
Farview
Disaggregated Memory with Operator
Off-loading for Database Engines

Dario Korolija*, Dimitrios Koutsoukos*, Kimberly Keeton±,
Konstantin Taranov*, Dejan Milojičić¥, Gustavo Alonso*

* Systems Group, Dept. of Computer Science, ETH Zurich
¥ Hewlett Packard Enterprise
± Hewlett Packard Enterprise (now at Google)

• The I/O overheads one of the main factors in the overall performance
• More and more data kept in local DRAM of compute nodes

1. Excessive data movement
2. Memory capacity limitation

Farview
Motivation

2

Farview
Motivation

3

Disaggregation of compute and storage Disaggregation of compute, memory and storage

CPU
DRAM
DRAM
DRAM

CPU
DRAM
DRAM
DRAM

CPU
DRAM

Compute
Nodes

DRAM
DRAM Storage

Nodes

CPU
DRAM
DRAM
DRAM

DRAM
DRAM
DRAM

CPU
DRAM
DRAM
DRAM

CPU
DRAM
DRAM
DRAM

CPU
DRAM

Compute
Nodes

DRAM
DRAM Storage

Nodes

CPU
DRAM
DRAM
DRAM

DRAM
DRAM
DRAM

Smart
Memory

Nodes

• FPGAs as smart accelerator for disaggregated
resources

• Amazon AQUA
https://aws.amazon.com/blogs/aws/new-aqua-advanced-
query-accelerator-for-amazon-redshift/

• Offload of analytic computation to FPGA
• Pushing computation closer to data
• Reduces data movement
• Reduces CPU and network overheads

Farview
Motivation

4

Farview
Introduction

• FPGA-based smart NIC making DRAM available as a pool of network attached
memory, provisioned on demand, accessible over high performance RDMA.

• Capability to perform line-rate data processing with minimal overheads

• Farview acts as a disaggregated buffer cache with operator pushdown capabilities

5

Storage
Node

Storage
Node RDMA Network

Farview
Overview

• Farview positioned to address the issues of inefficient data movement and memory capacity limitations
• Consider the following two queries:

• Farview centralizes the buffer cache in disaggregated memory and pushes down operators

6

SELECT T.a, S.b
FROM T, S
WHERE T.id = S.id
AND T.c > 50 AND S.d < 2012;

SELECT R.d, S.b
FROM R, S
WHERE R.id = S.id
AND R.a = 3.14 AND S.a <> 2020;

Farview
Example

1. No processing in Farview, simple READ operation:

2. AES decryption on the same data as it is being read:

7

Compute
Node

CPU

Query
request

Read data

Disaggregated
Memory

Farview
DRAM

Compute
Node

CPU

Disaggregated
Memory

DRAM
Query
request

Read
decrypted
data

AES
Read

encrypted
data

Farview

Farview
Example

8

Transfer size
[bytes]

Farview
System Architecture

9

• Several components needed:
 DRAM (or HBM)
 Memory controllers
 Memory management unit
 Network stack
 Mechanism to support concurrent accesses to the

memory
 Stream processing capacity
 Mechanism to swap the operators

• Three distinct modules
 Operator stack
 Memory stack
 Network stack

Farview
Network stack (RDMA)

10

• Open source RDMA stack (UC, RC)[1]

• RDMA over Converged Ethernet (RoCE v2)
• Implemented on top of UDP/IPv4/IPv6 (far lower overhead than iWARP)
• InfiniBand (IB) transport packets over Ethernet (READ, WRITE, SEND)

Memory Stack
DRAM

Network Stack
100G interface

Operator Stack
DR-1 DR-2 DR-N

[1] StRoM: Smart Remote Memory, EuroSys ‘20
David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, Gustavo Alonso

https://docs.nvidia.com/networking/display/WINOFv55053000/RoCEv2

Farview
Why RDMA?

11

• Bypasses kernel space

• Zero-copy data movement

• Cheap pipelined processing
(directly on the NIC)

Farview
Network stack

12

• Manages all external connections and
requests for all concurrent accesses
 Supports RoCE v2 at 100Gbps
 Open source network stack[1]

• Two-sided verbs used for invocation of
queries by clients

• Comparable latencies to traditional
one-sided RDMA verbs

Memory Stack
DRAM

Network Stack
100G interface

Operator Stack
DR-1 DR-2 DR-N

Process
IP/UDP

Process
BTH/ETH

Dynamic
region 1

State
and

QP tables

Arbitration

Generate
IP/UDP

Generate
BTH/ETH

Dynamic
region 2

Dynamic
region N

RDMA network stack

Network stack architecture:

Farview
RDMA abstractions

13

• Remote memory abstraction (one sided verbs)
• Are current RDMA abstractions accurate for modern

heterogeneous hardware?
• Accelerator on the path, no longer just a memory access …

Memory Stack
DRAM

Network Stack
100G interface

Operator Stack
DR-1 DR-2 DR-N

Farview
RDMA abstractions

14

• Use existing IB verbs
• Performance of one-sided RDMA verbs (no overheads)
• Pass generic parameters (RPC)
• Use SEND (two-sided) + WRITE (one-sided)

Memory Stack
DRAM

Network Stack
100G interface

Operator Stack
DR-1 DR-2 DR-N

Farview
RDMA abstractions

15

• SEND (two-sided) + WRITE (one-sided)
• Pros:

• Performance, latency comparable to traditional one-sided
RDMA verbs

• Generic enough (can pass as many parameters as needed)
• Cons:

• Buffer information needs to be passed (could be evaded by
extending the RDMA REQUEST verb instead)

• Not a proper abstraction for what we are doing

• A lightweight reliable layer on top of UDP?

Memory Stack
DRAM

Network Stack
100G interface

Operator Stack
DR-1 DR-2 DR-N

Farview
Memory stack

16

• Memory buffer pool

• Memory organized into multiple channels
(interface same for DRAM and HBM)

• Striping abstraction to optimize the bandwidth

• Can process data at higher rates than the

available network bandwidth

• No host connections (PCIe …) overheads or
bandwidth bottlenecks

Memory Management Unit

Dynamic
Region 1

Dynamic
Region 2

Dynamic
Region 3

~M * 18 GBps

Memory Stack
DRAM

Network Stack
100G interface

Operator Stack
DR-1 DR-2 DR-N

Memory stack architecture:

Memory Stack Farview
Operator stack

17

• Operator stack split into multiple isolated
dynamic regions that operate concurrently
(multiple clients)

• Operator pipeline can execute a range of
queries

• Operator pipelines are swappable during
runtime

DRAM

Network Stack
100G interface

Operator Stack
DR-1 DR-2 DR-N

A single dynamic region and interfaces:

Farview
Operators

18

• An example of an operator pipeline
• Farview currently supports a variety of

operators:
 Projection operators (smart addressing,

projection)
 Selection operators (selection, regular

expression matching, vectorized selection)
 Grouping operators (distinct, group by and

aggregation)
 System operators (encryption/decryption,

parsing, packing)

• Row store / column store

• Easily extendable

Memory Stack
DRAM

Network Stack
100G interface

Operator Stack
DR-1 DR-2 DR-N

Memory Stack Farview
Operator Pipeline Swap

19

• Operator pipelines can be swapped during runtime
• Gives Farview a much needed flexibility in comparison to traditional

accelerators
• Swap time in the order of milliseconds
• Could have applications in microservices domain

DRAM

Network Stack
100G interface

Operator Stack
DR-1 DR-2 DR-N

Farview
Programmatic Interface

20

• High level data API covering both the
critical path operations and
connection management operations

• API written in C++

• Intended to be used by Farview query

compiler.

• bool openConnection(Qpair *qp, Fview *node);

• bool loadPipeline(Qpair *qp, int32_t opid);

• void tableRead(Qpair *qp, Ftable *ft);

• void tableWrite(Qpair *qp, Ftable *ft);

• …

• void farView(Qpair *qp, Ftable *ft, uint64_t *params);

• void select(Qpair *qp, Ftable *ft, uint64_t *proj_flags,
uint64_t *sel_flags, float predicate) {

 …

 farView(qp, ft, params);

 }

Farview
Frontend - database engine

• How to interact with Farview from client on a higher level?
• Modularis[2] is a a distributed query processing system supporting relational queries with

different backends (including RDMA)
• Offloading of certain operators within Modularis (Projections, Selections, Aggregations)

to Farview

21

[2] Modularis: Modular Relational Analytics over Heterogeneous Distributed Platforms, VLDB ‘20
Dimitrios Koutsoukos, Ingo Müller, Renato Marroquín, Ana Klimovic, Gustavo Alonso

