

Network and Memory Abstractions on FPGAs for Distributed Applications.

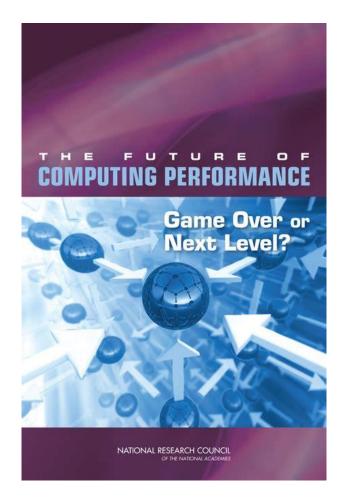
Dario Korolija, Zhenhao He, Gustavo Alonso Systems Group Department of Computer Science ETH Zurich, Switzerland

The tutorial

• Slides available at:

https://systems.ethz.ch/research/data-processing-on-modernhardware/hacc.html

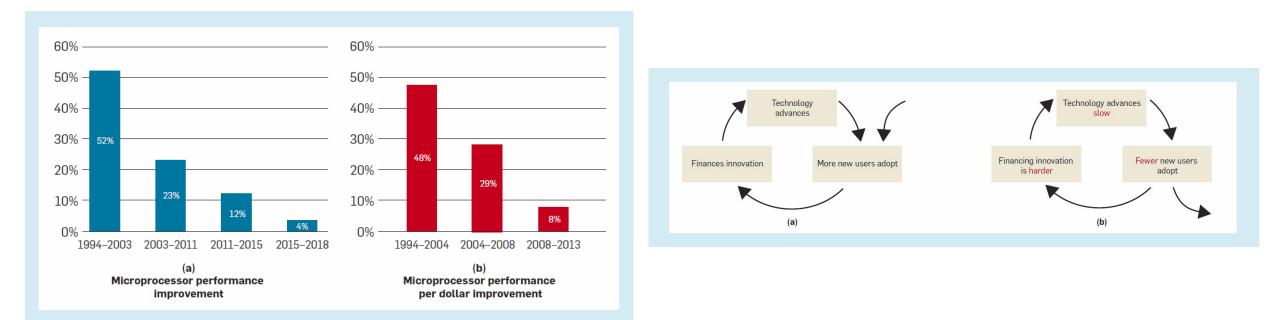
- More tutorials available covering diverse use cases and technologies around FPGAs
 - FPGA'23 tutorial on networking on FPGAs
 - SIGMOD'23 tutorial on data processing on FPGAs
- Also information on the use of the HACC cluster, research papers, etc.


Schedule

- Introduction and Motivation
- Coyote: an open shell for FPGAs
- EasyNet: an open, 100 Gbs TCP/IP network stack
- ACCL: collective network communication for FPGA clusters
- Farview: Smart Disaggregated Memory
- Distributed inference: on recommendation systems

The Hardware Era

Not a new concept ...

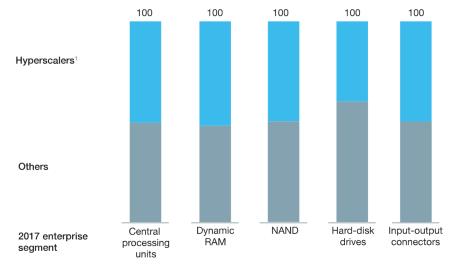

- 2011 Report
- Exponential growth for several decades
- Exponential growth no longer possible
- Switch to multicore and parallelism
 - Energy consumption becomes an issue
 - Multicore introduces parallelism that we do not know how to exploit well
- Situation will not change in near future
- Alternative is specialization
- Either somebody comes up with a new great invention or there is a problem

General purpose computing

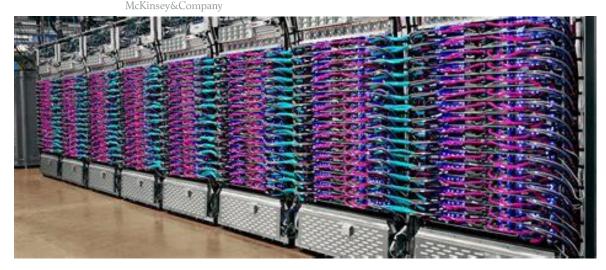
Slow improvements lead to specialization

COMMUNICATIONS PF THE ACM HOME CURRENT ISSUE NEWS BLOGS OPINION RESEARCH PRACTICE CAREERS ARCHIVE VIDEOS Home / Magazine Archive / March 2021 (Vol. 64, No. 3) / The Decline of Computers as a General Purpose Technology / Full Text

