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Keyword-based matching was the theme of
search engines for decades
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What’s wrong with this method?

Natural languages are complex: two sentences can share the
same meaning while sharing little common words

We’'re looking for a “tragic love story” but Shakespeare wrote
about “star-crossed lovers”

Exact match is powerless in this case...



Machine learning drives the new generation of search engines

BERT: Google’s New Algorithm That Promises
to Revolutionize SERPs

Larissa Lacerda Nov 30, 20 | 14 min read
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Words to vectors

Similar concept in document encoding: doc2vec
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Approximate nearest neighbor search (ANNS)

Given: a set of database vectors (e.g., encoded documents)

Input: a query vector
Output: K most similar vectors in the database

Quality metric: recall
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Target algorithm: IVF-PQ

IVF: inverted file index

Not the keyword based one!

Partition the vectors by clustering
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Target algorithm: IVF-PQ

PQ: product quantization

Reduce the vector size to a few bytes

Allow fully in-memory search
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IVF-PQ: search process

Inter-Stage Heterogeneity

Query

vector

l

Stage 1 (optional): OPQ transformation
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Stage 2: distance evalu

ation with Voronoi cells
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Stage 3: select Voronoi cells to scan
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Stage 4: construct distance lookup tables
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Stage 5: approximate distance to database vectors
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Stage 6: collect K most similar database vectors
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Results

Intra-Stage Heterogeneity
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Can we put the algorithm on specialized hardware?
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To build a hardware accelerator for the algorithm,
we need to identify the bottleneck first

However, there are many parameters in IVF-PQ...

nlist: the number of clusters (partitions) in the index
nprobe: the number of clusters to visit per search

K: the number of results to return per query

These influence the bottleneck dramatically!
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The effect of K on performance bottlenecks

K = number of results to return
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The effect of nprobe on performance bottlenecks

nprobe = number of clusters to scan

GPU,SIFT100M,IVF65536

Stage OPQ + Stage IVFDist
Stage BuildLUT + Stage PQDist

Stage SelCells Other

Stage 6: SelK

100

~
Ul
]

N
92}
]

23 32 38 4 44 46

Time Consumption (%)
o
o o

28 30
27
s 23 25 32 38
35 31 o3 -

/\' /’L = /% ‘\,6 ’5’2« bb‘ 'L%

z z z - z z z N
o° oo oo oo \o)4 No)4 N4 e”

O @ @ @ & @ @ o

19



- Computation stages

|:| Selection stages

Example FPGA

design

Problem: the resource utilization (humber of processing elements)
per stage by human expert, which can be suboptimal

F P G A Dataset: SIFT100M  Recall goal: R@10=80% Algorithm parameters: nlist=8192, nprobe=17, with OPQ

Stage SelCell (Sec. 5.1)

Priority Queue
A0 (len=17)

Priority Queue
Al(len=17)

Priority Queue
BO (len=17)

Stage BuildLUT (Sec. 5.2)

Index Cache
Build LUT. 0
Build LUT. 1
Build LUT. 8

Stage IVFDist
(Sec. 5.2)

Cell Dist. Comp. 10

Cell Dist. Comp. 0

Matrix Multiplication

Stage OPQ (Sec. 5.2)

Stage PQDist (Sec. 5.2)

PQ Dist. Approx. 0
PQ Dist. Approx. 1
PQ Dist. Approx. 2
PQ Dist. Approx. 33
PQ Dist. Approx. 34
PQ Dist. Approx. 35

Mem Channel 0 Mem Channel 11

Bitonic Sort (16) Bitonic Sort (16)

Bitonic Sort (16)

Stage SelK (Sec. 5.1)

Bitonic Merge (32 to 16)

Bitonic Merge (32 to 16)

Priority Queue
BO (len=10)

Priority
Queue A0
(len=10)

Select Top 10

Priority
Queue A9
(len=10)

Queries

' PCle >

>
Results

Host CPU Server




Goal in real industry deployments

A fixed recall goal requirements in search engines

Can we build an FPGA-based ANNS systems that:

Given:

(a) A user-provided dataset

(b) Arecall requirement
Figure out:

(a) The best accelerator design

(b) The according algorithm parameters to use
Generate:

The optimal hardware accelerator customized for the optimal algorithm
parameters
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FANNS: co-design hardware and algorithm for vector search

0 User provides dataset

The optimal hardware design
is related to data distribution

e Indexing data with IVF-PQ Sec. 6.1

Build a range of indexes using various
parameters (nlist and OPQenable)

. O L °

e Explore recall-nprobe relationship for all indexes

s~

Sec. 6.1
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Basic hardware building blocks (PEs) Sec. 5

Computation Processing Elements

— Compare query vectors with the centroid vectors of the IVF index
— Construct distance lookup table for asymmetric distance computation (ADC)
— Distance evaluation between query vector and database vector by ADC

Selection Processing Elements

— Systolic priority queues — The combinations of these building blocks
— Bitonic sorting network can form efficient K-selection groups
— Bitonic merging network
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On the algorithm side

1 User provides dataset (2 Indexing data with IVF-PQ Sec. 6.1
The optimal hardware design Build a range of indexes using various
is related to data distribution parameters (nlist and OPQenable)
) C ° °
9 Explore recall-nprobe relationship for all indexes Sec. 6.1
IVF1024,PQ16 R@10=0.8 12

OPQ,IVF262144,PQ16 R@100=0.95 63




On the hardware side

A

Basic hardware building blocks (PEs) Sec. 5

Computation Processing Elements

— Compare query vectors with the centroid vectors of the IVF index
— Construct distance lookup table for asymmetric distance computation (ADC)
— Distance evaluation between query vector and database vector by ADC

Selection Processing Elements

— Systolic priority queues — The combinations of these building blocks
— Bitonic sorting network can form efficient K-selection groups
— Bitonic merging network
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Hardware design: distance estimation
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On the hardware side

@ Model PE resotlrce Sec. 6.2

Model the hardware resource
consumptions of each PE

© FPGA code template Sec. 6.4

At the PE level, implement
parameterizable code templates

© Model PE performance Sec. 6.3

Getting the pipeline depth and
initiation interval per PE from
performance reports

For each PE, establish the function
that maps input element numbers to
the required processing time: this
predicts the latency and throughput of
a single PE
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Valid accelerator designs

Whatever the combinations of the hardware building blocks,
as long as they fit on the FPGA.

The FPGA resource consumption constraint:

Z Cr(PE;) + Z Cr(FIFO;) + Cr(infra) < Constrainty,
I i

Vr € {BRAM,URAM, LUT, FF, DSP}
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Performance prediction

Performance of a single processing element:

QPSpg = freq/(L+ (N — 1) = II)

Performance of the entire accelerator depends on the slowest
search stage:

QPSccelerator = Min(QPSs), where s € {Stages}
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o User provides dataset (2 Indexing data with IVF-PQ Sec. 6.1
The optimal hardware design

is related to data distribution

Build a range of indexes using various
parameters (nlist and OPQenable)

. > L d °
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Q Explore recall-nprobe relationship for all indexes Sec. 6.1

Index Recall goal Minimum nprobe
IVF1024,PQ16 R@10=0.8 12
OPQ,IVF262144,PQ16 R@100=0.95 63
[ 5] Performance prediction (:a Sec. 6.3 eGet all valid Sec. 6.2
accelerator designs
Model the performance per Accelerator
search stage given the number QPS is the Combine all
of PEs and the number of same as the <=  hardware design
elements to process per query slowest stage options and return
f ' the ones that are
within the FPGA

Return the optimal combination of
accelerator design and algorithm parameters

\

FPGA code generation %

resource constraints

6

Sec. 6.4

Take as input (a) the predicted optimal
hardware design (b) the predicted
optimal algorithm parameters

Generate the FPGA program by
the using PE code templates
and interconnecting them

[/
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/ parameterizable code templates

/

—

LA)

