
ACCL: A Vitis-compatible, FPGA-Accelerated
Collective Communication Library

Lucian Petrica

2 |
© Copyright 2022 AMD

[Public]

A Need for Higher-Level Abstraction

Collective Offload Kernel: ACCL (this presentation)
• Serves host and PL kernels
• Provides PL-accelerated orchestration for a variety of

complex communication patterns from the MPI standard
• As a result, reduces complexity of user design

github.com/Xilinx/ACCL

Orchestrating
Complex Comms
Patterns

Partitioning
Transport Kernel
Between PL Clients

Serving comms to both
host (via memory) and
PL (via memory or
streams)

Simulate
Networked
Application

3 |
© Copyright 2022 AMD

[Public]

What is MPI?

• The Message Passing Interface (MPI) is an IPC standard.

• MPI provides a set of collective communication primitives (collectives) that one can leverage to
implement highly parallel algorithms

• Traditionally, CPU handles network stack, coordinates collective operations

Rank 0 Rank 1

Mem 0 Mem 1

[…]
comm.send(txb, dst=1)
comm.recv(rxb, src=1)
[…]

[…]
comm.recv(rxb, src=0)
comm.send(txb, dst=0)
[…]

4 |
© Copyright 2022 AMD

[Public]

What is a MPI collective? Some examples:

Broadcast

(All)Gather

Scatter

(All)Reduce

5 |
© Copyright 2022 AMD

[Public]

Applicability of MPI Primitives and Collectives

• 8 out of ~400 MPI functions are enough to support a wide range of applications

• 1 primitive, 4 collectives, 3 fused collectives (all-gather, all-reduce, scatter-reduce)

Application Send/Recv Scatter Bcast Gather Reduce

Data-Parallel
Training

FSDP Training

Tensor-Parallel
Training

Pipeline-Parallel
Training/Inference

Data-Parallel
Inference

HPCG

6 |
© Copyright 2022 AMD

[Public]

ACCL
XRT

Adapter

ACCL Design Goals

• Implement the 7 key MPI collectives

• Low latency communication control in PL
• CCL Offload (CCLO) Vitis Kernel
• Automatic RX buffer management

• POE configurability
• UDP, TCP currently supported
• ROCE in development

• Host-less and host-full invocation
• HLS bindings and host driver provided to

users

• Memory-less invocation
• PL/AIE kernels can talk to CCLO via AXI

streams

• Expandability via Plug-Ins

• All kernels Vitis compatible and portable

CCLO

AXI-Lite
Configuration

POE

User
PL/AIE
Kernel

XRT/ERT
Via

AXI-Lite

Plugins:
Custom DT,

Compression

Control

Data

DDR
HBM

PLRAM

AXI-MM

AXI-MM

AXI-MM

All connections via AXI-Streams unless otherwise specified

Arbiter

7 |
© Copyright 2022 AMD

[Public]

Implementing Collectives with ACCL

• Collectives are DMP programs implemented
in Microblaze firmware
• Orchestration is fast
• Collectives can be tuned/fused post-synthesis

8 |
© Copyright 2022 AMD

[Public]

CCLO Plugins: Compression and Reduction

• CCLO supports two types of Plugin Kernels: unary and binary
• Unary plugins suitable for bump-on-wire compression and encryption
• Binary plugins suitable for implementing reduction functions

• Unary plugins
• take one 64B stream input with TDEST, produce a 64B stream output
• Optionally inspect TDEST on input to select between multiple functions
• Example provided which implements elementwise cast between FP16

and FP32 (both ways)
• Always 3 instances, for two operands and one result

• Binary plugins
• Take two 64B stream inputs with TDEST, produce a 64B stream output
• Optionally inspect TDEST on first input to select between multiple

functions
• Example provided which implements elementwise SUM, MAX for

INT32, INT64, FP16, FP32, FP64

• CCLO configured by driver on which plugin to use and TDEST
values corresponding to desired compression/reduction functions

FP32 -> FP16

RX Buf

FP16 -> FP32

FP32
Reduce

FP32 -> FP16

FP16 -> FP32 User Buf

Example: Transparently
Compressed Allreduce

POE

User Buf

ACCL Emulation and Simulation:
Taking the FPGA out of the Development Loop

10 |
© Copyright 2022 AMD

[Public]

User Application

AXILite
to AXIS

AXILite
to AXIS

ACCL Emulator/Simulator

CCLO

Configuration

POE

Plugins:
Custom DT,

Compression

Control

Data

HBM

(Py)ACCL
Driver

Calls

ZMQ
Server

(Emulated Shell)

Emulated or
Simulated

CCLO Subsystem

Arbiter

CCLO
BFM

Kernel
Code

Host
Code

ZMQ Clients
(Emulated XRT + bridged PL stream)

ZMQ
Emulated

Switch

Replicate e.g. with mpirun

11 |
© Copyright 2022 AMD

[Public]

Differences between Emulator and Simulator

ACCL Kernels
HLS Code

ZMQ
Infrastructure

Emulator
Top-Level

Simulator
Top-Level

CCLO
Compiled
Sim Model

CCLO and System
Assembly TCL

Emulator
Executable

Simulator
Executable

Fast (parallel, many threads)
Allows SW debugging methods
Not cycle-accurate

Cycle-accurate
Dumps waveforms
Slow

Using ACCL

13 |
© Copyright 2022 AMD

[Public]

