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Steps to build ACCL-enabled FPGA application

◢ Clone ACCL repo(s): 
◢ https://github.com/Xilinx/ACCL

◢ https://github.com/Xilinx/pyaccl

◢ Build and verify your distributed application
◢ With or without FPGA acceleration

◢ Using ACCL HLS code emulator and RTL simulator

◢ Build appropriate CCLO kernel and plugins

◢ Link with Vitis
◢ Against platform, protocol offload engine (POE), 

and any application kernels

◢ Deploy to FPGA
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ACCL emulation flow demonstration

◢ Learning objectives:
◢ become acquainted with ACCL use-cases and API

◢ Learn how to use the simulator and emulator for building host- or PL-driven applications

◢ Part 1: Host-driven applications

◢ Part 2: PL-driven, streaming applications



Cloning the Repo
Building Simulator and Emulator

Running Tests
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Cloning the Repo, building Simulator, Emulator

user@host:~$ git clone --recursive https://github.com/Xilinx/ACCL.git -b tutorial
user@host:~$ cd ACCL/test/model/emulator/
user@host:emulator$ cmake .
[…]
user@host:emulator$ make
[…] (produces executable: cclo_emu)
user@host:emulator$ cd ../../../kernels/cclo
user@host:cclo$ make simdll
[…] (produces shared library: xsimk.so)
user@host:cclo$ cd ../../test/model/simulator
user@host:simulator$ /usr/bin/cmake . && make
[…] (produces executable: cclo_sim)

Use /usr/bin/cmake if Xilinx tools loaded

Use –j <num processors> to speed up compile

–j for speed, optionally set STACK_TYPE=TCP, default is UDP

Xilinx tools must be loaded
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Building and running Tests 

user@host:simulator$ cd ../../test/xrt
user@host:xrt$ cmake . && make
user@host:xrt$ mpirun –np 3 bin/test
[…] (test starts with 3 processes; exits when done)

Requires XRT and internet; use 
/usr/bin/cmake if Xilinx tools loaded

user@host:emulator$ python3 run.py –n 3 [-u]
[…] (emulator starts with 3 processes; end with Ctrl-C)

Emulator can select POE at start-up



Example host-driven ACCL Application
Scatter - Vadd - Gather
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AXILite
To

AXIS

Typical ACCL system for host-driven applications

◢ Most generic way of using ACCL, FPGA acts similar 
to smart NIC (moves data between host memories)

◢ Host configures ACCL

◢ Host issues ACCL calls

◢ Data moves via FPGA memories and H2D/D2H 
copies

◢ Possibly traversing plugins for e.g. compression

◢ Relevant examples: ACCL XRT tests
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Code for host-driven toy application

//ACCL set-up
std::vector<rank_t> ranks = generate_ranks(true, rank, size);
std::unique_ptr<ACCL::ACCL> accl = initialize_accl(ranks, rank, true, acclDesign::UDP);
accl->set_timeout(1e6); //increase timeout for emulation

//application set-up
unsigned int i, datasize = 8;
auto op_buf = accl->create_buffer<float>(datasize * size, dataType::float32);
for (i=0; i<datasize*size; i++) op_buf->buffer()[i] = 0.0;
auto scatter_buf = accl->create_buffer<float>(datasize, dataType::float32);
auto res_buf = accl->create_buffer<float>(datasize, dataType::float32);
auto gather_buf = accl->create_buffer<float>(datasize * size, dataType::float32);
MPI_Barrier(MPI_COMM_WORLD);

//application compute
accl->scatter(*op_buf, *scatter_buf, datasize, 0); //scatter inputs from rank 0
for (i=0; i<datasize; i++) res_buf->buffer()[i] = scatter_buf->buffer()[i] + (i + rank);
accl->gather(*res_buf, *gather_buf, datasize, 0); //gather results to rank 0
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User Application

