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FPGAs and Non-Von-Neumann architectures

Figure source: Kuon, lan, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and
Trends® in Electronic Design Automation 2.2 (2008): 135-253. 3



FPGAs and Non-Von-Neumann architectures

il * Logic Block contains LUT and FF

M n M H * Look-up table (LUT): This element

performs logic operations

M n M H * Flip-Flop (FF): This register element

stores the result of the LUT
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Figure source: Kuon, lan, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and
Trends® in Electronic Design Automation 2.2 (2008): 135-253.
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* Block-RAM (fast on-chip SRAM)

n M H e Similar to CPU cache, but the user has
full control of the BRAM behavior

e e [ [

Figure source: Kuon, lan, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and
Trends® in Electronic Design Automation 2.2 (2008): 135-253. 5
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e DSP (multiplier): floating-point cores

Multipller

H * Implementing floating-point operations
using LUT is less efficient
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Figure source: Kuon, lan, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and
Trends® in Electronic Design Automation 2.2 (2008): 135-253. 6



FPGAs and Non-Von-Neumann architectures
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Figure source: Kuon, lan, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and
Trends® in Electronic Design Automation 2.2 (2008): 135-253. 7
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Figure source: Kuon, lan, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and
Trends® in Electronic Design Automation 2.2 (2008): 135-253. 8




Programming software vs FPGAs

* CPU: describing the program behavior using an imperative or
functional programming language

* The program is compiled to assemblies and executed on a Von-
Neumann architecture instruction by instruction

void MultiplyMatrices(int nCount, double **matrixA,
double **matrixB, double **matrixC)
1
. - : . . int i, j, k ;
* Example: matrix multiplication
for (1 = 8; 1 < nCount; i++)
.
1
for (j = @; j < nCount; j++)
r
1
matrixC[i][j]=0;
for (k = 8; k < nCount; k++)
{
matrixC[i][j] +=
matrixA[i][k]*matrixB[k][j];
}
}



Programming software vs FPGAs

* FPGA: describing a hardware micro-architecture in your mind using
some programming languages

Johannes de Fine Licht, Grzegorz Kwasniewski, and Torsten
Hoefler. "Flexible communication avoiding matrix
multiplication on FPGA with high-level synthesis." Proceedings
of the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. 2020.

10



Programming software vs FPGAs

* FPGA: describing a hardware micro-architecture in your mind using
some programming languages

A processing element (PE) is responsible
for computing a part of the matrix
multiplication

Feed Aca PE;;_"—l,o PE‘%&—I.I ) PEga_1,m 1
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Programming software vs FPGAs

* FPGA: describing a hardware micro-architecture in your mind using
some programming languages
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Programming software vs FPGAs

* FPGA: describing a hardware micro-architecture in your mind using

some programming languages
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Write units store the computed results

back to DRAM
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Programming software vs FPGAs

* FPGA: describing a hardware micro-architecture in your mind using
some programming languages

Store Cy Store C; « ml Store C;—‘ﬂ—l

. Feed B,

On-chip data movements are
implemented by FIFOs (pipes)
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|:| Selection stages

Programming FPGAs: a more complex example (ANNS)
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Wengqi Jiang et al. “Co-design Hardware and Algorithm for Vector Search”, the International Conference for High Performance

Computing, Networking, Storage and Analysis (SC 2023).
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- Computation stages

|:| Selection stages

Programming FPGAs: a more complex example (ANNS)
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What languages are used to describe the architecture?

* The traditional way: Hardware Description Languages (HDL)

* Describing the behavior of the architecture from two aspects:

* The data path: what operations to do within a single clock cycle

 The control flow: a finite state machine for state transfer control



HDL (Hardware description languages): VHDL example

LIBRARY ieee;
USE ieee.std logic 1164.ALL;

ENTITY AND GATE IS
PORT (
x : IN std logic;
y : IN std logic;
f : OUT std logic

) ;
END AND GATE;
B AND gate
ARCHITECTURE behaviour OF AND GATE IS
BEGIN
f <= x AND y;
END behaviour;

o © Copyright 2021 Xilinx iA XlLlNX



Problems of HDL

* \Verbose grammars

* Long development cycles
* High architecture revisit cost

* Especially problematic for research projects
* Hard to get start with for software programmers

