
Vitis Network Example (VNx)

A Lightweight UDP Network Layer for FPGA

Lucian Petrica

2 |

[Public]

VNx Goals

• Provide networking on Vitis platforms for

Alveo cards

• Fast stream transport over routed fabrics

• Low resource overhead

• Easy to link with existing designs that use

streaming kernels

• Portable across Alveo range

• Easy integration & ease of use

• Works out-of-the-box at HACC

• PYNQ-based Python driver

• C++ driver (community contributed)

3 |

[Public]

VNx Architecture

• CMAC kernel

• Configuration is specific to Alveo card and network

interface (if card is multi-port)

• Network Layer

• UDP as transport protocol

• Single channel application interface

• Support for multiple interfaces and cards

• Any Vitis Alveo platform with GT access

• U50, U55C, U200, U250 and U280

• Layered architecture

• Easily adaptable to user needs

QSFP28 1x 100GbE

Dynamic Region

S
ta

ti
c
 R

e
g
io

n
ref clk

156.25MHz

ARP

ICMP

UDP

Network Layer

C
M

A
C

_User

Kernel

GT

Eth

4 |

[Public]

Refresher: Vitis RTL Kernels

5 |

[Public]

Vitis GT Kernels – Networking Flexibility

• RTL kernels which connect to Gigabit Transceiver (GT) pins

• Can implement your choice of MAC

• Documentation here

Production support for all Alveo cards

SLR2

Compute

Kernel

SLR1

SLR0

Shell

X
D

M
A

P
C

Ie

Host

1-8x

10/25GbE

MAC

Compute

Kernel

Compute

Kernel

mem2

mem1

mem0

mem

G

T

QSFP

QSFP

Up to 8x 10/25GbE

or 2x 40/100GbE
User

logic

Vitis Linker can mix

HLS and RTL kernels

Benefits from Floorplanning

(in Vitis config)

https://www.xilinx.com/developer/articles/designing-a-transceiver-based-application-with-vitus.html

6 |

[Public]

CMAC Kernel Implementation

• Vitis-compatible

• Standard AXI-Lite and AXI-Stream interfaces +

GT pins

• Single external kernel clock

• All configuration via AXI-Lite - access to the

CMAC IP register map

• Statistics gathering and readout via AXI-Lite

• RS-FEC capability included in the CMAC IP

• optionally enabled from host code

• Portable across UltraScale+ Alveo cards

• CDC included to internal clock domains

• No fixed clocks required, due to internal CDC

• Optional frame padding to 60 or 64 bytes

CMAC

IP

Auxiliary

Logic

CMAC Kernel

AXI-Lite

GT PinsAXI-Streams

7 |

[Public]

Network Layer

• Based on Limago

• ARP

• Translation between MAC and IP addresses

• ARP table is accessible from host

• ICMP

• ping functionality

• UDP

• Transport protocol

• Host-configured connection/socket table (16 entries)

• TDEST in application interface specify connection ID

• AXI-Stream Interfaces

• 64-byte data (with associated TKEEP)

• 16-bit TDEST carries index in connection table

ARP

ICMP

UDP

Network Layer

AXI-Lite

8 |

[Public]

Basic Example

• Two user kernels

• Memory mapped to stream (mm2s)

• Push data from host to network

• Stream to memory mapped (s2mm)

• Pull data from network to host

• Works for 1 or 2 interfaces, depending on the board

s2mm

ARP

ICMP

UDP

mm2smem0

mem1

X
D

M
A

P
C

Ie
Dynamic RegionStatic Region

512-bit AXI4-Stream + TDEST 512-bit AXI4-Stream

Network Layer

QSFP28 1x 100GbE

ref clk
156.25MHzC

M
A

C

_

GT

9 |

[Public]

Benchmark Example

• Benchmark kernel

• Throughput

• Latency (RTT)
Traffic GeneratorCollector

Benchmark Kernel

ARP

ICMP

UDP

X
D

M
A

P
C

Ie

Dynamic RegionStatic Region

512-bit AXI4-Stream + TDEST 512-bit AXI4-Stream

Network Layer

Switch

benchmark1

benchmark0

benchmark3

benchmark2

mem0

mem1

mem2

mem3

QSFP28 1x 100GbE

ref clk
156.25MHzC

M
A

C

_

GT

10 |

[Public]

Host Code Execution on Heterogeneous Systems

• Steps for application execution

1. Configure the devices
• Download FPGA configuration file

• Configure IP addresses

• ARP Discovery

• Populate UDP table

2. Allocating buffers

3. Writing the buffers to FPGA memory

4. Running the accelerators

5. Reading the buffers from FPGA memory

• How to execute these steps remotely?

Leader

FPGA Network

Follower Follower Follower

Host

Host Host Host

Host Network

setup

11 |

[Public]

Dask-on-PYNQ

• Dask is a flexible library for parallel computing in Python

• PYNQ-on-Alveo as host code

• Notebooks on Jupyter Lab

• Dask class wrapper

• Distributed configuration

• Remote buffer allocation

• Remote task execution

• All the same functionality as PYNQ but distributed!

• Not specific of VNx

12 |

[Public]

Results: Benchmark Application Latency

Scenario RTT @ app

Point to

Point

100GbE

Switch

*Results are included in the Notebooks

13 |

[Public]

Results: Benchmark Application Throughput

Scenario Throughput @ app

Point to Point

100GbE

Switch

*Results are included in the Notebooks

14 |

[Public]

VNx Summary
VNx

Platform(s) U50/U250/U280

Host code pynq (+ dask or MPI)

Transport protocol UDP (unreliable)

Packet reorder No

#100G Interfaces Up to 2, depends on card

#Memory Banks none

#Connections 16

Application Interface Single AXI-Stream bus

Throughput Max (@ 256B+/packet)

RTT 2.75 µs

LUT* 22,773 (1.75%)

FF* 48,914 (1.88%)

BRAM* 58.5 (2.9%)

* Resource consumption for Network Layer only, U280 (xilinx-u280-xdma-201920.3)

• 100 Gb/s UDP networking on Alveo cards

• Lightweight but unreliable

• Ideal for point to point or controlled environment

• Simple interface

• Easy to integrate (compute) kernels

• Two examples designs with companion PYNQ

notebooks

• Dask class for distributed configuration

• Not specific of VNx

• Python driver on top of PYNQ

• C++ driver, community contributed

• Open source

• https://github.com/Xilinx/xup_vitis_network_example

https://github.com/Xilinx/xup_vitis_network_example

15 |

[Public]

Preview: HiveNet ROCE Kernel

• ROCE protocol enables reliable transport

over UDP with retransmission

• HiveNet is a Vitis-compatible ROCE kernel

currently under validation

• User interface similar to VNx (AXI-Streams

with 13-bit TDEST for connection ID)

• Can use same CMAC kernel as VNx

• Not as portable currently, utilizes fixed clocks

only available on select platforms e.g. U55C

• Higher resource utilization compared to VNx,

requirement for HBM access

https://github.com/Xilinx/AlveoLink

16 |

[Public]

Disclaimer & Attribution

Timelines, roadmaps, and/or product release dates shown in these slides are plans only and subject to change.

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain

technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this. Advanced Micro Devices, Inc. makes no representations or

warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or

fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any

intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in

AMD's Standard Terms and Conditions of Sale.

©2023 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Athlon, CDNA, EPYC, Infinity Fabric Radeon, RDNA, ROCm, Ryzen, Ryzen Threadripper, Xilinx, the Xilinx

logo, Alveo, Artix, Kintex, Spartan, Versal, Vitis, Virtex, and Zynq and combinations thereof are trademarks of Advanced Micro Devices, Inc. Microsoft is registered trademark of Microsoft

Corporation in the US and other jurisdictions. SPEC®, SPECrate®, SPECint and SPEC CPU® are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org

for more information. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

	Default Section
	Slide 1: Vitis Network Example (VNx) A Lightweight UDP Network Layer for FPGA
	Slide 2: VNx Goals
	Slide 3: VNx Architecture

	Background
	Slide 4: Refresher: Vitis RTL Kernels
	Slide 5: Vitis GT Kernels – Networking Flexibility

	VNx Kernels
	Slide 6: CMAC Kernel Implementation
	Slide 7: Network Layer

	Out of the Box examples
	Slide 8: Basic Example
	Slide 9: Benchmark Example

	Distributed Configuration
	Slide 10: Host Code Execution on Heterogeneous Systems
	Slide 11: Dask-on-PYNQ
	Slide 12: Results: Benchmark Application Latency
	Slide 13: Results: Benchmark Application Throughput
	Slide 14: VNx Summary
	Slide 15: Preview: HiveNet ROCE Kernel
	Slide 16: Disclaimer & Attribution
	Slide 17

