
Team 2 – Escher’s 11

THAT FAILED BANK ROBBERY
„Should Have Planned It Better “

Simone Guggiari – PRODUCER + GAME DESIGNER + GAMEPLAY AND ENGINE PROGRAMMER

Nicolas Huart – GAME DESIGNER + LEVEL DESIGNER + MENU PROGRAMMER

Alexander Lexus – GAME DESIGNER + PHYSICS PROGRAMMER + PROCEDURAL CONTENT

Andreas Emch – GAME DESIGNER + PHYSICS PROGRAMMER + EFFECTS PROGRAMMER

Xingze Tian – GAME DESIGNER + AUDIO ENGINEER + GRAPHICS PROGRAMMER

CHAPTER 1. FORMAL PROJECT PROPOSAL

1.1. GAME DESCRIPTION

1.1.1. LOGLINE

Two teams of clumsy robbers inside unlikely vehicles must collect money and valuables scattered all

over Credit Suisse and disrupt their opponents before the police arrives after a badly timed explosion

sabotaged their master plan.

1.1.2. OVERVIEW

‘That Failed Bank Robbery’ is a competitive local multiplayer game for 2 or 4 players in which two

teams of thieves try to rob the same bank at the same time. The goal of the game is to collect the most

money before the round ends or the getaway vehicle is destroyed. Each player in the game controls a

vehicle and can collect money by opening vaults, cracking crates or collecting valuables present on the

map. Players can also steal their opponent’s loot by attacking them or their base. The game is set inside

Credit Suisse and features a wide array of power-ups and different valuables and riches. The more

money a player collects before bringing it to its base, the riskier the play becomes, as vehicles move

slower and have impaired attack when loaded. This provides a fun layer of quick and dirty action on

top of a more strategic game in which several tactics can bring to victory.

The game is developed by Simone Guggiari, Nicolas Huart, Alexander Lexus, Andreas Emch and Xingze

Tian as a project for the Game Programming Laboratory offered at ETH Zürich in the Spring Semester

of 2018 under the supervision of Prof. Robert Sumner.

1.1.3. GUIDING PRINCIPLES

We have three principles we want to base our game around. These are that our game should be:

● FUN

● SIMPLE

● BEAUTIFUL

We believe that to have a compelling game that can be enjoyed by players as soon as they jump in, we

need to provide a simple game with an intuitive control scheme as well as clean interface. We also

need a strong fun component, that provides a layer of strategy underneath the frenetic action-packed

gameplay. The game rules should be easy to learn yet provide emergent gameplay to keep the game

fresh. All of this should be wrapped in a game and a user interface that is both beautiful and attractive,

as well as polished.

Therefore, our game should be nice to look at, easy enough to let players jump right in and fun enough

to keep them coming back, and have some layers of depth and strategy to keep the player engaged

even after playing a few rounds.

1.1.4. BACKGROUND STORY

The story begins in Escher’s time, in 1856 as he was founding Credit Suisse. We see him building the

bank from scratch with nothing but hard, honest work. Fast forward 163 years, the year is 2019 and

Credit Suisse is now a giant in Swiss economy and attracts all kind of people and business. Two teams

of robbers, after learning of Escher’s history, decide to pay him homage by robbing his bank on the

200th anniversary of his birth. Escher’s got rich with honest work, and now it’s time to get rich with

honest dishonest work! They plan a grand entry in the main building to blow up the vault, which is fully

packed on this special day. However, due to bad planning, the explosives go off too early and money

is scattered all over the bank. The police are on their way and the robbers have limited time to gather

all the valuables and get out of there before it’s too late. They jump into the first vehicle they can find,

a forklift used to move stuff around, and duel to death to be the ones that get away with the most

cash.

1.1.5. DESIGN DECISIONS

1.1.5.1. UNIQUENESS

Our game strives to be unique by providing an innovative type of gameplay which is not found in most

titles. We decided to stay away from platformers and shooters, and instead combine elements of

action, racing and strategy games together, as well as some elements typical of party games. The final

experience we try to accomplish is a fast-paced action racing game with combat elements, as well as

different strategies and tactics that allow to reach the goal of the game.

1.1.5.2. MECHANICS

The main game mechanic allows players to control their vehicles around the map, to bump into other

players and obstacles like a bumper car and destroy crates and stunning the opponents by performing

a dash. By going over a valuable, it is collected and added to the inventory, and in a similar manner

powerups can be picked up and used.

1.1.5.3. SETTINGS

The game is set inside of Credit Suisse, in the aftermath of an explosion. Money is scattered

everywhere, and more valuable items are found on the upper part of the map, near to the vault,

jewelry and safe boxes. The map is rectangular, with the two bases (getaway vehicle) on the lower

side.

1.1.5.4. LOOK AND FEEL

We plan to have a cartoonish, colorful and polished look to our game. The models will be low-poly,

and this will allow us to have more detail in our scene. The models will fit the theme.

The objects and model are 3D, however most of the action will happen on a flat plane for simplicity

and realism.

The screen is split into the number of players, each part showing a player’s view (one camera for each

player). There is also a small global map, where each player can see where the coins, the obstacles and

the power ups are.

The camera looks at the map from an angle, smoothly follows the player and provides an isometric

look. Here is a mockup of our view.

1.1.6. AUDIENCE, PLATFORM AND MARKETING

The main audience for the game are casual player, such as those that will play the game at our booth

at the end of the semester. The game is also geared towards players with more experience by providing

additional challenges.

The game will be developed on windows and deployed on the Xbox One. It will be possible to play with

the controllers on both windows and Xbox.

We plan to publish the game for both platforms at the end of the semester as our extra target.

We will be marketing the game mainly via a website that one of our members will setup, as well as

other channels once the Lab is finished.

1.1.7. GAME ELEMENTS

Here we describe some of the main elements that will be found in our game

1.1.7.1. WINNING CONDITIONS

The goal of each player is to maximize his profit by bringing money back to his base. The game ends

when the time limit is reached or when one of the player manages to destroy his opponent’s base.

Players can combine different winning strategies for a common goal: collecting the most coins.

1.1.7.2. CHARACTERS

Different vehicles will be available in our game. The first one will be a

forklift, which is well suited to move around objects and attack other

vehicles with his claws. We will also implement two other vehicles for a

total of 3, with different stats such as capacity, speed and attack. They

will either be two other variations of forklifts, or more ‘exotic’ types of

vehicles such as street sweepers, excavators or something similar as

they can both carry material as well as attack.

Each player in the game controls one of these vehicles with specific life,

speed and capacity. Each player starts at his own base.

1.1.7.3. DASH ATTACKS

Players can attack each other by performing a dash. When one player is hit by the other, with a certain

probability he will become stunned and lose some of his money and life. During this time the other

player can either collect the money and run away, or stick around for more action. When players have

their whole life depleted, they lose all the coins they were carrying and respawn in their base after a

small delay. Dash attacks can also be used to open crates but cannot damage bases or vaults.

1.1.7.4. VALUABLES

Our game will feature different types of valuables that can be collected and brought back to the base.

Each will have a weight and a value (like the knapsack problem). Items found in the beginning of the

map will have less value (such as bills or coins), while some found later (jewelry, gold) will have a higher

ratio of value per weight, making them more interesting to bring back to base albeit riskier. Whenever

a player goes through a place with a valuable, he collects if it is possible (still has inventory space). A

player cannot collect more coins than the capacity of his vehicle allows. If he manages to go back to

his base, his total score gets increased by the total value he just collected. If on the way, he loses all

his life, he has to restart from his base and all his collected coins are lost, which will be scattered around

the place where he died. The coins are initially randomly placed over the map and new coins will

appear each time a player brings a coin back to his base or after some time, according to our procedural

generation algorithm.

1.1.7.5. POWER UPS

We plan to implement a few power-ups in our game. Power-ups change the property of each character

and can be either temporary (e.g. speed boost) or permanent (e.g. capacity boost, medic kit). There is

also a special power-up (bombs) that can be used to damage obstacles, open vaults or damage the

enemy player’s base. Keys will also allow players to get inside the vault. Other power ups might be

used to improve the defense level of the base.

1.1.7.6. CRATES AND VAULTS

Scattered in the map, we will have special crates that can be cracked by performing a dash towards

them. Once cracked, the crates will reveal valuables and possible powerups that they had inside.

Vaults on the other hand will be found at the top of the map, in the riskiest place, and it will be possible

to open them either with a key or a bomb. After this the player will be able to break in. Once opened,

they will reveal a lot of valuables to be collected. This will be a very risky action that a player can choose

to undertake, but the potential payoff will also be great as vaults will be filled with money and gold.

1.1.8. MAP

Our map will be rectangular, with the entry of the bank on the bottom together with the team bases,

and will contain everything that could be found inside a bank, from teller’s desks to jewelry, safety

boxes, obstacles and vaults. The drawing attached should give an idea of the layout. The further up the

player decides to go, the riskier the play becomes.

