduce latency, the circuit design is very complex.
Signal paths must be carefully routed while considering the uncertainty in the path delay (e.g.,
temperature and data-dependent variations). Traditional FPGA design tool do not provide
support for wave pipelining designs.
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that registers are added after each comparator.

Note that by introducing stage registers alone the circuit does not necessarily
become fully pipelined. In a fully pipelined circuit a new input set can be applied
every clock cycle resulting in a throughput of fclk N -sets per second. However,
just adding a register at the output of a comparator does not necessarily make it
fully pipelined. Additional registers are required to buffer the value on wires that
are not processed between stages. This is illustrated in Figure 6.7. The first wire
in 6.7(b) is not buffered by the second register stage. It seems unnecessary as this
signal is not involved in the combinatorial logic of the second stage. While this
saves a flip-flop, now special care needs to be taken for timing the signals. In order
to have the signals line up correctly at the output registers, the inputs have to
be applied during two consecutive cycles. When buffering every signal as shown
in 6.7(c) the circuit becomes fully pipelined, i.e., the all signal path reaching the
output register have the same length and a new input can be applied at every
clock cycle. This is particularly relevant for even-odd sorting networks as we will
see later. The network shown in Figure 6.9 can be clocked at fclk = 267 MHz on
our chip. Being fully-pipelined, this directly translates into a data processing rate
of 7.9 GB/s.

6.3.2 Implementing Comparators on FPGAs

The sorting network circuits shown in Section 6.2 can be directly translated into
digital circuits. The essential component is the implementation of the comparator
in FPGA logic. The sorting network can then be built by instantiating the required
comparators and wiring them up accordingly.

In the following, we look at how the comparator can be defined in a high-level
hardware description language VHDL. Then we study how the FPGA tool chain
translate this description and maps it to the FPGA primitives shown in Figures 5.1
and 5.2. This allows us to analyze the resource utilization on the chip.

Purely Combinational Comparators. The complexity of the comparator is
given by the width of its inputs. For this analysis we consider fixed-length m-bit
integer values. The results we provide in the thesis are based on m = 32 bit
integers. In general, however, any m and any comparison function can be used,
e.g., double precision floats etc. In hardware, the choice of the data type only
affects the implementation of the comparator not the sorting network itself. This
is different from sorting network realizations on GPUs and CPUs where different
types are provided in different configurations, e.g., a compare-and-swap instruction
is only provided for integers but not for floating-point values.

We specify the behavior of the comparator element in the VHDL hardware
description language as follows (where the first <= indicates a signal assignment
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Figure 6.8: FPGA implementation of an purely combinational 32-bit compara-
tor requiring 80 LUTs (16 for evaluating a ≤ b and 2 × 32 to select the mini-
mum/maximum values).

and the second a less-or-equal operator):

entity comparator is

port (

a : in std_logic_vector(31 downto 0);

b : in std_logic_vector(31 downto 0);

min : out std_logic_vector(31 downto 0);

max : out std_logic_vector(31 downto 0));

end comparator;

architecture behavioral of comparator is

min <= a when a <= b else b;

max <= b when a <= b else a;

end behavioral;

The two conditional signal assignments are concurrent assignments, i.e., they
describe the functional relationship between the inputs and the outputs and can
be thought as being executed “in parallel”. The component comparator is in-
stantiated once for each comparator element in the sorting network. The vendor-
specific FPGA synthesis tools will then compile the VHDL code, map it to device-
primitives, place the primitives on the 2D grid of the FPGA and finally compute
an efficient routing of the signals between the sites on the chip.

Figure 6.8 shows the circuit for our Virtex-5 FPGA generated by the Xilinx
ISE 11.3 tool chain. The 32 bits of the two inputs a and b are compared first
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(upper half of the circuit), yielding a Boolean output signal for the outcome of
the predicate a ≤ b. The signal drives 2 × 32 LUTs configured as multiplexers
that connect the proper input lines to the output lines for min(a, b) and max(a, b)
(lower half of the circuit).

For the comparisons a ≤ b, the LUTs are configured to compare two bits of
a and b each. As shown earlier in Figure 5.2 the LUTs on the Virtex-5 chip can
have up to two outputs and can be connected to up to 5 common inputs. The
two outputs are then connected through the fast carry-multiplexers . This
results in a carry chain where the multiplexer selects the lower input if O6 is high.
Otherwise, the carry-multiplexer selects the output O5 of the LUT. Therefore, the
two Boolean functions f5 and f6 implemented by the LUT are

f6(ai, ai+1, bi, bi+1) =
(
āib̄i ∨ aibi

)(
āi+1b̄i+1 ∨ ai+1bi+1

)
f5(ai, ai+1, bi, bi+1) = āibi+1bi ∨ āi+1āibi ∨ āi+1bi+1 .

Here, ai and bi refers to the i-th of the two integers a and b bit in little-endian
order. f6 compares the two bit positions (ai+1, ai) and (bi+1, bi). If they are not
equal f5 evaluates the predicate (ai+12

i+1 + ai2
i) < (bi+12

i+1 + bi2
i).

The lower array of LUT pairs implement a multiplexers that select the right bits
for the min- and the max-outputs of the comparator element using the predicate
a ≤ b. Let c the Boolean value of the comparison. Then, the LUT g6 for the
minimum-output is

g6(ai, bi, c) = aic ∨ bic̄
and for the maximum-output

h6(ai, bi, c) = bic ∨ aic̄ .

Resource Usage. From Figure 6.8 it can be seen that a comparator that performs
a compare-and-swap operation of two m-bit numbers can be implemented using
d5m/2e LUTs and dm/2e carry-multiplexers. Usually, chip utilization is measured in
the number of occupied slices. The number of slices used for a design consisting of
a given number of LUTs depends on the packaging strategy followed by the placer
of the FPGA tool chain. In a optimal packaging with maximum density where
all four LUTs in a slice are used (see Figure 5.2) in total d5m/8e FPGA slices are
used for each comparator. Thus, for m = 32 at least 20 slices are required for each
comparator. This results in an upper bound of 1,024 comparators that be placed
on our Virtex-5 FX130T chip. Note that in practice, however, the placer does not
use this maximum packing strategy. In general, not every slice is fully occupied,
i.e., all its LUTs are in use. Sometimes is is more efficient to co-locate a LUT
with the input output block (IOBs) to the chip pins in order to reduce routing
distances and, hence, latency. The slice usage can be even higher as the tool may
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a > b min/max total

32-bit integer 16 LUTs 64 LUTs 80 LUTs
single precision float 44 LUTs 64 LUTs 108 LUTs

double precision float 82 LUTs 128 LUTs 210 LUTs

Table 6.2: Number of LUTs required for different comparator types. The numbers
are subdivided into the logic evaluating the predicate and the logic that selects
the min/max values based on the predicate value.

be forced to use LUTs as plain “route-through” elements when it runs short on
direct connection wires in the interconnect fabric.

Latency of a Single Comparator. The FPGA implementation in Figure 6.8
is particularly time efficient. All lookup tables are wired in a way such that all
table lookups happen in parallel. Outputs are combined using the fast carry logic
implemented in silicon for this purpose. Ignoring routing delays for the moment
the latency of the circuit, i.e., the time until output signals “min” and “max” of
the comparator are valid after applying the inputs, is given by sum of two LUTs
(one of the comparison chain and one multiplexer LUT) and the propagation delay
of the chain of d5m/2e carry-multiplexer. From the Virtex-5 data sheet [Xil09a] the
logic delay (excluding routing in the network) is 0.89 ns for m = 32.

Comparators for Floating Point Numbers. When sorting floating point num-
bers the compare-and-swap elements of the sorting network have to be replaced.
The logic used to evaluate the predicate a ≤ b for two floating point numbers
is significantly different from two integer values. Xilinx provides an IP core that
implements the a ≤ b comparison for floating-point numbers. It supports the ba-
sic IEEE-754 single- and double-precision format, however, without denormalized
numbers (treated as zeros). Table 6.2 shows the number of lookup tables used
for a single compare-and-swap element for different data types. The numbers are
split into the logic used to evaluated to the predicate a ≤ b and the multiplexer
logic to select the min/max value. Since single-precision is also 32 bits wide the
multiplexer logic has the same complexity as the integers used in this paper. The
single-precision comparison a ≤ b requires 108 Virtex-5 LUTs in total compared
to the dm/2e = 16 LUTs for integers. For double-precision 210 LUTs are needed.

6.3.3 Combinational Sorting Networks

The sorting network is implemented by instantiating comparators and wiring them
accordingly. As pointed out earlier, there are no explicit stages and register that
buffer intermediate results. Instead, the comparator circuits (LUTs and carry-
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multiplexer) form a large network of combinatorial logic.
We can provide a lower-bound for the chip area required for the entire sorting

network. As pointed out in the previous section, comparator elements require 5m/2
LUTs each, where m is the data width in bits. The total number of lookup tables
thus is

#LUTs =
5

2
C(N)m .

Using the C(N) from Table 6.1 we compute the number of lookup tables for
even-odd merging and bitonic merging networks:

#LUTs even-odd = 5m(p2 − p+ 4)2p−3 − 5m

2
#LUTs bitonic = 5m(p2 + p)2p−3 .

The total area consumption measured in number of occupied slices depends on
the packaging. We can provide a lower bound based on the following simplifying
assumption that multiplexer LUTs (see Figure 6.8) are not placed in the same slice
as the logic used to evaluate the a ≤ b predicates (no combination of “unrelated”
logic). The area utilization can be estimated as

#slices even-odd = 5m
[
(p2 − p+ 4)2p−5 − 1/8

]
#slices bitonic = 5m(p2 + p)2p−5 .

Ignoring additional LUTs used as “route throughs” the chip area of the 8-element
even-odd merging network (for m = 32) shown in Figure 6.6(a) containing 19
comparators requires 380 slices, i.e., 1.86 % of the Virtex-5 FX130T chip. The
corresponding network based on bitonic mergers (Figure 6.6(b)) requires 24 com-
parators resulting in 480 FPGA slices, or equivalently, 2.34 % of the chip.

6.3.4 Synchronous Implementation on FPGA

In a synchronous design an external clock signal moves the data from stage to
stage through the sorting network. To this extent, the comparator outputs are
connected to banks of flip-flips, called stage registers. The register store the input
during the rising edge of the clock signal. The output of a stage register is then
fed to the next comparator stage as shown in Figure 6.9.

Latency. The latency is determined by the clock frequency f and the depth
S(N) of the sorting network. In fact, the time between applying the data at the
input and reading the sorted data at the output is given by S(N)/fclk. For example,
the even-odd merging network shown in Figure 6.9 on our Virtex FX130T–2 FPGA
can be operated at fclk = 267 MHz. Hence, the overall latency for the 6-stage
network is 6/267 MHz = 22.5 ns.
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Figure 6.9: Pipelined synchronous even-odd merge sorting networks using six 8×
32 = 256 bit pipeline registers. Dotted rectangles indicate register stages that can
be combined into a shift register.

Pipelining. Synchronous sorting networks can further be implemented in a
fully-pipelined way. This allows keeping an N -item set “in-flight” at every stage
of the sorting network. Because the outputs of the comparator are buffered in a
register after every stage, a complete new N -set can be inserted at the input every
cycle.

As it can be seen in Figure 6.9, in even-odd merging networks not all wires are
processed by a comparator in every cycle. For example, in the third stage, the
wires x0, x3, x4, and x7 are not processed by a comparator. In order to obtain a
pipeline these wires still need to buffered by a register as shown in the Figure 6.9.
This increases the number of occupied slices.

Resource Usage. The synchronous implementation differs from the purely com-
binational network by the stage registers. In a non-fully pipelined implementation
the registers can be easily accommodated in the comparator logic. The outputs of
the lookup tables g and h of the combinational comparator implementation (see
Figure 6.8) can simply be connected to the corresponding flip-flops (see Figure 5.2
for the LUT–flip-flop configuration in an FPGA slice). Hence, no additional slices
are used for comparators and the total resource consumption of a sorting network
identical to the combination implementation, i.e., for a sorting network consist-
ing of C(N) comparators on N m-bit inputs C(N)d5m/8e FPGA slices. Again,
this is a lower-bound that is only reached if all slices are fully-occupied, i.e., all
4 LUTs/flip-flops of a slice are used, and no additional lookup tables are used as
“route-throughs”.

For the fully-pipelined implementation we can provide a similar lower-bound
for the chip area required for fully-pipelined implementation. Now, a complete
Nm-bit register is needed for each stage. Hence, the total number of LUTs and
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flip-flops (FFs) required is

#LUTs =
5

2
C(N)m

#FFs = S(N)Nm .

It can be easily verified that the resource usage in even-odd merging and bitonic
merging networks is given by

#LUTs even-odd = 5m(p2 − p+ 4)2p−3 − 5m

2
#LUTs bitonic = 5m(p2 + p)2p−3 .

The number of stages S(N) is the same for both network types, therefore, also the
number of registers:

#FFs = 4m(p2 + p)2p−3 .

For the lower bound on the slice count we are using the assumption that the
register following a comparator is always placed in the same slice, i.e., the output
of the multiplexer-LUT is directly routed to the flip-flop register that is co-located
with that LUT. Furthermore, we assume that flip-flops of stage registers without
a comparator (e.g., shown inside dotted rectangles in Figure 6.9) are not placed in
the same slice as the logic used to evaluate the a ≤ b predicates (no combination
of “unrelated” logic). The area utilization then is:

#slices even-odd = m
[
(5p2 + 3p+ 4)2p−5 − 1/8

]
#slices bitonic = 5m(p2 + p)2p−5 .

Note that under these placement assumptions the slice usage for bitonic merg-
ing networks is identical to the implementation that uses only combinational logic.
This is due to the fact that in bitonic networks there is a comparator for each wire
in every stage, hence, all flip-flops registers can be co-located with a lookup table
belonging to a comparator such that no additional slices are required.

6.3.5 Sorting Networks on CPUs

Sorting networks for CPUs have been extensively studied in literature, in particu-
lar for exploiting data parallelism on modern SIMD processors [IMKN07,CNL+08,
FAN07, GBY07]. In this section, we show how sorting networks can be directly
implemented on general-purpose CPUs. We show the implementations for two
different hardware architectures: Intel x86-64 and PowerPC. We use these imple-
mentations later to compare the FPGA design against.
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Neither of the two architectures provides built-in comparator functionality in
its instruction set. We therefore emulate the functionality using conditional moves
(x86-64) or the carry flag (PowerPC). The following two sequences of assembly
code implement the comparator operation for PowerPC and x86-64 processors:

[r8, r9]← [min(r8, r9),max(r8, r9)] .

PowerPC Assembly x86-64 Assembly

subfc r10,r8,r9 movl %r8d,%r10d

subfe r9,r9,r9 cmpl %r9d,%r8d

andc r11,r10,r9 cmova %r9d,%r8d

and r10,r10,r9 cmova %r10d,%r9d

add r9,r8,r11

add r8,r8,r5

Neither piece of code makes use of branching instructions. The same property has
important consequences also in code for traditional CPUs. Branch instructions
incur a significant cost due to flushing of instruction pipelines (note that sorting
algorithms based on branching have an inherently high branch misprediction rate).
This is why the use of a sorting network is a good choice also for CPU-based
implementations.

Related Implementations using SIMD. Chhugani et al. [CNL+08] describe
an SIMD implementation for sorting single precision floating point numbers using
Intel SSE instructions. Similar work is done by Inoue [IMKN07] with the PowerPC
AltiVec instruction set for both integer and single precision floating point data. In
both cases, data parallelism in SIMD is used to sort multiple elements in a SIMD
vector register in one step. For example, in the approach described by Chhugani et
al. four 32-bit single precision floating point numbers are compared and swapped.
Below, we briefly outline how they compare two vectors A = (a3, a2, a1, a0)

T and
B = (b3, b2, b1, b0)

T .

Assume that we want to compare a0 to a1, a2 to a3, b0 to b1 and b2 to b3. This
pattern occurs, for example, in the first stage of 8-element bitonic merging network
shown in Figure 6.6(b). The Intel SSE architecture provides two instructions that
determine the element-wise minimum and maximum of two vectors. In order
to perform the desired comparisons the elements in the two vectors have to be
shuffled into the correct position, which is done by additional shuffle instructions.
The required shuffle operations are illustrated in Figure 6.10. The operations can
be directly implemented in C using SSE-intrinsics as follows:



6.4. EVALUATION: SORTING CIRCUITS ON FPGAS 183

B b3 b2 b1 b0 Aa3 a2 a1 a0

D a3 b2 a1 b0 Cb3 a2 b1 a0

E b2 a3 b0 a1

MIN min(b2, b3) min(a3, a2) min(b0, b1) min(a1, a0)

MAX max(b2, b3) max(a3, a2) max(b0, b1) max(a1, a0)

Figure 6.10: Vector compare implemented using SSE instructions

__m128 A, B, C, D, E, MIN, MAX;

C = _mm_blend_ps(A,B,0xA);

D = _mm_blend_ps(B,A,0xA);

E = (__m128)_mm_shuffle_epi32((__m128)D,0xB1);

MIN = _mm_min_ps(C,E);

MAX = _mm_min_ps(C,E);

Chhugani et al. [CNL+08] split sorting into different stages to account for the
fixed-length SIMD registers. First, an in-register sort phase sorts 16 elements
in 4 SIMD registers. Then a 2 × 4 bitonic merging network Bm(4) is used to
merge two resulting sorted lists. The fixed vector length of SSE makes Bitonic
networks a good choice as they have a constant number of comparators N/2 in
each stage. Even-odd sorters would require additional buffering, which adds to
the cost for shuffling elements in vectors. This shuffling overhead increases for
larger networks and limit along with the fixed number of SIMD registers (16 on
x86-64) available the scalability of this approach. In FPGAs implementations this
additional shuffling translates into an increased signal routing complexity, which
also limits scalability.

