
EasyNet and ACCL:
Networking Support on
FPGAs

Zhenhao He

2 |

ETHz HACC Cluster Infrastructure Overview

EasyNet: an Open 100 Gbps TCP Stack

4 |

TCP Network Offload Roadmap

• Years of efforts on TCP stack offload
• 10 Gbps TCP, FCCM’15, FPL’16
• 100 Gbps TCP – Limago, FPL’19
• 100 Gbps TCP for HLS – EasyNet, FPL’21

• Improvement over years and feature complete
• Line-rate processing
• Retransmission
• Window scaling
• Out-of-order
• Thousands of connections

• Tested and used in many projects
• Smart scatter-gather, SoCC’20
• Distributed Recommendation, KDD’21, FPL’21

5 |

Overall Architecture

• CMAC Kernel
• Ethernet subsystem, board specific

• Network Kernel
• TCP/IP stack with streaming interfaces

• User Kernel
• Customized unit for application
• HLS and RTL kernel support

6 |

User – Network Kernel Streaming Interfaces

• Handshake protocol

• Port and connection handshake

• Tx handshake

• Rx handshake

7 |

• HLS send

• HLS receive

• Streaming & data flow
HLS Compile
-> Hardware

HLS Primitives to Abstract Low-level Handshakes

8 |

Example Kernels & Configurations

• https://github.com/fpgasystems/Vitis_with_100Gbps_TCP-IP

• User kernel supports both HLS and RTL kernels
• HLS send, HLS recv
• RTL iperf

• TCP configuration
• TCP_STACK_MAX_SESSIONS
• TCP_STACK_RX_DDR_BYPASS_EN
• TCP_STACK_WINDOW_SCALING_EN

• Host bindings
• OpenCL binding
• XRT Native

• Supported boards:
• U280, U250, U55C

9 |

Performance

Open Connection Time Send & Recv Primitive Throughput

U280 FPGAs, interconnected via 100 Gbps Cisco Nexus network switch
Intel Xeon Gold 6234 processors with 100 Gbps Mellanox NIC
Performance measured in hardware

Latency RTT : FPGA-FPGA 5 us VS FPGA-CPU 46 us

10 |

Summary

● EasyNet provides reliable and high-performance transmission between FPGAs

● Easy to use with HLS bindings

● Suitable for applications with in-network-processing requirement

● Check out Strega, HTTP server built on top of EasyNet

10

ACCL: FPGA-Accelerated Collective
Communication Library

12 |

A Need for Higher-Level Abstraction

Collective Offload Kernel: ACCL
• Provides hardware-accelerated orchestration for a variety of

complex communication patterns from the MPI standard
• Serves host and FPGA kernels
• As a result, reduces complexity of user design

https://github.com/fpgasystems/ACCL

Orchestrating
Complex Comms
Patterns

Partitioning Transport
Kernel Between
Different Clients

Serving communications
to both host and FPGA
kernels

Simulate
Networked
Application

13 |

What is a MPI collective? Some examples:

Broadcast

(All)Gather

Scatter

(All)Reduce

14 |

Applicability of MPI Primitives and Collectives

• 8 out of ~400 MPI functions are enough to support a wide range of applications

• 1 primitive, 4 collectives, 3 fused collectives (all-gather, all-reduce, scatter-reduce)

ReduceGatherBcastScatterSend/RecvApplication

Data-Parallel
Training

FSDP Training

Tensor-Parallel
Training

Pipeline-Parallel
Training/Inference

Data-Parallel
Inference

HPCG

15 |

ACCL
Host Cmd
Adapter

ACCL Design Goals

• Implement key MPI collectives with
flexibility, portability and high performance

• Low latency communication control
• CCL Offload (CCLO) Kernel
• Automatic RX buffer management

• Protocol Offload Engine configurability
• UDP, TCP
• RDMA work in progress (Coyote integration)

• Host-less and host-full invocation

• Memory-less invocation/Streaming support
• User kernels can talk to CCLO via AXI

streams

• Expandability via Plug-Ins

• All kernels portable across boards

CCLO

AXI-Lite
Configuration

POE

PL User
Kernel

Host Cmd
Via

AXI-Lite

Plugins:
Custom DT,

Compression

Control

Data

DDR
HBM

PLRAM

AXI-MM

AXI-MM

AXI-MM

All connections via AXI-Streams unless otherwise specified

Arbiter

16 |

Implementing Collectives with ACCL

• Collectives are DMP programs implemented
in Microblaze firmware
• Orchestration is fast
• Collectives can be tuned/fused post-synthesis

17 |

Steps to build ACCL-enabled FPGA application

• Clone ACCL repo(s):
• https://github.com/fpgasystems/ACCL

• Build and verify your distributed application
• With or without FPGA acceleration
• Using ACCL HLS code emulator and RTL simulator

• Build appropriate CCLO kernel and plugins

• Link with Shell
• Against platform, protocol offload engine (POE),

and any application kernels

• Deploy to FPGA

18 |

ACCL Send & Recv throughput

• Evaluation at ETHZ HACC:
• ACCL dev + Alveo U55C/U280/U250 using Host Invocation (HI) and Kernel Invocation (KI)
• MPICH 4.0.2 + Mellanox Connex X5 100G

• Performance on U280, U55C, and U250 is similar (design is portable)

• ACCL with TCP achieves higher throughput than MPICH over TCP

19 |

ACCL Collectives Performance

Broadcast Scatter Gather

Reduce All-Reduce All-Gather

• Latency of Stream-to-Stream Collectives at ETHZ HACC, 8 ranks

20 |

Scalability and Resource Consumption

• Scalability of All-reduce evaluated
• Up to 14 ranks (10x U55C, 4x U280)
• message size 128KB
• 250 runs, average & range

• Compared to MPICH+TCP, ACCL+TCP has
• Predictable latency vs. scale characteristic
• Lower jitter

URAMBRAM18DSPkLUTComponent

0752781CCLO

18130111TCP POE

0115023UDP POE

934012CMAC

Resource consumption
 CCLO ~15% of LUTs on a U250

 Choice of POE most significant for
resource usage

ACCL: Coyote Integration and RDMA Extension

22 |

ACCL – Coyote Integration
• What can ACCL + XRT/Vitis provide us?

• Low latency collective to move data resides on the FPGA
• No need to move data through the CPU NIC, and so on….

• However,
• XRT/Vitis host invocation latency is high: ~50 us

• High overhead for small messages/short-lived program

• Data movement between the host and device must be staged at FPGA memory
• Data can not be streamed from host memory directly to FPGA network

• Most Xilinx shell doesn’t allow FPGA to access host memory bypassing CPU
• No Viable solution for RDMA to host memory

• ACCL integration with Coyote

• Low invocation overhead from the host: ~2 us

• Unified memory space across device and host

• Enable ACCL with RDMA backend

• More use case can be explored

23 |

ACCL – RDMA with Coyote

• ACCL hardware sits on RDMA
path to host/device memory

• ACCL supports both host buffer
and device buffer

• ACCL manages virtual address
and address translation is done
by Coyote TLB

• ACCL allows host invocation
and direct invocation from the
FPGA kernels

24 |

ACCL – RDMA Buffer and Queue Pair Management

• ACCL needs to managed user
buffers and Rx buffers

• Rx buffers are managed by one
dedicated Coyote Process (cProc)

• One user buffer can be associated
with multiple cProc corresponding to
different ranks.

• Queue pair is constructed with a
pair of Coyote Process identifiers

• All ACCL buffers are mapped into
TLBs

User
Buf

CCLO
Buf

Rank1

Rank2

Rank3

Queue Pair

cPcoc1

ACCL Driver

cPcoc2
cPoc
CCLO

Queue Pair

Queue Pair

User
BufUser

Buf

CCLO
Buf

User
Buf

CCLO
Buf

cPcoc1

ACCL Driver

cPcoc2
cPoc
CCLO

User
BufUser

Buf

CCLO
Buf

User
Buf

CCLO
Buf

cPcoc1

ACCL Driver

cPcoc2
cPoc
CCLO

User
BufUser

Buf

CCLO
Buf

25 |

ACCL – RDMA: Eager and Rendezvous Protocol

● Eager Protocol:
○ Message sent assuming destination can store
○ Temporary buffering required
○ Applied protocol for ACCL – TCP implementation

● Rendezvous:
○ Message not sent until destination address is resolved
○ Makes more sense with RDMA to avoid redundant mem copy

● ACCL – RDMA supports both Eager and Rendezvous with same piece of hardware

● Eager Protocol
○ Implemented with RDMA SEND Verb
○ SEND Verb doesn’t contain destination address information

● Rendezvous Protocol
○ Address resolution with RDMA SEND Verb
○ Data transfer with RDMA WRITE Verb

25

26 |

Preview: ACCL – RDMA Performance with Device Data

26

• ACCL-RDMA running on FPGAs compared with MPI-RDMA with Mellanox NIC running on CPUs

• Data resides on FPGA memory; MPI-RDMA numbers include data movement data from/to FPGA memory

• ACCL-RDMA outperforms MPI-RDMA in all cases

• ACCL Rendezvous outperforms ACCL Eager with large message sizes

• ACCL-RDMA is suitable for distributed applications running on top of FPGAs

27 |

Preview: ACCL – RDMA Performance with Host Data

27

• ACCL-RDMA running on FPGAs compared with MPI-RDMA with Mellanox NIC running on CPUs

• Data resides on CPU memory; ACCL-RDMA numbers include data movement data from/to FPGA memory

• ACCL-RDMA outperforms MPI-RDMA with medium/large message size; CPU and commodity NIC has high frequency

• ACCL-RDMA is suitable for distributed CPU applications that involves large/medium data transfer

28 |

Summary

● ACCL with device data shows superior performance compared to MPI-RDMA solutions
○ Great enabler for distributed applications on top of FPGAs

● ACCL also shows reasonable performance to move host data
○ Can be considered as smart-NIC for HPC applications running on CPUs
○ With moderate computation along the network path to amortize the cost of offloading

● ACCL has great potential for other scenarios, e.g., hybrid distributed CPU/FPGA applications
○ Example: machine learning pipeline, where CPUs pre-process incoming data and FPGAs process machine

learning inference.

● Disclaimer: results shown with ACCL – RDMA are early results, subject to be improved
● Full release of ACCL – RDMA coming soon, stay tuned: https://github.com/fpgasystems/ACCL

28

Acknowledgement: AMD Xilinx

More information can be found:
https://systems.ethz.ch/research/data-processing-on-modern-hardware/hacc/tutorial-fpl-2023.html

