
Coyote 
Abstractions for Modern 
Heterogeneous Hardware 
 
 
 
Dario Korolija, Timothy Roscoe, Gustavo Alonso 

 
Systems Group, Dept. of Computer Science, ETH Zurich 
 
 
 
 



Introduction... 

❖ Scpecialized hardware becoming a reality 
• Amazon, Microsoft, Google, Alibaba, Intel, AMD ... 

 
 
 

 

❖ One built within System group at ETH: 

2 

Microsoft Catapult Google 
TPU 

AMD 
Versal 

Intel 
HARP 



Complex to program (interact with) 

❖ I/O interaction … 

❖ Low level APIs 

❖ No standard execution environment 

❖ Lack of portability (HLS …) 

❖ Lack of traditional abstractions 

3 

FPGA layout 
PCIe, memory, storage, network… 



Microkernel for FPGAs 
Hybrid computing system 

❖ Plenty of research, focused on individual 
functionalities only 

❖ Coyote provides a complete minimal core set of 
essential features on which further services 
can be used 

 

 

 

4 

Interdependence 



Coyote  
HW Architecture 

❖ Microkernel for FPGAs 
• Hardware split into 3 regions: 

• Static region 
• Service (shell) region 
• Application region (further split into 

trusted wrapper and untrusted user app) 
❖ Host software consists of: 

• Kernel driver (hypervisor) 
• Runtime scheduler 
• High level API 

❖ Runs on Alveo, Enzian 

5 



Host <-> FPGA connection 

❖ PCIe connection (cards still at gen3 x16 ...) 
❖ XDMA IP[1] core used with Alveo cards (trial 

runs with QDMA core as well) 
❖ Very little dependency on the actual DMA core 

used 
❖ Port to open source cores 

6 

[1]: https://docs.xilinx.com/r/en-US/pg195-pcie-dma/Introduction 



ECI – Enzian Coherency Interface 

❖ Cache coherent interface[2] 
❖ Coherency between CPU and FPGA side 

memories 
❖ Our own DMA wrapper built on top which 

provides integration for Coyote interfaces 

7 

[2]: Enzian: An Open, General, CPU/FPGA Platform for Systems Software Research, 
       ASPLOS 2022 



ECI vs XDMA 

❖ Throughput PCIe: 
❖ ~12 GB/s 

❖ Throughput ECI: 
❖ ~21 GB/s 
 

8 



Coyote  
Processes, Threads, Tasks … 

9 

❖ FPGAs are fundamentally different  
• No CPUs or cores 
• Spatial and temporal sharing 
 

❖ Coyote multi-tenancy: 
• Combines both approaches 
• Multitasking abstraction for a set of 

independent, isolated vFPGAs 
• Applications within vFPGAs are 

untrusted 

 
 



Coyote  
Virtual Memory 

❖ Important abstraction 
• Provides the illusion of unlimited memory, 

simplifies compilation, provide protection 
❖ Typically missing in FPGAs ! 
❖ Dedicated MMU layer in Coyote 

• Same virtual address space between HW SW 
• Applications can master transactions 

(pointer chasing example …) 
• RDMA ... 
• Virtualization of FPGA side memory 
• Additional memory models on top 

10 



Memory organization (DRAM) 

❖ Dynamic allocation across all 
available channels 

❖ Striping access pattern 
❖ Same interface (DRAM, HBM, ...) 
❖ Optimizes bandwidth distribution 

across vFPGAs 
 
 

11 



Memory Organization (HBM) 

❖ Single channel has access to 
the whole memory 

❖ RAMA IP[3] core used for 
striping (same idea ...) 

❖ Current HBM in Alveo cards: 
32 AXIM channels at 450 MHz 

❖ Data width conversion from 
32B to 64B, max thr: ~14 GB/s 

❖ Coyote typically runs at ~300 
MHz, max thr: ~19 GB/s 

 
 

12 

[3]: https://www.xilinx.com/products/intellectual-property/rama.html 



Coyote  
Shared Virtual Memory (Unified Memory) 

❖ Programming model which allows multiple 
devices with independent memories to be 
programmed as if they share memory 

 
❖ Seamless sharing of host and device side user 

space pointers 
 

❖ Provides memory consistency between host    
and device accesses (Heterogeneous Memory 
Management API) 

❖ Used extensively in modern GPUs 

13 



Unified Memory Example 

14 

// NO UNIFIED MEMORY 
... 
void *src_data; 
void *results; 
src_data = malloc(size); 
results = malloc(size); 
... 
fill_data(src_data, …); 
computation(src_data, …); 
... 
void *fpga_data; 
fpga_data = fpga_alloc(&fpga_data, size); 
memcpy(fpga_data, src_data, size); 
host_to_card(fpga_data, size); 
 
execute_kernel(fpga_data, ...); 
 
card_to_host(fpga_data, rslt_size); 
memcpy(results, fpga_data, rslt_size); 
computation_2(results, …); 
 
... 
fpga_free(&fpga_data); 
free(src_data); 
free(results); 

// WITH UNIFIED MEMORY 
... 
void *src_data; 
void *results; 
src_data = malloc(size); 
results = malloc(size); 
... 
fill_data(src_data, …); 
computation(src_data, …); 
... 
execute_kernel(src_data, results, ...); 
 
computation_2(results, …); 
 
... 
free(src_data); 
free(results); 

IRQ handling overhead: 



FPGAs are not GPUs ... 

❖ Direct access and corresponding interfaces are 
needed (streaming interfaces) 

 
❖ Especially if network and/or other I/O comes into 

play ... 
 

❖ Bump-in-the-wire processors 
 
❖ How to integrate this within HMM(SVM)? 

15 

Host 
Memory 

FPGA 
Memory SSD … 

MMU 

vFPGA 
(inference) 

RDMA 

~ 100 Gb/s 

~ 100 Gb/s 



HMM operation 

16 

User 
Process 

User 
Process 

Coyote 
Driver 

Host MMU 

Host Memory 

vFPGA vFPGA 

FPGA MMU 

FPGA Memory 

User 
Space 

Kernel 
Space 

User 
Space 

Shell 
Space IRQ 

DMA 

Card access Stream access User space access 



MMU Notifiers 

❖ Traditionally pages pinned prior to 
device access 

 
❖ Callback functions within MMU 

notifiers can keep the TLBs up to 
date without pinning 

 
❖ Invalidations need to be handled 

within properly 

17 



HMM Obstacles ... 

❖ Coverage with hugePages 
(hugetlbfs), variable TLB page size 

 
❖ Transparent HugePages 

(khugepaged thread) 
 
 

❖ API being changed ... 

18 



Coyote  
Network Stacks 

❖ 100G TCP/IP and RDMA (RoCE v2) network stacks[4] 
 
❖ Reliable protocols (use single channel of on-board memory) 
 

❖ ~20% of overall FPGA resources 
 
❖ Interleaved, accessible by all tenants (vFPGAs) 

19 

[4]: https://github.com/fpgasystems/fpga-network-stack 



TCP stack 
❖ Shared across vFPGAs 
❖ Multiple accelerators serving clients on different ports 
❖ AXI stream interface (opening and closing ports and connections,  
❖ Lower level of abstraction than RDMA ! 

20 

[5]: https://github.com/fpgasystems/Vitis_with_100Gbps_TCP-IP/blob/vitis_2022_1/img/interface.png 

vFPGA 
N 

vFPGA 
2 

vFPGA 
1 Arbitratio

n 



RDMA stack 

❖ Open source RDMA stack (UC, RC)[5] 
❖ RDMA over Converged Ethernet (RoCE v2) 
❖ Implemented on top of UDP/IPv4/IPv6 (far lower overhead than iWARP) 
❖ InfiniBand (IB) transport packets over Ethernet (READ, WRITE, SEND) 
 
 

21 

https://docs.nvidia.com/networking/display/WINOFv55053000/RoCEv2 
[5] StRoM: Smart Remote Memory, EuroSys ‘20 
David Sidler,  Zeke Wang, Monica Chiosa, Amit Kulkarni, Gustavo Alonso 



Coyote  
Unified Logic Interface 

❖ Don’t really exist across FPGA platforms ... 
❖ Vitis HLS  
❖ Much higher flexibility than other devices 
 

❖ User Logic Interface 
❖ AXI streams (descriptor interface) 

22 

HOST CARD RDMA TCP SSD 

vFPGA 



Unified Logic Interface 
 

23 

vFPGA 

 
CSR 

 
Notify 
 

Local 
Memory Interfaces (host, card, …) 

 

RDMA 
Interface 

 

AXIL 
 

AXIS 
 

Bypass control, completion and data lines 
AXIS 

 Queue pair management intefaces, 
External RDMA rd and wr requests, 

Send queue, receive queue, completion queue, 
Data lines 

AXIS 
 

TCP 
Interface 

 

Port management operations, 
Connection management operations, 

Send and receive requests, 
Data lines 

AXIS 
 



Can this be simplified? 
 

24 

vFPGA 

 
CSR 
 

Notify 
 

AXIL 
 

AXIS 
 

AXIS 
 

AXIS 
 

 
SQ 
 

 
RQ 
 

 
CQ 
 

 
Data lines 
 



SQ Interface 
❖ All local(host, card, ...) and remote(RDMA, TCP/IP) operations can be invoked through SQ 

interface 
 
 

• OPCODE – Operation to be invoked  
• CPID – Host process identifier 
• VFID – vFPGA (reserved) 
• DEST – Destination queue 
• SID – Connection ID 
• VADDR – User space shared pointer 
• LEN – Transfer size 

❖ RQ – Received remote requests (RDMA and TCP/IP) 
❖ CQ – Completion events 
 

25 

OPCODE CPID VFID VADDR LEN DEST SID 



Destination queues 
 

26 

vFPGA 

 
CSR 
 

Notify 
 

AXIL 
 

AXIS 
 

AXIS 
 

AXIS 
 

 
SQ 
 

 
RQ 
 

 
CQ 
 

 
Data lines 
 

 
N_DESTS 
 

 
N_DESTS 

(Card memory) 
 



Untrusted environment 

❖ Credit system for each destination queue: 
• Write requests are issued only if 

accompanying data is provided 
• Read requests are issued only if queues are 

ready to accept the data 
 

❖ Credit system for all local and remote requests 
 

❖ Can quickly overwhelm the resources ... 
❖ For RQ, RDMA accepts packets only if vFPGA is 

able to accept 

27 

vFPGA 
AXIS 

 

 
SQ 
 

 
Data lines 
 

Credit 
System 



Coyote 
Dynamic Reconfiguration and Scheduling 

❖ Basic mechanisms to capture the state of the 
FPGA don’t exist 

 
❖ Non-preemptive task based approach 
❖ Preemption? 

• User application trust 
• Requires a form of cooperation 
• Additional application complexity 
 

 

28 



Reconfiguration overhead and scheduling efficiency 

29 

❖Penalty of partial reconfiguration is high 
❖Modified priority queue based scheme reduces overall execution time 
 

 
Reconfiguration times Scheduling algorithm 



Hierarchical Reconfiguration 

❖ Nested reconfiguration (Nested-DFX ) 
⮚ Static layer 
⮚ Service layer 
⮚ Dynamic layer 
⮚ Application layer 

 

 
 
 
 

 

30 



Coyote 
Virtual Machines 

❖ Virtualization –vFPGAs «pulled up» all the way to different VMs 
• Virtual Function I/O (VFIO) Mediated devices 

31 



Virtualization Architecture 

❖ Hypervisor running on top of Coyote driver within 
Linux kernel 

❖ Virtualization of CPU and memory with                     
KVM 

❖ For emulation of other                           
components QEMU 
 

❖ Passthrough through IOCTL                        
interface and emulation of                                  
PCI device with VFIO + MDEV 
 
 
 

32 



VM Performance 

 

33 



Coyote  
SW Architecture 

❖ Layered parallelization 
❖ User space abstractions 

⮚ cSched- Coyote scheduler, 
reconfiguration controller 

⮚ cProc - Coyote process, multiple can 
run within a single vFPGA 

⮚ cThread - Coyote thread, multiple can 
run within a single cProc. Task level 
parallelism 

⮚ cTask - Coyote task, arbitrary user 
variadic function executed by cThreads 

⮚ cService - Coyote library daemon, 
background service, UDS for IPC 

34 



Coyote 
Build System 

❖ CMake incremental builds 
• Revamped for hierarchical flow 

 
❖ Cores can be both RTL and HLS 
 
 
 

 
❖ make shell (shell partial bitstream) 
❖ make app (application partial bitstreams) 

35 

cmake_minimum_required(VERSION 3.0) 
project(test) 
 
set(CYT_DIR ${CMAKE_SOURCE_DIR}) 
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} ${CYT_DIR}/cmake) 
 
find_package(CoyoteHW REQUIRED) 
 
# Configuration 
set(SHELL_PROBE 1) 
set(FDEV_NAME "u55c") 
set(COMP_CORES 80) 
set(N_REGIONS 2) 
set(EN_STRM 1) 
set(EN_MEM 1) 
set(EN_PR 1) 
set(N_CONFIG 3) 
set(N_CARD_AXI 2) 
set(N_HOST_AXI 2) 
 
# Load applications 
load_apps( 
 VFPGA_C0_0 "hw/adder" 
 VFPGA_C0_1 "hw/adder" 
 VFPGA_C1_0 "hw/aes" 
 VFPGA_C1_1 "hw/aes" 
 VFPGA_C2_0 "hw/sha" 
 VFPGA_C2_1 "hw/sha" 
) 
 
create_hw() 

hw/aes 

hdl 

hls 
*.sv, *.svh, *.vhd 

*.cpp, *.hpp 

cyt_user_top.sv 



Coyote 
What kind of stuff can we run on top? 

❖ ACCL project (Accl: Fpga-accelerated collectives over 100 gbps tcp-ip, Z. He et al.) 
• Streaming interfaces 
• Kernel invocation overhead Vitis: ~50us, Coyote: ~1-1.5us 
• RDMA 

36 



37 

Questions? 


	Coyote�Abstractions for Modern Heterogeneous Hardware��
	Introduction...
	Complex to program (interact with)
	Microkernel for FPGAs�Hybrid computing system
	Coyote �HW Architecture
	Host <-> FPGA connection
	ECI – Enzian Coherency Interface
	ECI vs XDMA
	Coyote �Processes, Threads, Tasks …
	Coyote �Virtual Memory
	Memory organization (DRAM)
	Memory Organization (HBM)
	Coyote �Shared Virtual Memory (Unified Memory)
	Unified Memory Example
	FPGAs are not GPUs ...
	HMM operation
	MMU Notifiers
	HMM Obstacles ...
	Coyote �Network Stacks
	TCP stack
	RDMA stack
	Coyote �Unified Logic Interface
	Unified Logic Interface�
	Can this be simplified?�
	SQ Interface
	Destination queues�
	Untrusted environment
	Coyote�Dynamic Reconfiguration and Scheduling
	Reconfiguration overhead and scheduling efficiency
	Hierarchical Reconfiguration
	Coyote�Virtual Machines
	Virtualization Architecture
	VM Performance
	Coyote �SW Architecture
	Coyote�Build System
	Coyote�What kind of stuff can we run on top?
	Slide Number 37