ACCL open-source components

• Main repository: https://github.com/Xilinx/ACCL
• Code and build automation for collectives orchestration kernel (CCLO) and all other kernels

(including example plug-ins)
• Simulator and Emulator
• C++ bindings on top of XRT
• HLS bindings and bus functional model of CCLO for HLS code to interact with
• Tests and example designs for various Alveo cards

• Python bindings for ACCL: https://github.com/Xilinx/pyaccl
• Same functionality as C++ bindings but from Python
• Works on top of the Pynq library
• Easier to install (via pip)
• Comprehensive tests against hardware, simulator and emulator

14 |
© Copyright 2022 AMD

[Public]

Steps to build ACCL-enabled FPGA application

• Clone ACCL repo(s):
• https://github.com/Xilinx/ACCL
• https://github.com/Xilinx/pyaccl

• Build and verify your distributed application
• With or without FPGA acceleration
• Using ACCL HLS code emulator and RTL simulator

• Build appropriate CCLO kernel and plugins

• Link with Vitis
• Against platform, protocol offload engine (POE),

and any application kernels

• Deploy to FPGA

15 |
© Copyright 2022 AMD

[Public]

Toy App Example: distributed inference with mpi4py

Rank 0

Rank 1

Rank 2

Rank 4

time

horse

truck

frog

deer

horse
truck

frog
deer

scatter infer gather

[…]
rxb = comm.scatter(txb, root=0)
nn_accelerator.call(rxb, txb)
rxb = comm.gather(txb, root=0)
[…]

16 |
© Copyright 2022 AMD

[Public]

Toy App Example: distributed inference with pyaccl

[…]
ch = accl.scatter(txb, rxb, root=0, to_fpga=True)
ch = nn_accelerator.call(rxb, txb, from_fpga=True, to_fpga=True)
ch = accl.gather(txb, rxb, root=0, async=True, from_fpga=True)
[…]

[…]
rxb = comm.scatter(txb, root=0)
nn_accelerator.call(rxb, txb)
rxb = comm.gather(txb, root=0)
[…]

ACCL
(optimized)

mpi4py

[…]
accl.scatter(txb, rxb, root=0)
nn_accelerator.call(rxb, txb)
accl.gather(txb, rxb, root=0)
[…]

ACCL
(quick)

Benchmarking ACCL

18 |
© Copyright 2022 AMD

[Public]

ACCL Send & Recv throughput

• Evaluation at ETHZ HACC:
• ACCL dev + Alveo U55C/U280/U250 using PL invocation
• MPICH 4.0.2, OpenMPI 4.1.3 + OpenUCX 1.13.1 + Mellanox Connex X5 100G

• Performance on U280, U55C, and U250 is similar (design is portable)

• ACCL achieves higher throughput than MPICH over TCP, comparable to OpenMPI over
RDMA:

19 |
© Copyright 2022 AMD

[Public]

ACCL Collectives Performance

Broadcast Scatter Gather

Reduce All-Reduce All-Gather

• Latency of Stream-to-Stream Collectives at ETHZ HACC, 8 ranks

• ACCL: PL kernel initiates collective, ACCL orchestrates, data exchanged through AXI Streams

• SW MPI: host initiates and orchestrates, streams flushed and moved host – FPGA via XRT

20 |
© Copyright 2022 AMD

[Public]

Scalability and Resource Consumption

• Scalability of All-reduce evaluated
• Up to 14 ranks (10x U55C, 4x U280)
• message size 128KB
• 250 runs, average & range

• Compared to MPICH+TCP, ACCL+TCP has
• Predictable latency vs. scale characteristic
• Lower jitter

• Comparable with RDMA, but tuning still needed

Component kLUT DSP BRAM18 URAM

CCLO 81 27 75 0

TCP POE 111 0 813 1

UDP POE 23 0 115 0

CMAC 12 0 34 9

Resource consumption
 CCLO ~15% of LUTs on a U250

 Choice of POE most significant for
resource usage

21 |
© Copyright 2022 AMD

[Public]

Our R&D Roadmap / Wishlist

Active, dynamic project looking for contributions!

Current work threads:

• Full interoperability between communication layers and seamless availability at HACCs

• Tuning (tree collectives, DMP scheduling)

• Versal support and invocation from PS/AIE

• Transparent FPGA-driven data movement through programming framework integration

• More sophisticated (variable rate) compression, adding encryption

Open to suggestions!

22 |
© Copyright 2022 AMD

[Public]

Disclaimer & Attribution

Timelines, roadmaps, and/or product release dates shown in these slides are plans only and subject to change.

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain
technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this. Advanced Micro Devices, Inc. makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or
fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any
intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in
AMD's Standard Terms and Conditions of Sale.

©2023 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Athlon, CDNA, EPYC, Infinity Fabric Radeon, RDNA, ROCm, Ryzen, Ryzen Threadripper, Xilinx, the Xilinx
logo, Alveo, Artix, Kintex, Spartan, Versal, Vitis, Virtex, and Zynq and combinations thereof are trademarks of Advanced Micro Devices, Inc. Microsoft is registered trademark of Microsoft
Corporation in the US and other jurisdictions. SPEC®, SPECrate®, SPECint and SPEC CPU® are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org
for more information. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

