Programming FPGAs: a Software Programmer’s Perspective

Wengqi Jiang, Dario Korolija, Gustavo Alonso

Systems Group, Dept. of Computer Science, ETH Zlrich
2023/06/23

Systems @ ETH zuricn

Roadmap

FPGAs and Non-Von-Neumann architectures
Fundamental differences between software and hardware programming
Hardware Description Languages (HDL)

High-Level Synthesis (HLS): programming FPGAs with C/C++

FPGAs and Non-Von-Neumann architectures

Figure source: Kuon, lan, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and
Trends® in Electronic Design Automation 2.2 (2008): 135-253. 3

FPGAs and Non-Von-Neumann architectures

il * Logic Block contains LUT and FF

M n M H * Look-up table (LUT): This element

performs logic operations

M n M H * Flip-Flop (FF): This register element

stores the result of the LUT

[1[o]

Figure source: Kuon, lan, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and
Trends® in Electronic Design Automation 2.2 (2008): 135-253.

FPGAs and Non-Von-Neumann architectures

N KN DN N

* Block-RAM (fast on-chip SRAM)

n M H e Similar to CPU cache, but the user has
full control of the BRAM behavior

e e [[

Figure source: Kuon, lan, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and
Trends® in Electronic Design Automation 2.2 (2008): 135-253. 5

FPGAs and Non-Von-Neumann architectures

N KN DN N

e DSP (multiplier): floating-point cores

Multipller

H * Implementing floating-point operations
using LUT is less efficient

Multiplier

e e [[

Figure source: Kuon, lan, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and
Trends® in Electronic Design Automation 2.2 (2008): 135-253. 6

FPGAs and Non-Von-Neumann architectures
[foN W ®W EW |, t/0utput (1/0) pads: These
hysicall ilabl ts get signals i
FEREE R
ﬂ u M n M H * For example: DRAM, network, PCle, etc.
R =B

I N KN KN

Figure source: Kuon, lan, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and
Trends® in Electronic Design Automation 2.2 (2008): 135-253. 7

FPGAs and Non-Von-Neumann architectures

* Wires and switches: These elements

t logic blocks, on-chi ’
- - - B Rt o
N L L
R

DN N DN e

Figure source: Kuon, lan, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and
Trends® in Electronic Design Automation 2.2 (2008): 135-253. 8

Programming software vs FPGAs

* CPU: describing the program behavior using an imperative or
functional programming language

* The program is compiled to assemblies and executed on a Von-
Neumann architecture instruction by instruction

void MultiplyMatrices(int nCount, double **matrixA,
double **matrixB, double **matrixC)
1
. - : . . int i, j, k ;
* Example: matrix multiplication
for (1 = 8; 1 < nCount; i++)
.
1
for (j = @; j < nCount; j++)
r
1
matrixC[i][j]=0;
for (k = 8; k < nCount; k++)
{
matrixC[i][j] +=
matrixA[i][k]*matrixB[k][j];
}
}

Programming software vs FPGAs

* FPGA: describing a hardware micro-architecture in your mind using
some programming languages

Johannes de Fine Licht, Grzegorz Kwasniewski, and Torsten
Hoefler. "Flexible communication avoiding matrix
multiplication on FPGA with high-level synthesis." Proceedings
of the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. 2020.

10

Programming software vs FPGAs

* FPGA: describing a hardware micro-architecture in your mind using
some programming languages

A processing element (PE) is responsible
for computing a part of the matrix
multiplication

Feed Aca PE;;_"—l,o PE‘%&—I.I) PEga_1,m 1

11

Programming software vs FPGAs

* FPGA: describing a hardware micro-architecture in your mind using
some programming languages

Store Cy Store C, Store Cem _;

— e 5
A
| Mnnsnll i Nussn

Read units feed data (both matrices)

PEo.o PEo1 r:’ PEo,em 1 from DRAM to the processing elements

o |

L 2K S L 3K
PEl,l :’PEl‘%L,EIL_l

o | OO

- Bl

— 1 = .
PE%’%—IJ :‘ pEﬁ_l_ﬁlﬁ_l

(0 |

12

Programming software vs FPGAs

* FPGA: describing a hardware micro-architecture in your mind using

some programming languages

Store Cy Store C,

_ L :
T
LLLT] o1 |

Store Cem
h'“

pELu_l_iuL_l

Write units store the computed results

back to DRAM

13

Programming software vs FPGAs

* FPGA: describing a hardware micro-architecture in your mind using
some programming languages

Store Cy Store C; « ml Store C;—‘ﬂ—l

. Feed B,

On-chip data movements are
implemented by FIFOs (pipes)

[[] computation stages

|:| Selection stages

Programming FPGAs: a more complex example (ANNS)

F P G A Dataset: SIFTI00OM Recall goal: R@10=80%

Algorithm parameters: nlist=8192, nprobe=17, with OPQ

Stage SelCell (Sec. 5.1)

Priority Queue
AO (len=17)

Priority Queue
Al(len=17)