6.4 Evaluation: Sorting Circuits on FPGAs

In this section, we provide a detailed evaluation of the sorting network implemen-
tations on our Virtex-5 FPGA (FX130T). Before turning to the application use
cases in Sections 6.6 and 6.7 we analyze both the purely combinational and syn-
chronous implementations of the even-odd merging and bitonic merging networks
without the side-effects caused by the attachment of FPGA (e.g., bus and memory
performance).
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Figure 6.11: Sort chip architecture used to evaluate implementations of sorting
networks. Example shown for N = 16.

To this extent, we implement the sorting network as a dedicated sort chip. Data
to be sorted is applied at I/O pins of the FPGA. Similarly, the sorted output can be
read from an other set of I/O pins. The sort chip approach can be regarded as being
artificial because an integrated circuit in custom silicon only implementing sorting
in practice is of limited use. Nevertheless, it provides an environment to evaluate
the sorting networks. When designing the chip we consider two important aspects.
First, the implementation must be fully functional, that is, no simplifications are
allowed that might lead the FPGA tool chain to shortcut parts of the design. For
example, all input and outputs of the sorting networks must be connected to an
I/O pin of the chip, otherwise, sub-circuits driving unconnected signals might be
pruned in the optimization stage of the synthesis.

Second, for evaluating the raw performance of the sorting circuit, routing pres-
sure when connecting to I/O blocks must not dominate the overall speed. Although
it is in principle possible to connect all inputs and outputs for an N = 8 element
sorting network to the FPGA pins, it leads to longer routing distances because a
large chip area needs to be covered since the I/O are uniformly distributed over
the chip. For larger networks N > 8 more than the 840 I/O pins available on the
Virtex-5 FX130T FPGA are required to interface the sorting network.

Hence, in order to minimize the impact of routing I/O signals we significantly
reduced the width of the chip interface and use an architecture as shown in Fig-
ure 6.11. The key are FIFO buffers (BRAM blocks) placed at the input and output
of the sorting network. The FIFO buffers that have different widths at the read
and write interfaces. Xilinx provides FIFO IP cores that can have a width ratio
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between inputs and outputs of up to 1:8 or 8:1. For example, for N = 8 we use an
input-side FIFO with an write with of 32 bit. This allows us to write one 32-bit
word per clock cycle. Using a width ratio 1:8 we can read 8 consecutive elements
from this FIFO into the sorting network. Similarly for the output-side FIFO in a
8:1 configuration, we can write all 8 32-bit outputs of the sorting network into the
FIFO. The output FIFO is the connected to the output pins of the chip through
a 32-bit wide interface, such that we can read the sorted output one element per
clock cycle. For network sizes N > 8 we use multiple FIFO lanes with ratio 1:8
and 8:1. Figure 6.11 shows two FIFO lanes for N = 16.

An additional advantage of using FIFOs is that they can be clocked at a differ-
ent rate than the sorting network. This isolates the timing analysis of the sorting
network from that of the chip interface. Although it is impossible to clock the
FIFOs eight times higher than the sorting network, we nevertheless can try to
maximize the clock of the sorting network in order to determine the raw speed of
the sorting network alone.

We evaluate resource consumption the network types and the synchronous and
purely combinational implementations as follows. The resources used by the im-
plementations (number of lookup tables, flip-flop registers and slices) are shown
for the sorting network alone excluding logic for handling clock and the FIFOs.
We estimate the resource consumption of the sorting network by using the num-
ber of the complete circuit. To this extent we replace the sorting network by a
“pass-through” and compare it with the full implementation including the sorting
network. Since the input/output logic in both case is the same, the difference is
due to the actual sorting network. In the following, we only report the difference
numbers.

6.4.1 Synchronous Implementations

Figure 6.12 shows the number of flip-flops (registers) used in the synchronous,
fully-pipelined implementation of the even-odd and bitonic sorting network. The
dotted line shows the prediction of the cost model introduced in Section 6.3.4.
The model predicts the same value for both network types. It can be seen in
Figure 6.12 that the model accurately predicts the flip-flop number for the bitonic
sorting network. However, for even-odd sorting networks the model overestimates
the register usage. This can be explained by the specific structure of even-odd
networks that is not considered by the simple model. In even-odd networks not
every wire has a comparator in every stage. This has an important consequence
in a fully-pipelined implementation shown in Figure 6.9. Several stages without
comparators represent shift registers (shown as dotted rectangles in Figure 6.9).
Instead of using flip-flop registers the shift registers can be implemented more
efficiently on Xilinx FPGAs using LUTs configured as such called shift register
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Figure 6.12: Flip-flop usage of synchronous fully-pipelined implementations. While
the model accurately predicts the resource requirements for bitonic merging net-
works it overestimates the flip-flop usage for even-odd merging networks.
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When LUTs used as shift register lookup table in even-odd merging networks are
subtracted the model predictions are also correct for even-odd networks.
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Figure 6.14: LUT usage in purely combinational and synchronous fully pipelined
implementations. Purely combinational circuits result in a higher LUT usage.

lookup tables (SRL). Hence, the actual number of flip-flop registers is reduced for
even-odd sorting networks.

Replacing flip-flops by LUTs increases number of LUTs, such that the LUT
resource model will underestimate the LUT usage for even-odd networks. This
can be seen in Figure 6.13 that shows the LUT utilization. The figure also shows
the predicted values for both network types (from Section 6.3.4). Whereas the
model prediction is correct for bitonic networks it underestimates the LUT usage
for even-odd networks. However, when subtracting the number of LUTs configured
as SRL from the total number the model for even-odd networks is accurate too.

When comparing the synchronous implementation of the two network architec-
tures we observe that even-odd networks require less chip space, both, in number
of flip-flop registers and lookup tables.

6.4.2 Implementation based on Combinational Logic

Combinational implementations do not contain any flip-flops in the sorting net-
work. By analyzing the routed FPGA design we could verify that FPGA design
tools furthermore did not introduce any flip-flops, for example, registers for pipelin-
ing or latency balancing. The lookup table utilization is shown in Figure 6.14. The
figure also shows the effective number of LUTs used in the synchronous designs for
comparison. It can be seen that for bitonic merging networks the combinational
circuit requires more LUTs than the synchronous design. It turns out that this
also holds for even-odd networks once the additional LUTs used in synchronous
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Figure 6.15: Chip usage (measured in slices) of fully-pipelined synchronous imple-
mentations

implementations for shift registers are subtracted.

It is not quite clear why the combinational circuits versions require more lookup
tables. We believe it is an artifact introduced by the Xilinx design tools. An
analysis of the routed design showed that LUTs were not fully used, e.g., not all
four inputs in the comparators for evaluating the predicates a > b. The difference
to synchronous circuits is that in the combinational case each output bit of the
sorting network can be expressed as a huge Boolean function of all inputs bits, e.g.,
for N = 8 sized network, there are 256 Boolean functions with 256 Boolean inputs
each. During synthesis, the tools try to minimize these functions and later on map
the resulting expressions back to FPGA LUTs. We believe that this process is
based on heuristics and has limitations in performance.

6.4.3 Chip Usage

Figure 6.15 and 6.16 show the overall chip utilization in % of FPGA slices for the
synchronous and purely combinational implementations respectively. Both plots
are down in double-logarithmic scale. The resulting straight line corresponds to
a power function. We are able to place designs up to N = 64 elements onto the
Virtex-5 FX130T FPGA chip. When synthesizing networks for N = 128 the tools
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Figure 6.16: Chip usage (measured in slices) using purely combinational logic

will abort due to overmapping over both registers and lookup tables.

In general, the slice utilization highly depends on the timing constraints, i.e.,
the clock frequency for synchronous networks and the maximum signal delay
through the combinational network. The chip utilization values we report here are
obtained at the highest performance constraints that can be met by the FPGA
tools. For the fully-pipelined implementations in Figure 6.15 we can observe that
the slice usage roughly corresponds to the model prediction. The outlier for even-
odd networks at N = 16 seems to related again to heuristics in the tools as it only
occurs at tight timing constraints.

The chip utilization for purely combinational circuits (Figure 6.16) significantly
deviates from the model predictions. In general, the model underestimates the
utilization, in particular for larger network sizes. An analysis of the synthesized
design showed that many slices are not fully occupied, i.e., not all LUTs or flip-flops
are used. We observe this behavior when the place-and-route stage optimizes for
speed instead of space. This is the case here as we chose tight timing constraints
while there are still enough resources (area) available on the chips such that the
tools are not forced to combine unrelated logic into the same slices.

In conclusion, we can observe that the resource models introduced earlier work
best for flip-flop and LUT usage for synchronous circuits. They are less accurate
for combinational circuits, in particular for slice usage.
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Figure 6.17: Maximum clock frequencies the sorting network implementations can
be operated

6.4.4 Circuit Performance

For FPGAs, as for any hardware design, performance is given by the timing behav-
ior. The timing behavior is specified during synthesis through one or more time
constraints. The tools then try to find a design during the place-and-route phase
that meets these constraints. If this phase completes successfully the system is
able to operate that at this timing. The phase fails if one or more constraints are
not met. In this case, the system does not operate correctly at this timing. The
designer is then left to operate the circuit as close to the desired parameters the
tool was able to synthesize a design, otherwise, the timing constraints have to be
relaxed and the entire process repeated until a successful design is found.

For synchronous designs we only set the desired clock frequency of the sort-
ing network. We gradually decrease the clock frequency until the place-and-route
phase completes successfully. We plot the clock frequency in Figure 6.17. Combi-
national networks have two timing constraints. The first is the core clock, which
is needed to drive the scheduler that reads the input data from the FIFOs, applies
the data to sorting network, waits until the output of the sorting work is valid,
and then stores the output in the out-FIFO. The second parameter is the latency
in the combinational sorting network that corresponds to the longest delay path
in the sorting network. We round this path delay down to the next closest number
of clock cycles. Clearly, the two timing parameters are correlated. We perform
a search in this 2-dimensional space as follows. First, we maximize the clock fre-
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Figure 6.18: Data latency in the different sorting network implementations

quency fclk and set delay constraint for the sorting network to bS(N)/fclkc. S(N) is
the number of swap stages in sorting network. Once we found the maximum fclk
we gradually reduce the path delay constraint until no valid design can be found.

As it can be seen in Figure 6.17 the clock frequency decreases as the network
size increases. This behavior corresponds to algorithms in traditional computing
where execution times increase (or throughput decreases) with the problem size.
If the clock frequency would not increase the throughput would increase as N
grows. It can also be seen from the figure that synchronous circuits can be clocked
significantly higher. There is no significant difference between the two network
types. For combinational-only circuits the higher complexity of bitonic networks
result in a lower clock speed.

Figure 6.18 shows the latency of the sorting network. It is measured as the time
between applying the inputs at the sorting network and reading the sorted data the
output of the sorting network. For the fully-pipelined implementations the latency
is equal to S(N)/fclk. For combinational implementations, we directly determine the
latency L. It can be seen that for networks N > 8 synchronous circuits have lower
latency, even though the additional register stages in the sorting network inherently
uses the signal propagation through the network. The reason why combinational
networks do have a higher latency is due to the lower overall clock speed that feeds
and extracts data to and from the network. The large combinatorial circuits have
a significant negative impact on the clock frequency as shown in Figure 6.17 such
that latency gains by omitting the stage register cannot compensate the loss in
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the overall clock frequency.

Throughput is related to latency L. Fully-pipelined implementations can pro-
cess an N -set every clock cycles while combinational implementations can process
a tuple every dLfclke cycle. Here, we can observe the significant gains of fully-
pipelined designs. For example, both synchronous networks can process 64 ele-
ments at 220 MHz. This corresponds to a throughput of 14.08× 109 elements/sec.
Since the elements are 32-bit in size, the resulting throughput is 52.45 GiB/sec.
In contrast, the fastest corresponding combinational network (even-odd as shown
Figure 6.18) has a latency of 113.3 ns 150 MHz, which results in a throughput of
8.8× 106 elements/sec or equivalently 2.1 GiB/sec. The high throughput numbers
are very promising for the FPGA technology. However, so far we only analyzed
the isolated performance the sorting network. The overall system performance
depends on the integration, that it the attachment of the FPGA to the rest of
the system. We analyze this performance through two different use cases in this
chapter.

6.5 Manual Placement

So far the circuit were synthesized from a behavioral specification of the compara-
tor element (see VHDL code in Section 6.3.2 and Figure 6.8) and a structural
description of the wiring in the sorting network. The synthesized circuit is then
mapped into FPGA elements and placed onto the chip by the FPGA design tools.
The performance evaluation in the previous section showed that sorting networks
built as combinatorial circuits have a lower performance than synchronous de-
signs. This section discusses whether it is possible to increase the performance of
combinatorial circuits through manual placement.

Sorting networks exhibit a regular structure, which allows generating circuits
with explicit, in the sequel called “manual”, placement of components on the
FPGA chip. The section illustrates the following two important points: (1) man-
ual circuit design and placement can result in circuits with better performance
characteristics than those generated by the automatic design tools, (2) manual
placement is a complex and nontrivial engineering task. In most cases the in-
creased engineering effort outweighs the performance gains. Manual placement is
typically used in practice when the design tools fail to meet timing requirements.

For manual placement, 2D layout tools such as Xilinx PlanAhead are used.
The manual placement results in additional constraints that are considered in the
later stages of the design flows (see Figure 5.3 on page 155). Alternatively, location
constraints can be specified in VHDL code directly using VHDL attributes.
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6.5.1 Relative Location Constraints

Components are placed relative to a coordinate system. The coordinate system is
defined on the 2D FPGA array. Each coordinate addresses a single slice (see Fig-
ure 5.2, page 155). The Y-coordinate specifies the column, X-coordinate addresses
the row in the array. FPGA components such as RAMs, LUTs, flip-flops, carry-
chains, etc. can be addressed relative to this coordinate system. Since circuits are
typically composed in a hierarchical structure the placement of the components
and subcomponents is relative rather than absolute. The location of a VHDL
component is set using an RLOC relative location constraint.

Example: The following VHDL code segment instantiates four Virtex-5 6-LUTs
and places them all into the same slice at relative location X0Y0.

attribute rloc : string;

...

generate_luts : for i in 0 to 3 generate

attribute rloc of comp : label is "X0Y0";

begin

comp : LUT6_2

generic map (

-- implemented 6-to-2 bit logic function

INIT => X"0000900900004F04")

port map (

O6 => eq(i),

O5 => le(i),

I0 => in_a(2*i),

I1 => in_b(2*i),

I2 => in_a(2*i+1),

I3 => in_b(2*i+1),

I4 => ’0’,

I5 => ’1’);

end generate generate_luts;

Since all four LUTs are mapped to the same slice they are distributed among the
A, B, C and D LUTs of the slice. �

6.5.2 Placement of Sorting Network Elements

The components of the sorting network are mapped onto chip slices as shown
in Figure 6.19 for a eight element bitonic sorting network. The X/Y position is
obtained from the recursive definition of the network in Figure 6.3 and Figure 6.4.
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Figure 6.19: 8-element bitonic sorting network with explicit wiring between com-
parator elements

Even-odd sorters are placed in a similar manner. As shown earlier, networks
based on even-odd sorters require less elements non-constant number of comparator
elements in each column. This leads to “holes” in the placement.

For each comparator an RLOC constraint is specified. The spacing between the
comparators has to be chosen such that there is no overlap between the units, i.e.,
the spacing is given by the dimension of the implementation of a comparator. The
implementation of a 32-bit is was already depicted in Figure 6.8. A comparator
element consists of a circuit for the predicate a < b and a set of multiplexers.
The analysis in Section 6.3.2 showed that 4 slices (16 LUTs and 4 carry elements)
are used for the predicate and 16 slices (64 LUTs) for the output multiplexers
(see Table 6.2). The output multiplexers can be implemented more efficiently for
combinatorial sorters. Due to the missing flip-flops in the combinatorial sorters
both outputs (O5 and O6) of the lookup tables can be used. This reduces the
number of LUTs configured as output multiplexer by half. Only 8 slices (32 LUTs)
are required for the multiplexers. In total, thus, 12 slices are needed for each
comparator element. Two possible layouts of the resulting comparators are shown
in Figure 6.20.

Figure 6.20(a) uses 2× 6 slices whereas the layout in Figure 6.20(b) uses 3× 4
slices. Given the routing structure of the FPGA interconnect the two different
layouts result in different signal latencies. An observation obtained by placing
sorting networks of different sizes and comparator layouts on the Virtex-5 FX130T
FPGA showed that 2× 6 layout in Figure 6.20(a) leads to 10–20 % shorter signal
paths. In the following evaluation, therefore, the 2× 6 layout is evaluated.
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Figure 6.20: Manual layouts of 32-bit combinatorial comparators for Virtex-5 FP-
GAs. Shaded slices contain comparison logic, unshaded slices contain output mul-
tiplexers.

6.5.3 Performance of Manual Placement

We evaluate the performance of even-odd and bitonic networks of different sizes
on a Virtex-5 FX130T chip. Using a structural specification of the sorting network
and its comparators the LUTs and carry units are explicitly placed on the chip.
Figure 6.21 depicts the FPGA floor plans of two 32-element combinational bitonic
sorting network designs. On the left, Figure 6.21(a) shows the design obtained
through manual placement whereas Figure 6.21(b) shows the design obtained by
applying the Xilinx synthesizer on a behavioral description of the comparator (as
in Section 6.4.4) and automatic (unconstrained) placement. In both cases, the
maximum delay path through the network is constrained at the lowest possible
value PAR (place and route) can find a feasible solution. FPGA resources used
for auxiliary logic, e.g., input and output FIFOs and tuple scheduling are shaded
in gray, slices used for sorting network logic are colored black (Figure 6.21). Since
the sorting network in both designs use approximately the same number of slices
the size of black areas are roughly equal. However, the design on chip obtained by
automatic placement ends up much more sparse.

Manual placement of components allows denser packing. Denser packing, how-
ever, does not necessarily lead to shorter signal paths. If the connectivity complex-
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Figure 6.21: Floor plan of 32-element bitonic sorting networks on a Virtex-5
FX130T FPGA

ity exceeds the available routing capacity of the interconnect a larger chip area has
to be used for routing. This in turn increases the length of the signal paths and
thus defeats the purpose of a denser packing. Figure 6.22 compares the resulting
latencies of the combinatorial sorting networks. The dashed lines show the laten-
cies for manually placed bitonic and even-odd sorting networks. For comparison
Figure 6.22 contains the latencies obtained by automatic placement and using a
behavioral specification of the comparators (shown earlier in Figure 6.18). Due
to a memory bug in Xilinx MAP tool in the Xilinx ISE 10.1, 11.4, 11.5, 12.1 and
12.2 tool suites, 64-element sorters could not be mapped. Hence, Figure 6.22 only
shows latencies for 8, 16, and 32-element sorters. Compared to the automatically
synthesized and placed circuits a 15–40 % latency improvement can be obtained
for the manually placed circuits. Manual placement and mapping to FPGA re-
sources allows to outperform the vendor design tools. We can conclude that the
suboptimal performance behavior observed from automatically placed and mapped
circuits in the previous section is solely a result of the current Xilinx tools and not
due to the circuit structure or chip properties.

Explicit placement of sorting networks on FPGAs was also studied by Claessen
et al. [CSS03]. They express the structure of a sorting network in their Lava
hardware description language. The Lava code is an extension to Haskell and is
compiled into a program that generates VHDL code and EDIF netlists for the cor-
responding sorting network. They implement various sorters for N = 32 elements
with 16-bit word width on a Virtex-II FPGA. In contrast to work presented in this
section, Claessen et al. used fully pipelined designs. In this dissertation, manual
placement of purely combinatorial sorters is studied in order to verify that the poor
performance behavior of the generated circuits is due to the current Xilinx design
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Figure 6.22: Data latency in the combinatorial sorting network implementations.
Optimal manual placement leads to shorter delay paths in the network.

tools. The work by Claessen et al. does not compare the circuit performance of
the manual placement with the placement obtained from the tools, however, a
comparison is given for bitonic and even-odd networks. Claessen et al. can clock
their even-odd sorter at 147 MHz and the bitonic sorting network at 127 MHz.
This corresponds to a 15 % higher throughput for even-odd sorters. At the same
time they report a 14 % latency improvement for even-odd sorters. In the results
presented in this section for manual placement of combinatorial sorters no such
difference can be observed. However, for automatic placement (Section 6.4.4) we
can report a similar 9 % lower latency for even-odd sorters.

Manual placement is able to outperform vendor tools by 15–40 % for combinato-
rial sorting networks. Sorting networks exhibit a regular structure, which allows
a systematic placement. However, manual placement as well as the technology
mapping introduces an additional dependency as designs are chip-dependent and
in contrast to high-level specifications cannot be easily ported to chips of different
vendors or even to a different chip family within the same vendor. Furthermore,
placement significantly increases the engineering effort. In general, designs gener-
ated by tools are good enough for most applications. However, the tools can be
easily outperformed by hand-crafted designs [AFSS00]. For generating the query
circuits presented in the next chapter we opted for automatic placement. First
of all, the circuits do not exhibit a regular structure such as sorting networks.
Second, in order to maximize throughput fully pipelined designs are used. As
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Figure 6.23: Median aggregate over a count-based sliding window (window size 8)

shown in Figure 6.17 the tools are able to generate reasonable designs if they are
synchronous and fully pipelined.

6.6 Use Case: A Streaming Median Operator

As a first use case for the sorting network circuits we choose a median operator over
a count-based sliding window implemented on the aforementioned Xilinx board.
This is an operator commonly used to, for instance, eliminate noise in sensor
readings [RSS75] and in data analysis tasks [Tuk77]. For illustration purposes and
to simplify the figures and the discussion, we assume a window size of 8 tuples.
For an input stream S, the operator can then be described in CQL [ABW06] as

SELECT median(v)
FROM S [ Rows 8 ] .

(Q1)

The semantics of this query is illustrated in Figure 6.23. Attribute values vi in
input stream S are used to construct a new output tuple T ′i for every arriving input
tuple Ti. A conventional (CPU-based) implementation would probably use a ring
buffer to keep the last eight input values (we assume unsigned integer numbers),
then, for each input tuple Ti,
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Figure 6.24: Implementation of median operator able to process four items per
clock tick

(1) sort the window elements vi−7, . . . , vi to obtain an ordered list of values w1 ≤
· · · ≤ w8 and

(2) determine the mean value from the ordered list. For the even-sized window
we return w4, corresponding to the lower median. Similarly, w5 corresponds
to the upper median.

The ideas presented here in the context of the median operator are immediately
applicable to a wide range of other common operators. Operators such as selection,
projection, and simple arithmetic operations (max, min, sum, etc.) can be imple-
mented as a combination of logical gates and simple circuits similar to the ones
presented here. We described one strategy to obtain such circuits in [MTA09b].

6.6.1 An FPGA Median Operator

We take advantage of the inherent hardware parallelism when implementing the op-
erator. The goal is to maximize throughput by choosing a design that is able to pro-
cess several tuples per clock cycle. The design of the median operator is illustrated
in Figure 6.24. The operator accepts four consecutive tuples Tk, Tk+1, Tk+2, Tk+3

in every clock cycle. The tuple’s values vk, . . . , vk+3 are then inserted into the
sliding window, which is implemented as a shift register. The shift register stores
11 32-bit elements. Since four new elements are inserted every cycle the elements
have to move by four positions to the left. The 11-element shift register contains
four overlapping sliding windows of length eight that are separated by one ele-
ment. The elements of the four windows are then connected to four instances of
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Figure 6.25: When computing the median the complexity of the fully-pipelined
synchronous even-odd merge sorting network can be reduced from 19 compara-
tors and 48 32-bit registers to 10 comparators, 7 half-comparators and 29 32-bit
registers.

synchronous, fully-pipelined even-odd merging sorting networks Eos(8) (see Fig-
ure 6.9). The lower median for each window finally appears at the fourth output
of the corresponding sorting network. In summary, the result tuples T ′k, . . . , T

′
k+3

are computed as follows from the windows:

T ′k ← Eos
(
[vk, vk−1, . . . , vv−7]

)
4

T ′k+1 ← Eos
(
[vk+1, vk, . . . , vv−6]

)
4

T ′k+2 ← Eos
(
[vk+2, vk+1, . . . , vv−5]

)
4

T ′k+3 ← Eos
(
[vk+3, vk+2, . . . , vv−4]

)
4
.

Since we are only interested in the computation of a median, a fully sorted data
sequence is more than required. Consider the even-odd sorting network shown in
Figure 6.9. The lower median value appears at output y3. Therefore, the upper
and lower comparators of the last stage that sort y1, y2 and y5, y6 as well as the
preceding register stages are not needed and can be omitted. The FPGA synthesis
tool is able to detect unconnected signals and automatically prunes the corre-
sponding part of the circuit. The pruned network is shown in Figure 6.25. Besides
the reduction by 2 comparators and 19 32-bit registers the circuit complexity can
further be reduced. Note that in Figure 6.25 7 comparators have one output un-
connected. This means that the one the two 32-bit multiplexer that select the
min/max value can be saved, which reduces the complexity by 32 LUTs.
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Figure 6.26: Architecture of the on-chip system: PowerPC core, 3 aggregation
cores, BRAM for program, and interface to external DDR2 RAM

6.6.2 System Design

So far we have looked at our FPGA-based database operator as an isolated com-
ponent. However, FPGAs are likely to be used to complement regular CPUs in
variety of configurations. For instance, to offload certain processing stages of a
query plan or filter an incoming stream before feeding it into the CPU for further
processing.

In conventional databases, the linking of operators among themselves and to
other parts of the system is a well understood problem. In FPGAs, these connec-
tions can have a critical impact on the effectiveness of FPGA co-processing. In
addition, there are many more options to be considered in terms of the resources
available at the FPGA such as using the built-in PowerPC CPUs and soft IP-cores
implementing communication buses or controller components for various purposes.
In this section, we illustrate the trade-offs in this part of the design and show how
hardware connectivity of the elements differs from connectivity in software.

6.6.3 System Overview

Using the ML510 Virtex-5-based development board described in Section 5.2.3,
we have implemented the embedded system shown in Figure 6.26. The system
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primarily consists of FPGA on-chip components. We use additional external (off-
chip) memory to store larger data sets. The memory is provided by a 512 MB
DDR2 DIMM module that is directly connected to the FPGA pins. The DIMM
module operates at a bus clock of 200 MHz, which corresponds to DDR2-400 with
a peak transfer rate of 3200 MB/sec.

On the FPGA we use one of the built-in PowerPC 440 cores, which we clock
at the highest specified frequency of 400 MHz. The on-chip components are con-
nected over a 128-bit wide processor local bus (PLB). We use 128 kB on-chip
memory (block RAM) to store the code executed by the PowerPC (including code
for our measurements). External memory used for the data sets is connected to
the PLB through a multi-port memory controller (MPMC). It implements the
DDR2 protocol. To control our experiments we interact with the system through
a serial terminal. To this extent, we instantiate a soft IP-core for the serial UART
connection link (RS-232).

Our streaming median operator participates in the system inside a dedicated
processing core (Figure 6.26). As described in Section 6.6.1 the core contains the
11-element shift register and four sorting network instances. Additional logic is
required to connect the core to the PLB. A parameterizable IP interface (IPIF,
provided by Xilinx as a soft IP-core) provides the glue logic to connect the user
component to the bus. In particular, it implements the bus protocol and handles
bus arbitration and DMA transfers.

In order maximize performance while minimizing the CPU load we use DMA
transfers initiated by the median core to access the memory. The DMA controller
is implemented in the IPIF logic of our core. For our experiments we generate
random data corresponding to the input stream in the external memory from a
program running on the PowerPC core. Next, the CPU sets up the DMA transfers
to read the input data from memory and to write back the median results. The
two DMA transfers are setup by specifying the start addresses of the input data
and result data as well as the number of items to process. Note that the output
data size is equal to the input data size. The CPU communicates these parameters
to median core by writing them into three memory-mapped registers of the median
core. The logic for the registers is also implemented in the IPIF. We implemented
the core such that the processing is started implicitly after writing the size register.
The processing consists of three phases shown in Figure 6.26.

(1) A read transfer moves the data from the external memory into the median
core. For maximum efficiency the full 128-bit width of the bus is used. In
other words 16 bytes are sent over the bus per clock cycle. The PLB operates
at 100 MHz resulting in a peak bus bandwidth of 1,600 MB/sec. During for
each clock cycle 4 32-bit elements are received by the aggregation. This is the
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Figure 6.27: Distribution of FPGA resources in a system with median core

reason why we designed the aggregation core in Figure 6.24 such that it can
process four items at once.

(2) The sorting network is fully pipelined hence we can process the input data
immediately as it arrives. The median computation is performed in a pipelined
manner for four elements in parallel. The PLB and IPIF only permit one active
DMA transfer at any given time, hence, we need store the result data for the
later write-back DMA transfer to external memory. We implement this on-
chip buffer as a FIFO memory. The size of the memory is equal to maximum
transfer size of 4,080 bytes supported by the controller. Our logic splits larger
data sizes in multiple read/write DMA transfers without CPU involvement.

(3) After completing a data chunk the result data in the FIFO buffer is writ-
ten back to memory by a write DMA transfer. After a 4,080-byte chunk is
complete the next data chunk is read into the core (phase 1). After the last
chunk is processed the median core signals completion to the CPU by rising
an interrupt.

6.6.4 Evaluation

Resource Usage. The entire system occupies 28 % of the FPGA slices available
on Virtex-5 FX130T chip. This includes not only the median core but also all
additional soft IP-cores that are implemented using FPGA logic, for example, the
memory controller, processor bus, and UART core. This figure does not include
used components that are available in discrete silicon (hard IP-cores), such as the
PowerPC core and block RAM. The design tools report 225 kB of block RAM
memory used, which corresponds to 17 % of the available on-chip memory.

We further analyzed the resources used by the median core itself. In particular,
how much is spent for implementing the interface to the PLB and the DMA logic.
As for the evaluation in Section 6.4 we replace the operator implementation by a
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simple “route-through” logic, synthesize the design and compute the difference in
flip-flops and LUTs to the complete design in order to estimate the chip resources
used by the median operator alone. Figure 6.27 shows the distribution of flip-flop
registers and lookup tables. The median core consisting of four 8-element even-
odd sorting networks the sliding window, and control logic that schedules inserting
data into the sorting network and extracting the results occupies about 40 % of
all flip-flops and LUTs used by design. Also shown in Figure 6.27 is the space
required for IP-core interface (IPIF) implementing the PLB interface and DMA
transfer. 10 % of flip-flops and 18 % of the lookup tables are spent for the IPIF.
Approximately half of the overall chip resources were used for logic unrelated to
the median operator (memory controller, PLB, UART, etc.).

The implementation of median core is dominated by LUT usage. The median
core uses 8.2 % of the LUTs available on the Virtex-5 FX130T FPGA while rest
of the system occupies 6.3 % of chip’s LUTs. Hence, from a space perspective, it
can be estimated that 11 instances of the median core can be placed on the chip.
However, the number of components that can be connected to the PLB for DMA
operations is limited to eight. Since the DMA bus functionality is also used by the
PowerPC core this leads to at most 7 median cores that can be instantiated under
the current system design.

Performance. The overall performance of the system is determined by the clock
frequency as well as the latency and bandwidth limitations of the bus and memory
interface. We operate the median core at the core system clock of 100 MHz. This
clock is determined by other system components. In particular, the DDR2 memory
controller is very sensitive to timing errors. Although, the sorting network oper-
ates at significantly lower clock speed compared to the evaluation in Section 6.4
(100 MHz vs 267 MHz) the design of the median operator still allows us to process
a full bus width of data every cycle. Performance limitations is not due to the
aggregation core but to the other system components.

The hardware implementation of the median operators requires 1.302 seconds for
processing the 256 MB data set. While processing this data set 2 × 256 MB are
transferred, once from external memory into the sorting network and once from
the on-chip memory holding the result data back to the external memory. This
leads to an effective end-to-end throughput of 393 MB/sec. Putting this figure in
contrast to the peak bandwidth of the DDR2 memory (3,200 MB/sec) and the PLB
(1,600 MB/sec) there is an significant loss. The memory is accessed sequentially
and we paid special care to avoid contention on the processor bus. For example,
we made sure that the PLB is not occupied by other components (e.g., the CPU)
during while the median core is processing data. We believe that the observed
reduction in bandwidth is due to the arbitration overhead of the bus.
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Figure 6.28: Execution time for computing the stream median of a 256 MB data
set on different CPUs using different sorting algorithms and on the FPGA

FPGA Performance in Perspective. FPGAs can be used as co-processors of
data processing engines running on conventional CPUs. This, of course, presumes
that using the FPGA to run queries or parts of queries does not result in a net
performance loss. In other words, the FPGA must not be slower than the CPU.
Achieving this is not trivial because of the much slower clock rates on the FPGA.

Here we study the performance of the FPGA compared to that of CPUs. To
ensure that the choice of a software sorting algorithm is not a factor in the com-
parison, we have implemented eight different sorting algorithms in software and
optimized them for performance. Seven are traditional textbook algorithms: quick
sort, merge sort, heap sort, gnome sort, insertion sort, selection sort, and bubble
sort. Building accelerators with FPGAs is a complex and nontrivial processing.
In order to perform a fair comparison we deliberately spent a considerable ef-
fort to also optimize the CPU-based implementations. The eighth implementa-
tion is based on the even-odd merge sorting network shown in Figure 6.25 using
CPU registers. We implemented the sorting network using the assembly code
variant shown in Section 6.3.5. As for the hardware implementation we applied
the same optimization of the sorting that are possible for computing the lower
median, i.e., removing comparator stages and optimizing the assembly code for
“half-comparators”. This process has lead to a hand-written, fully optimized and
branch-free implementation of median computation in assembly language. The
PowerPC implementation consists of 88 instructions. For Intel x86-64 we end up
with 61 instructions.

We ran the different algorithms on several hardware platforms. We used an
off-the-shelf Intel x86-64 CPU (2.66 GHz Intel Core2 quad-core Q6700) and the fol-
lowing PowerPC CPUs: a 1 GHz G4 (MCP7457) and a 2.5 GHz G5 Quad (970MP),
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the PowerPC element (PPE not SPEs) of the Cell, and the embedded 440 core
of our FPGA. All implementations are single-threaded. For illustration purposes,
we limit our discussion to the most relevant subset of algorithms.

Figure 6.28 shows the wall-clock time observed when processing 256 MB (as 32-
bit tuples) through the median sliding window operator shown in Figure 6.23. The
horizontal line indicates the execution time of the FPGA implementation. Timings
for the merge and heap sort algorithms on the embedded PowerPC core did not
fit into scale (162 s and 92 s, respectively). All our software implementations
were clearly CPU-bound. It is also worth noting that given the small window,
the constant factors and implementation overheads of each algorithm predominate
and, thus, the results do not match the known asymptotic complexity of each
algorithm. The best CPU result is obtained for the hand-written even-odd merging
implementation on the Intel Core2 Q6700. Processing 256 MB requires 1.314 sec.

The performance observed indicates that the implementation of the operator
on the FPGA is able to slightly outperform a modern conventional CPU. Pro-
cessing 256 MB requires 1.314 sec on the Intel Core2, compared to 1.302 s on the
FPGA. This is a bit discouraging result given the large effort spent for the FPGA
implementation. As we already pointed out Section 6.4, the sorting network itself
is very fast. Here, the comparatively low full-system performance is due to the
currently available system components and bus design. Building FPGA-based ac-
celerators is, not unlike to GPUs, difficult as the culprit is the same; getting data
to and from the device. We can show that if directly combined with I/O FPGA
can lead to significant performance improvements over traditional information sys-
tems. In the next chapter and in [MTA09b] we build a 1 gigabit network interface
(UDP/IP) for the FPGA and combined it with a data processing engine on the
same chip. This allows us to process data at wire speed. In [ME09] we apply the
same technique to object deserialization. Nevertheless, being not worse than CPUs
the FPGA is a viable option for offloading data processing out of the CPU, which
then can be devoted to other purposes. When power consumption and parallel
processing are factored in, FPGAs look even more interesting as co-processors for
data management.