AXILite
to AXIS

AXILite
to AXIS

Components in use for host-driven toy example
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Running host-driven toy application

user@host:simulator$ cd ../../test/host-scatter-vadd-gather
user@host:host-scatter-vadd-gather$ cmake . && make
user@host:host-scatter-vadd-gather$ mpirun –np 3 bin/scatter-vadd-gather
[…] (application starts with 3 processes; prints result and exits when done)

user@host:emulator$ python3 run.py –n 3 -u
[…] (emulator starts with 3 processes; end with Ctrl-C)

Must match acclDesign::UDP setting

user@host:simulator$ python3 run.py –n 3 –u -w
[…] (simulator starts with 3 processes; end with Ctrl-C)

Must match acclDesign::UDP setting 
and simdll configuration; saves wave

Start host code

Start emulator

Or start simulator
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Sample Waveform
Scatter (root sends 

to two peers)

Gather (root receives 
from two peers)



Example PL-driven ACCL Application
Scatter – PL vadd – Streaming Gather
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AXILite
To

AXIS

Typical ACCL system for PL-driven applications

◢ Suitable for low-latency applications

◢ Host configures ACCL

◢ PL Kernel issues calls

◢ PL kernel and CCLO exchange data via streams

◢ Relevant example: ACCL HLS tests
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User Application

AXILite
to AXIS

AXILite
to AXIS

Components in use for PL-driven toy example
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Host code for PL-driven toy application

//ACCL set-up as before
//initialize a CCLO BFM and streams
hlslib::Stream<command_word> callreq, callack;
hlslib::Stream<stream_word> data_cclo2krnl, data_krnl2cclo;
std::vector<unsigned int> dest = {9};
CCLO_BFM cclo(5500, rank, size, dest, callreq, callack, data_cclo2krnl, data_krnl2cclo);
cclo.run(); MPI_Barrier(MPI_COMM_WORLD);
//application set-up like before, but no res_buf
//scatter from host
accl->scatter(*op_buf, *scatter_buf, datasize, 0); //scatter inputs from rank 0
//run the hls kernel, using the global communicator
vadd_mem2stream_gather(

scatter_buf->buffer(), gather_buf->physical_address(), datasize, rank,
accl->get_communicator_addr(),
accl->get_arithmetic_config_addr({dataType::float32, dataType::float32}),
callreq, callack, data_krnl2cclo, data_cclo2krnl);

//get results from FPGA memory
gather_buf->sync_from_device();
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//set up interfaces to execute functions stream-to-memory
accl_hls::ACCLCommand accl(cmd_to_cclo, sts_from_cclo, comm_adr, dpcfg_adr, 0, 1);
accl_hls::ACCLData data(data_to_cclo, data_from_cclo);
//read data from src, increment it, and push the result into the CCLO stream
ap_uint<512> tmpword;
int word_count = 0, rd_count = count;
while(rd_count > 0){

//read 16 floats into a 512b vector
for(int i=0; (i<16) && (rd_count>0); i++){

float inc = src[i+16*word_count]+(float)(i+rank);
tmpword((i+1)*32-1,i*32) = *reinterpret_cast<ap_uint<32>*>(&inc);
rd_count--;

}
//send the vector to cclo
data.push(tmpword, 0);
word_count++;

}
//send gather command to CCLO (root 0, src ignored - data from stream)
accl.gather(count, 0, 0, (ap_uint<64>)dst);

Kernel code for PL-driven toy application Hide command streams 
behind accl_hls interface 

Similar MPI-like API 
available to HLS kernel 
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Running PL-driven toy application

user@host:simulator$ cd ../../test/pl-scatter-vadd-gather
user@host:pl-scatter-vadd-gather$ cmake . && make
user@host:pl-scatter-vadd-gather$ mpirun –np 3 bin/scatter-vadd-gather
[…] (application starts with 3 processes; prints result and exits when done)

user@host:emulator$ python3 run.py –n 3 –u --no-kernel-loopback
[…] (emulator starts with 3 processes; end with Ctrl-C)

Allows user kernels to 
attach to CCLO streams

user@host:simulator$ python3 run.py –n 3 –u –w --no-kernel-loopback
[…] (simulator starts with 3 processes; end with Ctrl-C)

Start host code

Start emulator

Or start simulator
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