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• The I/O overheads one of the main factors in the overall performance 
• More and more data kept in local DRAM of compute nodes 

 

1. Excessive data movement 
2. Memory capacity limitation 
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Disaggregation of compute and storage Disaggregation of compute, memory  and storage 
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• FPGAs as smart accelerator for disaggregated 
resources 
 

• Amazon AQUA 
https://aws.amazon.com/blogs/aws/new-aqua-advanced-
query-accelerator-for-amazon-redshift/ 

 
• Offload of analytic computation to FPGA 
• Pushing computation closer to data 
• Reduces data movement 
• Reduces CPU and network overheads 
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Farview 
Introduction 

• FPGA-based smart NIC making DRAM available as a pool of network attached 
memory, provisioned on demand, accessible over high performance RDMA. 

• Capability to perform line-rate data processing with minimal overheads 

• Farview acts as a disaggregated buffer cache with operator pushdown capabilities 
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Farview  
Overview 

• Farview positioned to address the issues of inefficient data movement and memory capacity limitations 
• Consider the following two queries: 

 
 
 
 
 

• Farview centralizes the buffer cache in disaggregated memory and pushes down operators 
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SELECT T.a, S.b 
FROM T, S 
WHERE T.id = S.id 
AND T.c > 50 AND S.d < 2012; 

SELECT R.d, S.b 
FROM R, S 
WHERE R.id = S.id 
AND R.a = 3.14 AND S.a <> 2020; 



Farview  
Example 

1. No processing in Farview, simple READ operation: 
 
 
 
 
 

2. AES decryption on the same data as it is being read: 
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Farview  
System Architecture 

9 

• Several components needed: 
 DRAM (or HBM) 
 Memory controllers 
 Memory management unit 
 Network stack 
 Mechanism to support concurrent accesses to the 

memory 
 Stream processing capacity  
 Mechanism to swap the operators 

 
• Three distinct modules 
 Operator stack 
 Memory stack 
 Network stack 
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Network stack (RDMA) 
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• Open source RDMA stack (UC, RC)[1] 

• RDMA over Converged Ethernet (RoCE v2) 
• Implemented on top of UDP/IPv4/IPv6 (far lower overhead than iWARP) 
• InfiniBand (IB) transport packets over Ethernet (READ, WRITE, SEND) 

 

Memory Stack 
DRAM 

Network Stack 
100G interface 

Operator Stack 
DR-1 DR-2 DR-N 

[1] StRoM: Smart Remote Memory, EuroSys ‘20 
David Sidler,  Zeke Wang, Monica Chiosa, Amit Kulkarni, Gustavo Alonso 

https://docs.nvidia.com/networking/display/WINOFv55053000/RoCEv2 
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• Bypasses kernel space 
 

• Zero-copy data movement 
 

• Cheap pipelined processing 
(directly on the NIC) 
 



Farview 
Network stack 
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• Manages all external connections and 
requests for all concurrent accesses 
 Supports RoCE v2 at 100Gbps 
 Open source network stack[1]  
 

• Two-sided verbs used for invocation of 
queries by clients 
 

• Comparable latencies to traditional 
one-sided RDMA verbs 
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Farview 
RDMA abstractions 
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• Remote memory abstraction (one sided verbs) 
• Are current RDMA abstractions accurate for modern 

heterogeneous hardware? 
• Accelerator on the path, no longer just a memory access … 
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RDMA abstractions 
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• Use existing IB verbs 
• Performance of one-sided RDMA verbs (no overheads) 
• Pass generic parameters (RPC) 
• Use SEND (two-sided) + WRITE (one-sided) 
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Farview 
RDMA abstractions 
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• SEND (two-sided) + WRITE (one-sided) 
• Pros: 

• Performance, latency comparable to traditional one-sided 
RDMA verbs 

• Generic enough (can pass as many parameters as needed) 
• Cons: 

• Buffer information needs to be passed (could be evaded by 
extending the RDMA REQUEST verb instead) 

• Not a proper abstraction for what we are doing 
 

• A lightweight reliable layer on top of UDP? 
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Farview 
Memory stack 
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• Memory buffer pool 
 

• Memory organized into multiple channels 
(interface same for DRAM and HBM) 

 
• Striping abstraction to optimize the bandwidth 

 
• Can process data at higher rates than the 

available network bandwidth 
 

• No host connections (PCIe …) overheads or 
bandwidth bottlenecks 
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Memory stack architecture: 



Memory Stack Farview 
Operator stack 
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• Operator stack split into multiple isolated 
dynamic regions that operate concurrently 
(multiple clients) 
 

• Operator pipeline can execute a range of 
queries 
 

• Operator pipelines are swappable during 
runtime 
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A single dynamic region and interfaces: 



Farview  
Operators 
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• An example of an operator pipeline 
• Farview currently supports a variety of 

operators:  
 Projection operators (smart addressing, 

projection) 
 Selection operators (selection, regular 

expression matching, vectorized selection) 
 Grouping operators (distinct, group by and 

aggregation) 
 System operators (encryption/decryption, 

parsing, packing) 
 

• Row store / column store 
 

• Easily extendable 
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Memory Stack Farview  
Operator Pipeline Swap 
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• Operator pipelines can be swapped during runtime 
• Gives Farview a much needed flexibility in comparison to traditional 

accelerators 
• Swap time in the order of milliseconds 
• Could have applications in microservices domain 
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Farview 
Programmatic Interface 
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• High level data API covering both the 
critical path operations and     
connection management operations 

 
• API written in C++ 

 
• Intended to be used by Farview query 

compiler. 

• bool openConnection(Qpair *qp, Fview *node); 

• bool loadPipeline(Qpair *qp, int32_t opid); 

• void tableRead(Qpair *qp, Ftable *ft); 

• void tableWrite(Qpair *qp, Ftable *ft); 

• … 

• void farView(Qpair *qp, Ftable *ft, uint64_t *params); 

 

• void select(Qpair *qp, Ftable *ft, uint64_t *proj_flags,  
uint64_t *sel_flags, float predicate) { 

 … 

                 farView(qp, ft, params); 

     } 

 

 

 



Farview 
Frontend - database engine 

• How to interact with Farview from client on a higher level?   
• Modularis[2] is a a distributed query processing system supporting relational queries with 

different backends (including RDMA) 
• Offloading of certain operators within Modularis (Projections, Selections, Aggregations) 

to Farview 
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[2] Modularis: Modular Relational Analytics over Heterogeneous Distributed Platforms, VLDB ‘20 
Dimitrios Koutsoukos, Ingo Müller, Renato Marroquín, Ana Klimovic, Gustavo Alonso 
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Farview 
Frontend - database engine 
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Farview 
MLIR compiler 
• How to create the operators?  
• MLIR is a novel approach to building a compiler 
• CIRCT[3] built within MLIR, produces HDL 
• Modularis being ported to MLIR 
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[3] https://github.com/llvm/circt.git 



Farview 
Stream dialect 

• Stream-dialect => Stream-CIRCT project 
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Farview 
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Evaluation 

• Farview smart disaggregated buffer cache compared to two baselines: 
 (LCPU) Buffer cache implemented in local memory with processing on the local CPU 
 (RCPU) Remote buffer cache, no FPGA, implemented on a remote machine (Mellanox NIC) 

 
• Benchmark comparisons to baselines performed for all implemented operators 
 RDMA throughput and response times microbenchmarks 
 Projection and smart addressing 
 Selection (100%, 50%, 25% selectivity) 
 Distinct queries 
 Group by queries 
 Regular expression matching 
 En/decryption 
 Multiple concurrent clients 
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Benchmarks (SELECT) 
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• Predicates provided at runtime 
• Selection circuit generic enough for a wide range of selection queries 
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Benchmarks (SELECT) 
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• Farview outperforms both baselines across different selectivity levels (due to the 
high filtering throughput of an FPGA with direct attached memory) 

• Further increase in performance with parallelized pipelines (vectorization) 

Table size Table size Table size 

Response times for selection queries with 100%, 50% and 25 % selectivity, respectively: 



Benchmarks (DISTINCT/GROUP BY) 
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• Line-rate Distinct/Group by pipelines 
• Cuckoo-hashing to reduce collisions 
• No external bucket memory used (limited space in FPGA, might result in overflows)  

Table size 



Benchmarks (DISTINCT/GROUP BY) 
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• Farview outperforms both baselines, advantage scales with the data size 
• Tested scenarios where FPGA memory is sufficient 
• In case of too many collisions, additional post processing needs to be done on the 

client side 

Table size Table size 

Response time comparisons for a distinct query, a group by query, and a group by query by on a stable number of elements 

Number of distinct elements 



Benchmarks (REGEXP_LIKE) 
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• Regular expression matching is compute intensive in software 
• Efficient compilation into NFAs on FPGAs[4] 

 
 
 
 
 
 

 
 

 
 
 
 

String size 

Comparison of REGEXP_LIKE operator on different string 
lengths 

[4] Runtime Parameterizable Regular Expression Operators for Databases, FCCM ’16 
Zsolt István, David Sidler, Gustavo Alonso 



Benchmarks (Concurrent Operators) 
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• Performance of concurrent operator pipelines (DISTINCT operation) 
• Contention between multiple regions reduces the advantage of Farview 

 
 
 
 

Table size 

Performance comparison between 3 concurrent dynamic regions 
serving clients 



Current and Future Work 
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• Implementation of the frontend for Farview (Joining Farview and Modularis) 
• Farview stream circuit compiler 
• Implementation of a storage layer 
• Extending the operator set (joins …) 
• Distributed operation within the HACC cluster 
• Larger scale deployments taking advantage of Enzian with 1 TB of DRAM per board: 

 
 

http://enzian.systems 
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Questions? 
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