Power Consumption. While the slow clock rate of our FPGA (100 MHz) reduces
performance, there is another side to this coin. The power consumption of a logic
circuit depends linearly on the frequency at which it operates (U and f denote
voltage and frequency, respectively):

P ∝ U2 × f .

Therefore, we can expect our 100 MHz circuit to consume significantly less energy
than a 3.2 GHz x86-64 CPU. It is difficult to reliably measure the power con-
sumption of an isolated chip. Instead, we chose to list some approximate figures in
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Intel Core 2 Q6700:
Thermal Design Power (CPU only) 95 W
Extended HALT Power (CPU only) 24 W
Measured total power (230 V) 102 W

Xilinx ML510 development board:
Calculated power estimate (FPGA only) 10.0 W
Measured total power (230 V) 40.8 W

Table 6.3: Power consumption of an Intel Q6700-based desktop system and the
Xilinx ML510 FPGA board. Measured values are under load when running the
median computation.

Table 6.3. Intel specifies the power consumption of our Intel Q6700 to be between
24 and 95 W (the former figure corresponds to the “Extended HALT Powerdown
State”) [Q6707]. For the FPGA, a power analyzer provided by Xilinx reports an
estimated consumption of 10.0 W. A large fraction of this power (5.3 W) is used
to drive the outputs of the 234 pins that connect the FPGA chip. CPUs with such
large pin counts have the same problem. Additional power is also spent for the
PowerPC (0.8 W) and the different clock signals (0.5 W).

More meaningful from a practical point of view is the overall power requirement
of a complete system under load. Therefore, we took both our systems, unplugged
all peripherals not required to run the median operator and measured the power
consumption of both systems at the 230 V wall socket. As shown in Table 6.3,
the FPGA has a 2.5-fold advantage (40.8 W over 102 W) compared to the CPU-
based solution here. The power values are significantly higher for the Virtex-5
board that the 8.3 W wall power what we reported in [MTA09a] where we used a
smaller board with a Virtex-II Pro FPGA. The higher power consumption is only
partially due to increased power requirements of Virtex-5 FPGA. The new ML510
board also contains additional and faster components, which even when inactive
their quiescent currents lead to a higher overall power consumption. Additionally,
the 250 W ATX power supply we use for the ML510 board is a switching power
supply, which is known to have a low efficiency when operated significantly below
the nominal power (16 % in our case). A power-aware redesign of the board and
the use of a matching power supply can reduce the power consumption much below
40 W.

As energy costs and environmental concerns continue to grow, the consumption
of electrical power (the “carbon footprint” of a system) is becoming an increasingly
decisive factor in the system design. Though the accuracy of each individual
number in Table 6.3 is not high, our numbers clearly show that adding a few
FPGAs can be more power-efficient than simply adding CPUs in the context of
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many-core architectures.

Modern CPUs have sophisticated power management such as dynamic fre-
quency and voltage scaling that allow to reduce idle power. FPGAs offer power
management even beyond that, and many techniques from traditional chip design
can directly be used in an FPGA context. For example, using clock gating parts
of the circuit can be completely disabled, including clock lines. This significantly
reduces the idle power consumption of the FPGA chip.

6.7 Use Case: A Sorting Co-Processor

In the second use case we directly integrate the sorting network into a system.
We built an 8-element even-odd merging network and connect it to the PowerPC
core. Instead of connecting it over the processor local bus (PLB) and mapping
the core into the main memory seen by the CPU the sorting core is implemented
as an Auxiliary Processor Unit (APU). The APU interfaces was described in
Section 5.5.2 (page 161). This use case illustrates another approach to integrate
an FPGA accelerator into a heterogeneous system.

6.7.1 Heterogeneous Merge Sort

The hardware solutions described before have the disadvantage that they can only
operate on a fixed-length data set. As a workaround that allows variable sized
input make used of the CPU to merge chunks of data that is sorted in hardware.
The sorting algorithm of choice here is merge sort. In this use case we implement
an 8-element even-odd merging network as a sort core in the APU. The FPGA
accelerator will sort consecutive blocks of 8 elements in-place. The sorted blocks
are then merged on the CPU as shown in Figure 6.29. This corresponds to a merge
sort where the lowest L = 3 (leaf) levels are performed by the APU. For sorting
N elements in total dlog2(N)e are required. Hence, for N = 2p elements, p − L
merge levels in software are needed.

6.7.2 Sorting Core connected to the CPU Execution Pipeline

We access our sorting core through load/store instructions. The FCM contains
two 16-byte registers s0 and s1 that are able to store 4 elements each. The CPU
code for sorting 8-elements is shown below:
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APU Assembly

r8← address of input array
r9← address of output array
r10← 16 stride in bytes

ldfcmux s0,r8,r10 s0← mem[r8 + r10],
r8← r8 + r10

ldfcmx s1,r8,r10 s1← mem[r8 + r10]
. . . 6 additional writes to s1

stfcmux s0,r9,r10 mem[r9 + r10]← s0,
r9← r9 + r10

stfcmx s1,r9,r10 mem[r9 + r10]← s1

For sorting 8 values on the APU, we first load the input data from memory
into s0 and s1. The data loaded by using to instruction. s0 corresponds to
the first 4 elements, while the last 4 elements are written to s1. The ldfcmux

instruction also updates the first source register operand whereas ldfcmx does
not. We designed the FCM such that after writing s1 the content [s0,s1] is fed
into the sorting network (Eos(8)). The sorting network is implemented following
a fully-pipelined synchronous design. In order to simplify instruction scheduling
we clock the sorting network based on writing s1, i.e., after writing 6× to register
s1 the sorted output appears at the output of the sorting network. The sorted
output is written back to memory using a FCM store instruction. Note that in
fact s0 and s1 each refer to two different registers when loading or storing (see
Figure 6.30). We can hide this 6-instruction latency by using software pipelining
in the assembly program.

6.7.3 Evaluation

We evaluate the APU implementation and compare it to a CPU-only version of
the merge sort algorithm running on the PowerPC 440 core. Figure 6.31 shows
the speedup of the hardware acceleration for sorting arrays containing 256–16M
elements.

The speedup decreases asymptotically as the size of the data set increases.
The reason is that ratio between the work done by the CPU to work done in
the accelerator decreases as the data set increases as the following simple analysis
shows. Let T (n) be the time to sort n elements. The recursive merge sort leads to
recurrence equation T (n) = 2T (n/2) + n. By considering only n = 2p, i.e., power
of twos, we obtain the following recursive definition:

T (2p) = 2T (2p−1) + 2p with T (21) = 2 .
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Figure 6.31: Speedup of APU sorting core over traditional on chip sort

The solution to this recurrence equation is T (2p) = p2p. This corresponds to the
execution time for the CPU-only implementation. Now, with the hardware accel-
eration the lowest L levels are performed in the APU, say spending a processing
time H for each 2L-element set. This changes the initial condition of the recur-
rence equation to T (2L) = H. As it can easily be verified, the solution for the
accelerated implementation is T ′(2p) = H2p−L + (p− L)2p. Hence, the speedup is

speedup =
T (2p)

T ′(2p)
=

p

H2−L + p− L
H=0−→ p

p− L

Figure 6.31 also shows the predicted speedup for H = 0, i.e., the operation per-
formed by the accelerator requires no time. Clearly, it follows that for large
datasets the speedup decreases to 1. The sharp decrease can see between 4K
and 8K is the effect of the 32 kB data cache on the core. Using the aggrega-
tion the cache pressure can be reduced as no temporary data needs to be kept,
hence, as long as the data fits into the cache the aggregation core can provide
higher speedups. Although, the absolute values of the speedup obtained is not
particularly high, this use case illustrates how a tightly coupled accelerator can be
implemented in a heterogeneous system. Also, it is another attempt to release the
power of sorting network in hardware we observed in Section 6.4.

6.8 Summary

In this chapter, we have assessed the potential of FPGAs as a computing platform,
in particular, to accelerate sorting. We presented different approaches to imple-
ment sorting networks on FPGAs and discussed the on-chip resource utilization.
Despite the complexity involved with designs at the hardware level the flip-flop



212 CHAPTER 6. SORTING NETWORKS ON FPGAS

and LUT utilization of a circuit can be estimated beforehand, in particular, for
synchronous fully-pipelined implementations. We also showed how FPGAs can be
used as a co-processor for data intensive operations in the context of multi-core
systems. We have illustrated the type of data processing operations where FPGAs
have performance advantages (through parallelism, pipelining and low latency)
and discussed different ways to embed the FPGA into a larger system so that the
performance advantages are maximized. Our evaluation shows that implementa-
tions of sorting networks on FPGAs do lead a high performance (throughput and
latency) on their own. However, the two use cases put these high performance
numbers into perspective. It is challenging to maintain this performance once the
hardware implementation of the algorithm is integrated into a full system. The
design of a hardware accelerator and the system integration is nontrivial and may
not immediately lead to a performance advantage over a conventional software-
based solution on modern high-end CPU. The use of an FPGA as a co-processor
requires a carefully designed data path in order to reduce the cost for exchanging
data between CPU and co-processor. In both use cases presented in this chap-
ter the performance was limited by the communication bandwidth either over the
memory or the APU interface, respectively. In the next chapter, we are studying
a different attachment. As we will see, we can significantly improve matters for
the FPGA when inserting it into the data path, e.g., to perform processing on the
data path from and to the network.

Next to raw performance, our experiments also show that FPGAs bring addi-
tional advantages in terms of power consumption. These properties make FPGAs
very interesting candidates for acting as additional cores in the heterogeneous
many-core architectures that are likely to become pervasive.

The analysis in this chapter is a first but important step to incorporate the
capabilities of FPGAs into data processing engines in an efficient manner. The
higher design costs of FPGA-based solutions may still amortize, for example, if a
higher throughput (using multiple parallel processing elements as shown in Sec-
tion 6.6) can be obtained in a FPGA-based stream processing system for a large
fraction of queries. If performance is of paramount importance and design costs
can be neglected more efficient FPGA designs can be obtained by manual place-
ment of the circuits on the chip. From the observation made in this chapter we
set up the scene for the next chapter where we describe how to queries can be au-
tomatically translated into hardware circuits. We will consider synchronous and
pipelined designs and use automatic placement provided by the vendor tools.
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Query-to-Hardware Compiler

In this chapter, we present Glacier, a library of components and a basic compiler for
continuous queries implemented on top of an FPGA. The ultimate goal of this line
of work is to develop a hybrid data stream processing engine where an optimizer
distributes query workloads across a set of CPUs (general-purpose or specialized)
and FPGA chips. In this chapter describe on how conventional streaming operators
can be mapped to circuits on an FPGA; how they can be combined into queries over
data streams; the proper system setup for the FPGA to operate in combination
with an external CPU; and the actual performance that can be reached with the
resulting system. The chapter has the following outline.

1. We describe Glacier, a component library and compiler for FPGA-based data
stream processing. Besides classical streaming operators, Glacier includes spe-
cialized building blocks needed in the FPGA context. With the operators and
specialized building blocks, we show how Glacier can be used to produce FPGA
circuits that implement a wide variety of streaming queries.

2. Since FPGAs behave very differently than software, we provide an in-depth
analysis of the complexity and performance of the resulting circuits. We discuss
latency and issue rates as the relevant metrics that need to be considered by
an optimizing plan generator.

3. Finally, we evaluate the end-to-end performance of an FPGA inserted between
the network and the CPU, running a query compiled with Glacier. Our results
show that the FPGA can process streams at a rate beyond one million tuples per
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second, far more than the CPU could. These results demonstrate the potential
of FPGAs as co-processors in engines running on many-core architectures.

7.1 Streams in Software

7.1.1 Motivating Application

Our running example is based on a collaboration with a Swiss bank. Their finan-
cial trading application receives data from a set of streams with up-to-date market
information from different stock exchanges. The information is distributed via
UDP messages and in small packages in order to reduce latency. The main chal-
lenge is the data rate at which messages arrive. By the end of next year OPRA,
the Option Price Authority that collects and distributes real-time data from dif-
ferent stock exchanges, predicts the message rate to approach 3 million messages
per second [OPR09].

Traditional techniques such as load shedding [TcZ+03] cannot be applied in
trading applications because of potential financial loss. This is particularly true
in peak situations, which typically indicate a turbulent market situation. At the
same time, latency is critical and measured in units of microseconds.

To abstract from the real application in this discussion, we assume an input
stream that contains a reduced set of information about each trade handled by
Eurex (the actual streams are implemented as a compressed representation of the
feature-rich FIX protocol [FIX09]). Expressed in the syntax of StreamBase [Str],
the schema of our artificial ticker stream would read:

CREATE INPUT STREAM Trades (
Seqnr int, -- sequence number
Symbol string(4), -- valor symbol
Price int, -- stock price
Volume int) -- trade volume

To keep matters simple, we look at queries that process a single data stream
only. To facilitate the allocation of resources on the FPGA, we restrict ourselves
to queries with a predictable space requirement. We do allow aggregation queries
and windowing; in fact, we particularly look at such functionality in the second
half of Section 7.3.

These restrictions can be lifted with techniques that are no different to those
applied in software-based systems. The necessary FPGA circuitry, however, would
introduce additional complexity and only distract from the FPGA-inherent con-
siderations that are the main focus of this work.
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7.1.2 Example Queries

Our first set of example queries is designed to illustrate a hardware-based imple-
mentation for the most basic operators in stream processing. Queries Q1 and Q2

use simple projections as well as selections and compound predicates:

SELECT Price, Volume
FROM Trades

WHERE Symbol = "UBSN"
INTO UBSTrades

(Q1)

SELECT Price, Volume
FROM Trades

WHERE Symbol = "UBSN" AND Volume > 100000
INTO LargeUBSTrades

(Q2)

Financial analytics often depend on statistical information from the data stream.
Using sliding-window and grouping functionality, Query Q3 counts the number of
trades of UBS shares over the last 10 minutes (600 seconds) and returns the ag-
gregate every minute. In Query Q4, we assume the presence of an aggregation
function wsum that computes the weighted sum over the prices seen in the last
four trades of UBS stocks (similar functionality is used, e.g., to implement finite-
impulse response filters). Finally, Query Q5 determines the average trade prices
for each stock symbol over the last ten-minutes window:

SELECT count () AS Number
FROM Trades [ SIZE 600 ADVANCE 60 TIME ]

WHERE Symbol = "UBSN"
INTO NumUBSTrades

(Q3)

SELECT wsum (Price, [ .5, .25, .125, .125 ]) AS Wprice
FROM (SELECT * FROM Trades

WHERE Symbol = "UBSN")
[ SIZE 4 ADVANCE 1 TUPLES ]

INTO WeightedUBSTrades

(Q4)

SELECT Symbol, avg (Price) AS AvgPrice
FROM Trades [ SIZE 600 ADVANCE 60 TIME ]

GROUP BY Symbol
INTO PriceAverages

(Q5)

We use these five queries in the following to demonstrate various features as
well as the compositionality of the Glacier compiler.
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Table 7.1: Supported streaming algebra (a, b, c: field names; q, qi: sub-plans; x:
parameterized sub-plan input)

πa1,...,an(q) projection

σa(q) select tuples where field a contains true

?Oa:(b1,b2)
(q) arithmetic/Boolean operation a = b1 ? b2

q1 ∪ q2 union

aggb:a(q) aggregate agg using input field a,
agg ∈ {avg, count, max, min, sum}

q1 grpx|c q2(x) group output of q1 by field c, then
invoke q2 with x substituted by the group

q1 �tx|k,l q2(x) sliding window with size k, advance by l;

apply q2 with x substituted on each wind.;
t ∈ {time, tuple}: time-, or tuple-based

q1 q2 concatenation; position-based field join
q1 onp q2 window join; join predicate p

7.1.3 Algebraic Plans

Input to our compiler is a query representation in an algebra for streaming queries.
Our compiler currently supports the algebra dialect listed in Table 7.1, whereby op-
erators may be composed in an arbitrary fashion. Our algebra uses an “assembly-
style” representation that breaks down selection, arithmetics, and predicate eval-
uation into separate algebra operators. In the context of the current work, the
notation turns out to have nice correspondences to the data flow in a hardware
circuit and helps detecting opportunities for parallel evaluation.

Figure 7.1 illustrates how our streaming algebra can be used to express the
semantics of Queries Q1 through Q5. Observe how in Figure 7.1(a), e.g., operator
=O makes the comparison of each input tuple with the requested stock symbol
“UBSN” explicit. Its output, the new column a, is used afterwards to filter out
non-qualifying tuples (operator σa).

The concatenate operator represents what could be called a “join by posi-
tion”. Tuples from both input streams are combined into a wide result tuple in
the order in which they arrive. The operator is necessary, for instance, to evaluate
and return different aggregation functions over the same input stream.
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Figure 7.1: Algebraic query plans for the five example queries Q1 to Q5

7.2 FPGAs for Stream Processing

7.2.1 System Setup

FPGAs can mimic arbitrary logic functionality by mere reconfiguration. In con-
trast to existing special-purpose hardware (such as graphics or floating-point pro-
cessors), this makes the role of an FPGA inside the overall system not prede-
termined. By implementing the respective bus protocols, e.g., FPGAs can be
connected to memory or peripheral buses, communicate with external devices, or
any combination thereof.

Figure 7.2 shows the two possible configurations of how the query circuits
can interact with a host CPU that runs a traditional stream processing engine.
Figure 7.2(a) the FPGA is directly connected to the physical network interface,
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(a) Stream engine between network interface and CPU.
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(b) Stream engine as a coprocessor to the CPU.

Figure 7.2: System architectures of FPGA integration with the host CPU

with parts of the network controller implemented inside the FPGA fabric. After
reception, data from the network is directly fed into the hardware implementation
of a database query plan. The host CPU only becomes involved once result items
have been produced for the user query. Using DMA, the Glacier circuit writes the
result tuples from the FPGA into the system main memory, then informs the host
CPU about the arrival of new data (e.g., by raising an interrupt).

