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EasyNet: an Open 100 Gbps TCP Stack
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TCP Network Offload Roadmap

- Years of efforts on TCP stack offload
« 10 Gbps TCP, FCCM’15, FPL’16
« 100 Gbps TCP - Limago, FPL'19
- 100 Gbps TCP for HLS — EasyNet, FPL’21
- Improvement over years and feature complete
+ Line-rate processing
« Retransmission
« Window scaling
« Out-of-order
« Thousands of connections

- Tested and used in many projects

- Smart scatter-gather, SoCC’'20
- Distributed Recommendation, KDD’21, FPL'21



Overall Architecture Systems @ ETHio

- CMAC Kernel

Static Region - Ethernet subsystem, board specific

Dynamic Region

Network KRNL - Network Kernel

User KRNL | 100 G TCP/IP

250MHz - TCP/IP stack with streaming interfaces

| Mem Bank 0 Mem Bank 1 « User Kernel
« Customized unit for application
- HLS and RTL kernel support




User — Network Kernel Streaming Interfaces

listenPortReq(port)

listenPortRsp(ok)
- Handshake protocol

openConReq(IP address, TCP port)

openGanBspisess o, slccess) - Port and connection handshake

closeConReq(sessionlD)

« Tx handshake

notification(sessionlD, length, closed)

rxDataReq(sessionID, length)

- Rx handshake

rxDataRsp(sessioniD, data)

txDataReq(sessionlD, length)

txData (data)

txDataRsp(remaining space, error)
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HLS Primitives to Abstract Low-level Handshakes Systemse ETHua

« HLS send

void send(dataType* send _data, uint64_t txByte,
SessionStruct session, TcpTxStruct& TepTxIntf);

 HLS receive

void recv(dataType* recv_data, uinté4_t rxByte,
SessionStruct session, TcpRxStruct& TcpRxIntf);

HLS Compile

- Streaming & data flow _> Hardware

User KRNL
Send

Network KRNL

Compute 100 G TCP/IP
250MHz
Recv




Example Kernels & Configurations

- https://github.com/fpgasystems/Vitis_with_100Gbps_TCP-IP

- User kernel supports both HLS and RTL kernels
- HLS send, HLS recv
- RTL iperf

- TCP configuration
« TCP_STACK_MAX_SESSIONS
- TCP_STACK_RX_DDR_BYPASS_EN
- TCP_STACK_WINDOW_SCALING_EN

+ Host bindings
« OpenCL binding

Static Region

Dynamic Region

Network KRNL
100 G TCP/IP
250MHz

XDMA Mem Bank 0 Mem Bank 1

- XRT Native mkdir build

cd build

cmake ..

- Supported boards:
- U280, U250, U55C

-DFDEV_NAME=u280 -DTCP_STACK_EN=1 -DTCP_STACK_RX_DDR_BYPASS_EN=1

make installip
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Performance

U280 FPGAs, interconnected via 100 Gbps Cisco Nexus network switch
Intel Xeon Gold 6234 processors with 100 Gbps Mellanox NIC

Performance measured in hardware

Latency RTT : FPGA-FPGA 5 us VS FPGA-CPU 46 us
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Summary

e EasyNet provides reliable and high-performance transmission between FPGAs

e Easy to use with HLS bindings
e Suitable for applications with in-network-processing requirement

e Check out Strega, HTTP server built on top of EasyNet

13:00-14:40 Session 9 : TRETS
Location: RunAn §
Session Chair: Christian Pilato (Politecnico di Milano)

Reprogrammable non-linear circuits using ReRAM for NN accelerators

A Hardware Accelerator for the Semi-Global Matching Stereo Algorithm

FDRA: A Framework for Dynamically Reconfigurable Accelerator Supporting Multi-Level Parallelism
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ACCL: FPGA-Accelerated Collective
Communication Library



A Need for Higher-Level Abstraction

Partitioning Transport Orchestrating
Kernel Between Complex Comms
Different Clients 9 Patterns
L
Serving communications Simulate
to both host and FPGA Networked
kernels Application

Collective Offload Kernel: ACCL

« Provides hardware-accelerated orchestration for a variety of
complex communication patterns from the MPI standard

- Serves host and FPGA kernels
- As aresult, reduces complexity of user design
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User Host Code