1.2. BIG IDEA BULLSEYE

● Collect procedural coins on the map or fight your opponent

● Strategic layer on top of fast-paced fun action

1.3. TECHNICAL ACHIEVEMENTS
1.3.1. RIGIDBODY SIMULATION
All the players will control a vehicle, which will be modeled as a rigidbody simulation. This includes a

model for forces, torques, and velocities, making sure that no vehicle can go inside objects (collision

detection and resolution). We will also implement friction and restitution coefficients to have cars

bounce away when colliding with something, such as bumper cars do. The dash attack will also be

modeled as a rigidbody simulation (imagine air hockey), and will strive to keep an arcade feel to our

game controls overall by tweaking all the physics parameters.

1.3.2. PROCEDURAL GENERATION
We plan on implementing a procedural generation algorithm that will take care of placing coins,

power-ups and obstacles. Doing so the map will always be different and thus it should be more fun

and variated to play. Things to be procedurally generated include coins, powerups, crates and

obstacles. Our procedural generation algorithm will be smart enough to try to balance the game,

meaning that will spawn more valuables where the risk associated with them is proportional to the

reward, will try to spawn and favor the player which is currently losing, and will decide when is the

best time to spawn one of the most powerful powerups. We will also procedurally generate obstacles

inside our map making sure every area is still accessible.

1.4. TEAM
In this section, we present the responsibilities that each member of our team will take upon himself.

1.4.1. SIMONE

Simone will take care of the game engine, as well as the organization of our software structure. He will

mainly be involved in programming the gameplay features as well as simple modeling and graphic

tasks. He will also make sure that the team is following the project schedule.

1.4.2. NICOLAS

Nicolas will be in charge of the design of the static part of the map as level designer. He will work on

the menu design and implementation. He will also be involved in the character modelling and will be

managing the library of assets.

1.4.3. ALEXANDER

Alexander is building with Andy the rigidbody simulation to handle the physics correctly and testing

the game to make sure it’s fun to play. He is also in charge of the dynamic part of the map as placing

special power ups, coins and other dynamic obstacles procedurally. In addition, he is helping out with

the visual appearance of the level and the total project. In terms of side tasks, he is working on the

slides and the Html pages for marketing the game.

1.4.4. ANDREAS

Andreas will implement the rigid body simulation as well as the collision detection part together with

Alexander. This includes physical simulation, collision-handling, spinning wheels and friction, as well to

integrate it into the game-play. Additionally, Andreas will be controlling visual effects such as shaders,

lightning, particle effects, etc.

1.4.5. XINGZE

Xingze will be in charge of the sound effects (background music, sounds triggered by actions, start and

end of game sound effects) and sound library. She will also take care of all the models, textures, light

maps and other needed assets. In addition, she will implement lighting effects. In the final steps, she

will be creating the trailer of the game and preparing slides with Alexander for the presentation.

1.5. DEVELOPMENT SCHEDULE
We will be following an agile schedule, that consists in small sprints of one week in which each team

member has one well defined task to complete (or multiple smaller ones). We will have weekly meeting

to discuss the current achievements and decide the tasks for the following sprint, as well as test the

game, discuss new ideas and make sure we are on schedule.

1.5.1. LAYERED TASK BREAKDOWN

Our high-level view for the layered task breakdown is as follows: in the functional minimum, we plan

to work mostly on tools for the engine and gameplay. This should give us a basic playable game. In the

following phase, we extend gameplay functionality and add most of the features we want to have in

our finished game. At the end of this stage we plan to have a fully working game that although is very

rough, allows us to play. In the next phase (desired goal) we plan to focus mostly on graphics and

menu, making the game something pleasant to look at, as well as including all the graphic assets and

required menus. We include all the polishing in the last phase, such as audio, game balancing, and

effects.

1.5.1.1. FUNCTIONAL MINIMUM
Our goal for the functional minimum is to have a basic game in which the player can control his avatar,

move around in the level while picking up money and bring it to his base, with an isometric camera

smoothly following the player. We want to have a simple HUD showing statistics such as time

remaining in the round and money collected so far. No physical simulation will be present yet, and the

level will just be a simple plane. The goal of this phase is to get everybody accustomed to working in

MonoGame and have something we can start experimenting with. We also plan to start experimenting

with technical stuff such as physics and rendering, producing a simple 2D rigidbody controller. We plan

to be able to deploy this build to the Xbox already to make sure we don’t run into technical issues later.

 Game engine:

 Implemented game objects with 3d transforms and components

 Implemented classes for camera, audio, input, scene, prefabs

 Implemented classes for utility, time, coroutines, basic physics

 Drawing 3d models as well as pipeline loading

 Game running on Xbox

 Gameplay

 Simple controller to move vehicles around

 Camera following player smoothly

 Pickup money, bring to base

 Round time, winning condition

 Simple HUD

 Basic primitive level

1.5.1.2. LOW TARGET
Our low target includes extending the game to allowing a second player to compete. This includes the

addition of split screen functionality, ability to perform attacks and cause damage and money loss,

respawn. We plan to implement a basic primitive level in which collisions work and to improve our

player control to work with rigidbodies. We plan to expand the gameplay with almost all of the

features, as well as expanding the HUD and start balancing the game to increase the fun factor.

 Game engine:

 Physics fully implemented

 Control implemented with rigidbodies

 Procedural spawning

 Gameplay

 2 and 4 player split screen

 Attacks

 Damage/death/respawn

 Stun/money loss

 Level with primitives and collision

1.5.1.3. DESIRED TARGET
In this phase we start focusing on graphics and menus. We plan to have a working game already, now

it’s time to have a level with all graphics assets, menu that allows to select a starting avatar, add

advanced gameplay functionalities such as power-ups, crates and vaults. We start distinguishing

players by vehicle type with different stats such as speed and capacity. We will have some basic

procedural money generation that makes the gameplay more unpredictable and thus fun. We will start

having a small library of sounds we want to add as well as implementing most of them in the game.

 Gameplay

 Vaults

 Crates

 Base damage

 Power-ups

 Interface

 Embellish and power-ups usage

 Mini-map

 Menu

 Menu windows implemented (main/play/join/options/…)

 Menu transitions and effects

 Graphics

 Added graphic assets

 1st level finished

 3 vehicles modeled

 2d art/title/tutorial

 Audio

 Basic audio and music

1.5.1.4. HIGH TARGET
For the high target we will mainly focusing in improving the existing game. The game’s graphics will be

enhanced with additional work on the visual effects, such as shaders and particle effects (e.g. for dust).

To improve the replayability of the game, other levels will be added.

 UI and Menu

 Additional polish

 Audio

 All sounds and music

 Effects

 Particles (dust/sparkles/explosion)

 Post-processing

 Game

 2nd level finished

 Balance and polish

 Final trailer and presentation

1.5.1.5. EXTRAS
Things we would like to have in our game but know that will not be able to implement in the limited

timespan of one semester are a single player mode, in which the computer controls one team of

robbers. This includes AI, navigation, decision making and strategic planning. Implementing a more

advanced progression mode that is persistent between rounds of the game would also be nice. We

would also love to be able to publish our game on different stores, start marketing it with a website

and have one article written about our game.

 Single player

 Enemy AI (decision and strategic planning)

 Navigation

 Gameplay

 Other powerups

 Buyable from store between rounds

 Persistent between levels

 Publish

 Store

 Website / article

1.5.2. TIMELINE

This is a timeline showing the whole semester divided into the 4 phases we described. It is a high-level

overview of which tasks will need to be done when.

1.5.3. TASK LIST

This is a more in depth and accurate list in which tasks are subdivided by category (gameplay, engine,

menu, interface, graphics, …) and by phase, as well as who will be making them. Each category has one

or two responsible. As this excel table is quite big, please look at it on the next page. We didn’t write

an expected number of hours per task, but balanced them in such a way that we will need to follow

the weeks marked above. In our estimate, each member of the group will be working around 25 hours

weekly to accomplish all of the marked tasks.

1.6. ASSESSMENT
We will consider our game a success if we manage to get a fun, simple and polished experience out of

it. We believe that the most interesting part of our game is the possibility of competition that will spark

challenges to arise, as well as the possibility to coordinate and communicate to reach the common

goal. If we also manage to have some emergent gameplay dynamic arise from our simple set of rules,

it will be another victory for us, as well as having a beautiful to look at videogame that people have fun

playing and that will make them keep the controller for “just another round”.

CHAPTER 2. PROTOTYPE

2.1. PROTOTYPE SETUP

2.1.1 THE BASIC MODEL
We set up our prototype based on the game rules described in the last section with the following
objects to represent the key features:

2.1.1.1 CHARACTERS
Characters are represented as little car models or small chess piece (grabbed from an existing board
game). The small pieces are in different colors for players to choose.

2.1.1.2 THE MAP
The map of the game is represented as a rectangle paper with about 30cm x 120cm in size (3 A3
paper sticking vertically). The size of the map has been experimented to ensure players can meet
each other as well as being able to explore further for more money. In addition, honeycomb grid is
used to enable players to move in all directions and to control the speed of movements.

2.1.1.3 THE BASE
The two bases (the yellow and green polygonal columns) are located at the bottom of the map, and
this is where both the players start the game. The two bases are close to each other to ensure
fairness, but not too close to avoid making it too easy for each player to attack the other’s base.