* High-Level Synthesis (HLS) as a rescue: programming hardware with C/C++



High Level Synthesis

» Usually C based 2L
a[i] Ls
a[o] “’ b
memory
void F (...) { Serial execution

for (i=0;i<=3;i++) {
b = a[i] + b;
} Different

implementations
possible

Parallel execution

More on HLS later
10 © Copyright 2021 Xilinx (: X”_INX




High-Level Synthesis: Scheduling & Binding

» Scheduling & Binding
— Scheduling and Binding are at the heart of HLS

» Scheduling determines in which clock cycle an operation will occur
—Takes into account the control, dataflow and user directives
—The allocation of resources can be constrained

» Binding determines which library cell is used for each operation
—Takes into account component delays, user directives

l Technology
(C, C++, SystemC) Library
|' Scheduling J ' Binding J

User l RTL j
Directives (Verilog, VHDL, SystemC)

Intro to HLS © Copyright 2016 Xilinx i: XlLlNX ) ALL PROG RAM MABLE

11-5



Scheduling

» The operations in the control flow graph are mapped into clock cycles

void foo ( a
't.1'=a*b; b
©2=c+t1; C
t3=d*t2; d
}out=t3—e; e out

» The technology and user constraints impact the schedule

— A faster technology (or slower clock) may allow more operations to occur in the same clock
[ scmunz =

» The code also impacts the schedule
— Code implications and data dependencies must be obeyed

Intro to HLS © Copyright 2016 Xilinx 8 XILlNX ) ALL PROG RAM MABLE

1-6
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- A A4
Binding

» Binding is where operations are mapped to cores from the hardware library
—Operators map to cores

» Binding Decision: to share

—Given this schedule:
| e NSNS s WS

L4+ 4 * 8 - |

* Binding must use 2 multipliers, since both are in the same cycle
* It can decide to use an adder and subtractor or share one addsub

» Binding Decision: or not to share
. . M e ™ e
—Given this schedule: [ - —

 Binding may decide to share the multipliers (each is used in a different cycle)

« Or it may decide the cost of sharing (muxing) would impact timing and it may decide not to
share them

* It may make this same decision in the first example above too

Intro to HLS © Copyright 2016 Xilinx ‘: XILlNX ) ALL PROG RAM MABLE

11-7

24



Pragmas: control the architecture behavior to an extent

* Control scheduling: what are the latency and throughput
requirements within a given module?

* Control binding: which on-chip resources to use to implement the
given functionalities?

* Not the HDL level of control, but give some hints to the HLS compiler



Common pragma: pipeline

void func(m,n,0) {
for (i=2;i>==0;i-) {
#pragma HLS PIPELINE =T~ op_Read;
op_Compute; [ 1
op_Write; I
}
}
< - >
3 cycles 1 cycle
o EAEE s EIEE s A o AN
- . o I
8 cycles o VKN
>
4 cycles

(A) Without Loop Pipelining

(B) With Loop Pipelining

X14277-110217
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Common pragma: dataflow

#pragma HLS DATAFLOW mefey? 1P (200

-f.l.JnC_A(a,b,i'l);
func_B(c,i1,i2);
func_C(i2,d)

returnd;

}

func A
_funcB

IEEEEEEEREREEEEE

>

8 cycles

LR fncB |  funcC |

8 cycles

(A) Without Dataflow Pipelining

JEEEEEREREEE NN

- >
3 cycles
func A func A
| funcB [ funcB |

- >
5 cycles

(B) With Dataflow Pipelining

X14266-110217
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Common pragma: unroll

* Replicating the logic for higher performance

for(int i = 0; 1 < X; i++) {

a[i] = b[1] + c[1];

28



Common pragma: unroll

* Replicating the logic for higher performance

for(int 1 = 0; 1 < X; i++) {

pragma HLS unroll factor=2

a[i] b[i] + c[1];

29



What are HLS good and not good at?

* Pros
* Fast prototyping — crucial for research
* Easy to get start for a software programmers

* Cons
* Not suitable for infrastructure development
* e.g., memory controllers, network stack, etc.

* No full control of the generated architecture
e Can only indirectly control scheduling and binding using pragmas



More references for HLS programming

* Vitis HLS Programming Guide
e https://github.com/Xilinx/Vitis-Tutorials
e https://docs.xilinx.com/r/en-US/ug1399-vitis-hls

* Tutorial@SC: Productive Parallel Programming for FPGA with HLS
e http://spcl.inf.ethz.ch/Teaching/hls-tutorial
* By Johannes de Fine Licht and Torsten Hoefler @ETH Zurich
* 3-hour hands-on tutorial with programming examples

Our tutorial slides are available at: https://systems.ethz.ch/research/data-processing-on-
modern-hardware/hacc/sigmod-23-tutorial--data-processing-on-fpgas-with-modern-archite.html
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