Priority Queue
BO (len=17)
Index Cache
Build LUT. 0
Build LUT. 1

Stage IVFDist
(Sec. 5.2)

Cell Dist. Comp. 0

Cell Dist. Comp. 10

PQ Dist. Approx. 0
PQ Dist. Approx. 1
PQ Dist. Approx. 2

Matrix Multiplication

Stage OPQ (Sec. 5.2)

Mem Channel 0

Stage BuildLUT (Sec. 5.2)

Build LUT. 8

Stage PQDist (Sec. 5.2)

PQ Dist. Approx. 33
PQ Dist. Approx. 34
PQ Dist. Approx. 35

Mem Channel 11

Bitonic Sort (16) Bitonic Sort (16)

Bitonic Sort (16)

Stage SelK (Sec. 5.1)

Bitonic Merge (32 to 16)

Bitonic Merge (32 to 16)

Priority Queue
BO (len=10)

Priority
Queue A0
(len=10)

Priority
Queue A9
(len=10)

Select Top 10

Queries

|
Results

Wengqi Jiang et al. “Co-design Hardware and Algorithm for Vector Search”, the International Conference for High Performance

Computing, Networking, Storage and Analysis (SC 2023).

15

(PCle .|

Host CPU Server

- Computation stages

|:| Selection stages

Programming FPGAs: a more complex example (ANNS)

F P G A Dataset: SIFTI00OM Recall goal: R@10=80% Algorithm parameters: nlist=8192, nprobe=17, with OPQ

Stage SelCell (Sec. 5.1) Stage BuildLUT (Sec. 5.2) Stage SelK (Sec. 5.1)

Priority Queue
AO (len=17)

Priority Queue
Al(len=17)

Priority Queue
BO (len=17)
Index Cache
Build LUT. 0
Build LUT. 1
Build LUT. 8
Bitonic Sort (16)

Bitonic Merge (32 to 16)

Stage PQDist (Sec. 5.2)

Bitonic Sort (16)

)
o
o
>0
Q3
a L
et
N

Cell Dist. Comp. 0

' -
Stage OPQ (Sec. 5.2) Mem Channel 0 Mem Channel 11

PQ Dist. Approx. 0
PQ Dist. Approx. 1
PQ Dist. Approx. 2
Bitonic Merge (32 to 16)

PQ Dist. Approx. 33
PQ Dist. Approx. 34
PQ Dist. Approx. 35

Bitonic Sort (16)

Six stages of different functionalities in the accelerator

Priority Queue
BO (len=10)

Priority
Queue A0
(len=10)

Select Top 10

Priority
Queue A9
(len=10)

R
Queries qé
(0]

wn

(PCle .| E
@)

~ B
Results T
%

16

[[] computation stages

|:| Selection stages

Programming FPGAs: a more complex example (ANNS)

Recall goal: R@10=80%

Stage SelCell (Sec. 5.1)

Priority Queue
AO (len=17)

Priority Queue
Al(len=17)

Priority Queue
BO (len=17)

Stage BuildLUT (Sec. 5.2)

Index Cache
Build LUT. 0

Stage IVFDist
(Sec. 5.2)

Cell Dist. Comp. 0

Cell Dist. Comp. 10

Matrix Multiplication

Stage OPQ (Sec. 5.2)

Build LUT. 1

Build LUT. 8

Stage PQDist (Sec. 5.2)

PQ Dist. Approx. 0
PQ Dist. Approx. 1
PQ Dist. Approx. 2

Mem Channel 0

PQ Dist. Approx. 33
PQ Dist. Approx. 34
PQ Dist. Approx. 35

Mem Channel 11

S

Bitonic Sort (16) Bitonic Sort (16)

Bitonic Sort (16)

Algorithm parameters: nlist=8192, nprobe=17, with OPQ

Stage SelK (Sec. 5.1)

Bitonic Merge (32 to 16)

Bitonic Merge (32 to 16)

Priority Queue
BO (len=10)

Priority
Queue A0
(len=10)

Select Top 10

Priority
Queue A9
(len=10)

A single stage can consist of heterogeneous processing elements

17

R
Queries qé
(0]

wn

(PCle)| E
@)

>
Results T
%

What languages are used to describe the architecture?

* The traditional way: Hardware Description Languages (HDL)

* Describing the behavior of the architecture from two aspects:

* The data path: what operations to do within a single clock cycle

 The control flow: a finite state machine for state transfer control

HDL (Hardware description languages): VHDL example

LIBRARY ieee;
USE ieee.std logic 1164.ALL;

ENTITY AND GATE IS
PORT (
x : IN std logic;
y : IN std logic;
f : OUT std logic

) ;
END AND GATE;
B AND gate
ARCHITECTURE behaviour OF AND GATE IS
BEGIN
f <= x AND y;
END behaviour;

o © Copyright 2021 Xilinx iA XlLlNX

Problems of HDL

* \Verbose grammars

* Long development cycles
* High architecture revisit cost

* Especially problematic for research projects
* Hard to get start with for software programmers