The Decline of Computers as a General Purpose Technology

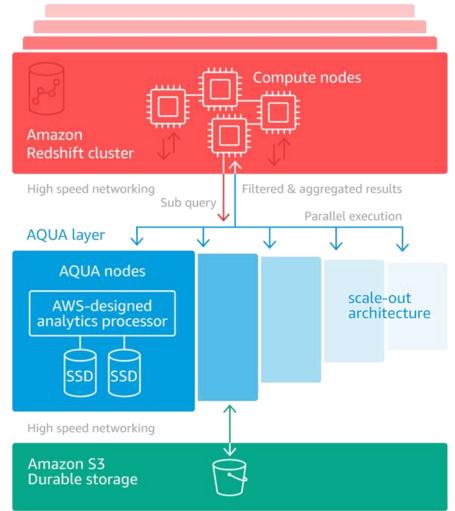


Hyperscalers, commanding a growing share of the market, are emerging as significant customers for many components.


Driving specialization

- The cloud is the big game changer:
 - New business model
 - Economies of scale
 - Very large workloads
- Every hyper scaler is its own "Killer App"
 - The scale makes many things feasible
 - The gains have a very large multiplier

https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/how-high-tech-suppliers-are-responding-to-the-hyperscaler-opportunity



¹Includes Alibaba, Alphabet, Amazon, Baidu, Facebook, Microsoft, and Tencent.

Large deployment of FPGAs in the cloud – examples

- FPGAs as smart accelerator for disaggregated resources
- Amazon AQUA
 - https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazonredshift/
 - Analytic engine with FPGAs
 - Pushing computation closer to data
 - Reduce CPU compute requirement
 - Reduce network traffic

Data Compression (Microsoft Zipline/Corsica)

Corsica: A project zipline ASIC

Compression without compromise:

- High compression ratio
- Low latency
- Inline encryption, authentication
- High total throughput

D	isk write latency with Co		
System and network overhead	Corsica does the work	SSD read/write	I Microson
	Corsica is 15-25 time:	aster than the CPU	
System and network overhead	CPU does the w Compression Encryptic	rk Authentication Data integrity	SSD read/write
		Disk write latency today	

https://azure.microsoft.com/en-us/blog/improved-cloud-service-performance-through-asic-acceleration/

Emerging themes

- Reduced CPU utilization
- Accelerate common operations
- Accelerate the infrastructure supporting the system
- Processing data on the fly
- Near data processing (memory, storage, ...)
- On demand servers and functionality

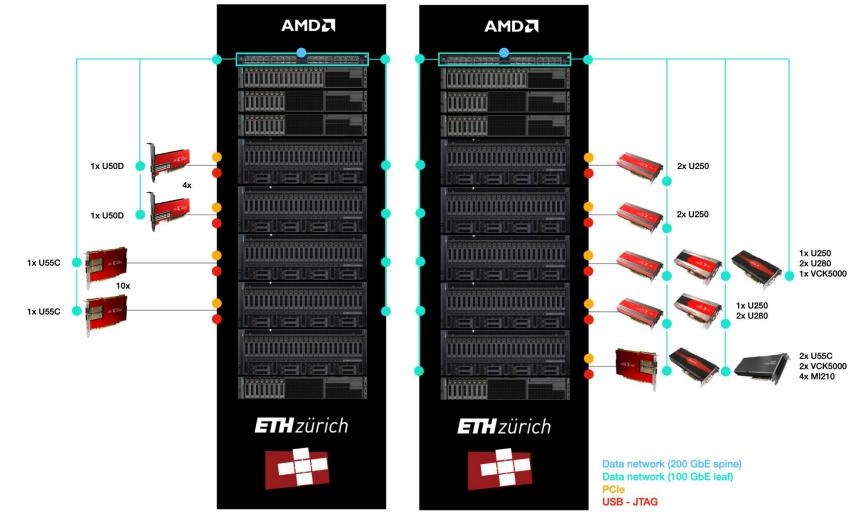
HACC cluster at ETH Zurich

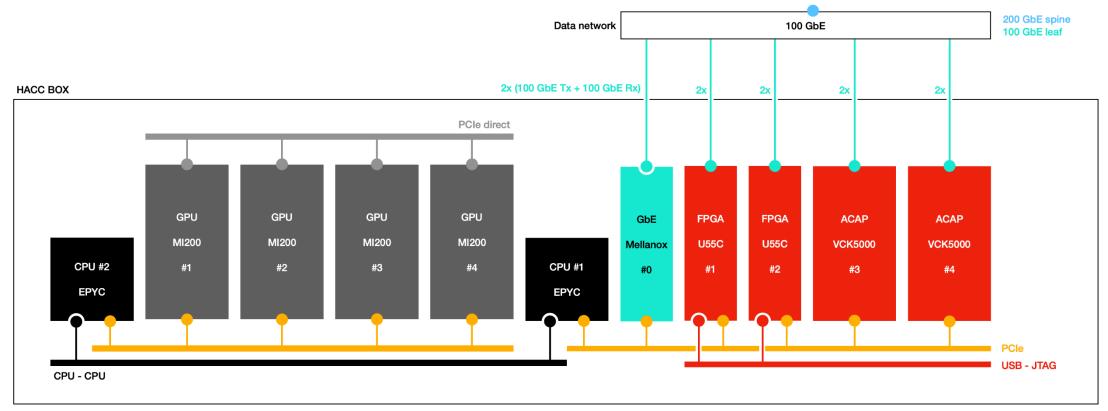
Gustavo Alonso. Systems Group. D-INFK. ETH Zurich

Infrastructure – HACC cluster

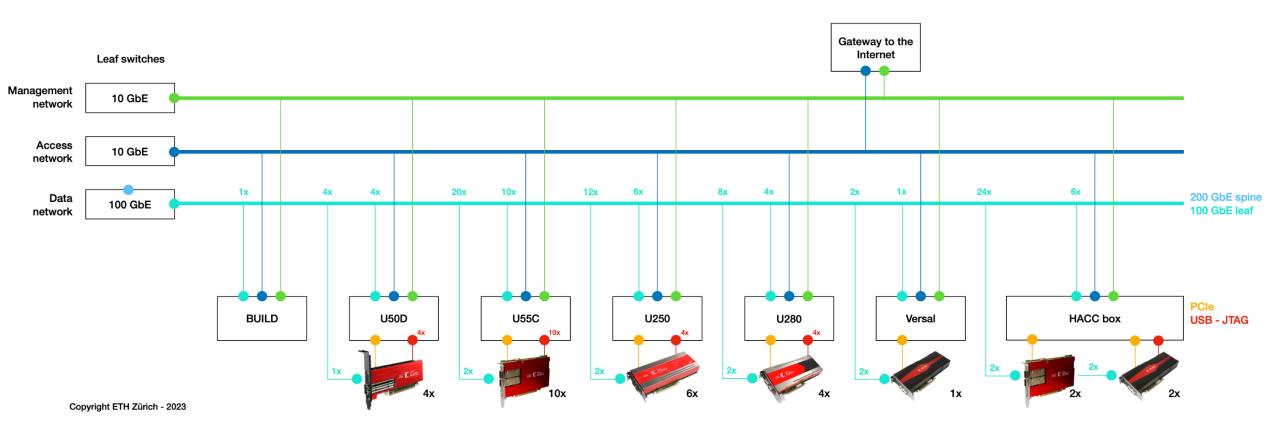
- The Heterogeneous Accelerated Compute Clusters (HACC) program is a unique initiative to support novel research in adaptive compute acceleration for data center settings and high-performance computing (HPC).
- ETH Zurich HACC https://systems.ethz.ch/research/dataprocessing-on-modern-hardware/hacc.html

HACC Cluster


- Target: Facilitate practitioners and researchers exploring distributed applications on FPGA clusters
 - FPGA clusters (HACC and Enzian)
 - Data center standard infrastructure
 - Frameworks and abstractions (Vitis and Coyote)
 - Shell support and abstractions for in-network processing, disaggregated computation, distributed applications ...
 - Systems and applications built on top



Introduction to HACC cluster


Copyright ETH Zürich - 2023

Overview (HACC heterogeneous boxes)

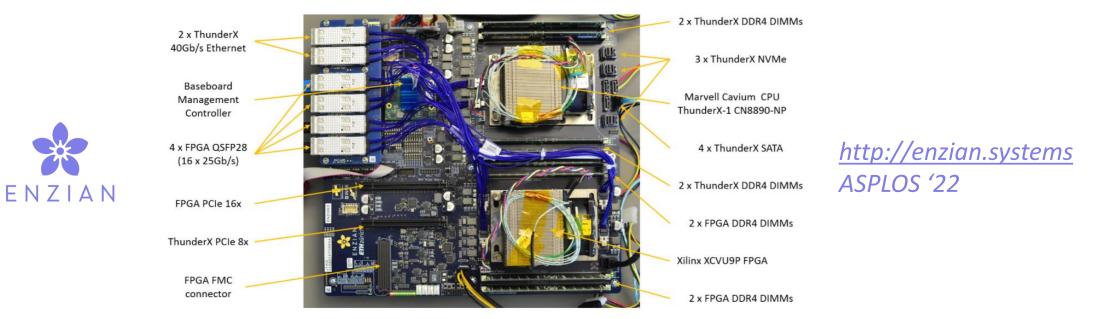
Copyright ETH Zürich - 2023

Overview

Booking system

- Reserving a specific VM/device for a specific period
 - Maximum 5 hours per reservation
- During a reservation, only the selected user can connect to the VM/device
- User can choose different workflows when login
 - Vitis workflow
 - Coyote workflow

AMDZ XLLNX Heterogeneous Accelerated Compute Clusters University Research Partners THIZURICH I ILLINOIS															
New Booking all times are CET (Zurich, Switzerland) Maximum booking time is 5 hours Time range * 2023-02-06 13:29 - 2023-02-06 14:29															
				Use	rs										
	Feb 2023									Mar 2023					
	Su	Мо	Tu	We	Th	Fr	Sa	Su	Mo	ти	We	Th	Fr	Sa	
								26	27	28				4	
		6		8	9	10			6		8	9	10		
	12	13	14	15	16		18	12	13	14	15	<mark>1</mark> 6		18	
	19	20	21	22	23	24	25	19	20	21	22	23	24	25	
	26	27	28				4	26	27	28	29	30	31		
		6		8	9	10				4		6		8	
	13 🗸 : 29 🗸								14 💙 : 29 🎔						


User access

• Access requires registration

- ETH users contact Gustavo Alonso
- All others through AMD Xilinx (HACC program)
- Users get guest account at ETH (renewable)

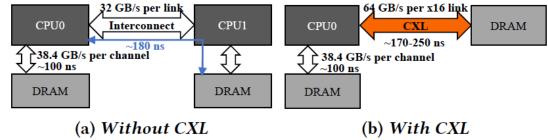
Enzian

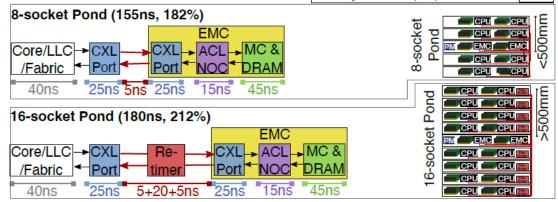
- Research computer developed within the Systems Group at ETH
- Designed for computer systems software research, deliberately over-engineered
- Big server-class CPU closely coupled to a large FPGA, with ample main memory and network bandwidth on both sides
- Cache-coherent asymmetric NUMA system

Opportunities for FPGAs

The future of accelerators

TPP: Transparent Page Placement for CXL-Enabled Tiered Memory


Hasan Al Maruf*, Hao Wang[†], Abhishek Dhanotia[†], Johannes Weiner[†], Niket Agarwal[†], Pallab Bhattacharya[†], Chris Petersen[†], Mosharaf Chowdhury^{*}, Shobhit Kanaujia[†], Prakash Chauhan[†]


University of Michigan* Meta Inc.[†]

Pond: CXL-Based Memory Pooling Systems for Cloud Platforms

Huaicheng Li[†], Daniel S. Berger^{*‡}, Stanko Novakovic^{*}, Lisa Hsu^{*}, Dan Ernst^{*}, Pantea Zardoshti*, Monish Shah*, Samir Rajadnya*, Scott Lee*, Ishwar Agarwal*, Mark D. Hill^{*°}, Marcus Fontoura^{*}, Ricardo Bianchini^{*}

[†]Virginia Tech and CMU ^{*}Microsoft Azure [‡]University of Washington [°]University of Wisconsin-Madison



METHORY CONTROLLER LINCTING & DTICIN

Disaggregated memory

- CXL memory will not be just memory
- It will be a module with a controller/processor that runs the protocol and manages the memory
- The controller is a great point to add near-data processing capabilities

The tutorial in context

FPGAs in context

- We do not sell or market FPGAs
- FPGAs are the only way to explore:
 - New architectural designs (even to the CPU design level, e.g., RISC-V)
 - New computer architectures (near-memory processing, smart storage, smart NICs, accelerators, etc.)
 - Processing of data streams at line rate
- Are FPGAs difficult?
 - No, this is systems level programming, no less involved than writing your own database engine, operating system, etc.
 - Yes, the tools are not what we are used to in the software world (by a long margin)

Goals

- Showcase open source tools available for researchers
- Facilitate research in data center applications and distributed computing
- Overall: encourage the community to explore this opportunity of achieving higher efficiency in data centers in a context where the new hardware is going to be available, even if for other reasons.