Alternatively, the FPGA can also be used in a traditional co-processor setup,
as illustrated in Figure 7.2(b). Here, the CPU hands over data to the FPGA either
by writing directly into FPGA registers (so-called slave registers) or it prepares
the input data into a shared RAM region, then sends a work request to the FPGA-
based co-processor. We described both attachments in Sections 5.4 and 5.5.

The architecture in Figure 7.2(a) fits a pattern that is highly common in data
stream applications. Oftentimes, rate-reducing filtering or aggregation stages pre-
cede more complex high-level processing (done on the CPU). Even simple filter
stages, fully supported by the algebra dialect of Glacier, suffice to significantly
reduce the load on the back-end CPU. In algorithmic trading, for instance, they
discard about 90 % of all input data. Only the remaining 10 % of the data actually
hits the CPU, which significantly increases the applied load that the system can
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Figure 7.3: Compilation of abstract query plans into hardware circuits for the
FPGA

sustain.

7.2.2 Query Compilation

Figure 7.3 illustrates the compilation process from algebraic plans to FPGA cir-
cuits. The input to the Glacier compiler are algebraic plans of the kind introduced
in Section 7.1.3. The compiler applies compilation rules (Section 7.3) and opti-
mization heuristics (Section 7.5), then emits the description of a logic circuit that
implements the input plan.

The generated circuits are expressed in VHDL hardware description language.
The VHDL code is fed to the Xilinx tool chain (see Section 5.2.2 on page 154),
which creates the actual low-level, FPGA-specific representation of the circuit
(configuration of the LUTs and the interconnect network). The output of the
synthesizer is then used to program the FPGA. In Figure 7.3, the compilation of
VHDL code into an FPGA configuration follows the usual design flow in traditional
FPGAs design. Using the Glacier compiler, the creation of VHDL code can be
fully automated.

7.3 From Queries to Circuits

Using pre-built components from the Glacier library, each operator in Table 7.1
can be compiled into a hardware circuit in a systematic way. To ensure the full
compositionality of the translation rules later in this section, every translated sub-
plan adheres to the same well-defined wiring interface.
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7.3.1 Wiring Interface

As in data streaming engines, our processing model is entirely push-based. Each
n-bit-wide tuple is represented as a set of n parallel wires in the FPGA fabric. On
a set of wires, a new tuple can be propagated in every cycle of the FPGA’s system
clock (i.e., 100 million tuples per second). An additional data valid line signals the
presence of a tuple in a given clock cycle. Tuples are only considered to be part
of the data stream if their data valid flag is set to true, i.e., if the data valid line
carries an electrical “high” signal.

In the following, we use rectangles to represent logic components (with the
exception of multiplexers, for which we use the common trapezoid notation). Our
circuits are all clock-driven or synchronized and every operator in our library
writes its output into a flip-flop register after processing. We indicate registers as

q

gray-shaded boxes and make the data valid flag explicit as
each operator’s leftmost output. For instance, we depict
the black-box view of a hardware implementation for a
query q as shown on the right.

We use arrows to denote the wiring between hardware components. Wherever
appropriate, we identify those lines from a tuple bus that correspond to a specific
tuple field with a label at the respective input/output port. The label ‘∗’ stands
for “all remaining fields”. We do not represent the order of fields within a tuple.
The hardware plan for the algebra expression σa(q) can thus be illustrated as

q

&
a ∗ .

In this circuit, the logical ‘and’ gate invalidates the output tuple whenever field a
contains false.

Circuit Characteristics

The above circuit will compute its output in a single clock cycle and will be ready
to consume a new input tuple at every tick of the clock. We say that its latency
and issue rate are both 1. In general, circuits may need more than one cycle until
the result of their computation can be picked up at the operator output—they have
a latency that is larger than 1. Due to their semantics, circuits that implement
grouping or windowing cannot produce output before they have seen the last tuple
of the respective query window. For these operators, we define latency to be the
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number of clock cycles between the closing of the input window and the generation
of the first output tuple.

We define the issue rate as the number of tuples that can be processed per clock
cycle. The issue rate is always ≤ 1. For example, an operator that can accept a
tuple every five cycles has an issue rate of 0.2.

Some operations can be pipelined. The corresponding circuits will be ready
to consume new input already before the output of the preceding tuple has been
fully computed. Their issue rate is higher than the reciprocal value of their la-
tency. The terms latency and issue rate are also used in the system architecture
domain [HP02]. Latency and issue rate are important parameters to determine the
performance of a hardware circuit. Latency directly corresponds to the observable
response time, whereas the issue rate determines throughput.

Synchronization

Both properties sometimes also need to be considered during query compilation.
For instance, all compilation rules must ensure that a generated circuit will never
try to push two tuples in successive cycles into an operator that has an issue rate
less than one. We use two types of logic components to implement the synchro-
nization between sub-circuits:

FIFO queues act as short-term buffers for streams with a varying data rate.
They emit data at a predictable rate, typically the issue rate of an upstream
sub-circuit. Note that, at runtime, the average input rate must not exceed
what is achievable with the output rate.

In most practical cases, the depth of the FIFO can be kept very low. This
not only implies a small resource footprint, but also means that the impact
on the overall latency is typically small.

Delay operators z−n can block data items for a fixed number of cycles n. This
can be used, e.g., to properly synchronize the output of slow arithmetic oper-
ators with the remaining tuple flow (the circuit below implements ?Oa:(b1,b2)

(q);
assume that the latency of ? is 2):

q

z−2 ?

b1 b2

z−2
a

∗ .
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Equipped with notation, we are now ready to describe a complete set of compi-
lation rules that covers the streaming algebra listed in Table 7.1. We start with
rather simple operators. We defer the discussion of the window join operator to
Section 7.7.2 due to its complexity and different semantics.

7.3.2 Selection and Projection

We saw earlier how our assembly-style selection operator σa can be cast into a
hardware circuit. Compilation Rule Sel formalizes this translation in the notation
we also use in the remainder of this work. We use the Z⇒ symbol to indicate the
“compiles to” relation and, as before, assume that a rectangle labeled q is the
circuit that results from compiling q:

σa(q) Z⇒

q

&
a ∗

. (Sel)

Note that the resulting circuit leaves all tuples essentially intact, but invalidates
discarded tuples by setting their data valid flag to false. This is very similar in na-
ture to the “selection vectors” that MonetDB/X100 [HZdVB07] uses to avoid data
copying. The logical ‘and’ gate & completes within a single cycle. Therefore,
the latency and the issue rate of the circuit generated for σa are both 1.

Here, we use the projection operator πa1,...,an to discard fields from the tu-
ple flow. Support for field renaming (often expressed using the π operator) is a
straightforward extension of what we present here. Discarding a field from the
tuple flow simply means to not wire the respective output ports with any inputs
further down the data path, as shown in Rule Proj:

πa1,...,an(q) Z⇒
q

a1 an
· · ·

∗ . (Proj)

This implementation for πa1,...,an has an interesting side effect. Our compiler
emits the description of a hardware circuit that is passed into a synthesizer to
generate the actual hardware configuration for the FPGA. The synthesizer opti-
mizes out “dangling wires”, effectively implementing projection pushdown for free.
There is no actual work to do at runtime (though fields are propagated into a new
set of registers). Latency and issue rate of this implementation for projection are
both 1.
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7.3.3 Arithmetics and Boolean Operations

As indicated in Table 7.1, we use the generic ?Oa:(b1,b2)
operator to represent arith-

metic computations, value comparisons or Boolean connectives in relational plans.
The instance

=Oa:(b1,b2)
(q) ,

e.g., will emit all fields in q, extended by a new field a that contains the outcome
of b1 = b2. This semantics directly translates into an implementation in logic (we
saw a similar circuit a moment ago):

=Oa:(b1,b2)
(q) Z⇒

q

=

b1 b2

a

∗
. (Equals)

Most simple arithmetic or Boolean operations will run within a single clock cycle.
More complex tasks, such as multiplication/division, or floating-point arithmetics,
may require additional latency. Sometimes, the actual circuit that implements ?
can be tuned within the trade-offs latency, issue rate, and chip space consumption.
If the latency of ? is greater than one, delay operators have to be introduced to
synchronize the operator output with the remaining fields (as shown before in
Section 7.3.1).

Example. With the rules we have seen so far, we can now translate our first
example query into a hardware circuit. In Figure 7.4, we illustrated the circuit
that results from applying our compilation rules to QueryQ1. The hardware circuit
quite literally reflects the shape of the algebraic plan. Each of the operators can
individually operate in a single cycle (i.e., have latency and issue rates of one).
Since all plan operators are applied sequentially, latencies add up and the circuit in
Figure 7.4 has an overall latency of three. By contrast, the issue rate of a pipelined
execution plan is determined by its slowest sub-plan. Since all sub-plans have an
issue rate of one, this is also the rate of the complete plan. �

7.3.4 Union

From a data flow point of view, the task of an algebraic union operator ∪ is to
accumulate the output of several source streams into a single output stream. Since,
in our case, all source streams operate truly in parallel, a hardware implementation
for ∪ needs to ensure proper synchronization. We do so by buffering all input ports
using FIFOs:
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Trades
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a

∗

=Oa:(Symbol,"UBSN")

&
a ∗

σa

Price Volume ∗
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Figure 7.4: Compiled hardware execution plan for Query Q1. Latency of this
circuit is 3, issue rate 1.

4-way union FIFOs

A state machine inside the union component then forwards tuples from the
input FIFOs in a round-robin fashion and emits them as the union result. Although
every individual input may feed into the union component at an arbitrary tuple
rate (i.e., issue rate 1), the average rate of all input streams together must not
exceed more than one tuple per cycle, which is the maximum tuple rate that
the union component can forward up-stream the data path. It is important that
dequeuing of the four FIFOs shown above happens in a controlled and fair manner
such that starvation can be avoided. For the implementation this means that
the output register needs to be arbitrated among the individual FIFOs. Our
implementation uses the well-known round-robin token passing arbiter [SMR02].
It guarantees fairness (no starvation) among the input FIFOs and in terms of
latency, the resulting state machine inside the operator requires a single cycle to
process. The FIFOs at the input, implemented using either flip-flop registers or
block RAM (a resource trade-off), add another latency cycle. The overall circuit
therefore has a minimum latency of 2. Depending on the input data distribution,
however, the observed latency may be higher whenever tuples queue up in an input
FIFO.
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Strictly speaking, a binary union component is sufficient to implement the algebraic
∪ operator:

q1 ∪ q2 Z⇒
2-way union

q1

∗
q2

∗
. (Union)

As we will see in the following, however, the availability of a general, n-way union
implementation eases the implementation of other functionality.

7.3.5 Windowing

The concept of windowing bridges the gap between stream processing and relational-
style semantics. The operation q1 �x|k,l q2 consumes the output of its left-hand
sub-plan (q1) and slices it into a set of windows. For each window, �x|k,l invokes
a parameterized execution of the right-hand sub-plan q2(x), with each occurrence
of x replaced by the current window. Sub-plan q2 thus sees a finite input for every
execution and may, e.g., use aggregation in a semantically sound manner.

Our compiler implements this semantics by wrapping q2 into a template circuit
(full compilation rule shown in Figure 7.5). We introduce an additional input
signal eos (“end of stream”) next to the data valid. It is asserted “high” when a
window closes to notify the sub-plan that it has seen all elements of that window.
The signal typically triggers the sub-plan to start generating output tuples.

A common use case are sliding windows, where input tuples belong to several
windows at the same time. Here we can exploit the available parallelism on the
FPGA chip. We replicate the hardware plan of q2 as many times n as there may
be windows open in parallel during query execution, plus 1. For time- and tuple-
based windows, e.g., we have that n = dk/le+1 (where k is the window size and l is
the size of the slide). In Figure 7.5, we assume n = 4 (i.e., at most three windows
open in parallel). To keep matters simple, we assume that k is a multiple of l; the
extension to the general case is straightforward.

We use the cyclic shift register CSR1 (indicated as a dashed box in Figure 7.5)
to keep track of window states. For every instance of the sub-plan q2, this shift
register carries the information whether the instance actively processes an open
window. Figure 7.5 assumes that three windows are open in parallel, i.e., three
bits are set in CSR1. Whenever the end of a window is reached, triggered by the
“advance” signal adv the shift register rotates (to the right), such that the oldest
open window is closed and a new one opened. The signal adv may be driven either
by a clock (for time-based windows) or by a counter that implements tuple-based
windows.
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q1 �x|k,l q2(x) Z⇒
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Figure 7.5: Compilation rule for windowing operator � (shown for an instance
with at most three windows open in parallel)

Parallel to advancing CSR1, we send an eos signal to the sub-plan that processes
the oldest open window. This sub-plan will then start producing output and feed
it to the up-stream plan through a union operator. While doing so, the sub-plan
will have the 0-bit in CSR1, i.e., it will not receive any new input while emitting
tuples. To communicate the eos signal to the correct sub-plan, we use a second
shift register CSR2, shifted in sync with CSR1. The single bit in CSR2 identifies
the oldest open window.

Example. The hardware circuit that implements the sliding-window query Q4 is
shown in Figure 7.6. With the windowing clause [ SIZE 4 ADVANCE 1 TUPLES ],
at most four windows can be open together at any point in time. Hence, we
instantiate five copies of the wsum sub-plan. The window type of this query is
tuple-based. The counter component on the left counts incoming tuples and sends
the adv signal as often as specified by the query’s ADVANCE clause (in this particular
case, ADVANCE = 1 and we could simplify our circuit by directly routing data valid
to the adv line). �

Signal processing in the windowing part of the plan is implemented using combi-
national logic. It fits into a single clock cycle and is fully pipelineable. The latency
of the overall circuit thus is the latency of the inner plan plus 2 (the latency of the
n-way union operator). The issue rate is the one of the inner sub-circuit.
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Figure 7.6: Hardware execution plan for Query Q4

7.3.6 Aggregation

Other than the previous operators, aggregation functions (count, min, max, avg,
etc.) assume a finite input data set. Typically, they are applied on windows. As
seen in the previous section, windowing breaks a potentially infinite stream into
finite sub-streams. In practice—and as implemented in the previous section—
tuples are streamed into a set of open windows immediately after arrival, rather
than batching them up until a window closes. The eos signal to notifies the aggre-
gation circuit when a window closes or when the end of the current input stream
has been reached (for example when a finite input from a persistent database table
has been fully consumed).

Note that the window operator itself does not provide storage for data elements.
The tuples are directly forwarded and therefore storage needs to be provided by
the implementation of the aggregation function instead. This has the advantage
that each aggregation function needs to provide storage just for the amount of
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state it requires, rather than maintaining the entire window. Following [GBLP96],
we classify aggregation functions as follows:

Algebraic Aggregate Functions. We implement algebraic aggregate functions
(i.e., ones that use a fixed amount of state) [GBLP96] in a straightforward fashion.
To implement count, e.g., we use a standard counter component and wire its
trigger input to the data valid signal of the input stream. Once we reach the end
of the current stream, we (a) emit the counter value to the upstream data path
and (b) reset the counter to zero to prepare for the next input stream. In the
translation rule for counta(q),

counta(q) Z⇒

q

counter

eos

rst

a

∗
, (Count)

we forward the eos signal to the data valid output register to implement (a) and
feed the same signal into the reset input of the counter to implement (b). Note
that counta constructs a new output field without reading any particular input
value. The operator emits no other field but the aggregate (we handle grouping
separately, see next). For the algebraic aggregates we consider, count, sum, avg,
min, and max, the latency is one cycle. A tuple can be applied at the input every
clock cycle (the issue rate is 1).

Holistic Aggregate Functions. For some aggregate functions, the state required
is not within constant bounds. They need to batch (parts of) their input until the
aggregate can be computed when the end of the stream is seen. The prototype
example for such operators are the computation of medians or most frequent items.
Our weighted sum operator wsum behaves similarly, but needs to remember only
the last four input tuples. The use of flip-flops is a good choice to hold such small
quantities of data. Here we can use them in a shift register mode, such that the
operator buffer always contains the last four input values.

7.3.7 Grouping

Semantically, a grouping expression q1 grpx|c q2 evaluates the left-hand sub-plan
q1, then routes each tuple to one of a number of independent evaluations of the
sub-plan q2(x). The grouping column c thereby determines the target sub-plan for
every input tuple.

FPGA circuits provide excellent support for such functionality. In Section 5.3,
we discussed content-addressable memory as an efficient mechanism to implement
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q1 grpx|c q2(x) Z⇒

q2 q2 q2 q2
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c
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∗
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∗ ∗ ∗ ∗
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rst

(GrpBy)

Figure 7.7: Compilation rule to implement the group by operator grp

key-value stores. Here, we use that functionality to identify the matching group
for an input tuple. Our CAM returns the index i of the sub-plan that matches the
given input tuple. We feed this index into the address port of a de-multiplexer,
which will then route the signal on the data input to the ith output line.

Once again, the data valid flag comes in handy here. Rather than explic-
itly “switching” the entire tuple to the proper sub-plan instance, we use the de-
multiplexer only to control the data valid flag. The actual payload is sent to all
sub-plan instances in parallel.

Following our earlier assumptions, we preallocate a number of sub-plan in-
stances, depending on the number of groups that are going to result at runtime.
Typically, the sub-plan is a simple aggregate operation with low complexity. Over-
estimating the number of groups at compile time thus rarely causes a noticeable
effect on the overall chip space consumption.

Grouping is typically used in combination with aggregation. Although grouping
by itself does not chop an infinite stream into finite subsets, we explicitly indicate
the necessary routing of eos signals to the sub-plan instances. In addition, we use
the signal to clear the content-addressable memory after each group (rst input).

