
Using ACCL
Emulation/Simulation Flow

Lucian Petrica

2 AMD Internal Use Only

◢ [Public]

Steps to build ACCL-enabled FPGA application

◢ Clone ACCL repo(s):
◢ https://github.com/Xilinx/ACCL

◢ https://github.com/Xilinx/pyaccl

◢ Build and verify your distributed application
◢ With or without FPGA acceleration

◢ Using ACCL HLS code emulator and RTL simulator

◢ Build appropriate CCLO kernel and plugins

◢ Link with Vitis
◢ Against platform, protocol offload engine (POE),

and any application kernels

◢ Deploy to FPGA

3 AMD Internal Use Only

◢ [Public]

ACCL emulation flow demonstration

◢ Learning objectives:
◢ become acquainted with ACCL use-cases and API

◢ Learn how to use the simulator and emulator for building host- or PL-driven applications

◢ Part 1: Host-driven applications

◢ Part 2: PL-driven, streaming applications

Cloning the Repo
Building Simulator and Emulator

Running Tests

5 AMD Internal Use Only

◢ [Public]

Cloning the Repo, building Simulator, Emulator

user@host:~$ git clone --recursive https://github.com/Xilinx/ACCL.git -b tutorial
user@host:~$ cd ACCL/test/model/emulator/
user@host:emulator$ cmake .
[…]
user@host:emulator$ make
[…] (produces executable: cclo_emu)
user@host:emulator$ cd ../../../kernels/cclo
user@host:cclo$ make simdll
[…] (produces shared library: xsimk.so)
user@host:cclo$ cd ../../test/model/simulator
user@host:simulator$ /usr/bin/cmake . && make
[…] (produces executable: cclo_sim)

Use /usr/bin/cmake if Xilinx tools loaded

Use –j <num processors> to speed up compile

–j for speed, optionally set STACK_TYPE=TCP, default is UDP

Xilinx tools must be loaded

6 AMD Internal Use Only

◢ [Public]

Building and running Tests

user@host:simulator$ cd ../../test/xrt
user@host:xrt$ cmake . && make
user@host:xrt$ mpirun –np 3 bin/test
[…] (test starts with 3 processes; exits when done)

Requires XRT and internet; use
/usr/bin/cmake if Xilinx tools loaded

user@host:emulator$ python3 run.py –n 3 [-u]
[…] (emulator starts with 3 processes; end with Ctrl-C)

Emulator can select POE at start-up

Example host-driven ACCL Application
Scatter - Vadd - Gather

8 AMD Internal Use Only

◢ [Public]

AXILite
To

AXIS

Typical ACCL system for host-driven applications

◢ Most generic way of using ACCL, FPGA acts similar
to smart NIC (moves data between host memories)

◢ Host configures ACCL

◢ Host issues ACCL calls

◢ Data moves via FPGA memories and H2D/D2H
copies

◢ Possibly traversing plugins for e.g. compression

◢ Relevant examples: ACCL XRT tests

CCLO

Configuration

POE

Plugins:
Custom DT,

Compression

Control

Data

HBM

CPU
HOST

Calls

Alveo
Shell

Alveo

9 AMD Internal Use Only

◢ [Public]

Code for host-driven toy application

//ACCL set-up
std::vector<rank_t> ranks = generate_ranks(true, rank, size);
std::unique_ptr<ACCL::ACCL> accl = initialize_accl(ranks, rank, true, acclDesign::UDP);
accl->set_timeout(1e6); //increase timeout for emulation

//application set-up
unsigned int i, datasize = 8;
auto op_buf = accl->create_buffer<float>(datasize * size, dataType::float32);
for (i=0; i<datasize*size; i++) op_buf->buffer()[i] = 0.0;
auto scatter_buf = accl->create_buffer<float>(datasize, dataType::float32);
auto res_buf = accl->create_buffer<float>(datasize, dataType::float32);
auto gather_buf = accl->create_buffer<float>(datasize * size, dataType::float32);
MPI_Barrier(MPI_COMM_WORLD);

//application compute
accl->scatter(*op_buf, *scatter_buf, datasize, 0); //scatter inputs from rank 0
for (i=0; i<datasize; i++) res_buf->buffer()[i] = scatter_buf->buffer()[i] + (i + rank);
accl->gather(*res_buf, *gather_buf, datasize, 0); //gather results to rank 0

10 AMD Internal Use Only

◢ [Public]

User Application

AXILite
to AXIS

AXILite
to AXIS

Components in use for host-driven toy example

CCLO

Configuration

POE

Plugins:
Custom DT,

Compression

Control

Data

HBM

(Py)ACCL
Driver

Calls

ZMQ
Server

Emulated
CCLO

Subsystem

Arbiter

CCLO
BFM

Kernel
Code

Host
Code

ZMQ Client(s)

ZMQ
Switch

Replicate with mpirun

11 AMD Internal Use Only

◢ [Public]

Running host-driven toy application

user@host:simulator$ cd ../../test/host-scatter-vadd-gather
user@host:host-scatter-vadd-gather$ cmake . && make
user@host:host-scatter-vadd-gather$ mpirun –np 3 bin/scatter-vadd-gather
[…] (application starts with 3 processes; prints result and exits when done)

user@host:emulator$ python3 run.py –n 3 -u
[…] (emulator starts with 3 processes; end with Ctrl-C)

Must match acclDesign::UDP setting

user@host:simulator$ python3 run.py –n 3 –u -w
[…] (simulator starts with 3 processes; end with Ctrl-C)

Must match acclDesign::UDP setting
and simdll configuration; saves wave

Start host code

Start emulator

Or start simulator

12 AMD Internal Use Only

◢ [Public]

Sample Waveform
Scatter (root sends

to two peers)

Gather (root receives
from two peers)

Example PL-driven ACCL Application
Scatter – PL vadd – Streaming Gather

14 AMD Internal Use Only

◢ [Public]

AXILite
To

AXIS

Typical ACCL system for PL-driven applications

◢ Suitable for low-latency applications

◢ Host configures ACCL

◢ PL Kernel issues calls

◢ PL kernel and CCLO exchange data via streams

◢ Relevant example: ACCL HLS tests

CCLO

Configuration

POE

Control

Data

CPU
HOST

Calls

Alveo
Shell

User
Kernel

Calls

Calls

Alveo

Plugins:
Custom DT,

Compression

15 AMD Internal Use Only

◢ [Public]

User Application

AXILite
to AXIS

AXILite
to AXIS

Components in use for PL-driven toy example

CCLO

Configuration

POE

Plugins:
Custom DT,

Compression

Control

Data

HBM

(Py)ACCL
Driver

Calls

ZMQ
Server

Emulated
CCLO

Subsystem

Arbiter

CCLO
BFM

Kernel
Code

Host
Code

ZMQ Client(s)

ZMQ
Switch

Replicate with mpirun

16 AMD Internal Use Only

◢ [Public]

Host code for PL-driven toy application

//ACCL set-up as before
//initialize a CCLO BFM and streams
hlslib::Stream<command_word> callreq, callack;
hlslib::Stream<stream_word> data_cclo2krnl, data_krnl2cclo;
std::vector<unsigned int> dest = {9};
CCLO_BFM cclo(5500, rank, size, dest, callreq, callack, data_cclo2krnl, data_krnl2cclo);
cclo.run(); MPI_Barrier(MPI_COMM_WORLD);
//application set-up like before, but no res_buf
//scatter from host
accl->scatter(*op_buf, *scatter_buf, datasize, 0); //scatter inputs from rank 0
//run the hls kernel, using the global communicator
vadd_mem2stream_gather(

scatter_buf->buffer(), gather_buf->physical_address(), datasize, rank,
accl->get_communicator_addr(),
accl->get_arithmetic_config_addr({dataType::float32, dataType::float32}),
callreq, callack, data_krnl2cclo, data_cclo2krnl);

//get results from FPGA memory
gather_buf->sync_from_device();

17 AMD Internal Use Only

◢ [Public]

//set up interfaces to execute functions stream-to-memory
accl_hls::ACCLCommand accl(cmd_to_cclo, sts_from_cclo, comm_adr, dpcfg_adr, 0, 1);
accl_hls::ACCLData data(data_to_cclo, data_from_cclo);
//read data from src, increment it, and push the result into the CCLO stream
ap_uint<512> tmpword;
int word_count = 0, rd_count = count;
while(rd_count > 0){

//read 16 floats into a 512b vector
for(int i=0; (i<16) && (rd_count>0); i++){

float inc = src[i+16*word_count]+(float)(i+rank);
tmpword((i+1)*32-1,i*32) = *reinterpret_cast<ap_uint<32>*>(&inc);
rd_count--;

}
//send the vector to cclo
data.push(tmpword, 0);
word_count++;

}
//send gather command to CCLO (root 0, src ignored - data from stream)
accl.gather(count, 0, 0, (ap_uint<64>)dst);

Kernel code for PL-driven toy application Hide command streams
behind accl_hls interface

Similar MPI-like API
available to HLS kernel

18 AMD Internal Use Only

◢ [Public]

Running PL-driven toy application

user@host:simulator$ cd ../../test/pl-scatter-vadd-gather
user@host:pl-scatter-vadd-gather$ cmake . && make
user@host:pl-scatter-vadd-gather$ mpirun –np 3 bin/scatter-vadd-gather
[…] (application starts with 3 processes; prints result and exits when done)

user@host:emulator$ python3 run.py –n 3 –u --no-kernel-loopback
[…] (emulator starts with 3 processes; end with Ctrl-C)

Allows user kernels to
attach to CCLO streams

user@host:simulator$ python3 run.py –n 3 –u –w --no-kernel-loopback
[…] (simulator starts with 3 processes; end with Ctrl-C)

Start host code

Start emulator

Or start simulator

19 AMD Internal Use Only

◢ [Public]

Disclaimer & Attribution

Timelines, roadmaps, and/or product release dates shown in these slides are plans only and subject to change.

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain
technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this. Advanced Micro Devices, Inc. makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or
fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any
intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in
AMD's Standard Terms and Conditions of Sale.

©2023 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Athlon, CDNA, EPYC, Infinity Fabric Radeon, RDNA, ROCm, Ryzen, Ryzen Threadripper, Xilinx, the Xilinx
logo, Alveo, Artix, Kintex, Spartan, Versal, Vitis, Virtex, and Zynq and combinations thereof are trademarks of Advanced Micro Devices, Inc. Microsoft is registered trademark of Microsoft
Corporation in the US and other jurisdictions. SPEC®, SPECrate®, SPECint and SPEC CPU® are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org
for more information. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

