
Networking Abstractions for Modern

Heterogeneous
Systems
Dario Korolija
Systems Group, Dept. of Computer Science, ETH Zurich

Introduction...

❖ Scpecialized hardware becoming a reality

➢ Amazon, Microsoft, Google, Alibaba, Intel, AMD ...

❖ One built within System group at ETH:

2

Microsoft CatapultGoogle TPUAMD VersalIntel HARP

Microkernel for FPGAs
Hybrid computing system

❖ Plenty of research, focused on individual
functionalities only

❖ Coyote provides a complete minimal core set
of essential features on which further services
can be used

3

Interdependence

Coyote
System Architecture

❖ Microkernel for FPGAs

➢ Multiple isolated untrusted vFPGAs

➢ Spatial and temporal sharing (PR)

➢ Dynamic reconfiguration (scheduler)

➢ Virtualized memory

➢ Unified memory (HMM)

➢ HBM and DRAM striping service

➢ Shared TCP/IP service

➢ Shared RDMA service

➢ Unified logic interface -> portability

➢ RTL and HLS support

➢ Runs on u50, u200, u250, u280, u55c, vcu118,
Enzian

4

Coyote
TCP/IP stack

❖ Open source TCP/IP stack

❖ Added support for shared functionality between all applications running within an
FPGA

5

Coyote
RDMA stack

❖ Open source RDMA stack (UC, RC)

❖ RDMA over Converged Ethernet (RoCE v2)

❖ Implemented on top of UDP/IPv4/IPv6 (far lower overhead than iWARP)

❖ InfiniBand (IB) transport packets over Ethernet (READ, WRITE, SEND)

6

https://docs.nvidia.com/networking/display/WINOFv55053000/RoCEv2

Coyote
RDMA advantages

❖ Bypasses kernel space

❖ Zero-copy data movement

❖ Cheap pipelined processing
(directly on the NIC)

7

Coyote
SW

❖ Layered parallelization potential

❖ User space abstractions

➢ cSched- Coyote scheduler,

reconfiguration controller

➢ cProc - Coyote process, multiple

can run within a single vFPGA

➢ cThread - Coyote thread, multiple

can run within a single cProc. Task
level parallelism

➢ cTask - Coyote task, arbitrary user

variadic function executed by cThreads

➢ cService - Coyote library daemon,

background service, UDS for IPC

8

Coyote
Repository

❖ Github: https://github.com/fpgasystems/Coyote.git

❖ Internal and external users

❖ Example designs (perf. runs, rdma, tcp/ip, rpc, hbm, dram, services)

❖ Documentation ...

9

https://github.com/fpgasystems/Coyote.git

Coyote
Current Work

❖ Virtualization – can we pull vFPGAs all the way to VMs layer?

❖ Virtual Function I/O (VFIO) Mediated devices

10

Coyote
Current work

❖ Nested reconfiguration (Nested-DFX)
➢ Static layer
➢ Service layer
➢ Dynamic layer
➢ Application layer

11

Advantages of the system

❖ Networking advantages:

❖ Streaming interfaces:

❖ Kernel invocation overhead XRT~50us, Coyote: ~1-1.5us

❖ RDMA

12

Farview
Motivation

❖ I/O overheads – main bottleneck

❖ More and more data in local DRAM

❖ Excessive data movement

❖ Memory capacity limitations

13

Disaggregation
of compute, memory and storage
Disaggregation of
compute and storage

DRAM

DRAM

DRAM

CPU
DRAM

DRAM

DRAM

CPU
DRAM

DRAM

DRAM

CPU
DRAM

Compute
Nodes

DRAM

DRAM Storage
Nodes

CPU
DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

Smart
Memory

Nodes

CPU
DRAM

DRAM

DRAM

CPU
DRAM

DRAM

DRAM

CPU
DRAM

Compute
Nodes

DRAM

DRAM Storage
Nodes

CPU
DRAM

DRAM

DRAM

https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/

Farview
Introduction

❖ FPGA-based smart NIC making DRAM available as a pool of network attached
memory accessible on demand over high performance RDMA network.

❖ Performs line-rate query processing with minimal overheads

❖ Farview is a disaggregated buffer cache with operator pushdown capabilities

14

Storage
Node

Storage
NodeRDMA Network

Farview
Overview

❖ Farview addresses inefficient data movement and memory capacity limitations

❖ Consider the following queries:

❖ Farview centralizes the buffer cache and performs operator pushdown

15

SELECT T.a, S.b
FROM T, S
WHERE T.id = S.id
AND T.c > 50 AND S.d < 2012;

SELECT R.d, S.b
FROM R, S
WHERE R.id = S.id
AND R.a = 3.14 AND S.a <> 2020;

Farview
Example

❖ processing in Farview, simple RDMA READ operation:

❖ AES decryption on the same data as it is being read:

16

Compute
Node

CPU

Query
request

Read data

Disaggregated
Memory

Farview

DRAM

Compute
Node

CPU

Disaggregated
Memory

DRAM

Query
request

Read
decrypted
data

AES
Read

encrypted
data

Farview

Farview
Example

17

Transfer size
[bytes]

Farview
Architecture

❖ Several components needed:
➢ DRAM (HBM)
➢ Memory controllers
➢ Memory management unit
➢ Network stack
➢ Mechaniscm for concurrent access
➢ Stream processing capacity
➢ Mechanism to swap operators

❖ Three distinct layers

➢ Operator stack

➢ Memory stack

➢ Network stack

18

Memory StackFarview
Operator stack

19

➢ Operator stack split into multiple
isolated dynamic regions that operate
concurrently

➢ Operator pipeline can execute a set of
queries

DRAM

Network Stack

100G interface

Operator Stack

DR-1 DR-2 DR-N

A single dynamic region and interfaces:

❖ Operator pipeline

❖ Farview currently supports a range of
operators (row store):
➢ Projection operators (smart addressing,

projection)

➢ Selection operators (selection, regex,
vectorized selection)

➢ Grouping operators (distinct, group by)

➢ System operators (encryption/decryption,
parsing, packing)

20

Farview
Operators

Memory Stack
DRAM

Network Stack

100G interface

Operator Stack

DR-1 DR-2 DR-N

Farview
Memory stack

21

➢ Implements the actual memory buffer
pool

➢ Organized into multiple channels

➢ Interleaving abstraction to aggregate
the bandwidth

➢ Can process data at higher rates than
the available network bandwidth

Memory Management Unit

Dynamic
Region 1

Dynamic
Region 2

Dynamic
Region 3

~M * 18 GBps

Memory Stack
DRAM

Network Stack

100G interface

Operator Stack

DR-1 DR-2 DR-N

Memory stack architecture:

Farview
Network stack

22

➢ Manages all external connections and
requests for all concurrent accesses
➢ Supports RoCE v2 at 100Gbps
➢ Open source network stack[2]

➢ Special Farview verb based on InfiniBand
SEND for query requests

➢ Comparable latencies to one-sided RDMA
verbs

Memory Stack
DRAM

Network Stack

100G interface

Operator Stack

DR-1 DR-2 DR-N

Process
IP/UDP

Process
BTH/ETH

Dynamic
region 1

State
and

QP tables

Arbitration

Generate
IP/UDP

Generate
BTH/ETH

Dynamic
region 2

Dynamic
region N

RDMA network stack

[2] StRoM: Smart Remote Memory, EuroSys ‘20
David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, Gustavo Alonso

Network stack architecture:

Farview
Programmatic Interface

23

• High level data API covering both the
critical path operations and
connection management operations

• Written in C++

• Intended to be used by Farview query
compiler.

• bool openConnection(Qpair *qp, Fview *node);

• bool loadPipeline(Qpair *qp, int32_t opid);

• void tableRead(Qpair *qp, Ftable *ft);

• void tableWrite(Qpair *qp, Ftable *ft);

• …

• void farView(Qpair *qp, Ftable *ft, uint64_t *params);

• void select(Qpair *qp, Ftable *ft, uint64_t *proj_flags,
uint64_t *sel_flags, float predicate) {

…

farView(qp, ft, params);

}

Farview
Implementation

• Farview supports a range of FPGA data center cards (Alveo u50, u55c, u200, u250, u280,
Enzian)

• Low resource usage:

24

Configuration CLB LUTs Regs BRAM tiles DSPs

6 regions 24% 23% 29% 0%

Operators (per dynamic region) CLB LUTs Regs BRAM tiles DSPs

Projection / Selection < 1% < 1 % 0% 0%

Regex engine 2.3 % < 1% 0% 0%

Distinct / Group by 2.1% 1.3% 8% 0%

En(de)cryption 3.6% < 1% 0% 0%

Packing / Sending < 1% < 1% 0% 0%

Farview
Benchmarks

❖ Selection performed across different selectivity levels

❖ Farview outperforms two baselines (traditional database, remote memory) across
different selectivity levels

25

Response times for selection queries with 100%, 50% and 25 % selectivity, respectively:

Farview

26

String size Table size

❖ Distinct, Group by, Group by (sweep by n. of distinct el.)

❖ Regex and concurrent queries (3x)

Table sizeTable size N distinct elements

Memory StackFarview
Operator Pipeline Swap

27

• Operator pipelines can be swapped during runtime without affecting the
integrity of the system

• Gives Farview a much needed flexibility in comparison to traditional
accelerators

• Swap time in the order of milliseconds:

DRAM

Network Stack

100G interface

Operator Stack

DR-1 DR-2 DR-N

Farview
Current work

❖ Additional operators ...

❖ Interaction with the storage layer (deduplication ...)

❖ Scale out ...

❖ Serverless (end-to-end latencies in s range)

❖ Proper database frontend (Modularis)

28

What about the vFPGA?

29

❖ HDL ... (SVerilog, VHDL, HLS, OpenCL ,...)

MLIR compiler

• MLIR is a novel approach to building a compiler

• CIRCT built in MLIR, targets HDL
(https://github.com/llvm/circt.git)

• Modularis infrastructure being ported to MLIR

30

Modularis + Farview

• 2 Master thesis projects

• Stream-dialect => Coyote-CIRCT (https://github.com/fpgasystems/Coyote-CIRCT.git)

31

Questions?

32

❖ HDL ... (SVerilog, VHDL, HLS, OpenCL ,...)

	Default Section
	Slide 1: Networking Abstractions for Modern Heterogeneous Systems
	Slide 2: Introduction...
	Slide 3: Microkernel for FPGAs Hybrid computing system
	Slide 4: Coyote System Architecture
	Slide 5: Coyote TCP/IP stack
	Slide 6: Coyote RDMA stack
	Slide 7: Coyote RDMA advantages
	Slide 8: Coyote SW
	Slide 9: Coyote Repository
	Slide 10: Coyote Current Work
	Slide 11: Coyote Current work
	Slide 12: Advantages of the system
	Slide 13: Farview Motivation
	Slide 14: Farview Introduction
	Slide 15: Farview Overview
	Slide 16: Farview Example
	Slide 17: Farview Example
	Slide 18: Farview Architecture
	Slide 19: Farview Operator stack
	Slide 20: Farview Operators
	Slide 21: Farview Memory stack
	Slide 22: Farview Network stack
	Slide 23: Farview Programmatic Interface
	Slide 24: Farview Implementation
	Slide 25: Farview Benchmarks
	Slide 26: Farview
	Slide 27: Farview Operator Pipeline Swap
	Slide 28: Farview Current work
	Slide 29: What about the vFPGA?
	Slide 30: MLIR compiler
	Slide 31: Modularis + Farview
	Slide 32: Questions?