Our CAM implementation is based on lookup tables with very fast lookup
performance. De-multiplexing can be processed using combinational logic, such
that the entire routing circuit can typically be processed within a single clock
cycle or two (high-capacity CAMs and high-fanout de-multiplexers may be more
complex and require an additional wait cycle). As discussed in Section 5.3, LUT-
based CAMs have a slow write performance, which we have to pay for whenever
a group item is seen the first time. Since this makes the issue rate of the circuit
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data-dependent, we use a FIFO (not shown in the circuit) to buffer all input. The
circuit thus has a variable latency. A hit or a miss can be determined with a
latency of one cycle. If no entry is found in the CAM, additional 16 wait cycles
are necessary to insert a new entry. Thus, the overall performance of a CAM is
one cycle on a hit and 17 cycles for a miss. The latency at the output side is
given by the latency of the sub-plan plus one (for the n-way union). The average
issue rate is one if we assume that the FIFO is large enough (i.e., at least 16 times
the number of groups) to buffer the incoming tuples during the wait cycles when
writing to the CAM.

Example. Compiling Query Q5 would yield a circuit like the one in Figure 7.7,
wrapped into a windowing circuit (as in Figure 7.5). We omit the plan here because
of its obvious complexity. In the actual application, the Trades stream contains
market data of a subset of the stock indexes. With less than a hundred different
stock symbols per stream, we can easily replicate the avg sub-circuit as demanded
by Compilation Rule GrpBy. �

7.3.8 Concatenation Operator

The tuple concatenation operator is a device mainly intended to express multiple
aggregates within the same SELECT clause. The query

SELECT min (Price), max (Price)
FROM Trades [ SIZE 600 ADVANCE 60 TIME ]

WHERE Symbol = "UBSN"
,

NumUBSTrades

�time
x|600,60

Trades

minPrice

σa

=Oa:(Symbol,"UBSN")

x

maxPrice

for instance, could be expressed using the query plan shown
here following column on the right. On the hardware side,
the semantics of q1 q2 is straightforward to implement.
We simply direct the signals from all input fields to a com-
mon output register set. A tuple generated this way only is
meaningful if both input tuples were valid. Hence, we use
a logical ‘and’ gate to combine them:

q1 q2 Z⇒

q1 q2

&

∗ ∗ .

(Concat)
Again, the and gate easily finishes within a single cycle.
Hence, latency and issue rate are both 1.
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7.4 Auxiliary Components

While the previous section provided a compositional scheme to translate a query
body into a hardware circuit, actually running the circuit requires some glue logic
that lets the execution plan communicate with its environment. Glacier includes
such logic for commonly used setups.

7.4.1 Network Adapter

In a commodity computing system, the communication between a network interface
card (NIC) and its host CPU is performed using a multi-step protocol. In a
nutshell, the network card transfers a received packet into the main memory of
the host system using DMA, then informs the CPU about the arrival by raising an
interrupt. The interrupt lets the operating system switch into kernel mode, where
the operating system does all necessary packet decoding, before it hands the data
off into user space where the payload can finally be processed.

For latency-critical applications (such as algorithmic trading) or ones with high
data volumes, such a long processing stack may be prohibitive. Therefore, we
decided to implement our own network adapter on the FPGA as a soft-core (see
Section 5.4). The soft-core directly connects to the Ethernet MAC component of
the physical network interface. From there, we grab raw Ethernet network frames
immediately when they arrive. We implemented a small UDP/IP stack in the
softcore. This allows us to receive UDP datagrams without the help of the CPU.
From the decoded UDP datagrams we can extract the data tuples and feed them
to the circuit that represents the compiled execution plans. The host CPU only
gets involved for the data that remains after the end of the query pipeline, where
it is typically faced with a significantly reduced data load due to filtering and
aggregation. In Section 7.6, we will see how this enables us to process data at
gigabit Ethernet wire speed.

Likewise, we could use the same functionality to build a data sink that trans-
mits result data over the network without any involvement of the host CPU.

7.4.2 CPU Adapter

Our system setup in Section 7.2.1 assumes the host CPU as the other end of the
processing pipeline. To send (result) data to the CPU, we use a strategy that is
similar to the one used by network cards, as sketched above. We write all data
into a FIFO that is accessible by the host CPU via a memory-mapped register.
Whenever we have prepared new data, we raise an interrupt to inform the CPU.
Code in the host’s interrupt service routine then reads out the FIFO and hands
the data over to the user program.
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Two different approaches are conceivable to implement a communication in the
other direction, i.e., from the CPU to the FPGA. Memory-mapped slave registers
allow the CPU to push data directly into an FPGA circuit by writing the infor-
mation into a special virtual memory location. While this provides intuitive and
low-latency access to the FPGA engine, the necessary synchronization protocols
incur sufficient overhead to fall behind a DMA-based implementation if data vol-
umes become high. In this case, the data is written into (external) memory, where
logic on the FPGA picks it up autonomously after it has received a work request
from the host CPU.

7.4.3 Stream De-Multiplexing

Actual implementations may depend on specialized functionality that would be
inefficient to express using standard algebra components. In our use case, al-
gorithmic trading, input data is received as a multiplexed stream, encoded in a
compressed variant of the FIX protocol [FIX09]. Expressed using the StreamBase
syntax, the multiplex stream contains actual streams like

CREATE INPUT STREAM NewOrderStream (
MsgType byte, -- 68: new order
ClOrdId int, -- unique order identifier
OrdType char, -- 1:market, 2:limit, 3:stop
Side char, -- 1:buy, 2:sell, 3:buy minus
TransactTime long) -- UTC Timestamp

CREATE INPUT STREAM OrderCancelRequestStream (
MsgType byte, -- 70: order cancel request
ClOrdId int, -- unique order identifier
OrigClOrdId int, -- previous order
Side char, -- 1:buy, 2:sell, 3:buy minus
TransactTime long) -- UTC Timestamp

We have implemented a stream de-multiplexer component as part of the Glacier
library. The de-multiplexer interprets the MsgType field (first field in every stream)
and dispatches the tuple to the proper plan part.

7.5 Optimization Heuristics

In Section 7.3 we focused on providing a complete and fully compositional set of
compilation rules. With these rules arbitrary stream queries can be compiled into
a logic circuit. It is not surprising that “hand crafting” a specific plan sometimes
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may lead to plans with lower latency and/or better issue rate. It turns out that
rather simple optimization heuristics already suffice to make the output of our
compiler close to hand-optimized plans.

7.5.1 Reducing Clock Synchronization

Our compilation rules assume strict synchronization of every operator implemen-
tation. Every operator is expected to have its result ready after an integer number
of clock cycles (the operator’s latency). Even though simple computations could
finish in less time than a full cycle, their result is always buffered in a flip-flop
register, where it waits until the end of the clock cycle.

Example. Consider again the compiled circuit for Query Q1 (Figure 7.4). As
discussed earlier, this circuit requires three clock cycles to execute. Little of that
time is used for actual processing, however. In the following timing diagram, we
illustrate when each of the three plan parts perform actual processing (indicated
as ):

clock0 1 2 3 4

=O σ π
Equality comparison takes slightly longer to evaluate than the logical ‘and’ (which
is what σ essentially does). There is no actual work to be done for projection at
all, still all three plan parts occupy a full clock cycle each. �

If no component inside a plan step is inherently clock bound (such as access to
clocked memory components), a plan optimizer can trivially eliminate intermedi-
ate registers and run (part of) a sub-plan using combinational logic only. Applying
this idea to the plan for Query Q1 results in the plan we use in our actual imple-
mentation:

Trades

=

Symbol "UBSN"

&
Price Volume

clock0 1 2

=O σ

As shown in the timing diagram on the right, this sub-plan now runs both
processing steps directly in succession and finishes within a single clock cycle. The
most apparent effect of this optimization is the reduction of latency. The plan
for Query Q1 has now a latency of one. In addition, we saved a small amount of
FPGA resources, primarily flip-flops that were needed for buffering before.
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7.5.2 Increasing Parallelism

The elimination of intermediate registers often automatically leads to task paral-
lelism. With registers removed, the hardware circuit for Query Q2 looks as follows:

Trades

=

"UBSN"

Symbol

>

100,000

Volume

&

&

Price

Volume Price

clock
0 1 2

=O

<O
∧O

σ

In this circuit, the two value comparisons run truly in parallel (whereas they
would execute sequentially in the non-optimized plan). In the timing diagram on
the right, one can see how we packed additional work into the same clock cycle.
In effect, Query Q2 executes in a single cycle, too.

7.5.3 Trading Unions For Multiplexers

When translating the windowing operator � (Rule Wind), we used the union
circuit of Section 7.3.4 as a convenient tool to merge all window outputs into a
single result stream. Except in exotic cases, only one of these outputs is actually
producing data at any point in time, and we know which one.

We can take advantage of this knowledge by replacing the union circuit with
a multiplexer component in such cases. As the name suggests, a multiplexer is
the counterpart to the de-multiplexer we saw in Section 7.3.7. Provided an index
i, it routes the signal at the ith input to its output port. In windowing circuits,
we know the index of the data-producing sub-plan from the shift register CSR2.
Using a multiplexer, we can now feed the output of this sub-plan directly into the
output register of the windowing circuit.

As discussed in Section 7.3.4, the hardware circuit for union uses FIFO queues
at each of its n inputs. By using a multiplexer instead, we can free the resources
occupied by the n FIFOs. Depending on the FIFO implementation chosen, this
may free mostly flip-flop registers or block RAMs, plus the necessary logic (LUTs)
that drives the FIFOs. In addition, we save one clock cycle of latency that was
originally spent in the input FIFOs. Applied to the plan in Figure 7.6, this reduces
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the latency from 5 to 4 (eliminating registers on the bottom half of the plan saves
another two cycles of latency).

7.5.4 Group By/Windowing Unnesting

The �-grp pattern shown in the algebraic query plan for Query Q5 (see Fig-
ure 7.1(e)) is a common combination in stream processing. A straightforward
application of the Wind and GrpBy rules to this pattern will replicate the group
by circuit for each of the n sub-plan instances in Rule Wind. The resulting query
execution plan will thus use n de-multiplexers and content-addressable memories
and route tuples independently for each group.

Typically, all windows will contain roughly the same groups, and all CAM
instances will contain roughly the same data items. It therefore makes sense to
“pull out” the individual DEMUX/CAM pairs of the replicated sub-plans and use
a global instance of each instead. In a sense, we swap the roles of � and grp in
the algebraic plan.

The primary effect of “unnesting” the tuple dispatching functionality of the
group by operation is a considerable resource saving. The penalty we pay is a
slight increase in the number of groups, since the union of all groups in individual
windows is now held in a single CAM.

7.6 Evaluation

Compiling stream queries into logic circuits is only meaningful if the resulting
circuits solve the problems that we motivated in Section 7.1. This evaluation
section thus focuses on the relevant performance metrics latency and throughput
(our subject for Section 7.6.1). In Section 7.6.2, we verify that the integration of
an FPGA into the data path of a streaming engine leads to an actual improvement
in end-to-end performance.

7.6.1 Latency and Throughput

Other than in software-based setups, the performance characteristics of hardware
execution plans can accurately be derived by solely analyzing the circuit design.
Thereby, the performance of a larger circuit is determined by the performance of
its sub-plans. In the following, we first concentrate on latency, then investigate
throughput.
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Latency Issue Rate

Query non-opt. opt. non-opt. opt.

Q1 3 1 1 1

Q2 5 1 1 1

Q3 5 2 1 1

Q4 5 2 1 1

Q5 6 . . . 6 + 16G 5 . . . 5 + 16G 1 1

Table 7.2: Latencies and issue rates for optimized query plans of Q1–Q5

Latency

We measure the latency of a hardware circuit in the number of clock cycles that
occur from the time a tuple enters the circuit until the time a result item is
produced. For the case of group by queries, the relevant input tuple is the last
tuple of the input stream. Our FPGA is clocked at a rate of 100 MHz. Each
latency cycle thus implies an observable latency of 10 nanoseconds.

In a sequential data flow, the latencies of all sub-plans behave cumulatively:
the overall latency of the full plan can be obtained by summing up the latencies
of all sub-plans. Parallel circuits (such as the sub-plan instances in a group by
plan) are determined by the latency of the slowest sub-plan. Without applying
any of the optimization techniques of Section 7.5, this yields the latencies reported
in Table 7.2 as “non-opt.” (we will discuss the details of Query Q5 in a moment).

Non-Optimized Circuits. For the simple circuits (Queries Q1 and Q2), the total
latency corresponds to the number of flip-flop registers along the data path. For
Queries Q3 and Q4, the union operators at the top of the plan add another latency
cycle due to their built-in FIFOs (Section 7.3.4).

In Query Q5, the difference in read and write speed of our content-addressable
memory introduces a data dependence of the circuit latency. Thus, Table 7.2
reports lower and upper bounds for the latency at runtime. Once the circuit has
seen all possible group identifiers (and thus has filled its CAM), no write access
occurs and the circuit responds after six cycles. By contrast, if G different new
groups arrive in succession, their group identifiers queue up in the input FIFO of
the group by circuit and each one adds 16 cycles for the CAM write.

After Optimization. The optimizations we described in Section 7.5 reduced
latency by eliminating intermediate flip-flop registers. As listed in Table 7.2, this
reduces latency down to one or two clock cycles for Queries Q1–Q4. The use of a
multiplexer as described in Section 7.5.3 saves one latency cycle for Query Q5.
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Observations. Table 7.2 reports single-digit latencies for most queries. The
latency of Query Q5 clearly tends toward the optimum case in practice, since
the arrival of a large number of new groups right before the end of a window is
rare. With a cycle time of 10 ns, our FPGA typically responds in less than a
micro-second.

Throughput

The maximum throughput of a circuit is directly dependent on its issue rate. With
a 100 MHz clock, an issue rate of 1 means that the circuit can process 100 million
input tuples per second.

All our plans are fully pipelineable. As can be seen in Table 7.2, this leads to
an issue rate of 1 for all five example queries. In the upcoming section, we are
going to demonstrate how this enables us to process very high data rates at wire
speed in a network-attached configuration (shown in (Figure 7.2(a)).

7.6.2 End-To-End Performance

A key aspect of using an FPGA for data stream processing is that the hardware
circuit can directly be hooked into an existing data path. As already sketched in
Section 7.2.1, we are particularly interested in using the FPGA as a preprocessor
that operates between the physical network interface and a general-purpose CPU
(though the idea could be applied to other data sources, too). To verify the
effectiveness of this setup, we implemented it using an FPGA development board,
then measured the data rates it can sustain.

The biggest challenge in commodity systems is to process network data with
high package rates (as opposed to large-sized packages). Actual application setups
in software start suffering at data rates of & 100, 000 packets/s because of the
high intra-host communication overhead for every packet. By contrast, our query
execution circuit is directly connected to the physical network interface. The
experiments in the following show how this enables us to process significantly
higher package rates at wire speed.

Our experiments are based on a Xilinx XUPV5 development board that ships
with the FPGA mentioned in Section 7.2 and includes a fast 1 GBit Ethernet
interface (described in Section 5.2.3 on page 156). We implemented the system
configuration shown in Figure 7.2(a) as an embedded system by instantiating the
necessary hardware components as soft-cores inside the FPGA chip. Our CPU in
this setup is a Xilinx MicroBlaze CPU.

It turns out that it is fairly difficult to generate really high package rates in a
lab setting. With a NetBSD-based packet generator, we managed to generate a
maximum of 1,000,400 packets/s (all UDP traffic). Still, this was not sufficient to
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Figure 7.8: Number of packages successfully processed for two given input loads.
The hardware implementation is able to sustain both package rates.

saturate our hardware implementation. As illustrated in Figure 7.8, no data was
lost when processed on the FPGA.

For comparison, we hand-crafted a light-weight network client under Linux (2.6
kernel), designed to accept and process the same input data at high speed. Yet,
as shown in Figure 7.8, this client was not able to sustain the load we applied. For
high package rates, it dropped more than half of all input tuples.

Our results clearly demonstrate that our circuit can meet the expectations we
set. This makes FPGAs particularly attractive for common application scenarios.
If the FPGA is used as a rate-reducing component in the data input path, the
remainder of the system faces only a fraction of the input load. This significantly
increases the applied load that the system can sustain.

7.7 Stream Joins

In this section we describe our implementation of a window-join operator for FP-
GAs. Even though we present the window join at a higher level, it it has a
compatible interface and fits into the Glacier library.

Joins in streaming contexts require windowing. The concept of a window on a
stream allows looking at finite subsets of the stream tuples. This has the advantage
that aggregates on that window are not blocking despite the potentially unbounded
stream. In fact, traditional relational operators can be applied on the window.
Figure 7.9 (adopted from [KNV03]) illustrates this for the case of a join operation.
The join in the middle is always evaluated only over finite subsets taken from both
input streams. Windows over different input data can span different numbers of
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Figure 7.9: Window join (figure adopted from [KNV03])

tuples, as indicated by the window sizes in Figure 7.9.
Various ways have been proposed to define suitable window boundaries de-

pending on application needs. In this work we focus on sliding windows, which,
at any point in time, cover all tuples from some earlier point in time up to the
most recent tuple. Usually, sliding windows are either time-based, i.e., they cover
all tuples within the last τ time units, or tuple-based, i.e., they cover the last w
tuples in arrival order. Depending on the arrival rate in the stream, time-based
windows can have unbounded state requirements. The window join operator we
developed for Glacier supports tuple-based windows. Time-based windows in tra-
ditional streaming systems require sophisticated buffer management techniques
and dynamic memory management. Given the fairly limited amount of storage for
state on an FPGA (LUTs, BRAM blocks, and flip-flops), on-chip solutions would
only work on a small scale. As in traditional systems, external memory, such as
DDR memory, has to be used. Unfortunately, this is significantly more complex
on an FPGA than on a general-purpose CPU. Therefore, we limit our discussion
here to tuple-based windows, which have well defined state requirements. In the
following discussion, we always assume tuple-based windows.

