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ETHz HACC Cluster Infrastructure Overview



EasyNet: an Open 100 Gbps TCP Stack
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TCP Network Offload Roadmap

• Years of efforts on TCP stack offload
• 10 Gbps TCP, FCCM’15, FPL’16
• 100 Gbps TCP – Limago, FPL’19
• 100 Gbps TCP for HLS – EasyNet, FPL’21

• Improvement over years and feature complete
• Line-rate processing
• Retransmission
• Window scaling
• Out-of-order 
• Thousands of connections

• Tested and used in many projects
• Smart scatter-gather, SoCC’20
• Distributed Recommendation, KDD’21, FPL’21
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Overall Architecture

• CMAC Kernel
• Ethernet subsystem, board specific

• Network Kernel  
• TCP/IP stack with streaming interfaces

• User Kernel 
• Customized unit for application
• HLS and RTL kernel support
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User – Network Kernel Streaming Interfaces

• Handshake protocol

• Port and connection handshake

• Tx handshake

• Rx handshake
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• HLS send

• HLS receive

• Streaming & data flow
HLS Compile 
-> Hardware

HLS Primitives to Abstract Low-level Handshakes
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Example Kernels & Configurations

• https://github.com/fpgasystems/Vitis_with_100Gbps_TCP-IP

• User kernel supports both HLS and RTL kernels
• HLS send, HLS recv
• RTL iperf

• TCP configuration
• TCP_STACK_MAX_SESSIONS
• TCP_STACK_RX_DDR_BYPASS_EN
• TCP_STACK_WINDOW_SCALING_EN

• Host bindings
• OpenCL binding
• XRT Native

• Supported boards:
• U280, U250, U55C
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Performance

Open Connection Time Send & Recv Primitive Throughput

U280 FPGAs, interconnected via 100 Gbps Cisco Nexus network switch
Intel Xeon Gold 6234 processors with 100 Gbps Mellanox NIC
Performance measured in hardware

Latency RTT : FPGA-FPGA 5 us VS FPGA-CPU 46 us



10 |

Summary

● EasyNet provides reliable and high-performance transmission between FPGAs

● Easy to use with HLS bindings

● Suitable for applications with in-network-processing requirement

● Check out Strega, HTTP server built on top of EasyNet
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ACCL: FPGA-Accelerated Collective 
Communication Library
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A Need for Higher-Level Abstraction

Collective Offload Kernel: ACCL
• Provides hardware-accelerated orchestration for a variety of 

complex communication patterns from the MPI standard
• Serves host and FPGA kernels
• As a result, reduces complexity of user design

https://github.com/fpgasystems/ACCL

Orchestrating
Complex Comms
Patterns

Partitioning Transport 
Kernel Between 
Different Clients

Serving communications 
to both host and FPGA 
kernels

Simulate 
Networked
Application
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What is a MPI collective? Some examples:

Broadcast

(All)Gather

Scatter

(All)Reduce
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Applicability of MPI Primitives and Collectives

• 8 out of ~400 MPI functions are enough to support a wide range of applications

• 1 primitive, 4 collectives, 3 fused collectives (all-gather, all-reduce, scatter-reduce)

ReduceGatherBcastScatterSend/RecvApplication

Data-Parallel 
Training

FSDP Training

Tensor-Parallel
Training

Pipeline-Parallel
Training/Inference

Data-Parallel 
Inference

HPCG
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ACCL
Host Cmd
Adapter

ACCL Design Goals

• Implement key MPI collectives with 
flexibility, portability and high performance

• Low latency communication control
• CCL Offload (CCLO) Kernel
• Automatic RX buffer management

• Protocol Offload Engine configurability
• UDP, TCP 
• RDMA work in progress (Coyote integration)

• Host-less and host-full invocation

• Memory-less invocation/Streaming support
• User kernels can talk to CCLO via AXI 

streams

• Expandability via Plug-Ins

• All kernels portable across boards

CCLO

AXI-Lite
Configuration

POE

PL User
Kernel

Host Cmd
Via

AXI-Lite

Plugins:
Custom DT, 

Compression

Control

Data

DDR
HBM

PLRAM

AXI-MM

AXI-MM

AXI-MM

All connections via AXI-Streams unless otherwise specified

Arbiter
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Implementing Collectives with ACCL

• Collectives are DMP programs implemented
in Microblaze firmware
• Orchestration is fast
• Collectives can be tuned/fused post-synthesis
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Steps to build ACCL-enabled FPGA application

• Clone ACCL repo(s): 
• https://github.com/fpgasystems/ACCL

• Build and verify your distributed application
• With or without FPGA acceleration
• Using ACCL HLS code emulator and RTL simulator

• Build appropriate CCLO kernel and plugins

• Link with Shell
• Against platform, protocol offload engine (POE), 

and any application kernels

• Deploy to FPGA
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ACCL Send & Recv throughput

• Evaluation at ETHZ HACC:
• ACCL dev + Alveo U55C/U280/U250 using Host Invocation (HI) and Kernel Invocation (KI)
• MPICH 4.0.2 + Mellanox Connex X5 100G