Basic hardware building blocks (PEs) Sec.5

Computation Processing Elements

— Compare query vectors with the centroid vectors of the IVF index
— Construct distance lookup table for asymmetric distance computation (ADC)
— Distance evaluation between query vector and database vector by ADC

Selection Processing Elements

— The combinations of these building blocks
can form efficient K-selection groups

— Systolic priority queues
— Bitonic sorting network
— Bitonic merging network

/

@ Model PE resource Sec. 6.2

N

G Model PE performance Sec. 6.3

Getting the pipeline depth and
initiation interval per PE from
performance reports

7 Model the hardware resource
consumptions of each PE

For each PE, establish the function
that maps input element numbers to
the required processing time: this
predicts the latency and throughput of
a single PE

© FPGA code template Sec. 6.4

/ At the PE level, implement

10110
01001

Compile code to FPGA bitstream

Can build a bitstream database that stores several
FPGA designs targeting different recall goals

Ready-to-execute
FPGA binary
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Some example designs

Index nprobe Stage OPQ Stage IVFDist Stage SelCells Stage BuildLUT Stage PQDist Stage SelK Pred. QPS
#PE LUT() #PE  Indexstore LUT(%) Arch  #inStreamlUT(%) #PE  Indexstore LUT(%) 4PE  LUT(%) Arch. #iStreamLUT() 0 ")
K=1 (Baseline)  N/A N/A 1 02 10 HBM 69 HPQ 2 6.4 5 HBM 69 36 152 HPQ 72 18 N/A
K=10 (Baseline) ~ N/A N/A 1 02 10 HBM 69 HPQ 2 6.4 4 HBM 63 16 6.7 HPQ 32 57 N/A
K=100 (Baseline)  N/A N/A 1 0.2 10 HBM 6.9 HPQ 2 6.4 4 HBM 63 4 17 HPQ 8 15.0 N/A
K=1 (FANNS) 1VF4096 5 0 0 16 on-chip 11.0 HPQ 2 0.3 5 on-chip 2.6 57 24.0 HPQ 114 29 31,876
K=10 (FANNS)  OPQ+IVF8192 17 1 0.2 11 on-chip 76 HPQ 2 0.9 9 on-chip 52 36 15.2 HSMPQG 36 127 11,098
K=100 (FANNS) OPQ+IVF16384 33 1 0.2 8 on-chip 5.5 HPQ 1 0.6 5 on-chip 3.6 9 3.8 HPQ 18 317 3,818
Stage OP Stage IVFDist
Index nprobe ge OPQ é
#PE LUT.(%) 1T Y _ 1 ___ . Trrrm /z\
Stage PQDist Stage SelK Pred. QPS
K=1 (Baseline) N/A N/A 1 0.2 (140 MHz)
K=10 (Baseline) ~ N/A N/A 1 0.2 #PE LUT.(%) Arch. #InStream LUT.(%)
K=100 (Baseline) N/A N/A 1 0.2 36 15.2 HPQ 79 18 N/A
K=1 (FANNS) IVF4096 5 0 0 16 6.7 HPQ 32 5.7 N/A
K=10 (FANNS) OPQ+IVF8192 17 1 0.2 4 1.7 HPQ 8 15.0 N/A
K=100 (FANNS) ~ OPQ+IVF16384 33 1 0.2
57 24.0 HPQ 114 2.9 31,876
36 15.2 HSMPQQ 36 12.7 11,098
9 3.8 HPQ 18 31.7 3,818




Evaluation

Hardware

CPU: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz, 16vCPU, 64GB
FPGA: AMD Alveo U55c FPGA, 16 GB

Software
Faiss: the most popular library for PQ-based ANN search

Vitis HLS: for FPGA accelerator development

Dataset

SIFT: 128-dimensional, 100 million vectors

Deep: 96-dimensional, 100 million vectors
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Throughput speedup over CPU and FPGA baselines
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Conclusion

Vector-based information retrieval is the future
The bottlenecks in the the IVF-PQ algorithm shift

FANNS: co-design hardware and algorithm

Given a recall target on a dataset

Use a performance-model to guide accelerator design

Use a code-generator to make the design transparent to users
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