7.7.1 Sliding-Window Joins

The exact semantics of window-based joins (precisely which stream tuple could be
paired with which?) in existing work was largely based on how the functionality
was implemented. For instance, windowing semantics is implicit in the three-step
procedure devised by Kang et al. [KNV03]. The procedure is performed for each
tuple r that arrives from input stream R:

1. Scan stream S’s window to find tuples matching r.

2. Insert new tuple r into window for stream R.

3. Invalidate all expired tuples in stream R’s window.

Tuples s that arrive from input stream S are handled symmetrically. Sometimes,
a transient access structure is built over both open windows, which accelerates
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comparisons

window for R

window for S

input
stream R

input
stream S

Figure 7.10: Handshake join idea. Streams flow by each other in opposite direc-
tions; comparisons (and result generation) happens in parallel as the streams pass
by.

Step 1 at the cost of some maintenance effort in Steps 2 and 3. The three-step
procedure carries an implicit semantics for window-based stream joins:

Semantics of Window-Based Stream Joins. For r ∈ R and s ∈ S, the tuple
〈r, s〉 appears in the join result R onp S iff
(a) r arrives after s and s is in the current S-window at the moment when r

arrives or
(b) r arrives earlier than s and r is still in the R-window when s arrives
and r and s pass the join predicate p.

A problem of the three-step procedure is that it is not well suited to exploit
the increasing degree of parallelism that FPGAs provide. Furthermore, local avail-
ability of data, i.e., data next to the computation, inherently seems to contradict
the nature of the join problem, where any tuple in the opposite window represents
a possible match.

7.7.2 Handshake Join

It turns out that we can learn from soccer players here. Soccer players know very
well how all pairs of players from two opposing teams can be enumerated without
any external coordination. Before the beginning of every game, it is tradition to
shake hands with all players from the opposing team. Players do so by walking by
each other in opposite directions and by shaking hands with every player that they
encounter. Very naturally, the procedure avoids bottlenecks (each person has to
shake only one hand at a time), keeps all interaction local (fortunately—people’s
arm lengths are limited), and has a very simple communication pattern (players
only have to walk one step at a time and there is no risk of collision). All three
aspects are desirable also in the design of parallel algorithms.
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Stream Joins and Handshaking. The handshake procedure used in sports
games inspired the design of handshake join, whose idea we illustrated in Fig-
ure 7.10. Tuples from the two input streams R and S, marked as rectangular
boxes , are pushed through respective join windows. Upon window entrance,
each tuple pushes all existing window content one step to the side, such that al-
ways the oldest tuple “falls out” of the window and expires. In software, this
process could be modeled with help of a ring buffer or a linked list ; in FPGA-
based setups, a shift register would serve the same purpose. Both join windows
are lined up next to each other in such a way that window contents are pushed
through in opposing directions as shown in Figure 7.10.

Whenever two stream tuples r ∈ R and s ∈ S encounter each other (in a
moment we will discuss what that means and how it can be implemented), they
“shake hands”, i.e., the join condition is evaluated over r and s, and a result tuple
〈r, s〉 appended to the join result if the condition is met. Many “handshakes”
take place at the same time, work that we will parallelize over available compute
resources. To keep matters simple, we assume that only a new item is inserted
into only one window at a given time instant. An implementation is free to lift
this restriction, provided that it properly deals with race conditions.

Semantics. While a stream item r ∈ R travels along its join window, it will
always encounter at least those S-tuples si that were already present in S’s join
window when r entered the arena. Likewise, if r arrived earlier than some S-tuple
s, r and s will meet eventually (and thus form a join candidate) whenever r is still
in the R-window at the moment when s arrives.

Observe how this semantics coincides with the window semantics implied by
the three-step procedure of Kang et al. [KNV03]. Thus, handshake join implements
the same semantics as existing techniques; only the order of tuples in the result
stream (and thus also per-tuple latencies) might change.1 In addition, handshake
join (a) gives a new intuition on what window-based joins mean and (b) opens op-
portunities for effective parallelization on modern hardware. Next, we will demon-
strate how to exploit the latter.

Parallelization. Figure 7.11 illustrates how handshake join can be parallelized
over available compute resources. Each processing unit (or “core”) is assigned one
segment of the two join windows. Tuple data is held in local memory (if applicable
on a particular architecture), and all tuple comparisons are performed locally.

This parallel evaluation became possible because we converted the original
control flow problem (or its procedural three-step description) into a data flow

1This disorder can easily be corrected with help of punctuations [LMT+05].
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core 1 core 2 core 3 core 4 core 5
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Figure 7.11: Parallelized handshake join evaluation. Each compute core processes
one segment of both windows and performs all comparisons locally.

representation. Rather than synchronizing join execution from a centralized co-
ordinator, processing units are now driven by the flow of stream tuples that are
passed on directly between neighboring cores. Processing units can observe locally
when new data has arrived and can decide autonomously when to pass on tuples
to their neighbor. In addition, we have established a particularly simple commu-
nication pattern. Processing units only interact with their immediate neighbors,
which may ease inter-core routing and avoid communication bottlenecks. We can
therefore expect a good circuit performance on the FPGA as this communication
pattern applies little pressure on the signal routing.

Both properties together, the representation as a data flow problem and the
point-to-point communication pattern along a linear chain of processing units,
ensure scalability to large numbers of processing units. Additional cores can either
be used to support larger window sizes without negative impact on performance,
or to reduce the workload per core, which will improve throughput for high-volume
data inputs.

Encountering Tuples. For proper window join semantics, the only assumption
we have made so far is that an item that enters either window will encounter
all current items in the other window eventually. That is, there must not be a
situation where two stream items can pass each other without being considered
as a candidate pair. Thus, any local processing strategy that prevents this from
happening will do to achieve correct overall window semantics.

In Figure 7.12 we illustrate how to process a segment k. In this illustration, we
assume that every tuple r ∈ R is compared to all S-tuples in the segment at the
moment when r enters the segment. Figure 7.12(a) shows all tuple comparisons
that need to be performed when a new R-tuple is shifted into the segment.

Likewise, when a new tuple s ∈ S enters the segment, it is immediately
compared to all R-tuples that are already in the segment, as illustrated in Fig-
ure 7.12(b). This approach will operate correctly regardless of the window size
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(a) Tuple from stream R entered segment.
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(b) Tuple from stream S entered segment.

Figure 7.12: Eager scan strategy. A tuple entering from stream R or S will trigger
comparisons or in the segment of processing core k (respectively).

configuration. Similarly, segmentation can be chosen arbitrarily, which might be
useful for very particular data characteristics or in systems with a heterogeneous
set of processing cores.

7.7.3 Handshake Join Implementation on FPGAs

Figure 7.13 illustrates the high-level view of our handshake join implementation
on an FPGA. The windows of the R and S streams are partitioned among n cores.
The cores are driven by a common clock signal that is distributed over the entire
chip. The synchronous operation of the cores avoids any buffering (such as FIFO)
between the cores and, thus, reduces the complexity of the implementation. The
tuples move in lock-step through the window. The windows represent large shift
registers, which can be efficiently implemented in hardware.

For each core we need to provide a hardware implementation of the segment
for the R and S windows, a digital circuit for the join-predicate, and scheduling
logic for the tuples and the window partitions. The figure shows the two 64 bit-
wide shift registers (labeled ‘R window’ and ‘S window’, respectively) that hold
the 〈k, vR〉 and 〈k, vS〉 tuples. In this discussion we assume 32-bit wide keys k and
values vR and vS. When a new tuple is received from either stream, the tuple is
inserted in the respective shift register and the key is compared against all keys
in the opposite window. Here, we use a simple nested-loop join, i.e., the elements
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Figure 7.13: FPGA Implementation of Handshake Join for Tuple-based Windows

of the window are compared sequentially. This is done by a simple sequencer that
implements the tuple scheduling logic.

Assuming two tuple-based windows with sizes WR and WS, the comparison
requires max (dWR/ne, dWS/ne) clock cycles. The number of clock cycles can be re-
duced at the cost of increased circuit complexity by instantiating multiple predicate
evaluation sub-circuits, thereby allowing for a parallel execution of the predicates.
As illustrated in the top half of Figure 7.13, each join core will send its share of
the join result into a FIFO queue (indicated as ). A merging network will merge
all sub-results in to the final join output at the top of Figure 7.13.

Join Core. As depicted in Figure 7.14, the stream data for R and S is directly
fed into and out of the cores. An additional “valid” line is used to represent
whether the data lines contain a valid tuple. Our current implementation allows
processing one tuple per clock cycle. The “enable” signals specify whether in any
given clock cycle a new tuple is shifted along the R or S stream. These two signals
are asserted by a simple admission control circuit when the data streams enter the
chip. Every join core can raise a “throttle” signal when its FIFO is close to become
full. The admission controller can use this information to either (1) discard new
tuples when they enter the chip or (2) drop tuples waiting in the output FIFO.
As such, the throttle signal allows us to handle overload situations in a controlled
manner.

The signal is asserted before the FIFOs are actually full such that enough free
slots are available for all join tuples that could be generated from the current input
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Figure 7.14: Join Core Implementation on FPGAs

tuple. In other words, we assert the throttle signal if less than max (dWR/ne, dWS/ne)
entries are free in the output FIFO of a core.

Merging Network. Joins can potentially generate a large amount of result
tuples. It is therefore crucial to siphon off the result data from the join cores to
avoid overflows in the local output FIFOs. The output bandwidth is determined
by the speed of the top-most merger FIFO, which can accept and deliver one tuple
per clock. The merging network is driven by a different clock than the shift-register
and the tuple scheduling logic. This allows us to balance throughput and latency
depending on the join hit-rate. For example, a high clock frequency in the merging
network and a comparatively small shift-clock can be used for joins that are known
to yield a high hit-rate. In the scenario of a low hit-rate, a small data volume is
generated and the shift-circuit can be operated at higher speeds.

A merger element is essentially a union operator as described in Section 7.3.4.
The merger elements in the merging network each consists of a FIFO element and
control logic that reads from a number of inputs FIFOs, i.e., the child mergers.
We vary the fan-in of the mergers in the range of 2, . . . , 8 elements. The mergers
can only accept one tuple per clock. Thus, if more than one FIFO has data
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Figure 7.15: Scalability of FPGA Handshake join with a constant segment size of
8 tuples per window and core

available, access needs to be controlled such that starvation is avoided. As for the
union operator a round-robin token passing arbiter [SMR02] is used to guarantees
fairness.

Our Virtex-6 chip provides FIFOs as 36 kbit block RAM (BRAM) elements.
They can be configured to a maximum width of 36 bits and a depth of 1024
elements. Therefore, in order to store 96-bit result tuples three 36 kbit BRAM are
required. The XC6VXL760 chip has capacity for 240 96-bit result FIFOs (either
as output FIFOs of the cores or in the mergers). In our design they represent the
limiting factor that determines the maximum number of cores we can instantiate.

7.7.4 Evaluation of Handshake Join Operator

FPGAs provide a very direct measure of the scalability that an algorithm can pro-
vide. In a scalable design, the maximum clock frequency at which a circuit can be
operated is independent of the configured size of the circuit. For algorithms that
scale less favorably, the clock frequency will have to be turned down as the config-
uration size increases. This behavior could also be observed for sorting networks
in Figure 6.17 (page 190).

The maximum clock frequency that can be achieved for our circuit is shown
in Figure 7.15 for different core numbers. For this experiment we scaled up the
number of cores n, but left the per-core window size constant at eight tuples per
core (for n = 100, e.g., the overall window size will be 100 × 8 = 800 tuples per
stream). As can be seen in the figure, clock frequencies remain largely unaffected
by the core count, which confirms the scalability of handshake join.

On the right end of Figure 7.15, our design occupies more than 96 % of all
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Figure 7.16: Throughput and clock frequency for two windows of size 1,000 imple-
mented using different numbers of cores

available FPGA BRAM resources. As such, we are operating our chip far beyond
its maximum recommended resource consumption (70–80 %) [DeH99]. The fact
that our circuit can still sustain high frequencies is another indication for good
scalability. Earlier work by Qian et al. [QXD+05] on FPGA-based stream join
processing suffered a significant drop in clock speeds for the window sizes we
consider, even though their system operated over only 4 bit-wide tuples.

7.7.5 Optimal Number of Cores

In order to obtain a high throughput for given window sizes WR and WS the
number of join cores n needs the maximized and thereby reducing the size window
partition per core. The throughput can be computed as

throughput =
1

max (dWR/ne, dWS/ne)
· fclk

(the denominator is the maximum number of clock cycles needed to scan the local
join windows.

The remaining parameter that determines the overall achievable throughput is
the clock frequency fclk of the join circuit. In VLSI the highest possible clock fre-
quency is determined by complexity of the circuit, i.e., the number of components
and density of circuit connections. It is not clear how the clock frequency depends
on the core number ↔ window size trade-off. Few cores have comparatively large
window partitions and therefore a higher complexity inside the cores. When a
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large number of cores is instantiated the complexity of each core is low, while the
wiring complexity between the cores is higher.

In order to measure this impact, we choose two fixed-sized global windows
WR = WS = 1, 000 elements. We vary the number of cores between 1–200 cores
partition the global windows evenly over the cores. We then determine the highest
possible clock frequency of the join circuit. For this analysis we choose a moder-
ate timing for the result circuit of 83 MHz, resulting in an output tuple rate of
83 M tuples/sec. We synthesize each circuit for the Virtex-6 XC6VLX760 FPGA
chip.

Figure 7.16 shows the clock frequency obtained and the resulting tuple through-
put per input stream. The highest clock frequency is reached for n = 100 cores
and 10 tuples per window and core. At this point the complexity of a core and
the interconnect are in balance. When increasing the number of cores the clock
frequency decreases. For 150 cores the decrease in clock frequency cannot be com-
pensated by the speed-up of the additional processing cores, resulting in a lower
throughput number than for n = 100 cores.

7.8 High-level Architectures

In the Glacier approach the translation of queries into circuits is done at the bit and
wire level. As discussed, this results in high throughput and very efficient designs
due to the global optimization in the synthesis and placement FPGA tools. On
the flip side, however, this translation step can be time consuming. First of all,
the Glacier compiler and the entire FPGA design flow have to be repeated for each
new query. Second, the FPGA design flow itself can require a significant amount
of time, for example, the map and place-and-route stage can require minutes to
several hours processing time.

In this section, alternative approaches are outlined that operate on a coarse-
grained level. Instead of generating full-custom designs for each circuit, a fixed
architecture is used for all queries. The architecture is only configured through
runtime parameters or micro-programs depending on the queries at hand. To this
end, the Glacier query circuits are replaced by set of processing elements (PEs)
and an on-chip network, a such called network on chip (NoC) [BM02]. The NoC
represents an overlay network on top of the physical interconnect of the FPGA.
This allows the implementation of a data flow-oriented processing model similar
to systolic arrays [KL80] just by configuration of the processing elements and the
overlay network. At the very extreme end, modern general purpose computing on
graphics processor units (GPGPUs) can be considered as an extension of this idea.
In the following two sections the advantages and disadvantages of such high-level
approaches are discussed and compared to Glacier.
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Figure 7.17: Query plan (a) mapped onto a fixed architecture consisting of a set
of parameterizable processing elements and an overlay network (b). The data flow
in the overlay network is indicated by the labeled edges 1–22.

7.8.1 Overlay Architectures

An obvious approach is to map each operator onto a processing element and then
build up data flow graph by configuration of the overlay network. This strategy
is illustrated in Figure 7.17. The query plan for the simple temporal aggregation
query show in Figure 7.17(a) is mapped onto a set of processing elements depicted
in Figure 7.17(b). For now, we assume that the on-chip system contains eight
fixed function processing elements, in particular, two arithmetic, two projection
and selection units, one window, and one join unit. These units are implemented
similar to Glacier components but in a generic way. The function the perform
can be be selected by parameterization, e.g., by writing to a set of configuration
registers at runtime.

The PEs are connected over a Butterfly Fat Tree network. The network is
implemented using T and π switching elements. 2 The network is implemented
using FPGA primitives and explicitly placed on the chip. Kapre et al. [KMd+06]

2Note that π in this context refers to the switching elements not to the relational projection
operator.



250 CHAPTER 7. QUERY-TO-HARDWARE COMPILER

PE PE PE PE PE PE
Trades NumUBSTrades

program
memories

πSymbol =Oa σa �count idle idle

Figure 7.18: Mapping of the query plan in Figure 7.17(a) onto a fixed architecture
consisting of programmable processing elements (PE) arranged in a chain overlay.

to implement the network using packet-switching or time-multiplexing of the links.
Assume in this discussion that all links bidirectional and have a fixed word width,
e.g., 32 bit. The fixed function processing elements and the overlay network are
synthesized and placed onto the FPGA.

At runtime the operators corresponding to the query in Figure 7.17(a) are
mapped onto the PEs as shown in Figure 7.17(b). The operation performed by the
PEs is set by the configuration written into the shaded registers. The processing
elements are connected by using links of the overlay network are used as indicated
by the labeled edges 1–22. Since this “virtual” configuration in contrast to a
“physical” configuration does not involve any FPGA tools it is very lightweight and
thus very fast. The disadvantage is this solution, however, is the lower performance
to the fixed width overlay links compared to the wide parallel links used in Glacier.
Furthermore, the circuit optimization techniques described in Section 7.5 cannot
be applied, as they cannot be used on “virtual” configurations.

Another disadvantage arises from the limited number of fixed function PEs.
For example if a query contains more than two arithmetic operators ?O it cannot
be executed on the architecture shown in Figure 7.17 (unless PEs are virtualized).
As a solution the fixed function PEs can be replaced by programmable processing
elements. They can be designed as application-specific processors. Instead of being
parameterizable they are fully programmable, i.e., the operators they implement
are expressed as short program sequences. Since every PE can therefore implement
all operators the overlay network can be significantly simplified. Figure 7.18 shows
the fully programmable PEs connected in a chain overlay. Each PE contains a
private program memory, which contains a micro-code sequence that implements
the operator. Note that in this example note all PEs in the data flow pipeline are
used. The last two units are idle are assumed to be configured to pass through
the data. By the use of programmable PEs further runtime flexibility can be
gained, however, at the cost of a lower performance. A micro-coded operator is
typically less efficient that an implementation in hardware. This type of data flow
processing can also be performed on the Cell Broadband Engine [GHF+06] and
massively-parallel processor arrays (MPPAs) such as the Ambric Am2045 [But07].
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Figure 7.19: Architecture of the NVIDIA GeForce GTX 280 graphics processor
[NVI08]

The additional flexibility of programmable PEs was also recognized by manu-
facturers of graphic processors. As the graphics processing pipeline evolved and
became fully customizable, dedicated programmable units, called shaders were
introduced. Depending on the location in the pipeline they are called geometry,
vertex and fragment shaders. Each GPU features a certain number of each of
these units on silicon. However, depending on the requirements of a single scene
different number of units are required. For example, complex surfaces require re-
quire a larger number of vertex shaders, whereas for complex lighting and surface
properties more fragment shares are used. In either situation, the silicon ineffi-
ciently used. As a consequence, both major graphics hardware vendors decided
to replace the different shaders by a unified shader model. They represent generic
processing elements on silicon that can be used as vertex, geometry, or fragment
shader depending on the programming.