• Performance on U280, U55C, and U250 is similar (design is portable)

• ACCL with TCP achieves higher throughput than MPICH over TCP
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ACCL Collectives Performance

Broadcast Scatter Gather

Reduce All-Reduce All-Gather

• Latency of Stream-to-Stream Collectives at ETHZ HACC, 8 ranks
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Scalability and Resource Consumption

• Scalability of All-reduce evaluated
• Up to 14 ranks (10x U55C, 4x U280)
• message size 128KB
• 250 runs, average & range

• Compared to MPICH+TCP, ACCL+TCP has
• Predictable latency vs. scale characteristic
• Lower jitter

URAMBRAM18DSPkLUTComponent

0752781CCLO

18130111TCP POE

0115023UDP POE

934012CMAC

Resource consumption
 CCLO ~15% of LUTs on a U250

 Choice of POE most significant for
resource usage



ACCL: Coyote Integration and RDMA Extension
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ACCL – Coyote Integration
• What can ACCL + XRT/Vitis provide us?

• Low latency collective to move data resides on the FPGA
• No need to move data through the CPU NIC, and so on….

• However,
• XRT/Vitis host invocation latency is high: ~50 us

• High overhead for small messages/short-lived program

• Data movement between the host and device must be staged at FPGA memory
• Data can not be streamed from host memory directly to FPGA network

• Most Xilinx shell doesn’t allow FPGA to access host memory bypassing CPU
• No Viable solution for RDMA to host memory

• ACCL integration with Coyote

• Low invocation overhead from the host: ~2 us

• Unified memory space across device and host

• Enable ACCL with RDMA backend

• More use case can be explored 
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ACCL – RDMA with Coyote

• ACCL hardware sits on RDMA 
path to host/device memory

• ACCL supports both host buffer 
and device buffer

• ACCL manages virtual address 
and address translation is done 
by Coyote TLB

• ACCL allows host invocation 
and direct invocation from the 
FPGA kernels
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ACCL – RDMA Buffer and Queue Pair Management

• ACCL needs to managed user 
buffers and Rx buffers

• Rx buffers are managed by one 
dedicated Coyote Process (cProc)

• One user buffer can be associated 
with multiple cProc corresponding to 
different ranks. 

• Queue pair is constructed with a 
pair of Coyote Process identifiers

• All ACCL buffers are mapped into 
TLBs
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CCLO 
Buf

Rank1

Rank2

Rank3

Queue Pair

cPcoc1

ACCL Driver
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CCLO
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ACCL – RDMA: Eager and Rendezvous Protocol

● Eager Protocol:
○ Message sent assuming destination can store
○ Temporary buffering required
○ Applied protocol for ACCL – TCP implementation

● Rendezvous:
○ Message not sent until destination address is resolved
○ Makes more sense with RDMA to avoid redundant mem copy

● ACCL – RDMA supports both Eager and Rendezvous with same piece of hardware

● Eager Protocol 
○ Implemented with RDMA SEND Verb
○ SEND Verb doesn’t contain destination address information

● Rendezvous Protocol
○ Address resolution with RDMA SEND Verb
○ Data transfer with RDMA WRITE Verb
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Preview: ACCL – RDMA Performance with Device Data
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• ACCL-RDMA running on FPGAs compared with MPI-RDMA with Mellanox NIC running on CPUs

• Data resides on FPGA memory; MPI-RDMA numbers include data movement data from/to FPGA memory

• ACCL-RDMA outperforms MPI-RDMA in all cases

• ACCL Rendezvous outperforms ACCL Eager with large message sizes

• ACCL-RDMA is suitable for distributed applications running on top of FPGAs
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Preview: ACCL – RDMA Performance with Host Data
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• ACCL-RDMA running on FPGAs compared with MPI-RDMA with Mellanox NIC running on CPUs

• Data resides on CPU memory; ACCL-RDMA numbers include data movement data from/to FPGA memory

• ACCL-RDMA outperforms MPI-RDMA with medium/large message size; CPU and commodity NIC has high frequency

• ACCL-RDMA is suitable for distributed CPU applications that involves large/medium data transfer
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Summary

● ACCL with device data shows superior performance compared to MPI-RDMA solutions
○ Great enabler for distributed applications on top of FPGAs

● ACCL also shows reasonable performance to move host data
○ Can be considered as smart-NIC for HPC applications running on CPUs
○ With moderate computation along the network path to amortize the cost of offloading 

● ACCL has great potential for other scenarios, e.g., hybrid distributed CPU/FPGA applications
○ Example: machine learning pipeline, where CPUs pre-process incoming data and FPGAs process machine 

learning inference.

● Disclaimer: results shown with ACCL – RDMA are early results, subject to be improved 
● Full release of ACCL – RDMA coming soon, stay tuned: https://github.com/fpgasystems/ACCL
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Acknowledgement: AMD Xilinx

More information can be found: 
https://systems.ethz.ch/research/data-processing-on-modern-hardware/hacc/tutorial-fpl-2023.html