Row
Scan Projection

Projection Row
Scan

Selection

Selection

Hash Join Group By

Farview Modularis

Farview
Frontend - database engine

22

Farview
MLIR compiler
• How to create the operators?
• MLIR is a novel approach to building a compiler
• CIRCT[3] built within MLIR, produces HDL
• Modularis being ported to MLIR

23

[3] https://github.com/llvm/circt.git

Farview
Stream dialect

• Stream-dialect => Stream-CIRCT project

24

Farview
operators

Evaluation

• Farview smart disaggregated buffer cache compared to two baselines:
 (LCPU) Buffer cache implemented in local memory with processing on the local CPU
 (RCPU) Remote buffer cache, no FPGA, implemented on a remote machine (Mellanox NIC)

• Benchmark comparisons to baselines performed for all implemented operators
 RDMA throughput and response times microbenchmarks
 Projection and smart addressing
 Selection (100%, 50%, 25% selectivity)
 Distinct queries
 Group by queries
 Regular expression matching
 En/decryption
 Multiple concurrent clients

25

Benchmarks (SELECT)

26

• Predicates provided at runtime
• Selection circuit generic enough for a wide range of selection queries

Row
Parsing Projection Selection Projection RDMA

Write Packing

CMP
1

CMP
2

CMP
N

Selection
function

(truth table)

Selection
Attribute
Arbiter

Runtime parameters

Filter the tuple

Benchmarks (SELECT)

27

• Farview outperforms both baselines across different selectivity levels (due to the
high filtering throughput of an FPGA with direct attached memory)

• Further increase in performance with parallelized pipelines (vectorization)

Table size Table size Table size

Response times for selection queries with 100%, 50% and 25 % selectivity, respectively:

Benchmarks (DISTINCT/GROUP BY)

28

• Line-rate Distinct/Group by pipelines
• Cuckoo-hashing to reduce collisions
• No external bucket memory used (limited space in FPGA, might result in overflows)

Table size

Benchmarks (DISTINCT/GROUP BY)

29

• Farview outperforms both baselines, advantage scales with the data size
• Tested scenarios where FPGA memory is sufficient
• In case of too many collisions, additional post processing needs to be done on the

client side

Table size Table size

Response time comparisons for a distinct query, a group by query, and a group by query by on a stable number of elements

Number of distinct elements

Benchmarks (REGEXP_LIKE)

30

• Regular expression matching is compute intensive in software
• Efficient compilation into NFAs on FPGAs[4]

String size

Comparison of REGEXP_LIKE operator on different string
lengths

[4] Runtime Parameterizable Regular Expression Operators for Databases, FCCM ’16
Zsolt István, David Sidler, Gustavo Alonso

Benchmarks (Concurrent Operators)

31

• Performance of concurrent operator pipelines (DISTINCT operation)
• Contention between multiple regions reduces the advantage of Farview

Table size

Performance comparison between 3 concurrent dynamic regions
serving clients

Current and Future Work

32

• Implementation of the frontend for Farview (Joining Farview and Modularis)
• Farview stream circuit compiler
• Implementation of a storage layer
• Extending the operator set (joins …)
• Distributed operation within the HACC cluster
• Larger scale deployments taking advantage of Enzian with 1 TB of DRAM per board:

http://enzian.systems

33

Questions?

	Farview�Disaggregated Memory with Operator Off-loading for Database Engines��
	Farview�Motivation
	Farview�Motivation
	Farview�Motivation
	Farview�Introduction
	Farview �Overview
	Farview �Example
	Farview �Example
	Farview �System Architecture
	Farview�Network stack (RDMA)
	Farview�Why RDMA?
	Farview�Network stack
	Farview�RDMA abstractions
	Farview�RDMA abstractions
	Farview�RDMA abstractions
	Farview�Memory stack
	Farview�Operator stack
	Farview �Operators
	Farview �Operator Pipeline Swap
	Farview�Programmatic Interface
	Farview�Frontend - database engine
	Farview�Frontend - database engine
	Farview�MLIR compiler
	Farview�Stream dialect
	Evaluation
	Benchmarks (SELECT)
	Benchmarks (SELECT)
	Benchmarks (DISTINCT/GROUP BY)
	Benchmarks (DISTINCT/GROUP BY)
	Benchmarks (REGEXP_LIKE)
	Benchmarks (Concurrent Operators)
	Current and Future Work
	Slide Number 33