7.8.2 Graphic Processors

Modern graphics processors can be used for general purpose computing. Using
specialized programming environments such as CUDA [NBGS08] or OpenCL the
large number of parallel processing elements can be leveraged to perform general
purpose computing. This subsection discusses whether the graphics hardware is
suitable to implement query processing following the high-level approach using
fully programmable processing elements.
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Figure 7.20: A single Thread Processing Cluster (TPC) of the NVIDIA GeForce
GTX 280 graphics processor consists of three Stream Multiprocessors with eight
cores each. IU: Instruction Unit, TF: Texture Filter. [NVI08]

Figure 7.19 shows the architecture of a modern GPU [NVI08] at the time of
writing. The NVIDIA GeForce GTX 280 contains ten thread processing clusters
(TPCs), an 8-port access to the device-memory, and two levels of cache. Fig-
ure 7.20 shows a TPC in more detail. Each cluster consists of three stream mul-
tiprocessors. Each multiprocessor in turn contains eight processing cores, which
results in a total 240 processing cores on the GPU. In order to be able to put such
a large number of cores onto a single chip the manufacturer had to make a few
compromises. The most limiting factor is the connectivity among the cores. The
encapsulation of cores into multiprocessors and TPCs has lead a limited collabo-
ration model for the cores but it has avoided the otherwise difficult signal routing
problems during the design of the chip.

Only cores withing the same multiprocessor can collaborate through shared
memory. Cores between different multiprocessors can only exchange data through
the global device memory. The access can be coordinated through Atomic Opera-
tion Units (see Figure 7.19), which provide primitives such as addition, exchange,
increment, compare-and-swap, etc. The use of such operations, however, intro-
duces a significant delay.

The architectures of GPUs do not facilitate data flow processing on the many
cores due to the lack of the direct communication links but also due to the execution
model. Graphic tasks are highly parallel and typically also trivial to parallelize,
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for example, by partitioning the screen and assigning each partition to one core.
GPUs are thus designed such that all cores execute the same code. An additional
restriction is given by the CUDA architecture. Within each multiprocessor the
eight cores share one single instruction unit (UI) (Figure 7.20). This unit is re-
sponsible to schedule threads in units of wraps [NBGS08] with the constraint that
all threads within a warp must be at the same instruction address. The use of
branching generates diverging warps, which significantly reduces performance. A
final limitation is that only one single piece of code, called kernel, can be run on
the GPU at any time. Kernels are scheduled sequentially. Together with the miss-
ing direct core interconnect this renders the GPU unusable to perform the type
of processing done in Glacier. Nevertheless, GPUs have shown significant perfor-
mance improvements for certain applications such as sorting [GGKM06]. However,
it is unlikely that they can be used as a generic query execution platform such as
FPGAs using Glacier.

7.9 Related Work

The idea of using tailor-made hardware for database processing dates back at least
to the late 1970s, when DeWitt explored what was called a “database machine”
at the time [DeW79]. His Direct system used specialized co-processors that
operated close to secondary storage and provided explicit database support in its
instruction set.

While enormous chip fabrication costs rendered the idea not economical at
the time, some companies started to commercialize similar setups recently. Sold
as “database appliances”, their systems provide hardware acceleration mostly for
data warehousing workloads. Documentation about the inner workings of any of
the available systems is rare, but it seems that some of the appliances have a lot
in common with the configurations we considered in our work.

The Netezza Performance Server (NPS) system [Net09] is built from a number
of “snippet processing units” (SPUs). Each of these snippets includes a magnetic
disk, tightly coupled with a network card, a CPU, and an FPGA. Similar to the
setup we consider, the FPGA is used to filter data close to the data source (the
disk in Netezza’s case).

The heart of Kickfire’s MySQL Analytic Appliance [Kic09] is its so-called “SQL
Chip”. Judging from the product documentation, this chip seems to be bundled
with DDR2 memory and connected to the base system via PCI Express. In essence,
this appears to coincide with the co-processor setup that we briefly touched in
Section 7.2.1 (see Figure 7.2(b) on page 218).

XtremeData [Xtr09] sells “in-socket accelerators” where an FPGA chip is mounted
onto an interface that can be plugged into an AMD HyperTransport socket. From
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a system architecture point of view, this has the potential of offering a very large
bandwidth and low latency for FPGA↔CPU communication. Publicly available
documentation, however, does not specify whether the company’s “Database Ap-
pliance” is indeed based on such accelerators.

Both systems appear to use FPGAs primarily as customized hardware, with
circuits that are geared toward very specific (data warehousing) workloads, but
are immutable at runtime. In our work, we aim at exploiting the configurability
of FPGAs. With Glacier, we present a compiler that compiles queries from an
arbitrary workload into a tailor-made hardware circuit.

The processing model used in glacier resembles the MonetDB/X100 system
by Héman et al. [HZdVB07]. MonetDB/X100 processes data from a column-wise
storage in a pipelined fashion. We borrowed their idea of selection vectors. Inval-
idating tuples rather than physically deleting them avoids expensive in-memory
copy operations in MonetDB/X100. Much like MonetDB/X100, our circuits favor
narrow input relations/streams.

Our implementation of group by takes particular advantage of an FPGA-based
implementation of content-addressable memory. Bandi et al. [BMAE07] have
looked at a commercial CAM product and its potential applications in a database
context. Though such products can provide high capacity and lookup performance,
we think that the missing coupling to a full database infrastructure renders the
approach hard to apply in practice. FPGAs, by contrast, provide the flexibility to
join an existing infrastructure in a seamless fashion, even at different locations if
necessary. The work of Gold et al. [GAHF05] describes a similar approach with
similar drawbacks. They suggest the use of network processors for database pro-
cessing, mainly to exploit the thread-level parallelism inherent to network CPUs.

The higher-order nature of the group by and windowing operators in our
streaming algebra resembles the “Apply” operator that is used inside Microsoft
SQL Server and has been discussed by Galindo-Legaria et al. [GLJ01]. Similar
rewrite rules as the ones in SQL Server may also help the Glacier compiler to
improve the quality of generated plans.

The data flow present in the Handshake join flow is similar to the join arrays
proposed by Kung and Lohman [KL80]. Inspired by the then-new concept of
systolic arrays in VLSI designs, their proposed VLSI join implementation uses an
array of bit comparison components, through which data is shifted in opposing
directions.

The only work we could find on stream joins using FPGAs is the M3Join of
Qian et al. [QXD+05], which essentially implements the join step as a single par-
allel lookup. This approach is known to be severely limited by on-chip routing
bottlenecks [TMA10], which causes the sudden and significant performance drop
observed by Qian et al. for larger join windows [QXD+05]. The pipelining mech-



7.10. SUMMARY 255

Optimizer +
Compiler

Stream Engine
FPGA in
data path

SwissQM VM
on nodes

Figure 7.21: Glacier translates queries into hardware execution plans on FPGAs

anism of handshake join, by contrast, does not suffer from these limitations.

7.10 Summary

The Glacier compiler described in this chapter adds the missing piece to the hetero-
geneous query execution platform and completes the system shown in Figure 7.21.

Glacier provides an operator algebra and transformation rules that can be used
to convert meaningful continuous queries into FPGA circuits. Among others, we
provide full support for aggregation, grouping, windowing, and stream joins. Since
the performance characteristics of the operators implemented as FPGA circuits are
very different from those of software operators, we provided an in-depth analysis
of the relevant performance metrics.

Our results indicate that using the FPGA as a co-processor in an engine running
on conventional CPUs can have significant advantages. The experiments show that
most operators have very low latency and that the FPGA as a whole can sustain a
very high throughput. The tested setup demonstrates that the FPGA can process
streams at network speed (the bottleneck is the network interface, not the data
stream processing on the FPGA), something that cannot be done in conventional
CPUs.

We presented Handshake join and demonstrated how window-based stream joins
can be parallelized over very large numbers of processing elements with negligible
coordination overhead. The implementation shows good performance and scala-
bility behavior on the FPGA. Key to the scalability of handshake join is to avoid
any coordination by a centralized entity. Instead, handshake join only relies on
short element-to-element communication. This mode of parallelization is related
to data processing systolic arrays.
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8
Summary and Conclusions

This dissertation has contributed towards a heterogeneous solution for stream
processing. The thesis studied the extension of stream processing onto embedded
systems platforms: wireless sensor networks and FPGAs. The envisioned archi-
tecture of the heterogeneous system introduced in Chapter 1 is shown again in
Figure 8.1.

The approach is the same in both cases. Continuous streaming queries are
compiled into bytecode programs for sensor networks and into FPGAs circuits.
This is made possible by introducing an intermediate abstraction level. For sensor
network this additional abstraction level is provided by the bytecode interface of
SwissQM and the for FPGA by the Glacier library that contains well-defined
query operator components. Essentially, Glacier can be considered as a different
compiler backend of the SwissQM/Gateway.

This allows the compiler to reason about resource consumption of the indi-
vidual execution plans. For the bytecode interface the resource consumption can
be estimated through the program length and the memory requirements. The
communication complexity can be estimated depending on aggregation and non-
aggregation patterns by considering the current topology parameter of the col-
lection tree. For FPGAs the latency and throughput, i.e., tuple issue rate, can
be determined upfront from the circuits. This provides predictable performance
values of the designs.

Stream processing tasks are expressed as declarative queries. This can be con-
sidered as programming using a domain specific language. The work furthermore
illustrates that the complexity of the underlying technology (embedded systems

257
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Figure 8.1: Components of heterogeneous query processing platform developed as
part of this dissertation

programming) and the design of digital circuits for FPGAs can be hidden. In
fact, the abstraction levels and the domain specific language open the inherently
complex technology to broader range of users and developers.

Figure 8.1 shows that Glacier consists of the compiler and optimizer component
only. The system developed as part of this dissertation is by no means complete in
the sense that it is a heterogeneous system that spans all three execution platforms
at the same time. The ultimate realization of the architecture requires that the
cost models used for optimizing plans for sensor networks and FPGA circuits need
to be combined. The thesis contributes to such a solution by characterizing the
individual cost models and describes how such as system can be implemented.

8.1 Query Processing in Sensor Networks

Chapter 3 shows that running a virtual machine on sensor nodes provides more
flexibility than running a query engine such as TinyDB [MFHH05]. It can provide
more general query expressions at a lower implementation complexity on the sensor
nodes. It further allows the use of user-defined functions that can be inlined into
the bytecode and directly executed on the sensor nodes. User-defined functions in
sensor networks can perform important preprocessing and filtering such as cleaning
of noisy sensor data [JAF+06].

The query merging approach presented in Chapter 4 allows to reduce the num-
ber of concurrent queries that are run in the network. One observation made is
that for a large number of concurrent queries, the optimization work is actually
reduced, as in this regime the universal network query can be used. The universal
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query retrieves data from all sensors as fast as possible. The evaluation also showed
that merging all user queries to one single network execution plan, in general, is
not advisable. Instead, queries have to be merged into groups. We presented
different strategies to perform this type of multi-query optimization. In order to
select the best mapping of queries to network execution plans the strategies make
use of a cost model. We defined an energy-based cost model whose parameters
were determined for a real sensor platform. Power measurements for the Tmote
Sky platform confirm that in sensor networks the energy cost is dominated by ra-
dio communication. For this platform, in particular, sampling and computation is
free. The presented strategies do not work of equally well for all query loads. We
defined a simple heuristic for the optimizer when to switch to a different strategy.

8.2 Query Processing on FPGAs

We first analyzed of the behavior of FPGAs as computing platform. This was
shown in the context of sorting, in particular, sorting networks. We studied the
impact of different design techniques such as purely combinational, synchronous,
and pipelined implementations on chip area and performance. For pipelined de-
signs we could obtain very high throughputs (> 50 GB/s for sorting 64 32-bit ele-
ments) in our sorting core. However, when considering the end-to-end performance
after integrating that core into a complete system the performance advantage is
severely reduced. When connected to the system bus and streaming in the data
from external DRAM memory on our prototyping board, the effective bandwidth
is reduced to 400 MB/s. This illustrates the importance an efficient attachment of
the custom FPGA logic. We also analyzed the attachment of an accelerator core
to the execution pipeline of an embedded CPU. This allows a tighter coupling to
the traditional software stack running on the CPU, however, in this case it does
not solve the memory bottleneck problem.

After the analysis we defined an algebra that we later used to express streaming
queries. We then introduced translation rules for the operators of the algebra to
translate algebraic plans into digital hardware circuits. The operators are part of
our hardware component library Glacier. It contains traditional operators such as
projection, selection, windowing, grouping, and window-based joins. Additional
helper operators can be used to interface the circuit with the CPU and the net-
work, to align tuple streams and to compute unions. The operators can be used
for queries that have constant space requirements, e.g., tuple-based windows and
an a priori known number of groups. The thesis also presents a novel idea for
implementing window-based stream joins. The approach leads to a very efficient
and scalable implementation due to the inherent parallelism and the locality in
the communication pattern.
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The advantage of the Glacier approach is that the performance behavior can
be directly determined from the components after composition. Latency can be
computed by counting the register stages and throughput by well-defined issue
rates of the individual operators. This provides up front guarantees on the circuits
performance behavior. Both, latency and throughput are given in units of clock
cycles. The actual clock rate is determined during synthesis by the tools.

8.3 Directions for Future Work

In Glacier queries are compiled into HDL code that is then statically compiled into
a FPGA bitstream using the traditional FPGA tool flow. Some FPGAs provide
functionality that allow the dynamic partial reconfiguration of the chip, i.e., the
functionality of the entire chip or parts thereof can be modified at runtime. An
extension of this work could wrap the components from the Glacier library into
partial reconfiguration modules. These modules can then be placed in partial
reconfiguration regions on the chip such that query plans can be connected on
the fly at runtime. The difficulty is that partial reconfiguration imposes many
additional constraints to the layout of the modules. A suitable approach to place
bus macros has to be devised. While partial reconfiguration introduces runtime
adaptation it also comes at a cost. The static compilation of execution plans shown
in this thesis has the advantage that optimization can be applied on a global
scale during synthesis because module boundaries are removed. By connecting
individual, pre-compiled components onto the chip using partial reconfiguration
this global view is not available during optimization. This introduces the research
question of how much loss in circuit performance partial reconfiguration costs for
the query plans expressed through Glacier.

As pointed out earlier, an efficient attachment of the FPGA is crucial to the
overall performance of the accelerator. For a full system implementation in a com-
modity computer system of today the attachment to the embedded CPU as used
in this thesis is not suitable. Although, the use of the embedded CPU does not
have an impact on statements made in thesis about the compiled query circuits,
in a commercial solution, the FPGA has to be connected a host system. To this
end, the set of adapter components of Glacier has to be extended by, e.g., a PCI-
Express bus interface. Additionally, this work assumes queries with constant space
requirements. Since Glacier uses on-chip storage this amount of space available
for query state is fairly limited, e.g., the amount of Block RAM available on the
Virtex-5 FX130T chip used in the experiments is 1.3 MB. Hence, external memory
(DRAM) has to be used for execution plans with large state requirements (e.g.,
large windows). This will lead to memory hierarchies similar to caches in tradi-
tional CPUs. The query execution model needs to account for this. It is also
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possible that very large plans do not fit onto the FPGA even though they have
small state needs (but use a significant amount of logic). In this case, virtual-
ization techniques such as PipeRench [SWT+02] by Schmit et al. could be used.
Virtualization of FPGAs further increases the complexity of the cost model and
the implementation.

Data stream processing as presented in this dissertation is related to signal pro-
cessing. The relation can be explored in more detail. Data rates in SwissQM are
in the order of a tuple every few seconds. An extension of this work could consist
of increasing the sampling rate to a few 100 Hz. The will lead to a different mes-
saging in the sensor network. Filtering, both by evaluating predicates as well as
processing in the signal processing sense has to be provided efficiently on the sen-
sor nodes, using application-specific instructions. Additionally, shift-register like
windowing as used in signal processing also needs to be provided as an extension
to SwissQM.

Asynchronous rate conversion provides the most general realization of the rate
conversion operator ρ. Asynchronous rate conversion can be used in a stream
engine on time series data with tuple data from a continuous range. Rate con-
version provides an alternative to load shedding, i.e., dropping tuples in overload
situations [TcZ+03]. Rothacher describes [Rot95] VLSI implementations of a con-
version that can also be used on an FPGA. FPGAs have already been collocated
with embedded micro-controllers on a sensor node for signal processing applica-
tions [SMAL+04]. For battery-driven sensor nodes low-powered flash-based FP-
GAs could be used.

The query compilation approach can be extended to different hardware archi-
tecture such as graphics processors, massively parallel processor arrays (MPPAs)
[But07] and many-core multi-processors such as the Intel SCC [HDH+10]. For the
different platforms new cost models have to be developed. Even today’s multi-
core computers start to exhibit a communication pattern among cores that are
very similar the one of a network. In fact, Baumann et al. [BBD+09] also use
tree-based communication for exchanging cache-line-sized messages among cores.
The techniques described in this dissertation many also be applied in the context
of chip multi-processor systems.



262 CHAPTER 8. SUMMARY AND CONCLUSIONS



Bibliography

[AAB+05] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Uǧur
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