2.1.1.4 CRATES AND VAULTS
There is a vault located at the top of the map (as shown as the grey open box) which requires a key to
open. In addition, crates are represented using small card boards with a box symbol on it. Players can
choose to attack these crates to randomly get additional valuables and power-ups.

2.1.1.5 VALUABLES AND POWER-UPS
We use small paper boards with different stickers to represent the valuables (cash, diamond and
gold) and power-ups (capacity, life, speed) which are spread randomly around the map. At the
bottom of the map, more cash are placed, while there are more diamonds and gold present near the
vault.

2.1.1.6 RANDOMNESS
To simulate the randomness process dices are used. Every time players attack each other, a dice will
be thrown to determine how much money he/she will lose. Similarly, players might get power-ups or
valuables after attacking crates depending the dice throwing result.

2.1.1.7 PLAYER STATS
We use a card for each player to record their capacity, life and stamina. The statistics are represented
as progress bars which can be slid on the card.

2.1.2 HOW IT WORKS

The prototype is played by two people, with an additional person acting as the computer. The
prototype uses rounds for movement control and efficiency. The prototype is designed to play within
30 rounds. At each round, the players choose its action (moving / attacking) with respect to the
following rules:

2.1.2.1 INITIALIZATION
At the first round, each player has 100% health, 100% stamina, a capacity of 10 for valuables and a
capacity of 3 for power-ups. For this prototype, we consider all the objects take the same amount of
capacity (i.e. the maximum number of objects a player can carry during the play is 10).

2.1.2.2 MOVEMENT

In each round, every player can move a certain number of tiles in any direction they like and collect
all the valuables on the path:

● Remaining capacity >= 5 => 6 tiles
● Remaining capacity >= 2 => 4 tiles
● Otherwise => 2 tiles

2.1.2.3 ATTACKING
Players can attack each other if they are next to each other. At each round, if a player’s stamina is
over 50% and his/her opponent is nearby, he/she can make an attack by saying “shhh”. After doing
so, independent of how much capacity is left for the player, he/she can move 6 tiles in a straight line
and his/her stamina decreases 50% immediately. The attacked player will lose 50% of his life and a
random amount of money decided randomly by the computer. If a player loses all his life, he is forced
to get back to the base and loses all the money. He will start the next round with full life.

Players can also attack loot-boxes or crates when passing them. After being attacked, the box gets
destroyed and new collectables are placed around the position where players can collect in the next
round.

2.1.2.3 VALUABLES
At each round, players can collect valuables when they pass a tile with a collectable item and the
player still has remaining capacity. Once a player reaches full capacity, he cannot collect anything on
the way until he/she returns the base and unloads everything. When players have capacity smaller
than 10, they can unload the items on the current position as an offset for speed (if the current
position is not the base, they lose the items).

2.1.2.4 POWER-UPS
When players have remaining power-up capacity, they can pick up the power-up when passing by.
Each power-up takes up one space. In the prototype we support 4 types of power-ups:

● Bomb : it can be used to destroy the base of the opponent. To use a bomb, simply place it at
the desired location, and it will explode in 2 rounds. A base requires 2 bombs to destroy,
once destroyed, the player who placed the bomb gets all the items in the base

● Capacity: it can be used to expand the capacity by 10. This action is permanent, i.e. if a user
has capacity 10, after using this power-up, he/she will have capacity 20.

● Health: the health of the player will increase by 50% (cannot exceed the maximum 100%)
● Boost: the speed of the player increases to 6 tiles for 2 rounds

2.1.2.5 COMPUTER CONTROL
The person acting as the computer counts the number of rounds, notifies players the start of each
round (by knocking the table) and reminds them when the police comes (when only 10 rounds are
remaining).

The computer updates players’ statistics at each round including increasing stamina by 10% if no
attack happened or decreasing by 50% if an attack occurred. He/she also needs to modify capacity
accordingly, updating the bomb-counters if placed.

When users attack each other or the loot-boxes, the computer throws the dices to determine how
much money a player wins or how many new collectables are generated. The computer also needs to
randomly place new loot-boxes, he/she first throws a dice to decide if a new loot-box should be
placed or not, then he/she places the loot-box near the less-privileged player.

2.1.2.6 END OF GAME
At the end of the game (at the 30th round) the police come and all the players should return to their
bases. The player fails to do so loses the game. If both players succeeded returning to their base
safely, the valuables collected at the base will be counted where cash counts as 1 point, diamond 3
points and gold 5 points. The player with more points wins the game.

2.2. PLAYING EXPERIENCE
The prototype was modified and improved during the construction and playing process. During the
playing, we experimented on the map size, types of objects that can be used to simulate the features,
the speed of movement and how power-ups should be used.

(Initially we used beans as coins, but they are rolling around all the time!)

After several experiments and improving on the prototypes, we believe we have finally reached a
state that the prototype is fun and attractive to play! The number of rounds is reasonable, the size of
the map is appropriate and the amount of randomness also increases the entertainment of the
game.

At the start of the game, the person works as the computer places everything on the map randomly,
then the game starts. At every round, each player needs to balance his/her eager of money and the

risk he/she takes. Sometimes it is also necessary to give up some of his/her treasures to escape from
an attack or get a faster speed. In this prototype, how each action is selected and performed is super
fun. In addition to playing against each other in the game, the interaction between the players in real
life while playing the game also adds further entertainment to the game.

What’s more, the randomness has added another taste of mysterious and fun to the game. In a
particular game, one of the player has much better luck than the other even the computer has tried
his best to balance, this brings the game a bit casino feeling.

2.3. FINDINGS AND CONCLUSION
During the process of creating and playing the prototype, we have gained much more experience in
game design, here are a few findings we would like to point out particularly:

● The things we omitted are always more than we expected: before we started the prototype,
we have planned all the rules and objects we needed. During the actual play, we can always
find situations for which our rules are not specific enough.

● Feature parameters require a large amount of experiments and user surveys: to find the
most balanced parameters of the features, for example, the size of the map, the speed, the
capacity, etc. The optimal never comes for free and can only be retrieved or getting close to
by experimenting, modifying and improving.

In summary, prototyping plays an important role in game design, it helps us to perfect the game
mechanism, to find the most suitable parameters, and the most importantly, we gain new ideas
through the playing process, which helps us to design and create a much more interesting and
enjoyable game.

CHAPTER 3. INTERIM REPORT

3.1. PROGRESS
At this point in time, we have finished the functional minimum, low and desirable targets and are
now working full time into the high layer and even started some of the features in the extra target.

3.1.1 FUNCTIONAL MINIMUM
We achieved functional minimum targets in the 4th week of the project. We created a functioning
one player prototype in which a vehicle can be controlled and moved around. It is also possible to
pick up cash and bring it to the base, increasing the total balance. At this point we also had the
vehicle velocity depending on the capacity and rough cube graphics. Here is a screenshot:

3.1.1.1 GAMEPLAY
At this stage, users can use the joystick or keyboard to move the vehicle and pick up money scattered
on the plane. The more money the user collects, the slower it becomes. Players can return to the
base and unload the money, thus increasing the balance.

3.1.1.2 USER INTERFACE
We had a rough basic interface showing stats such as capacity, stamina and total earned cash. A
sliding bar was added to track the amount of money collected, and a timer was used to show the
remaining game time.

3.1.1.3 ENGINE

At this point we had constructed the basic structure of the game engine, and added classes for game
objects, components, transforms, drawing and loading contents. We also implemented a basic
particle engine in 2D and the basic collision callback. All this work on the engine, that took most of
the time, was intended to allow a modular workflow in the following phases and to increase
productivity. We can now say that this approach, which mimics Unity’s great architecture boosted
our productivity immensely and is definitely suggested for future groups.

3.1.1.4 ASSETS
We designed a basic game level in Unity with 3D primitives and wrote an exporter to export the
constructed scene to Monogame. This allows us to use a graphical user interface to quickly prototype
and position assets, and then have the same scene work instantaneously in Monogame.

3.1.1.5 EFFECTS
To model the final look we would like to achieve in Monogame, we experimented with lighting in
Unity including light maps, moving lights and changing light colors. We also started writing shaders in
Monogame for directional lights and point lights.

3.1.1.6 DEPLOYMENT
We managed to correctly deploy the game on Xbox at this stage.

3.1.2 LOW TARGET

As scheduled, by the end of week 6 we completed our low target. This included two and four player
gameplay with split screen and divided UI, attacks, death and respawn, losing coins, elaborate
camera control, rigid body collisions and a more advanced unity exporter. In the screenshot below, it
can be seen one half of the screen with the player in the middle, basic obstacles, a crude UI, a mini-
map, timers, coins and some powerups and collectibles.

3.1.2.1 GAMEPLAY
At this point, we had up to 4 users playing the game and the screen was split accordingly. Each player
can rotate the camera to get a better view. Users can attack each other by performing a dash and
lose money and life. In addition to unloading cash at the base, users can also choose to drop money
when they are full and hence too slow. At the end of the game, we have a police coming progress bar
warning users to return to the base, and if they didn’t manage to do so, a cash penalty was applied to
their score. We also had dynamic scene loading to change scenes on the fly (still a bit buggy, was
fixed later), as well as many features from the next phase (desirable) already implemented, such as
the vault with gold, openable crates, and many different powerups (six different types, such as key
and bomb seen in the screenshot).

3.1.2.2 USER INTERFACE
We improved the UI to also show game over or restart at this point. In addition, each player has a
mini-map that displays his current position and rotation, as well as that of the enemy. Important
elements, such as cash, crates, powerups, vault and bases are also shown on the mini-map. We

worked on custom interfaces to have the interface automatically rescale based on the resolution and
aspect of the screen. This means that no matter which resolution the game is played on, the
interface looks right in any case. To achieve this, we created a system that uses anchors and pivots
and dynamically computes the position at which a picture or a string should be drawn such that the
correct margin is kept from a particular corner of the screen, taking into consideration a pivot to
allow rotation and scale. This, combined with a dynamic format to store all the UI elements, made it
incredibly easier for us to adapt the UI in later phases to accommodate changes in gameplay.

3.1.2.3 ENGINE
By the end of week 6, we had almost completed implementing and refactoring our game engine to
ease the development in Monogame. In addition, we finished the scene loading functionality, as well
as 3D positional audio. The audio volume and pitch were computed for both ears of a virtual listener
such that the sound appeared to be 3D, depending on where the camera was located and pointed at.
We also expanded our components to support multiple phases and to solve data racing problems.
We added phases such as Awake, LateUpdate and OnDestroy.

3.1.2.4 PHYSICS
At this stage, we managed to detect collisions in Monogame and have a fully working simulation,
although with a few bugs to fix. We were able to simulate rigid bodies in 3D and implemented basic
primitives for collision.

3.1.2.5 ASSETS
We continued working on asset creation, such as vehicles and powerups, and imported other assets
of the bank scene in Monogame. We enriched and expanded our level in the scene and improved
the procedural spawning algorithm to generate the valuables and power-ups. A first test of importing
assets with our custom importer can be seen here, which works but is not the prettiest:

3.1.3 DESIRABLE TARGET
At the end of week 8, after other 3 weeks of work since finishing the low target on week 6 (including
the Easter week) we finally concluded our desirable target. This included adding a working menu for
the main screen of the game as well as a pause menu, adding all the sounds in the game, finishing the
powerups (added another 5), improving once again the 2D UI to make it more intuitive and polished,
adding particle effects for most of the effects in the game and most importantly, finishing working on
the game scene and lighting to have a beautiful game. The easiest changes to spot are the new graphics
and UI, which are showcased in the screenshot below:

3.1.3.1 GAMEPLAY
At this point, all of the features of the gameplay were completely implemented. Users can pick up
and use power-ups and are able to attack crates in the scene or use a key to open the vault. We also
worked hard on balancing the game based on the feedbacks in the class and other people who tried
playing the game. We aimed at playtesting the game every week with at least 5 new people (1 per
group member) to keep a constant flow of criticism to improve our game, to see where the

difficulties lied and to see which parts made the game fun. We worked on helping users navigate in
the level, using arrows to show users which way they should go as well as the minimap, and also
implemented a context-sensitive UI that provides suggestions based on what the player is doing or if
he is having trouble somewhere. This means that now we didn’t have to explain the game to new
players, as the game was actively showing which buttons to press when it detected the user wasn’t
aware of an action, as well as complimenting the player when a successful action was taken or when
he won a round. The robbers show up on screen with the helpful (or not) message for the player.

3.1.3.3 ENGINE
At this point, the engine is complete for all our needs and provides the following features: modular
system with gameobjects, transforms and components, audio and input management, file reading
and writing, graphics drawing with different shaders and materials, prefab instantiation, scene
selection, time and timer management, 2d and 3d particle systems as well as 3d physics and various
utilities. We are really proud of what we accomplished in this regard, as we worked hard to
completely decouple the engine from the whole game, and we could reuse it to create a complete
different game if we wanted.

3.1.3.2 USER INTERFACE
The user interface (UI) was refined based on feedbacks (size, information shown etc.). At this stage
we also have a menu working and are still working on it to make it more intuitive, nicer to look at and
add selectable feature for the game such as game modes and tweakable gameplay parameters. The
interface is divided between the player stats (cash and stamina), the current power-up, and team
info as well as round remaining time. We also show which team is in the lead with a nice ribbon.

3.1.3.4 PHYSICS
The physics engine is now also complete, and allows us to treat rigidbodies and colliders - both dynamic
and static - as simple components that can be added and removed from normal gameobjects. This
makes it easy to add new elements with different shapes (sphere, cylinder, cube) to the simulation
without any extra coding. The engine is also optimized enough to allow us to have a number of colliders
in the hundreds (we didn’t test with more, but it probably also works) that is more than enough for
our needs.

3.1.3.5 ASSETS
We now have 3D assets for the power-ups, crates, vaults, and created a scene (1st level) that is fully
featured. We wrote shaders that allows us to combine flat colors stored in a mesh with lighting
information, to achieve a polished look with shadows and some reflections. We also created two more
models: a street sweeper and a bulldozer, that the player can select at the beginning, each of which
has different stats concerning speed, attack and defense.

3.1.3.6 EFFECTS
We created our sound library for the game and added sound effects at desired places, including
background music, different sound effects for collision, breaks, pick-ups, menu changes, etc. We also
managed to have 3D particle system in the game for most of the effects, such as bombs exploding,
hits, power-ups pickup, being stunned and many more.

3.1.4 HIGH TARGET
We started working already on many features of the high target. These are mainly additional polish to
the menu and scene, such as a skybox, player name insertion in the beginning, leaderboards, loading
and saving highscores (many of these already achieved), additional particles and effects for breaking
crates and vaults, an improved and smarter procedural generation system that takes in a picture of
the map and automatically computes a distribution function. This will allow us to have an artist paint
the desired distribution of objects and the algorithm will optimize it to make it playable and fun. We
also plan on adding additional art to improve the look of the game, menu transitions and post
processing effects such as vignette, chromatic aberration, depth of field, color grading (all also already
implemented). We plan to finish integrating all those effects in the coming 2 weeks and to focus
especially on balancing of the game and polishing to have a tight, responsive and fun experience for
the player.

3.2. CHALLENGES AND ACHIEVEMENTS
During the development of this game, each member has encountered various challenges and
problems: in this section we describe what each team member faced and their achievements toward
the completion of the game.

3.2.1 SIMONE
SIMONE WORKED MOSTLY ON CREATING THE GAME ENGINE, PROGRAMMING THE GAMEPLAY AND THE AI,
WRITING THE SHADERS AND MANAGING THE GROUP.

Most of my work was creating a reusable game engine such that each team member could easily work
on the game without needing to know how things worked at a low level, and providing a unified
interface to do so. I modeled the code in a similar manner as Unity does, with gameobjects and
components. I also implemented features for simple access of input and directional audio, aligned
drawing of UI and menu, 3d graphics drawing and material support with different shaders, scene
management with easy loading and unloading, and transforms. Writing the engine took almost all of
the first month, had many ugly bugs, especially in the math hiding behind the transform class, and I
am happy I finished that. Before the physics engine was working, I also wrote a basic collision detection
system that helped out testing the features.

The other big part of my work was to program the gameplay, which consisted of the following
categories:
Player control: this includes driving, interaction with the scene, picking up collectibles, attacks, life and
death, respawn, inventory management, stamina usage and replenishment.
Powerups: our game features a wide array of powerups, some simple such as stamina boost, some
more complex such as bombs, magnets and weights. Implementing them all, with the different effects
they have on the gameplay was also a big task.
Elements: other game elements, such as valuables (cash, gold, diamonds), crates, bases and traps were
also part of the gameplay, and were a bit challenging to have work correctly.
Managers: managers for game modes and game states, as well as audio and prefabs.
Camera controllers: having a smooth camera follow the player without occluding the view and
providing a responsive feel while also looking nice.
Shaders and materials: I had no previous experience writing shaders or materials, so that was definitely
challenging, however once they worked I was pretty happy.

Challenges:
I had previous experience working in Unity, so once the hard part of writing supporting code that
worked as framework for the game engine was done, I didn’t encounter too many problems
programming the gameplay. I am definitely thankful for spending the time to create this similar
architecture instead of working directly with what Monogame provides, because all the matrices and
different ways of drawing hierarchies of 3d objects would have definitely been a big pain. Writing a
simple script to act on a gameobject, and then forgetting about it and have everything work was great.
The biggest challenge for me was definitely managing the group, keeping it on schedule, organizing
which tasks had to be done by which week, and helping fixing something that wasn’t working.
Especially being responsible for the delivery of finished features done by other members, and ensuring
that everything was done correctly and fit within our theme was definitely the hardest challenges of
them all. I must say I value this experience tremendously, as I believe what I learned will be of great
value in my working life.

3.2.2 NICOLAS
NICOLAS WORKED MOSTLY ON THE LEVEL DESIGN, THE TOOLS TO EXPORT THE LEVELS INTO MONOGAME, AND

THE MAIN MENU.

A working menu is now implemented with a tutorial section, an options section to modify the volume
and other features such as sensitivity. We also have the possibility to see the high scores for each game
mode which are updated after each round. In the game settings section, we can choose the game
mode (2 or 4 players, 2, 3 or 5 min per round) and choose the model and the name for each player.
The menu is also automatically scale for every resolution. We also have the possibility to pause the
game and then restart or resume the game or go to the menu.
A fully working level is now also created instead of the crude level with only cubes. The level was
designed such that fights between player is likely to happen and such that accessing the vault and the
gold inside is more difficult than collecting the money around the base.

Challenges:
The main challenge was to create a nice menu with intuitive selection and display, creative features
but still easily modifiable. For that we implemented an importer which parses a text file where we can
easily set the constraints for the menu: the functions associated to each button, which one is currently
selected and how to change between them as well as basic things like position and texture.
Designing the scene was time consuming because after the first design we realized that the position
and scale of each object was important. With floating point scale and position, the result in blender
(texture) was not as nice as in unity. So we had to reposition every object the best we could such that
the scene is still plausible but the numbers are rounded the nearest possible to an int.

3.2.3 ALEXANDER
ALEXANDER WORKED MAINLY WITH 3D PARTICLES AND POST-PROCESSING EFFECTS.

I was working on the particle engine, based on a provided example from Microsoft, which turned out
to be very buggy. At first I need to change a few things to get the code to compile, since it was written
for an old version of XNA. After successful compiling there were still no particles visible, after a
debugging session it turned out, that there were several issues with the code, as well as the
communication between CPU and GPU. With a rather small Monogame community it was very
challenging to get help and also in general to debug shaders.
The second issue, was also again due to old examples and tutorials, which were using DirectX 9 instead
of DirectX 11. The problem was that the shader code compiled, but started to behave in an unexpected
way and it was not trivial to find the cause for this behavior.

3.2.4 ANDREAS
ANDREAS WORKED MOSTLY ON THE PHYSICS ENGINE AS WELL AS MERGING ON GIT AND DEPLOYING TO THE XBOX.

The physics part is finished. We are using the existing engine “Jitter”, which we adapted and
improved to our needs. We extended the engine that it is possible to have objects which are used
only for collision detection, but which are only interacting with other static objects (for the money
and other valuables). This is needed so that the money which can’t be picked up is not pushed away.
To integrate the physics, we wrote wrappers (components) to add to the game-objects to make the
link to the physically simulated rigid-bodies. The physics-manager is finished and is used for handling
the collisions between the player and any other object.
For the static objects we first tried to implement a bouncing effect as it can be seen with the bumper
car. During the tests on the first levels we had it worked as we imagined it. As soon as we
implemented the real level we found out that the level design is too narrow for this effect. It ended
up that in some places the player got stock into a situation where the car got bounced back and
forth. Right now, we are going for the solution to just project the car on the closest position, so it
does not collide anymore or maybe tweak the bouncing parameters slightly.

In the beginning we have tried to simulate the car based on physical forces, which ended up into
searching for the correct parameters for quite a bit. The result did not really achieve the desired
effect anyway and it was tricky to control the car easily. Now we are simulating the players’ car by
our own calculations how it should move and simply project the physical state into the physics
simulation to check and handle the collisions.

Challenges
It was a time-consuming progress to find a way to implement and integrate the physics to finally
achieve the gameplay and feeling as we imagined it from the beginning. We also had to find out that
for different level-designs some ideas do not work as expected (for example the bouncing effect).
Another challenge was to integrate the different type of objects correctly into the physics simulation.
Some are animated in our calculations and others are simulated by the physics. In the current state
the integration as it is done shows us the results we had in mind.

3.2.5 XINGZE
XINGZE WORKED ON SCRIPTS TO TEST OUT LIGHTS, IMPORTING IN BLENDER, AND IS NOW WORKING ON THE

TRAILER.

Lighting experiments and approaches: I first experimented lighting and other effects in Unity to get
an idea of possible look in Monogame including direct lights, point lights and spot lights. I also wrote
scripts for dynamic lighting effects such as moving, rotating lights and changing light colors. I then
tried with basic lighting effects in Monogame and implemented shaders for point and spot lights.
Sound: I created a sound library for music and sound effects in the game including background music,
start and end music, effects for different vehicles, attacking, breaking, crashing, power-ups,
valuables, bombs, etc. All the sound effects were converted into mono track and ‘wav’ formats. I also
created a form for team members to vote for the most appropriate sound effects.
Models: I created other models such as the vehicles to increase the fun factor of the game. I modeled
our 3rd vehicle (bulldozer) in Blender and modified a statue into Escher with cool sunglasses.
Post-processing: to have better illustration of the final look of the graphics, I tried the post-
processing stack in Unity to find the effects we needed (such as color degrading, depth of field,
vignette, etc.) and searched for the best parameters for each possible effects.
Trailer: we spent a lot of time working on the trailer to ensure our game can be well reckoned and
promoted in the end. We first drew storyboard of the trailer, discussed how the trailer should be
produced. Then we started creating the draft of the trailer in Adobe After effects, where we first cut
each storyboard panel into separate layers, then place the layers in 3D and created a camera flying
through the layers to achieve a 3D parallax effect. This is still in the making but we started early to
have enough time.

Challenges:
One of the biggest challenges I encountered was to compile the project. Initially I tried to run
Monogame on Mac OS, it then turned out that the content pipeline tool is not compatible with PC. In
addition, Monogame is also not compatible with 32-bit Windows system. After spending a lot of time
re-install the environment several times (including re-installing the system on my old PC and virtual
machine on Mac OS), it finally turned out that besides VC distr. 2017, Monogame also requires older
versions of VC distr. to compile.
Another challenge I encountered is the different coordinate system in Blender, Unity and
Monogame. When constructing the scene in Unity to have a basic idea of the game, the difference in
left-handed and right-handed systems making importing the assets a bit messy and additional
modifications were required to resolve the problem.

3.3. FUTURE WORK

The future work will mostly consist of polishing and balancing the game as previously discussed. We
also plan on implementing some of the goals we thought we didn’t have the time for and that were
put in the Extra target. These include a website, publishing the game, and AI bots (police cars) with
intelligent behavior and navigation (chasing the player, going through choke points), as well as heat-
maps to further evaluate our level design and balance the game. We also allocated a lot of time to the
game trailer, as well as playtesting the game with friend and refine the game based on feedback.

CHAPTER 4. ALPHA RELEASE

4.1. PROGRESS

At this point, we are happy to say that we finished our high target and worked on most of the tasks we
originally thought we couldn’t complete and put therefore in the extra target.

For the high target, we implemented 3d particle effects, heat-maps to evaluate our level design and
further balance the game, additional polish to the game and to the menu to make it more intuitive and
beautiful, advanced distributions for our procedural spawning system to improve the gameplay, and
added lighting effects such as flares and skybox. We also improved 2D graphics, added post-processing
effects such as shockwaves for bombs that tears the screen or force-waves emitted from the magnet
and additional color-grading to give a stylized look to our game.

For the extra target, we implemented AI police bots that use navmeshes and other following behavior
to chase the player without colliding with obstacles, an interactive 3D menu in which the camera flies
through the scene to showcase the level, single player (which we originally didn’t intend but that now
makes sense with high-scores and AI bots), created a website to publish our game and even got in
contact with Steam to publish our game to their platform.

In this period, we also did the playtest, and based on feedback we found many small improvements,
such as tweaking speeds, sizes of objects, options, distributions, colors, sounds, effects, timing,
difficulty and much more. Many corrections were very small, a few a bit bigger, but after compiling a
list of fixes we had around 80, almost all of which we implemented in this build.

4.1.1 HIGH TARGET

4.1.1.1 GAMEPLAY
One very important aspect of any game is balance: a potentially good game can be completely boring
and unappealing if it’s not well balanced. We strived to avoid that and to balance our game correctly.
To do that, we worked on a good procedural spawning system that takes into account “hot areas”
(frequently visited choke-points) as well as different game modes to keep the gameplay fresh.

HEAT-MAP
We implemented a heat-map system that computes which points in the map are the most visited and
which ones are not. This helped us out to refine the obstacle placement as well as the places where to
place the most valuable elements of the game to well balance risk vs reward. This system basically
computes where players go, and stores this result in a heat-map after blurring it a bit to make it easier
to read. We can then access this array and tint it to see movement trends. Here is a screenshot of the
first bank level of our game, the accessible area and then the heat-map.

The players start at the bottom, and we can easily see that they spend most time in the lower part of
the map. Also some extra action is shows for player 1 (on the left) due to the many tests in which we
play alone. This showed us that the players move in a way we intended to, going less to the higher
parts of the map as it’s riskier and inhabited with more police.

ADVANCED SPAWNING SYSTEM
With the use of heat-maps, it was possible to spawn cash, gold and diamonds in points that inversely
reflected the frequency with which players visited it. We wanted however to have some artistic control
over the distribution, so we implemented a system in which an artist can simply paint in some graphic
tool a desired distribution of these elements, and the system will automatically compute a distribution
probability to combine with the heat-map to take into consideration both elements. For every map
you can just paint with a gradient color where you would like the elements and it will work directly.
Following screenshots for the cash distribution (green) and gold distribution (yellow) are shown. Note
that by default we prefer valuables to be more north, and that gold has a higher preference to spawn
inside the vault. Also this system avoids valuables from spawning inside walls or other unreachable
areas. Following hand-painted distributions can be seen for two game elements.
Legend: white = play area, green = cash distribution, yellow = gold distribution

GAME MODES
Since we wanted to try out different parameters for our game, such as amount of valuables, crates and
powerups, as well as different power-up and money distributions (meaning how frequent each power-

up or valuable is) and also multiple win conditions such as round number, duration and cash goal, we
decided to create a few different game modes that the user can directly choose from the menu.
We currently have 4, explained below:

 Default: this is a standard game mode with all powerups enabled, as well as a fixed ratio of
appearance between cash, gold and diamonds, a fair amount of crates and a timer win
condition.

 Survival: a game mode where cash is very scarce, and that forces player to compete for the
few valuables available. Only gold is enabled, with only 10 pieces available, few powerups and
no crates, and a first-to-collect-5 pieces of gold win condition.

 Super Bomber: a mode with moderate cash in which only bombs are active, and which

promotes a lot of explosive action!

 Crate Only: in this mode no cash is present, except for the one present inside crackable crates.
Players have to attack them to reveal the valuables inside. The exploding box power-up, which
simulates a crate but explodes when attacked is very frequent, which makes it much riskier to
try to open crates.

4.1.1.2 USER INTERFACE

MENU
The menu was refined to allow the users to choose the different component we implemented. In the
previous version, we had the possibility to choose the game settings: 2 or 4 players and a round
duration of 2, 3 or 5 minutes. Each player could choose his name and his model (3 possible models).
The menu had different panels like rankings, tutorial, options and credits as well as a pause menu. In
the options, it was possible to choose the volume of sound effects.

In the new version we added two game settings: 1 player mode and a round of 10 minutes. It is now
also possible to choose between 4 different game modes described above.
Each player can now also choose his team color which will is applied on the model and the base. Each
model has different statistics: speed, distance of attack and capacity. To balance the game easily,
each model has one good statistic and the two other are mediocre. This promotes a rock-paper-
scissor dynamic in which all vehicles are balanced and no one exhibits a dominant strategy over all
others. To speed up round preparation, two players can choose simultaneously their models, colors
and names.
New options were also added: the possibility to have a background song or not, the possibility to
choose the game difficulty (numbers of police cars) and to choose the camera control (auto or
manual).
The general look of the menu was also improved by using shaders we implemented (vignette and
blur) and added camera transition between the panels of the menu.

4.1.1.3 ENGINE
The engine was already completed in previous phases, so not much was added expect for additional
small functions to support the current development.

4.1.1.4 PHYSICS
For the alpha release the physics got refactored and extended a little bit. It is now possible to have
fully self-animated objects which are still interacting with the other rigid-bodies in the physics-world.
With this extension it is possible to create the police-cars, which are following the player without the
need of calculating forces. The vault uses also this technique to let the player open the vault. It was
easier to calculate the transformations by our routines than calculating the needed forces to create
the accurate movements. Furthermore, the calculations for the hitting test, which is used for the
attack, are improved to work more accurately.

4.1.1.5 ASSETS
Most of the assets we created in this phase were 2d pictures for particle effects. All of the 3d models
were already done in the previous phases.

4.1.1.6 EFFECTS

3D PARTICLES
The 3D particle system was finished and many effects such as vault smoke, falling cash, dust and
turbo as well as power-up effects were created. The big improvement over the 2D particle system is
that each particle lives in world space now, resulting in more reasonable effects due to for example
occlusions. With this system in place, it is relatively easy to derive new effects. Combined with
projectile emitters effects like dust, cash or fire behind the vehicles could be achieved. At the
beginning of the game, cash particles are flying around the level, resulting in more ambient
atmosphere. One of the biggest particles effects is the comic-style smoke coming out of the vault,
which is moved to the side due to a wind implementation. Another place where particle effects are
used is around the power-ups given them a more highlighted view in the level. Finally, one big
particle is emitted when the player returns cash to the base, resulting in visual feedback for achieving
the goal of the game. This makes it fun and visually attractive to look at while playing. The big vault
smoke can be seen in this screenshot:

POST-PROCESSING
We had a very particular look in mind for our game that we wanted to achieve. This was very stylized,
colorful and cartoony. To achieve this, we decided to implement many post-processing effects to
enhance the look of the game and make it stand out. The following post-processing effects were
implemented and are used in the game.

 Grayscale: the image is turned into a grayscale image and then it slowly fades back to full
color. This effect is used when a player is attacked or caught by the police.

 Chromatic aberration: The image channels red, green and blue are slightly shifted to get the
chromatic aberration effect. This emulates the light shifting due to refraction in the lens
corners and adds a bit of realism. The shift is computed relative to the distance to the center,
resulting in a larger shift in the corners of the image. This effect is always turned on.

 Vignette: the vignette effect is used to tint the image black depending on the distance to the
center. As we saw in the guest lecture about art in videogames, this helps the player focus in
the center of the screen where most of the action happens.

 Gaussian blur: a Gaussian weighting kernel is applied to the image resulting in a blurred

version of the image. This effect is used when the game is paused or the menu is visible to
remove high-frequency details and to keep the focus on the menu while still showing the
scene as background.

 Color grading: in editing software for pictures or video it is possible to change brightness,

contrast, color curves and many other parameters to give a very stylized look to a frame. All
these changes can be encoded in a LUT (look up table), which is basically a mapping between
two RGB spaces, where to every pixel in the original image a new color is mapped based on
his original color. This mapping is encoded in a small picture that stores slices of the modified
RGB space. It is very convenient to be able to apply many different effects in popular editing
software and then have the game apply this look effortlessly. This is one of the most-
recognizable post-processing effects we implemented. With this we could add, for example,
filters used in Instagram or imitate the look of popular trailers.

 Shock wave: the shock wave shader is used if the player plants a bomb to simulate the shock-

wave that it generates. It distorts the screen in a ring pattern around the screen coordinates
of the bomb explosion, displacing the pixels outwards. This shader is animated over time and
disappears after a few seconds.

 Wave: The wave shader is used around a magnet to distort the image over time. By using a

combination of sin and cos functions a black hole effect is created, which reflects the
electrostatic attraction of the magnet. This is shown as long the magnet power-up is active.

One additional enhancement was that each shader can be applied only to needed viewports. For
example, when player 1 gets stun, we only apply the grayscale for his part of the screen. Additionally,
we implemented that the parameters can be specified for each viewport differently, as for example
the shockwave center is different for each player.

Most of the effects can be seen in the picture below. Top left to bottom right, row-by-row:
normal, grayscale, color grading, vignette, chromatic aberration, blur.

LUT
Many LUT pictures to be used in the game were created. Each of them encodes a particular color
filter. Two approaches were used for generating good-looking LUTs: the first approach we tried was
in Unity with the post-processing stack plug-in, where we applied different adjustments such as color
grading to the scene and stored the results to a neutral LUT picture with grid size 4x4. We also tried
generating LUT pictures using Photoshop with its provided filters. We wrote a MatLab script to cut
the LUT pictures in the required grid and pixel size, and applied the filters to a neutral LUT picture.
The LUT pictures are then used in the game to add different flavors to the game. In total we have
about 40 LUT pictures for different effects and moods. We then selected the most appealing ones
and added the possibility for players to pick the one they prefer in the game. Some of these LUTs are
shown here, starting with the neutral one and showcasing a few stylized ones:

ADDITIONAL POLISH
As a last visual improvement, dynamic shadows were implemented for the different moving objects
such as players, police-cars and dynamic objects. It now looks more realistic as all the objects cast a
shadow. Additionally, we are simulating the blinking for the police lights with a simple sprite-
animation. With the same technique we simulate the back and front lights of the cars. Finally, the
wheels of the cars can be rotated so that they rotate into the correct direction when the cars are
driving along a curved path.

SKYBOX AND FLARE
We wanted to add a touch to the sky as well, so we implemented different skybox effects for
different times of the day, and a sun that creates a flare when the player looks directly at it.
Currently we have skybox textures for daytime, sunset, midnight and daybreak, and these textures
are loaded randomly to make the game more dynamic. Two skyboxes are shown here, as well as the
flare effect:

4.1.1.7 DEPLOYMENT
Deployment continued without problems to the Xbox with all the features working.

4.1.2 EXTRA TARGET
Originally, for our extra target we wrote the we would like to have a single player mode with bots
controlled by the computer that can navigate the level intelligently to provide a challenge, as well as
more powerups, persistent state between rounds, and publish a website documenting our game with
links to download and possibly an external store. In this section we document what we achieved of
these tasks.

POLICE AI WITH NAVIGATION
The biggest challenge of the extra target was to implement bots that could drive realistically through
the level without colliding with obstacles, exhibiting somewhat intelligent or plausible behavior, and
without ruining the balance of the game or becoming frustrating. For our game, we thought that police
car bots were well suited and fitted the theme. Based on the difficulty selected by the user at the
beginning of the game, a number of police cars will be spawned during the curse of the round. Some
of them navigate independently in the level protecting high-risk areas such as the jewelry and the
entrance of the vault, whereas some others actively try to chase the player. Both types of police avoid
obstacles in the level. As the rounds slowly comes towards the end, the police will accelerate to
pressure the players into going back to the base and pay more attention to not get caught. After
playtesting, we found that it was more fun being able to also attack the police to briefly stun them and
be able to escape, so this is a feature that is now in the game.

OTHER POWERUPS
We had previously already implemented more powerups, such as the exploding box, the oil trap, the
speed pad, the falling weight and the magnet. In this phase their parameters were tweaked and
balanced to make them more fun. We also got some cool power-up ideas from feedback from the
playtest that we might try to implement.

PERSISTENT ROUNDS
The game now features the possibility of playing multiple rounds, with stats such as number of wins
and total cash earned stored persistently to decide the global winner at the end. Persistent
leaderboards are also saved locally to allow friends to compare who is the best “Failed bank robber”.

WEBSITE
We wanted to have a website for our game for people who would like to check out our game, with
screenshots, link to download, gameplay video and various information about the game. Although the
game website is not finished yet and some of the links (for example to download and to the various
stores) still don’t work, the first draft of the website can be seen here:

www.thatfailedbankrobbery.altervista.org

STORE
We started the process of publishing our game on the Steam platform. We never did this so we assume
this will take a bit of time, however the process is going smoothly for now. We think we will be able to
get the game published by the end of the semester.

4.2. FUTURE WORK

Except for a few other tweaks that should be finished by the end of this week (week 11) we can say we
are done with our game. We will continue playtesting our game and polishing features and refactoring
code in the remaining 3 weeks, trying to balance the game as best as we can to continue improving it
and make it more fun. We are also currently working on a second full level that will be done by next
week, with a labyrinth-style layout map that will encourage a different type of gameplay. We will be
working on the trailer for the final presentation, publish the game once we have a gold version as well
as try to showcase it a bit in the gaming community.

CHAPTER 5. PLAYTEST

5.1. PLAYTESTING SESSION
At the start of May we organized a formal playtest. By that time, we had accomplished all of the high
targets and most of the extra targets. We were seeking for get ideas and feedback to balance the
gameplay, improve the general look of the game and tweak the effects for a better game experience.

5.1.1 PARTICIPANTS
Each member of the team invited about 10 to 20 people not in the class to the playtest session
including classmates, friends and family. During the playtest session we had around 60 participants
in total that tested our game, out of which 38 filled the feedback form. Our participants varied in
gender, age, nationality and experience in video games. The diversity enabled us to get a more
rounded view of the game.

5.1.2 ORGANIZATION
We booked a big lecture room for 4 hours to perform the playtesting with an Xbox and two laptops
for playing to allow a maximum of 8 concurrent players at all times. We also had two laptops for
filling the feedback forms and an ipad for players who would like to be credited to fill in their name.
The Xbox used a projector and supported up to 4 participants playing at the same time. Participants
could also play 1 vs 1 on the laptops. We had in total 8 controllers that supported multiple people to
play at the same time on different machines to reduce the waiting time.

When a participant or a group of participants came, we first welcomed them and provided them
with refreshments. Then we allocated the participants to one of the 3 playing stations if there was
one available. Participants were also welcomed to watch the competitions between other players
during the waiting time. During gameplay, each member of the team took care of the guests he/she
invited, observed and recorded the opinions the participants had during the play and answered
questions. After a participant finishes playing, we then asked them to fill the questionnaire regarding
the game experience or leave any suggestions or feedbacks vocally.

5.1.3 LIVE FROM THE SPOT
Our playtest went very smooth. By leveraging multiple machines for playing and feedback, most of
our participants didn’t spend time waiting. We got the chance to test our game on Xbox for different
number of players, and received a large amount of feedback for the game experience.

● Play on different machines

● Participants in intense competition

● Participants filling feedback forms

5.2. QUESTIONS AND COMMENTS

5.2.1 QUESTIONNAIRE
Our questionnaire was designed with the following sections:

5.2.1.1 OVERALL FEELING
We wanted to know what the players though about the 3 game pillars we designed our experience
around, namely that the game should be fun, simple and beautiful. We asked the participants to rate
from 1 to 6 for these aspects:

● Was it fun to play the game?
● Was it simple to understand the goal?
● Was it easy to control the game?
● How was the general look of the game?

5.2.1.2 GAMEPLAY
This section was aimed to test if our gameplay is well‐balanced and seek solutions for balancing
game settings. We designed questions regarding parameters of game objects (vehicles, valuables,
power‐ups) and functions (camera rotation, minimaps, etc), and asked the participants to rate from
1 to 6 or select the best fit for the following questions, as well as which one was their most and least
favorite and if they had any additional feedback:

● Gameobjects
○ Vehicle : size, speed
○ Valuable : size, amount, setting
○ Power‐up : size, amount, setting

● Functions

○ Map: size
○ Minimap: size, helpfulness, rotated or fixed
○ Camera rotation : rotated or fixed
○ Arrow: size, helpfulness

5.2.1.3 GRAPHICS
This section was aimed to test the general look and the special effects used in the game. We asked
the participants to rate from 1 to 6 for the following:

● Brightness/filter used
● Appearance of the models
● Lighting effects
● Special effects such as bomb explosion, smoke, etc

5.2.1.4 USER INTERFACE
This section is aimed to test if the UI (menu, tutorial, instructions, user statistics during the game,
context sensitive UI) is user‐friendly and seek solutions that improve the look and usefulness of the
UI. We asked the participants to rate the following:

● Size of the UI
● How intuitive the UI is
● Intelligence of the context sensitive UI

5.2.1.5 SOUND

This section was aimed to test the sound effects in the game and to improve the sound and music to
provide a more dynamic game experience. We asked the participants the following questions:

● Volume balance between sound effects and background music
● 3D sound effects
● Selection of background music

5.2.1.6 PHYSICS
In this section we wanted to test the physics used in the game and find suggestions for more realistic
and immersive mechanics. We asked the participants following questions:

● How realistic are the physics?
● What did you like/dislike?
● What could be improved about the physics and control?

5.2.1.7 OPEN QUESTIONS
For each section, users are welcomed to leave additional/specific feedbacks or their suggestions and
opinions towards some particular element in the game. We often asked both what they liked and
enjoyed and what was annoying and could be removed to find both strengths and weaknesses of our
game. We also asked in some sections if they had further ideas to expand the game, such as
additional power‐ups or effects they would like to see implemented.

5.2.2 FEEDBACK
We have gained positive feedbacks in many aspects. Most people think our game is fun to play, easy
to pick up and appealing to look at. In the following distribution we can see the different
distributions. Since some users reported that the game could be made easier to control, we focused
a lot of work in the following weeks on solving that problem.

In each section, we also got many helpful feedback and some advice:

5.2.2.1 GAMEPLAY

● Gameobjects
Most participants are satisfied with the settings of the game objects such as size, amount
and speed, though some of them think gold and diamonds are a bit fewer than expected.
Our participants like the different types of the power‐ups, and selected their most and least
favourite ones. The most favorite was the bomb and the magnet, the least one the key. This
information is very helpful for us to modify and improve our design of the game objects and
tweak their different distributions.

We also gained advice and ideas on additional power‐ups such as making vehicles fly, making
police chase the other player, fake gold to fill the opponent’s cart, and disrupt the opponent
making him move in the opposite directions. These suggestions provided us with more
rounded outlook of the features that may be implemented in the next release or future
work.

● Functions

Most people are satisfied with the functions provided in our gameplay such as the minimaps
and camera rotation. The feedback helped us with some design decisions particularly. For
example, we were hesitating on whether to enable camera rotation or make the camera
follow the vehicle automatically. The survey suggested that people prefer automatic follow
and fixed minimaps, though some of them didn’t notice the functions when they are focused
on playing.

5.2.2.2 GRAPHICS
Most people are satisfied with the graphics effects implemented and the models used in the game.
We got very constructive feedbacks about some disturbing or less perfect parts of the look in the
game. Many participants complained about the smoke in the vault area and the colors of some

barriers and the ground. These dissatisfactions were changed easily and were essential for us to
improve the game experience.

5.2.2.2 USER INTERFACE
Most people are satisfied with the general feeling, size and intuitiveness of the user interface. From
the feedback, we also got suggestions on improving the UI such as making the input keyboard bigger,
interactive/video tutorial and more user statistics at the end of the game..

5.2.2.2 SOUND
Most people are satisfied with the background music and sound effects. Many of them didn’t notice
the 3D sound effects (this may due to the noise in the playtest session as everyone was talking and
we didn’t provide headsets).

5.2.2.2 PHYSICS
Most people are satisfied with the believability of physics implemented in the game. We also
discovered some bugs during the playtest (which is good that they are found before the alpha
release). Several people reported that they got stuck in some corners, or sometimes the vehicles
overlapped with each other when attacking. Some people even got outside the map during the
game. Bugs found at this stage helped us to ensure the quality of the game as we can fix them
before the final release.

5.3. DESIGN REVISIONS
Based on the feedbacks, we reviewed our design of the game and decided to tweak some of the
settings and fix the bugs found during the playtest. We compiled a list of different bugs and fixes,
suggestions and improvement, and got over 120 in total. We split the work and implemented all the
fixes in the next weeks.

5.3.1 GAMEPLAY
To make players with various video game experience enjoy the game more, we decided on adding
different game modes (different number of police cars, various valuable ratio, different number of
bombs, etc). We also adjusted some of the settings of the power‐ups, and implemented some new
features suggested by the participants.

5.3.2 GRAPHICS
Our changes regarding graphics were mainly on solving the dissatisfactions from the users, such as
putting less smoke in the vault area and changing colors on some of the game objects to make them
look more distinguishable. Placement of barriers and other objects were also rearranged to improve
the experience.

5.3.3 USER INTERFACE
From the playtest we found that our user interface could be further improved, some key elements
were often ignored as people concentrated on the gameplay. Our changes for this section is mainly
on balancing the current UI elements and tweaking positions and size of some icons.

5.3.4 SOUND
We decided to make the background music looping in each round, and randomly load a different
song for each round so that people don’t get bored.

5.3.5 PHYSICS
Our changes on this section were mostly fixing the bugs reported during the gameplay. We also
decided to add some new features such controller vibration during collision and rotating the wheels
as suggested in the feedbacks.

In conclusion, we can say that the playtest was a great experience. It was the first time we had so
many people come play our game and it was really beautiful to see people having fun while trying to
steal the most cash from the bank. Most of the fun came out of the competitive and cooperative
aspects of our game, as well as the interaction with the different game elements and the police. We
can say we are happy that people enjoyed the game and take this occasion to thank everybody that
showed up to play our game and give helpful feedback. Thank you all!

CHAPTER 6. CONCLUSION

6.1. FINAL RESULTS

Compared with our alpha release, we have improved our game look by adopting different LUT files,

with more features and fixes added based on feedbacks from the playtest.

6.2. EXPERIENCE

Were you able to follow your development schedule, or did you deviate significantly from it?

We were able to follow our development schedule tightly. We followed an agile development

cycle with well defined weekly tasks specifying what each member had to do, and had weekly

meetings to monitor what was achieved and what was still missing to stay on track. The

great amount of time invested in planning and making sure that everyone had tasks that fit

their strengths allowed us to complete all tasks that we wanted to achieve in the final game.

How did the different elements of the project structure (development schedule, prototype,

playtesting, etc.) contribute to or hinder your progress?

We think that is was very good to have a structure with functional, low, desirable, high

targets to achieve as this helped us split our game into well defined products at the end of

each development cycle. However, the suggested development schedule is much behind the

actual time needed for the game. Considering the time to get accustomed to and learn the

Monogame framework, it is too late to only present it until week 4.

The physical prototype helped us a bit as we found out things that could be improved

(obstacles, placements, etc) when playing on the paper, but it also takes a lot of time to

construct and is not representative of the possibilities of the computer.

Playtesting wasl a helpful way for feedback in order to keep our development in the right

direction. But the schedule of the playtest was also too late, as a large amount of time was

required to implement all of the feedback into the game.

Do you feel there wasn't enough time or that the schedule was too compressed?

We think the course goal to create a cool game in 3 months is an achievable task if each

team member knows how much time is required and the available time is planned and used

in the most efficient way. However, we felt following the proposed schedule might be

compressed to finish all the desired features on time as we started development much earlier

than the proposed schedule.

What was the biggest technical difficulty during the project?

One of the biggest technical difficulty during the development was not with the game itself,

but rather with the Monogame framework and Xbox. We encountered intrinsic bugs from the

framework, uncompilable demos, things working on laptops failed on the Xbox. We spent a

lot of time on finding a good solid physics framework which is also working on the xBox.

Within the same it was then easy to simulate the overall environment, but rather hard to

achieve the handling of the vehicles which are not physically simulated. To handle this

interaction correctly was challenging and still not perfectly done.

Another was to rewrite everything to be able to use the hardware-instancing in late state of

the project (2nd last week). It was late and the testing was rather poor at this stage as it was

also coupled with the multithreading issues we occured only at the end of the project.

Managing all of the team members efficiently is another “technical difficulty” we

encountered. Making sure everybody followed their personal schedule, gave the required

results on time, and also usually finding ways to solve what others didn’t manage to do in the

allotted time was definitely not easy.

Do you consider the project a success?

We think our project is rather successful as we achieved all our targets and even the extra

targets. In addition, we could have probably achieved even more when we had worked more

together in the same room to build the project together and not everybody his part alone

To what extent did you meet your project plan and milestones (not at all, partly, mostly,

always)?

We met all of the project milestones. We had specific weeks to achieve each of them (eg.

desirable target by week 8), and all of them with all of the features were always reached in

time (except desirable that required 3 more days). It was also good to have planned for a 3

weeks buffer at the end since most of the unexpected work came up in this period.

6.2. PERSONAL IMPRESSIONS

How well did your initial design ideas materialize into the final game?

We think the final game is representative of the initial ideas brainstormed at the beginning.

Though we added new features that came up during development and removed some that

didn’t enhance the gameplay after refactoring, the core mechanics of the final result fits our

initial design and met our 3 guidelines: simple, fun, beautiful.

Did the course meet your expectations?

The course has provided us a great experience in creating a game from scratch and exceeded

our expectations in a lot of ways. We were challenged to deepen our knowledge in various

subjects and got the opportunity to create a game as not only programmers, but also

designers, artists, producers and managers.

It will be great if more inputs and guidelines can be provided in the earlier state of the course.

Some interesting concepts about camera, lightning etc would have been better placed in the

earlier schedules instead of the last week. Also some common problems which might occur

(performance drain => hardware instancing) would be helpful to be quickly reviewed in a

lecture.

Are you happy and proud of your game?

Overall we are very proud of our game. We managed to create a fun, simple and beautiful

game with a whole team working together. Although there are still some possible

improvements, we think our game is already in a polished and stable state. Seeing people

play our game while having fun was definitely what made us the most proud about our

finished product.

What was your impression of working with the theme?

The theme can be interpreted in many different ways and allows a lot of possibilities. In

addition, we think that the course staff should enforce more interpretation of the theme, and

a theme that can be visualized better may be used in the future. We as well other groups all

simply integrated the theme within the story. But looking at the game nobody would ever

make a link to the theme itself.

Do you think the theme enhanced your game, or would you have been happier with total

freedom?

We agree with the idea of having a given theme makes people more creative by having

boundaries. However, with this theme we felt that it is still possible to do anything freely by

linking a story to it. In the beginning it was hard to find something that both links the theme

and interests us, but once we settled on the bank robbery we were really satisfied.

What would you do differently in your next game project?

Probably we would spend more time on core mechanics and balancing the game. Looking at

it now we felt that we settled too early on the game mechanics without questioning them

anymore or testing different variants, and didn’t look much at what could have been changed

to make the game even better from the beginning.

In addition, we would spend more time and investigation about building a solid framework as

the amount of refactorings in the game is overwhelming. We would definitely spend more

time thinking about performance and code safety during development and pay more

attention for the code reusability. If it’s possible, we would use a framework which is

currently more active.

What was your greatest success during the project?

We are very glad that we have met the initial ideas (fun, simple, beautiful), implemented all

feature we initially wanted and seen people having fun playing it.

We think our game engine is rather successful as it really simplified everybody’s work and

allowed us to achieve more. We are also very proud of our 3D physics engine, particle effects

and the visual look of the game.

Are you happy with the final result of your project?

Yes, we think the final visual result is very pleasing and we managed to create a game at this

scale is really rewarding.

What improvements would you suggest for the course organization? (perhaps in D1

evaluation)?

We really liked having a professional from the field as a mentor and we have gained a lot of

feedbacks and advice from him, but it would be better if we can also meet our mentors face

to face instead of only online chatting.

We think the course staff should follow more closely the development of the games. It

started really well with everyone giving good feedback on the project description during the

first few weeks, but after that there was almost no feedback, especially from the technical

side, such as solving performance issues in monogame with instantiating, etc.

It would be great if more transparency on how the games are judged (and how much time

they spend on trying the games) and maybe having 3 places for the 3 best games not only

the first.

In addition, if more motivation can be given during the course would be great. The 10

unsupervised credits really are a temptation for free-riders. We could clearly see the

difference between motivated people who put much more effort than required, for which 10

credits definitely aren’t enough (even though they are not the motivation), and people who

basically got 10 credits with too little effort. People know that if you have something that

moves on screen you get a pass grade and thus may not be highly motivated. Also just

getting a pass or fail grade regardless of the final result and effort is also kind of a pity.

Did you like using MonoGame?

We found monogame a bit buggy and outdated where some of us encountered loads of

compilation issues at the first few weeks due to different operating systems, visual studio and

VS plug-in versions. Although spending time investigating invent the wheels can be

interesting, it is also handy to use a more finished framework where we can focused on the

more advanced aspects.

Based on previous experience, we think Unity would be a more appropriate choice as it

wouldn’t give such a big incentive to people to go 2D and therefore avoid all the complex 3D

stuff, and would allow us to focus on more interesting aspects rather than trying to import a

video, an animation or managing content. It was definitely cool to learn a new framework

and code on top of it, but also the lack of user-base and online resources was something to

keep in mind.

	report_final
	report_prototype_chapter
	REPORT_INTERIM
	Report_ALPHA
	REPORT_PLAYTEST
	REPORT_CONCLUSION