* High-Level Synthesis (HLS) as a rescue: programming hardware with C/C++

High Level Synthesis

» Usually C based 2L
a[i] Ls
a[o] “’ b
memory
void F (...) { Serial execution

for (i=0;i<=3;i++) {
b = a[i] + b;
} Different

implementations
possible

Parallel execution

More on HLS later
10 © Copyright 2021 Xilinx (: X”_INX

High-Level Synthesis: Scheduling & Binding

» Scheduling & Binding
— Scheduling and Binding are at the heart of HLS

» Scheduling determines in which clock cycle an operation will occur
—Takes into account the control, dataflow and user directives
—The allocation of resources can be constrained

» Binding determines which library cell is used for each operation
—Takes into account component delays, user directives

l Technology
(C, C++, SystemC) Library
|' Scheduling J ' Binding J

User l RTL j
Directives (Verilog, VHDL, SystemC)

Intro to HLS © Copyright 2016 Xilinx i: XlLlNX) ALL PROG RAM MABLE

11-5

Scheduling

» The operations in the control flow graph are mapped into clock cycles

void foo (a
't.1'=a*b; b
©2=c+t1; C
t3=d*t2; d
}out=t3—e; e out

» The technology and user constraints impact the schedule

— A faster technology (or slower clock) may allow more operations to occur in the same clock
[scmunz =

» The code also impacts the schedule
— Code implications and data dependencies must be obeyed

Intro to HLS © Copyright 2016 Xilinx 8 XILlNX) ALL PROG RAM MABLE

1-6

23

- A A4
Binding

» Binding is where operations are mapped to cores from the hardware library
—Operators map to cores

» Binding Decision: to share

—Given this schedule:
| e NSNS s WS

L4+ 4 * 8 - |

* Binding must use 2 multipliers, since both are in the same cycle
* It can decide to use an adder and subtractor or share one addsub

» Binding Decision: or not to share
. . M e ™ e
—Given this schedule: [- —

 Binding may decide to share the multipliers (each is used in a different cycle)

« Or it may decide the cost of sharing (muxing) would impact timing and it may decide not to
share them

* It may make this same decision in the first example above too

Intro to HLS © Copyright 2016 Xilinx ‘: XILlNX) ALL PROG RAM MABLE

11-7

24

Pragmas: control the architecture behavior to an extent

* Control scheduling: what are the latency and throughput
requirements within a given module?

* Control binding: which on-chip resources to use to implement the
given functionalities?

* Not the HDL level of control, but give some hints to the HLS compiler

Common pragma: pipeline

void func(m,n,0) {
for (i=2;i>==0;i-) {
#pragma HLS PIPELINE =T~ op_Read;
op_Compute; [1
op_Write; I
}
}
< - >
3 cycles 1 cycle
o EAEE s EIEE s A o AN
- . o I
8 cycles o VKN
>
4 cycles

(A) Without Loop Pipelining

(B) With Loop Pipelining

X14277-110217

26

Common pragma: dataflow

#pragma HLS DATAFLOW mefey? 1P (200

-f.l.JnC_A(a,b,i'l);
func_B(c,i1,i2);
func_C(i2,d)

returnd;

}

func A
_funcB

IEEEEEEEREREEEEE

>

8 cycles

LR fncB | funcC |

8 cycles

(A) Without Dataflow Pipelining

JEEEEEREREEE NN

- >
3 cycles
func A func A
| funcB [funcB |

- >
5 cycles

(B) With Dataflow Pipelining

X14266-110217

27

Common pragma: unroll

* Replicating the logic for higher performance

for(int i = 0; 1 < X; i++) {

a[i] = b[1] + c[1];

28

Common pragma: unroll

* Replicating the logic for higher performance

for(int 1 = 0; 1 < X; i++) {

pragma HLS unroll factor=2

a[i] b[i] + c[1];

29

What are HLS good and not good at?

* Pros
* Fast prototyping — crucial for research
* Easy to get start for a software programmers

* Cons
* Not suitable for infrastructure development
* e.g., memory controllers, network stack, etc.

* No full control of the generated architecture
e Can only indirectly control scheduling and binding using pragmas

More references for HLS programming

* Vitis HLS Programming Guide
e https://github.com/Xilinx/Vitis-Tutorials
e https://docs.xilinx.com/r/en-US/ug1399-vitis-hls

* Tutorial@SC: Productive Parallel Programming for FPGA with HLS
e http://spcl.inf.ethz.ch/Teaching/hls-tutorial
* By Johannes de Fine Licht and Torsten Hoefler @ETH Zurich
* 3-hour hands-on tutorial with programming examples

Our tutorial slides are available at: https://systems.ethz.ch/research/data-processing-on-
modern-hardware/hacc/sigmod-23-tutorial--data-processing-on-fpgas-with-modern-archite.html

31

https://github.com/Xilinx/Vitis-Tutorials
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
http://spcl.inf.ethz.ch/Teaching/hls-tutorial/
https://systems.ethz.ch/research/data-processing-on-modern-hardware/hacc/sigmod-23-tutorial--data-processing-on-fpgas-with-modern-archite.html

