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Introduction...

❖ Scpecialized hardware becoming a reality

➢ Amazon, Microsoft, Google, Alibaba, Intel, AMD ...

❖ One built within System group at ETH:
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Microkernel for FPGAs
Hybrid computing system

❖ Plenty of research, focused on individual 
functionalities only

❖ Coyote provides a complete minimal core set
of essential features on which further services 
can be used
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Interdependence



Coyote 
System Architecture

❖ Microkernel for FPGAs

➢ Multiple isolated untrusted vFPGAs

➢ Spatial and temporal sharing (PR)

➢ Dynamic reconfiguration (scheduler)

➢ Virtualized memory  

➢ Unified memory (HMM)

➢ HBM and DRAM striping service

➢ Shared TCP/IP service

➢ Shared RDMA service

➢ Unified logic interface -> portability

➢ RTL and HLS support

➢ Runs on u50, u200, u250, u280, u55c, vcu118, 
Enzian
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Coyote
TCP/IP stack

❖ Open source TCP/IP stack

❖ Added support for shared functionality between all applications running within an 
FPGA
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Coyote
RDMA stack

❖ Open source RDMA stack (UC, RC)

❖ RDMA over Converged Ethernet (RoCE v2)

❖ Implemented on top of UDP/IPv4/IPv6 (far lower overhead than iWARP)

❖ InfiniBand (IB) transport packets over Ethernet (READ, WRITE, SEND)
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https://docs.nvidia.com/networking/display/WINOFv55053000/RoCEv2



Coyote
RDMA advantages

❖ Bypasses kernel space

❖ Zero-copy data movement

❖ Cheap pipelined processing 
(directly on the NIC)
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Coyote 
SW

❖ Layered parallelization potential

❖ User space abstractions

➢ cSched- Coyote scheduler, 

reconfiguration controller

➢ cProc - Coyote process, multiple 

can run within a single vFPGA

➢ cThread - Coyote thread, multiple 

can run within a single cProc. Task 
level parallelism

➢ cTask - Coyote task, arbitrary user 

variadic function executed by cThreads

➢ cService - Coyote library daemon, 

background service, UDS for IPC
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Coyote
Repository

❖ Github: https://github.com/fpgasystems/Coyote.git

❖ Internal and external users

❖ Example designs (perf. runs, rdma, tcp/ip, rpc, hbm, dram, services)

❖ Documentation ...
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https://github.com/fpgasystems/Coyote.git


Coyote
Current Work

❖ Virtualization – can we pull vFPGAs all the way to VMs layer?

❖ Virtual Function I/O (VFIO) Mediated devices
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Coyote
Current work

❖ Nested reconfiguration (Nested-DFX )
➢ Static layer
➢ Service layer
➢ Dynamic layer
➢ Application layer
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Advantages of the system

❖ Networking advantages:

❖ Streaming interfaces:

❖ Kernel invocation overhead XRT~50us, Coyote: ~1-1.5us

❖ RDMA
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Farview
Motivation

❖ I/O overheads – main bottleneck

❖ More and more data in local DRAM

❖ Excessive data movement

❖ Memory capacity limitations
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Farview
Introduction

❖ FPGA-based smart NIC making DRAM available as a pool of network attached 
memory accessible on demand over high performance RDMA network.

❖ Performs line-rate query processing with minimal overheads

❖ Farview is a disaggregated buffer cache with operator pushdown capabilities
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Farview
Overview

❖ Farview addresses inefficient data movement and memory capacity limitations

❖ Consider the following queries:

❖ Farview centralizes the buffer cache and performs operator pushdown
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SELECT T.a, S.b
FROM T, S
WHERE T.id = S.id
AND T.c > 50 AND S.d < 2012;

SELECT R.d, S.b
FROM R, S
WHERE R.id = S.id
AND R.a = 3.14 AND S.a <> 2020;



Farview
Example

❖ processing in Farview, simple RDMA READ operation:

❖ AES decryption on the same data as it is being read:
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Farview
Example
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Farview
Architecture

❖ Several components needed:
➢ DRAM (HBM)
➢ Memory controllers
➢ Memory management unit
➢ Network stack
➢ Mechaniscm for concurrent access
➢ Stream processing capacity
➢ Mechanism to swap operators

❖ Three distinct layers

➢ Operator stack

➢ Memory stack

➢ Network stack
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Memory StackFarview
Operator stack
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➢ Operator stack split into multiple 
isolated dynamic regions that operate 
concurrently

➢ Operator pipeline can execute a set of 
queries
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A single dynamic region and interfaces:



❖ Operator pipeline

❖ Farview currently supports a range of 
operators (row store):
➢ Projection operators (smart addressing, 

projection)

➢ Selection operators (selection, regex, 
vectorized selection)

➢ Grouping operators (distinct, group by)

➢ System operators (encryption/decryption, 
parsing, packing)
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Farview
Memory stack
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➢ Implements the actual memory buffer 
pool

➢ Organized into multiple channels

➢ Interleaving abstraction to aggregate 
the bandwidth

➢ Can process data at higher rates than 
the available network bandwidth
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Memory stack architecture:



Farview
Network stack
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➢ Manages all external connections and 
requests for all concurrent accesses
➢ Supports RoCE v2 at 100Gbps
➢ Open source network stack[2]

➢ Special Farview verb based on InfiniBand
SEND for query requests

➢ Comparable latencies to one-sided RDMA 
verbs
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RDMA network stack

[2] StRoM: Smart Remote Memory, EuroSys ‘20
David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, Gustavo Alonso

Network stack architecture:



Farview
Programmatic Interface
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• High level data API covering both the 
critical path operations and   
connection management operations

• Written in C++

• Intended to be used by Farview query 
compiler.

• bool openConnection(Qpair *qp, Fview *node);

• bool loadPipeline(Qpair *qp, int32_t opid);

• void tableRead(Qpair *qp, Ftable *ft);

• void tableWrite(Qpair *qp, Ftable *ft);

• …

• void farView(Qpair *qp, Ftable *ft, uint64_t *params);

• void select(Qpair *qp, Ftable *ft, uint64_t *proj_flags,  
uint64_t *sel_flags, float predicate) {

…

farView(qp, ft, params);

}



Farview
Implementation

• Farview supports a range of FPGA data center cards (Alveo u50, u55c, u200, u250, u280, 
Enzian)

• Low resource usage:
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Configuration CLB LUTs Regs BRAM tiles DSPs

6 regions 24% 23% 29% 0%

Operators  (per dynamic region) CLB LUTs Regs BRAM tiles DSPs

Projection / Selection < 1% < 1 % 0% 0%

Regex engine 2.3 % < 1% 0% 0%

Distinct / Group by 2.1% 1.3% 8% 0%

En(de)cryption 3.6% < 1% 0% 0%

Packing / Sending < 1% < 1% 0% 0%



Farview
Benchmarks

❖ Selection performed across different selectivity levels

❖ Farview outperforms two baselines (traditional database, remote memory) across 
different selectivity levels
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Response times for selection queries with 100%, 50% and 25 % selectivity, respectively:



Farview
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String size Table size

❖ Distinct, Group by, Group by (sweep by n. of distinct el.)

❖ Regex and concurrent queries (3x)

Table sizeTable size N distinct elements



Memory StackFarview
Operator Pipeline Swap

27

• Operator pipelines can be swapped during runtime without affecting the 
integrity of the system 

• Gives Farview a much needed flexibility in comparison to traditional 
accelerators

• Swap time in the order of milliseconds:
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Farview
Current work

❖ Additional operators ...

❖ Interaction with the storage layer (deduplication ...)

❖ Scale out ... 

❖ Serverless (end-to-end latencies in s range)

❖ Proper database frontend (Modularis)
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What about the vFPGA?
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❖ HDL ... (SVerilog, VHDL, HLS, OpenCL ,...)



MLIR compiler

• MLIR is a novel approach to building a compiler

• CIRCT built in MLIR, targets HDL 
(https://github.com/llvm/circt.git)

• Modularis infrastructure being ported to MLIR
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Modularis + Farview

• 2 Master thesis projects

• Stream-dialect => Coyote-CIRCT (https://github.com/fpgasystems/Coyote-CIRCT.git)
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Questions?
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❖ HDL ... (SVerilog, VHDL, HLS, OpenCL ,...)
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