User Kernel(s)

https://github.com/fpgasystems/ACCL

ACCL Collectives

Transport Kernel (e.g. VNx, EasyNet)

Data Link Kernel (e.g. CMAC)

Physical Link (Xilinx GTs, 100+ Gbps)




What is a MPI collective

? Some examples:

Rank 0 -
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Rank 2 ;

Rank 2

Rank 2 % Rank 2

Broadcast Rank 1 Rank 1 Scatter
Rank 2 Rank 2 Rank 2
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Applicability of MPI Primitives and Collectives Systemse ETHuuo

Data-Parallel
Training

- 8 out of ~400 MPI functions are enough to support a wide range of applications
- 1 primitive, 4 collectives, 3 fused collectives (all-gather, all-reduce, scatter-reduce)



ACCL Design Goals

m e

Implement key MPI collectives with Pludins:
flexibility, portability and high performance Host Cmd Custc?m DT

Low latency communication control
- CCL Offload (CCLO) Kernel
- Automatic RX buffer management

Protocol Offload Engine configurability
- UDP, TCP
- RDMA work in progress (Coyote integration)

Host-less and host-full invocation
Memory-less invocation/Streaming support

Host Cmd B 2 Arbiter
Adapter
- User kernels can talk to CCLO via AXI

streams PL User

Via i AXI-Lite
AXI-Lite Compression

Configuration

HBM
Expandability via Plug-Ins NOIEL PLRAM

All kernels portable across boards AXI-MM

All connections via AXI-Streams unless otherwise specified



Implementing Collectives with ACC

Caller
from Host
(via XRT)

Systems @ ETH zuricn

From host From arbiter

Control r%
Flane Embedded

=>olUIl

Plugin (227"

Plugin

etic

¢ 9\
Client Arbiter cco e PoE )

A

Data Movement
Processor

VLIW Microcode Incoming Data
Notifications

Y

R Datapath

FOE
Interfaces

Microcode
Decode and Dispatch

I
S T

R
Allocator

[ _ opo cU T opl cu TResultCU
Raouting CU
Address Registers
and Stride L0g|c
Noc o
Commands |PM Cp_mmaﬁd&l mmand
Y
[ Command Align, Dispatch and Retire

Data
Movers

Yo e )
T¥ Datapath

Data
Movers

FOE
Interfaces

uc

To external
RAM

Data
1 Movement
Frocessor
Y S

P /'- r
To Streaming
Data
PL Ki I
ernels .[ Metwork On Ch; % Movers ]

To reduction
plugin '|L A
<

= POE Interface(s)

.
To compression
plugins

Data Plane J

AN

+ Collectives are DMP programs implemented
in Microblaze firmware
« Orchestration is fast
« Collectives can be tuned/fused post-synthesis
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Steps to build ACCL-enabled FPGA application

« Clone ACCL repo(s):
- https://github.com/fpgasystems/ACCL

- Build and verify your distributed application
« With or without FPGA acceleration
- Using ACCL HLS code emulator and RTL simulator

<]~ Do

9 4 / [vVadomHszI
<

W XILINX

. Link with Shell a VITIS

- Against platform, protocol offload engine (POE),
and any application kernels

- Build appropriate CCLO kernel and plugins

- Deploy to FPGA




ACCL Send & Recv throughput

- Evaluation at ETHZ HACC:

« ACCL dev + Alveo U55C/U280/U250 using Host Invocation (HI) and Kernel Invocation (KI)

- MPICH 4.0.2 + Mellanox Connex X5 100G

- Performance on U280, U55C, and U250 is similar (design is portable)
- ACCL with TCP achieves higher throughput than MPICH over TCP

801

Throughput [Gbps]

HW sendrecv Hli
s HW sendrecv Kl
i SW sendrecv

i
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ACCL Collectives Performance

Latency [us]
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- Latency of Stream-to-Stream Collectives at ETHZ HACC, 8 ranks
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Gather

——t——= HW gather HI
——4— HW gather Kl
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s HW allgather HI
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Message Size

4KB
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Scalability and Resource Consumption

- Scalability of All-reduce evaluated

« Up to 14 ranks (10x U55C, 4x U280)

« message size 128KB

- 250 runs, average & range

« Compared to MPICH+TCP, ACCL+TCP has
- Predictable latency vs. scale characteristic

« Lower jitter

Component
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» Resource consumption
- CCLO ~15% of LUTs on a U250

- Choice of POE most significant for
resource usage
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ACCL: Coyote Integration and RDMA Extension
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ACCL - Coyote Integration

- What can ACCL + XRT/Vitis provide us?

- Low latency collective to move data resides on the FPGA
- No need to move data through the CPU NIC, and so on....

- However,

- XRT/Vitis host invocation latency is high: ~50 us
- High overhead for small messages/short-lived program

- Data movement between the host and device must be staged at FPGA memory
- Data can not be streamed from host memory directly to FPGA network

- Most Xilinx shell doesn’t allow FPGA to access host memory bypassing CPU
+ No Viable solution for RDMA to host memory

- ACCL integration with Coyote

- Low invocation overhead from the host: ~2 us
- Unified memory space across device and host
- Enable ACCL with RDMA backend

- More use case can be explored

Systems @ ETH zuricn



23

ACCL - RDMA with Coyote
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ACCL hardware sits on RDMA
path to host/device memory

ACCL supports both host buffer
and device buffer

ACCL manages virtual address
and address translation is done
by Coyote TLB

ACCL allows host invocation
and direct invocation from the
FPGA kernels
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ACCL - RDMA Buffer and Queue Pair Management

- ACCL needs to managed user
buffers and Rx buffers

- Rx buffers are managed by one
dedicated Coyote Process (cProc)

- One user buffer can be associated
with multiple cProc corresponding to
different ranks.

- Queue pair is constructed with a
pair of Coyote Process identifiers

- All ACCL buffers are mapped into
TLBs

ueue Pair
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ACCL - RDMA: Eager and Rendezvous Protocol

e [Eager Protocaol:
o  Message sent assuming destination can store
o  Temporary buffering required
o Applied protocol for ACCL — TCP implementation

e Rendezvous:
o Message not sent until destination address is resolved
o  Makes more sense with RDMA to avoid redundant mem copy

e ACCL - RDMA supports both Eager and Rendezvous with same piece of hardware

e Eager Protocol
o  Implemented with RDMA SEND Verb
o  SEND Verb doesn’t contain destination address information

e Rendezvous Protocol
o  Address resolution with RDMA SEND Verb
o Data transfer with RDMA WRITE Verb
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Preview: ACCL — RDMA Performance with Device Data

Execution Time vs Size for scatter (4 nodes, device data)
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Execution Time vs Size for bcast (4 nodes, device data)
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ACCL-RDMA running on FPGAs compared with MPI-RDMA with Mellanox NIC running on CPUs

Data resides on FPGA memory; MPI-RDMA numbers include data movement data from/to FPGA memory
ACCL-RDMA outperforms MPI-RDMA in all cases

ACCL Rendezvous outperforms ACCL Eager with large message sizes

ACCL-RDMA is suitable for distributed applications running on top of FPGAs 26
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Preview: ACCL — RDMA Performance with Host Data

Execution Time vs Size for scatter (4 nodes, host data) Execution Time vs Size for bcast (4 nodes, host data)
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ACCL-RDMA running on FPGAs compared with MPI-RDMA with Mellanox NIC running on CPUs

Data resides on CPU memory; ACCL-RDMA numbers include data movement data from/to FPGA memory
ACCL-RDMA outperforms MPI-RDMA with medium/large message size; CPU and commodity NIC has high frequency
ACCL-RDMA is suitable for distributed CPU applications that involves large/medium data transfer
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Summary
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ACCL with device data shows superior performance compared to MPI-RDMA solutions
o  Great enabler for distributed applications on top of FPGAs

ACCL also shows reasonable performance to move host data
o  Can be considered as smart-NIC for HPC applications running on CPUs
o With moderate computation along the network path to amortize the cost of offloading

ACCL has great potential for other scenarios, e.g., hybrid distributed CPU/FPGA applications

o Example: machine learning pipeline, where CPUs pre-process incoming data and FPGAs process machine
learning inference.

Disclaimer: results shown with ACCL — RDMA are early results, subject to be improved
Full release of ACCL — RDMA coming soon, stay tuned: https.//github.com/fpgasystems/ACCL
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More information can be found:



