Systems@ ETH ziich

EasyNet and ACCL.:
Networking Support on
FPGAs

Zhenhao He

ETHz HACC Cluster Infrastructure Overview Systems o ETHiss

GPU Vitis EasyNet ACCL Coyote
applications applications applications applications applications

Vitis lib

[

Coyote lib

DMA/RDMA

Coyote shell

CLI (Command Line Utilities)

ETHZ Heterogeneous Accelerated Compute Cluster (ETHZ-HACC)
AMD EPYC (CPUs) — AMD Instinct (GPUs) — AMD Alveo Cards (FPGAs) — AMD Versal (ACAPs)

EasyNet: an Open 100 Gbps TCP Stack

Systems @ ETH zuricn

TCP Network Offload Roadmap

- Years of efforts on TCP stack offload
« 10 Gbps TCP, FCCM’15, FPL’16
« 100 Gbps TCP - Limago, FPL'19
- 100 Gbps TCP for HLS — EasyNet, FPL’21
- Improvement over years and feature complete
+ Line-rate processing
« Retransmission
« Window scaling
« Out-of-order
« Thousands of connections

- Tested and used in many projects

- Smart scatter-gather, SoCC’'20
- Distributed Recommendation, KDD’21, FPL'21

Overall Architecture Systems @ ETHio

- CMAC Kernel

Static Region - Ethernet subsystem, board specific

Dynamic Region

Network KRNL - Network Kernel

User KRNL | 100 G TCP/IP

250MHz - TCP/IP stack with streaming interfaces

| Mem Bank 0 Mem Bank 1 « User Kernel
« Customized unit for application
- HLS and RTL kernel support

User — Network Kernel Streaming Interfaces

listenPortReq(port)

listenPortRsp(ok)
- Handshake protocol

openConReq(IP address, TCP port)

openGanBspisess o, slccess) - Port and connection handshake

closeConReq(sessionlD)

« Tx handshake

notification(sessionlD, length, closed)

rxDataReq(sessionID, length)

- Rx handshake

rxDataRsp(sessioniD, data)

txDataReq(sessionlD, length)

txData (data)

txDataRsp(remaining space, error)

Systems @ ETH zuricn

HLS Primitives to Abstract Low-level Handshakes Systemse ETHua

« HLS send

void send(dataType* send _data, uint64_t txByte,
SessionStruct session, TcpTxStruct& TepTxIntf);

 HLS receive

void recv(dataType* recv_data, uinté4_t rxByte,
SessionStruct session, TcpRxStruct& TcpRxIntf);

HLS Compile

- Streaming & data flow _> Hardware

User KRNL
Send

Network KRNL

Compute 100 G TCP/IP
250MHz
Recv

Example Kernels & Configurations

- https://github.com/fpgasystems/Vitis_with_100Gbps_TCP-IP

- User kernel supports both HLS and RTL kernels
- HLS send, HLS recv
- RTL iperf

- TCP configuration
« TCP_STACK_MAX_SESSIONS
- TCP_STACK_RX_DDR_BYPASS_EN
- TCP_STACK_WINDOW_SCALING_EN

+ Host bindings
« OpenCL binding

Static Region

Dynamic Region

Network KRNL
100 G TCP/IP
250MHz

XDMA Mem Bank 0 Mem Bank 1

- XRT Native mkdir build

cd build

cmake ..

- Supported boards:
- U280, U250, U55C

-DFDEV_NAME=u280 -DTCP_STACK_EN=1 -DTCP_STACK_RX_DDR_BYPASS_EN=1

make installip

Systems @ ETH zuricn

Performance

U280 FPGAs, interconnected via 100 Gbps Cisco Nexus network switch
Intel Xeon Gold 6234 processors with 100 Gbps Mellanox NIC

Performance measured in hardware

Latency RTT : FPGA-FPGA 5 us VS FPGA-CPU 46 us

—&— FPGA-FPGA -4+ FPGA-CPU
R "E A" A
3 ook
10°; T Sl
— . -ﬂ' ﬁ
z &
;102 A
£
l_
101: ﬂ"_*_._-.—-ﬁ——f_‘—'r_‘

0 20 40 60 80
Number of Connections

100

Open Connection Time

100

~J
w

Throughput[Gbps]
M (9)]
n O

—i— FPGA-FPGA --&- FPGA-CPU

i = A

L

0 Eaaa et . , , ,
1K 10K 100K 1M 10M 100M 1G 110G
Data Size[B]

Send & Recv Primitive Throughput

Systems @ ETH zuricn

Systems @ ETH zuricn

Summary

e EasyNet provides reliable and high-performance transmission between FPGAs

e Easy to use with HLS bindings
e Suitable for applications with in-network-processing requirement

e Check out Strega, HTTP server built on top of EasyNet

13:00-14:40 Session 9 : TRETS
Location: RunAn §
Session Chair: Christian Pilato (Politecnico di Milano)

Reprogrammable non-linear circuits using ReRAM for NN accelerators

A Hardware Accelerator for the Semi-Global Matching Stereo Algorithm

FDRA: A Framework for Dynamically Reconfigurable Accelerator Supporting Multi-Level Parallelism

10

ACCL: FPGA-Accelerated Collective
Communication Library

A Need for Higher-Level Abstraction

Partitioning Transport Orchestrating
Kernel Between Complex Comms
Different Clients 9 Patterns
L
Serving communications Simulate
to both host and FPGA Networked
kernels Application

Collective Offload Kernel: ACCL

« Provides hardware-accelerated orchestration for a variety of
complex communication patterns from the MPI standard

- Serves host and FPGA kernels
- As aresult, reduces complexity of user design

Systems @ ETH zuricn

User Host Code

User Kernel(s)

https://github.com/fpgasystems/ACCL

ACCL Collectives

Transport Kernel (e.g. VNx, EasyNet)

Data Link Kernel (e.g. CMAC)

Physical Link (Xilinx GTs, 100+ Gbps)

What is a MPI collective

? Some examples:

Rank 0 -

Systems @ ETH zuricn

Rank 2 ;

Rank 2

Rank 2 % Rank 2

Broadcast Rank 1 Rank 1 Scatter
Rank 2 Rank 2 Rank 2
before after before
. : b s

(AlhGather il et - (AlReduce

before

after

before after

Applicability of MPI Primitives and Collectives Systemse ETHuuo

Data-Parallel
Training

- 8 out of ~400 MPI functions are enough to support a wide range of applications
- 1 primitive, 4 collectives, 3 fused collectives (all-gather, all-reduce, scatter-reduce)

ACCL Design Goals

m e

Implement key MPI collectives with Pludins:
flexibility, portability and high performance Host Cmd Custc?m DT

Low latency communication control
- CCL Offload (CCLO) Kernel
- Automatic RX buffer management

Protocol Offload Engine configurability
- UDP, TCP
- RDMA work in progress (Coyote integration)

Host-less and host-full invocation
Memory-less invocation/Streaming support

Host Cmd B 2 Arbiter
Adapter
- User kernels can talk to CCLO via AXI

streams PL User

Via i AXI-Lite
AXI-Lite Compression

Configuration

HBM
Expandability via Plug-Ins NOIEL PLRAM

All kernels portable across boards AXI-MM

All connections via AXI-Streams unless otherwise specified

Implementing Collectives with ACC

Caller
from Host
(via XRT)

Systems @ ETH zuricn

From host From arbiter

Control r%
Flane Embedded

=>olUIl

Plugin (227"

Plugin

etic

¢ 9\
Client Arbiter cco e PoE)

A

Data Movement
Processor

VLIW Microcode Incoming Data
Notifications

Y

R Datapath

FOE
Interfaces

Microcode
Decode and Dispatch

I
S T

R
Allocator

[_ opo cU T opl cu TResultCU
Raouting CU
Address Registers
and Stride L0g|c
Noc o
Commands |PM Cp_mmaﬁd&l mmand
Y
[Command Align, Dispatch and Retire

Data
Movers

Yo e)
T¥ Datapath

Data
Movers

FOE
Interfaces

uc

To external
RAM

Data
1 Movement
Frocessor
Y S

P /'- r
To Streaming
Data
PL Ki I
ernels .[Metwork On Ch; % Movers]

To reduction
plugin '|L A
<

= POE Interface(s)

.
To compression
plugins

Data Plane J

AN

+ Collectives are DMP programs implemented
in Microblaze firmware
« Orchestration is fast
« Collectives can be tuned/fused post-synthesis

Systems @ ETH zuricn

Steps to build ACCL-enabled FPGA application

« Clone ACCL repo(s):
- https://github.com/fpgasystems/ACCL

- Build and verify your distributed application
« With or without FPGA acceleration
- Using ACCL HLS code emulator and RTL simulator

<]~ Do

9 4 / [vVadomHszI
<

W XILINX

. Link with Shell a VITIS

- Against platform, protocol offload engine (POE),
and any application kernels

- Build appropriate CCLO kernel and plugins

- Deploy to FPGA

ACCL Send & Recv throughput

- Evaluation at ETHZ HACC:

« ACCL dev + Alveo U55C/U280/U250 using Host Invocation (HI) and Kernel Invocation (KI)

- MPICH 4.0.2 + Mellanox Connex X5 100G

- Performance on U280, U55C, and U250 is similar (design is portable)
- ACCL with TCP achieves higher throughput than MPICH over TCP

801

Throughput [Gbps]

HW sendrecv Hli
s HW sendrecv Kl
i SW sendrecv

i
+- -

1KB 4KB 16KB 64KB 256KB
Message Size

1MB

4MB

Systems @ ETH zuricn

ACCL Collectives Performance

Latency [us]

Latency [us]

103

[
o
N

10t

=
o
w

102_

- Latency of Stream-to-Stream Collectives at ETHZ HACC, 8 ranks

Broadcast

——t—— HW bcast HI
=== HW bcast KI
——4— SW bcast

1KB 4KB 16KB 64KB 256KB

Message Size

Reduce

IMB 4MB

== HW reduce HI
——+—— HW reduce KI
——+— SW reduce

1KB 4KB 16KB 64KB 256KB

Message Size

1MB 4MB

Latency [us]

Latency [us]

Scatter

=
(=]
Y

——t— HW scatter HI
== HW scatter Kl
——4—— SW scatter

far
o
[

=
o
N

=
o
e

1KB 4KB 16KB 64KB 256KB

Message Size

All-Reduce

1MB

4MB

——4—— HW allreduce HI
—4—— HW allreduce Kl
——4—— SW allreduce

103

102

1KB 4KB 16KB 64KB 256KB

Message Size

1MB

4MB

Latency [us]

Latency [us]

104

103

1024

104

103

102

Systems @ ETH zuricn

Gather

——t——= HW gather HI
——4— HW gather Kl
—4— SW gather

1KB 4KB 16KB 64KB 256KB

Message Size

All-Gather

1MB

4MB

s HW allgather HI
——4— HW allgather KI
e SW allgather

1KB 16KB 64KB 256KB 1MB

Message Size

4KB

4MB

20

Scalability and Resource Consumption

- Scalability of All-reduce evaluated

« Up to 14 ranks (10x U55C, 4x U280)

« message size 128KB

- 250 runs, average & range

« Compared to MPICH+TCP, ACCL+TCP has
- Predictable latency vs. scale characteristic

« Lower jitter

Component
CCLO

TCP POE
UDP POE
CMAC

kLUT DSP BRAM18

81
111
23
12

27
0
0
0

75
813
115

34

URAM
0

1
0
9

e HW allreduce Hi
—F—— HW allreduce KI
—J— sw allreduce

14001

1200

]
o
o
o

800 1

600 1

Latency [us]

400 1

2001

4 6 8 10 12 14
Number of ranks
» Resource consumption
- CCLO ~15% of LUTs on a U250

- Choice of POE most significant for
resource usage

Systems @ ETH zuricn

ACCL: Coyote Integration and RDMA Extension

22

ACCL - Coyote Integration

- What can ACCL + XRT/Vitis provide us?

- Low latency collective to move data resides on the FPGA
- No need to move data through the CPU NIC, and so on....

- However,

- XRT/Vitis host invocation latency is high: ~50 us
- High overhead for small messages/short-lived program

- Data movement between the host and device must be staged at FPGA memory
- Data can not be streamed from host memory directly to FPGA network

- Most Xilinx shell doesn’t allow FPGA to access host memory bypassing CPU
+ No Viable solution for RDMA to host memory

- ACCL integration with Coyote

- Low invocation overhead from the host: ~2 us
- Unified memory space across device and host
- Enable ACCL with RDMA backend

- More use case can be explored

Systems @ ETH zuricn

23

ACCL - RDMA with Coyote

CPU

._\' :

ACCL App

ACCL Driver

i
¥

Host

frm—

Mem

Coyote Driver

J

A

Pz
&

rdma managm ent

[

RDMA

Stack |«

RDMA

XDMA

Coyote Infrastructu_l;ﬁé\’

xdma_host §

LB €—> CDMA +~—

Wr and Rd Bypass}

cdma_card

RDMA

ce with 1
rtual Address
r

Q

. ACCLAPP

Kernel

Coyote User Region/ ,/

' Device
Mem

Systems @ ETH zuricn

ACCL hardware sits on RDMA
path to host/device memory

ACCL supports both host buffer
and device buffer

ACCL manages virtual address
and address translation is done
by Coyote TLB

ACCL allows host invocation
and direct invocation from the
FPGA kernels

24

ACCL - RDMA Buffer and Queue Pair Management

- ACCL needs to managed user
buffers and Rx buffers

- Rx buffers are managed by one
dedicated Coyote Process (cProc)

- One user buffer can be associated
with multiple cProc corresponding to
different ranks.

- Queue pair is constructed with a
pair of Coyote Process identifiers

- All ACCL buffers are mapped into
TLBs

ueue Pair

[

cPcoc1

cPcoc2

.

ACCL Driver

cPoc\

CcCcLo

CCLO
Buf

/

Rank1

.

40& cPcoc2

User
Buf

ACCL Driver

CcCcLo

CCLO
Buf

Queue Pair

Rank2

gyeue Pair

Systems @ ETH zuricn

cPoc\

/

cPcoc1

\

cPcoc2

cPoc\

CcCLoO

User
Buf

CCLO
Buf

.

ACCL Driver

/

Rank3

25

ACCL - RDMA: Eager and Rendezvous Protocol

e [Eager Protocaol:
o Message sent assuming destination can store
o Temporary buffering required
o Applied protocol for ACCL — TCP implementation

e Rendezvous:
o Message not sent until destination address is resolved
o Makes more sense with RDMA to avoid redundant mem copy

e ACCL - RDMA supports both Eager and Rendezvous with same piece of hardware

e Eager Protocol
o Implemented with RDMA SEND Verb
o SEND Verb doesn’t contain destination address information

e Rendezvous Protocol
o Address resolution with RDMA SEND Verb
o Data transfer with RDMA WRITE Verb

Systems @ ETH zuricn

25

26

Preview: ACCL — RDMA Performance with Device Data

Execution Time vs Size for scatter (4 nodes, device data)

Systems @ ETH zuricn

Execution Time vs Size for bcast (4 nodes, device data)

2121 211
-+- mpi-device-rdma -+- mpi-device-rdma

2114 —e— accl-device-eager-rdma ‘,’ S10] —* accl-device-eager-rdma /
— —a— accl-device-rndzvs-rdma S — —a— accl-device-rndzvs-rdma /‘ /

10
32 AP
[7])
E 29 =
= = 28-
= =
O 284 o
4 o+
= = | 27_
(&) (9]
9 27 J
(WN] L 25_

26_

25 | o=— ~ > 25 1 e ""?-5;';‘*&:—‘."-—-1"3_"

2I9 2|11 2i3 2;[5 25[7 23.9 2:'21 2'9 2|11 2'13 2I15 2‘17 2|19 2521
SizelB1 SizelB1

ACCL-RDMA running on FPGAs compared with MPI-RDMA with Mellanox NIC running on CPUs

Data resides on FPGA memory; MPI-RDMA numbers include data movement data from/to FPGA memory
ACCL-RDMA outperforms MPI-RDMA in all cases

ACCL Rendezvous outperforms ACCL Eager with large message sizes

ACCL-RDMA is suitable for distributed applications running on top of FPGAs 26

Systems @ ETH zuricn

Preview: ACCL — RDMA Performance with Host Data

Execution Time vs Size for scatter (4 nodes, host data) Execution Time vs Size for bcast (4 nodes, host data)
211 4
-+- mpi-host-rdma o -4~ mpi-host-rdma A
2104 —s— accl-host-eager-rdma /‘ 29]|—* accl-host-eager-rdma /
ol o

— _o| ™ accl-host-rndzvs-rdma Y = —a— accl-host-rndzvs-rdma
s 5
Q Q
E 2% £ 27
= =
s 27 S
-5‘ '5' 25 P
D 2°4 o A
x x &
L L /

25 b //

L
24 z ,./““‘“u"
it
29 211 213 ol5 217 219 2l 29 9ll 913 515 517 919 521
SizelB1 SizelB1

ACCL-RDMA running on FPGAs compared with MPI-RDMA with Mellanox NIC running on CPUs

Data resides on CPU memory; ACCL-RDMA numbers include data movement data from/to FPGA memory
ACCL-RDMA outperforms MPI-RDMA with medium/large message size; CPU and commodity NIC has high frequency
ACCL-RDMA is suitable for distributed CPU applications that involves large/medium data transfer

27

28

Summary

Systems @ ETH zuricn

ACCL with device data shows superior performance compared to MPI-RDMA solutions
o Great enabler for distributed applications on top of FPGAs

ACCL also shows reasonable performance to move host data
o Can be considered as smart-NIC for HPC applications running on CPUs
o With moderate computation along the network path to amortize the cost of offloading

ACCL has great potential for other scenarios, e.g., hybrid distributed CPU/FPGA applications

o Example: machine learning pipeline, where CPUs pre-process incoming data and FPGAs process machine
learning inference.

Disclaimer: results shown with ACCL — RDMA are early results, subject to be improved
Full release of ACCL — RDMA coming soon, stay tuned: https.//github.com/fpgasystems/ACCL

28

S_ys tems @ ETH i

Acknowledgement: AMD Xilinx

More information can be found:

