
Compiler Design
Spring 2018

9 Register allocation

1

Thomas R. Gross

Computer Science Department
ETH Zurich, Switzerland

Outline

§ 9.1 Introduction
§ Live range
§ Interference graph

§ 9.2 Graph coloring
§ 9.3 Live range spilling
§ 9.4 Live range splitting

2

9.1 Register allocation
§ IA32 demands that (at least) one operand of an instruction is in a register

§ Other machines (RISC architectures like MIPS, Power, SPARC, …) demand that all
operands reside in registers

§ There is a finite number of registers
§ Given an expression tree, choice of evaluation order may help (reduce register

demands)
§ Some expression trees require more registers than provided by the target

architecture

§ Compiler must manage
§ Which operand resides in a register
§ Which register is used to hold operand

3

Register allocation

§ Many approaches, many papers…
§ Interesting problem: compiler must manage a limited

resource
§ Try to do a good job
§ Finding a perfect (optimal) solution not practical

4

Recall: Code generation for operand accesses

§ (Back in lecture ”7.0 Code generation”)
§ Approach: produce code (select instructions) and assume

unlimited number of registers
§ “Virtual registers”
§ Later phase maps virtual registers to real registers

§ (Recommended) alternative for Homework 4:
Handle register shortage “on the fly”
§ Need a register? Free a register
§ Save register contents onto stack

5

6

Register allocation: Problem statement

§ (Let’s assume code generator uses virtual registers)
§ HotSpot C1 compiler also uses this approach

§ High-level IR – uses virtual registers
§ Low-level IR– uses real registers

§ Given an IR program with virtual registers v1, v2, …
§ Decide when a virtual register is assigned to a real (physical)

register
§ Like %eax, %ebx, …

7

Register allocation: Problem statement

§ If no physical register is available then store virtual register
in memory
§ Retrieve and store as needed

§ Start: find out where virtual registers are live
§ Two virtual registers cannot be given same register if alive at the same

point P in the program
§ “live simultaneously”

8

Live ranges
§ Range where a { virtual register | variable } is live

§ Range: a sequence of instructions
v1 = a + b
c = v1 + k
v2 = b * 2
v3 = v1 + v2
d = v3 * j
v4 = v3 + 1
e = v4 * 2

9v2v1 v3 v4

Computing live ranges

§ Virtual register live if there is another use
§ Idea: treat virtual registers like variables in global dataflow

§ Compute liveness information

§ Set LP: virtual registers live at point P

10

Live ranges
§ Range where a virtual register is live

§ Range: a sequence of instructions
v1 = a + b
c = v1 + k
v2 = b * 2
v3 = v1 + v2
d = v3 * j
v4 = v3 + 1
e = v4 * 2

11

L=∅
L={v1}
L={v1}
L={v1,v2}
L={v3}
L={v3}
L={v4}

§ What about normal variables? Consider
§ ISlightly) different instructions

v1 = a + b
c = v1 + d
v2 = b * 2
v3 = v1 + v2
b = v3 * d
v4 = v3 + 1
e = v4 * b

12
v2v1 v3 v4 b da

Live ranges

§ Range where a { virtual register | variable } is live

v1 = a + b
c = v1 + d
v2 = b * 2
v3 = v1 + v2
b = v3 * d
v4 = v3 + 1
e = v4 * b

13

L={a,b,d}
L={v1,b,d}
L={v1,b,d}
L={v1,v2,d}
L={v3,d}
L={v3,b}
L={v4,b}

Computing live ranges

§ Virtual register live if there is another use
§ Idea: treat virtual registers like variables in global dataflow

§ Compute liveness information
§ Compute reaching definitions
§ Set LP: virtual registers live at point P

16

19

Live ranges
§ One possible understanding: live range ends “on the right hand

side” of a statement, starts on “the left hand side”
§ Allows us to realize that a register freed by an operand can be used for the

result
§ Many compilers do not work with such a fine-grained model

§ Live range extends till the end of the statement, live range includes
complete statement

§ Model of live range can be extended to basic blocks
§ Live range of a variable or virtual register v is the set of basic blocks Bi such

that v ‘s live range includes a statement S from Bi.

21

§ Compiler computes live ranges – here shown for statements
§ Live ranges inside a basic block

v1 = a + b
c = v1 + d
v2 = b * 2
v3 = v1 + v2
b = v3 * d
v4 = v3 + 1
e = v4 * b

22
v2v1 v3 v4 b da

Recap: Problem statement
§ Decide when a virtual register is assigned to a real (physical)

register
§ Like %eax, %ebx, …

§ If no physical register is available then store virtual register in
memory
§ Retrieve and store as needed

§ Start: find out where virtual registers are live
§ Two virtual registers cannot be given same register if alive at the same

point P in the program
§ Note: virtual registers and program variables are treated the same
§ "Live range"

23

Simplification of example

v1 = a + b
c = v1 + d
v2 = b * 2
v3 = v1 + v2
b = v3 * d
v4 = v3 + 1
e = v4 * b

25
v2v1 v3 v4 b da

Simplification of example

v1 = 1 + b
c = v1 + d
v2 = b * 2
v3 = v1 + v2
b = v3 * d
v4 = v3 + 1
e = v4 * b

26
v2v1 v3 v4 b da

Register allocation: Problem statement

§ If no physical register is available then store virtual register
in memory
§ Retrieve and store as needed

§ Start: find out where virtual registers are live
§ Two virtual registers cannot be given same register if alive at the same

point P in the program
§ “live simultaneously” -- live ranges of virtual registers overlap

27

Interference
§ Two live ranges interfere if they overlap

v1 = 1 + b
c = v1 + d
v2 = b * 2
v3 = v1 + v2
b = v3 * d
v4 = v3 + 1
e = v4 * b

28
v2v1 v3 v4 b d

Interference graph

§ Nodes of the graph: live ranges
§ Labelled with name of { virtual register | variable }

§ Note: for variables subscript distinguishes between different live ranges for same
variable

§ Remember: There are multiple definitions for the same variable

§ Edges indicate if the live ranges interfere

29

Interference graph

§ Nodes of the graph: live ranges
§ Edges indicate if the live ranges interfere

30

Interference – precise view
§ Two live ranges interfere if they overlap

v1 = 1 + b
c = v1 + d
v2 = b * 2
v3 = v1 + v2
b = v3 * d
v4 = v3 + 1
e = v4 * b

31
v2v1 v3 v4 b1 db2

Interference graph

§ Nodes of the graph: live ranges
§ Edges indicate if the live ranges interfere

32

v2

v1 v3

v4

b1

d
b2

Observation

§ We assigned one node in the graph for every definition of a
variable v
§ Remember: Live range is the intersection of instructions

where a definition of variable v reaches with instructions
where variable v is live

§ What would happen if we used only liveness information?

33

Live ranges
§ Range where a { virtual register | variable } is live

v1 = a + b
c = v1 + d
v2 = b * 2
v3 = v1 + v2
b = v3 * d
v4 = v3 + 1
e = v4 * b

34

L={a,b,d} R={Da,Db,Dd}
L={v1,b,d} R={Dv1,Db,Dd}
L={v1,b,d} R={Dv1,Db,Dc,Dd}
L={v1,v2,d} R={Dv1,Dv2,Db,Dd,Dc}
L={v3,d} R={Dv1,Dv2,Dv3,Db,Dd,Dc}
L={v3,b} R={Dv1,Dv2,Dv3,D’b,Dd,Dc}
L={v4,b} R={Dv1,Dv2,Dv3,Dv4,D’b,Dd,Dc}

Interference graph
§ w/ reaching definitions § w/o reaching definitions

36

v2

v1 v3

v4

b1

d b2

v2

v1 v3

v4

b

d

Observation

§ We assigned one node in the graph for every definition of a
variable v
§ Remember: Live range is the intersection of instructions

where a definition of variable v reaches with instructions
where variable v is live

§ What would happen if we used only liveness information?
§ Unnecessary restriction: Both “versions” of variable b must

be kept in the same register
§ Also, we have one node the interferes with four others

37

9.2 Register allocation and graph coloring

§ Register allocation problem modeled as graph coloring
problem

§ Given K colors, determine colors for the nodes of the
interference graph so that nodes connected by an edge have
different colors
§ If possible we say the graph is K-colorable

§ If live ranges are simultaneous (there is an edge in the graph)
they have different colors (reside in different registers)

38

Interference graph
§ Assume three colors

§ EAX
§ EBX
§ EDX

40

v2

v1 v3

v4

b1

d b2

Interference graph
§ Assume two colors

41

v2

v1 v3

v4

b1

d b2

Graph coloring

§ Can we efficiently find a coloring for a given graph?
§ Can we compute the minimal number of colors required to

color a given graph?
§ What can we do if there are not enough registers?

§ I.e., for some number K we cannot find a coloring with K colors, and
we cannot increase K

42

Graph coloring

§ Unfortunately a hard problem
§ K=2 special case…
§ For K > 2
§ Is a graph G K-colorable? NP-complete

§ Better bounds for special graphs – but interference graphs
rarely have these special properties
§ Cycles, chordal graphs, ladders, …

43

45

Example

b

ed

eax

ebx

Color Register

a

c

Stack:

edx

g

cb

ed

eax

ebx

Color Register

a

Stack:

c

edx

g

cb

ed

eax

ebx

Color Register

a

Stack:

e
c

edx

g

cb

ed

eax

ebx

Color Register

a

Stack:

d
e
c

edx

g

cb

ed

eax

ebx

Color Register

a

Stack:

d
e
c

edx

g

cb

ed

eax

ebx

Color Register

a

Stack:

e
c

edx

g

cb

ed

eax

ebx

Color Register

a

Stack:

c

edx

g

cb

ed

eax

ebx

Color Register

a

Stack:

edx

g

Graph coloring
§ Kempe’s algorithm (1879), for K > 2
§ Phase 1: Remove a node if it has K-1 or fewer neighbors

§ Such nodes can later be colored w/o problems
§ Push on a stack when removing
§ Remove edges connected to node
§ Remove …

… until there are K nodes – optimistic
§ Not guaranteed to succeed
§ Can also stop with a graph such that each node has ≥ K neighbors

55

eax

ebx

Color Register

f

Stack:

edx

g b

c

a

d

e
f

eax

ebx

Color Register

f

Stack:

edx

g b

c

a

d

e
f

eax

ebx

Color Register

f

Stack:

edx

g b

c

a

d

e g
f

eax

ebx

Color Register

f

Stack:

edx

g b

c

a

d

e
e
g
f

Graph coloring

§ Kempe’s algorithm removes nodes with < K edges
§ This step is called simplification

§ Simplification either ends with an empty graph or a graph
such that each node has ≥ K edges
§ Now we have to do something

§ Either try out all possible K-colorings
§ Graph surgery

60

Graph surgery

§ (If all nodes have ≥ K neighbors)
§ Idea: Pick a node and remove it

§ We discuss later how to pick a node (heuristics)
§ Node is spilled: won’t get a register and is assigned to memory
§ Remove until no node has ≥ K neighbors

§ Color (remaining) graph
§ Color nodes pushed on stack in Phase 1

61

Outline

§ 9.1 Introduction
§ Live range
§ Interference graph

§ 9.2 Graph coloring
§ 9.3 Live range spilling
§ 9.4 Live range splitting

62

9.3 Spilling

§ Given a graph that has been simplified (but is not empty)
§ Pick a node and remove this node and all its edges from the

graph
§ The live range represented by this node is not allocated a register
§ It is “spilled” – the home location is in memory

§ We discuss later how to pick a node

63

Graph coloring, revised
§ Phase 1: Remove a node if it has K-1 or fewer neighbors

§ Push on a stack when removing
§ Remove … until all nodes have ≥ K neighbors or the graph is empty

§ Phase 2: (If all nodes have ≥ K neighbors): Pick a node and remove
it with all its edges
§ Continue simplification

§ Can’t continue as all nodes have ≥ K neighbors: Pick a node and remove it

§ Phase 3: (Graph is empty): Color graph
§ Pop node from stack
§ Assign color

64

Spilled live ranges
§ A spilled live range resides in memory

§ Create temporary, usually stored in the activation record

§ What should we do with a spilled live range when generating
code?

v1 = a + b
c = v1 + d
v2 = b * 2
v3 = c + 5

b, c are spilled 65

v2v1 v3 a b dc

66

Spilled live ranges
§ Target machine (x86) requires that at least one operand

resides in a register
§ The other one can be supplied by memory

§ Spilled live range ⇒ operand in memory
§ v1 = a + b : constraint that b must be in memory
§ OUCH
§ Now the register allocator determines instruction selection

§ a must reside in register R, R must hold v1
§ a must be dead or must be copied

§ Must run register allocation prior to instruction selection 67

Phase coupling

§ Code selection depends on code scheduling
§ Code scheduling depends on register allocation
§ Register allocation depends on code selection
§ Close coupling of different code generator phases 69

Code selection

Register allocation Code scheduling

Spilled live ranges
§ Target machine (x86) requires that at least one operand

resides in a register
§ The other one can by supplied by memory

§ Spilled live range ⇒ operand in memory
§ v1 = a + b : constraint that b must be in memory

§ And what if a is spilled as well?
§ Same problem for RISC machine: All operands must be in a register

70

Spilled live ranges
§ Code generator may need a register for a spilled live range

(… or for two live ranges, or for destination if destination live
range is spilled)

§ Option 1: Spare registers
§ Code generator keeps spare registers that are not allocated by register

allocator
§ 1 register enough on IA32, 2 needed on RISC machine

§ Depends… not all registers may be created equal

§ Register allocator finds (K-2)-coloring
§ or (K-1)-coloring

§ Maybe OK on a RISC with 32 or 64 registers
71

Option 2: More graph surgery

§ When spilling a node, introduce a new temporary, rewrite
the IR and start over

§ Example
v1 = a + b

with b spilled. Introduce a temporary temp101, stored at
(say) ebp+40

§ Rewrite to temp101 = *(ebp + 40)
v1 = a + temp101

§ *(ebp+40): shorthand for “load temporary” 72

Temporary live ranges
§ Live range of temporaries is very small

§ Just one instruction

§ Graph should be easier to color
§ Temporary has smaller number of edges than spilled live range
§ A different temporary is used for each use of the spilled variable

§ Rebuild interference graph and start over
§ And if the graph still cannot be K-colored: Pick another node for

spilling
§ As long as number of registers > number of (asm) operands the

process terminates with a legal K-coloring 74

Example
§ Consider an interference graph with 5 variables

75v2v1 v3 v4 v5

v1

v2

v3

v5

v4

Example with 3 registers
§ v4 is removed by

simplification
§ All remaining nodes ≥ 3

edges

§ Let v5 be spilled

76

v1

v2

v3

v5

v4

Interference graph reconstruction
§ Introduction of temporaries adds

nodes to interference graph

77
v2v1 v3 t1 … t6

v1

v3

v2 t4

t2

t1

t3

v4 t6

t5

v4

Another attempt to color
§ New interference graph can be

colored (K=3)

78

v1

v3

v2 t4

t2

t1

t3

v4 t6

t5

More graph surgery

§ A (better?) approach is to split the live range

79v2v1 v3 v4 v5 v2v1 v3 v4 v5-1 v5-4…

A new interference graph

81

v2v1 v3 v4 v5-1 v5-4

v1

v2

v3

v5-3

v5-2

v5-1 v4 v5-4

9.4 Splitting

§ Splitting reduces number of instructions that are needed to
load (store) “temporary” variables
§ Variables that are spilled to memory

§ Which live ranges to split?
§ Where to split them?

82

Spilling and splitting

§ Two techniques to reduce register pressure
§ Could be done in either order

§ Splitting in the limit like spilling (separate live range for each use)

§ Need to discuss spilling decisions before splitting

83

Graph coloring, revised

§ First: Simplification
§ (Kempe’s algorithm)

§ (All nodes have ≥ K neighbors): Pick a node and remove it with all
its edges
§ Continue simplification

§ Can’t continue as all nodes have ≥ K neighbors: Pick a node and remove it

§ (Graph is empty): Color graph
§ Pop node from stack
§ Assign color

84

Picking the spill victim

§ A number of heuristics have been tried.
§ Pick a node at random (Chaitin, 1982)
§ Pick node with lowest spill cost estimate (Chow, 1983)

§ How do we estimate spill cost?

§ Pick node with lowest use count
§ …

85

Estimating spill cost

§ Need to estimate how often a basic block is executed
§ Use profile from past execution of program

§ Input dependent?

§ Use profile of current execution
§ Can be done in JIT (Just-in-time compiler)
§ Guess: past predicts the future

86

Estimating spill cost

87

Consider a well-structured
program

Bars indicate a loop

Profile from past execution
may give us “trip count”
(number of times a loop body
is executed)

Estimating spill cost

§ Need to estimate how often a basic block is executed
§ Use profile from past execution of program

§ Input dependent?

§ Use profile of current execution
§ Can be done in JIT (Just-in-time compiler)
§ Guess: past predicts the future

§ Guess by rule-of-ten: loops execute 10 times

88

89

10

10

100

100

100

1000

1000

10000

In the absence of profile
information we can guess:
each loop is executed 10
times.

Estimating spill cost

Extensions

§ Spill cost estimate can be extended to identify splitting
candidates

§ Don’t forget: interference graph rebuilt after each split
decision
§ Requires computation of live ranges!

90

9.5 Comments

§ Sometimes spills may not even be necessary.

91

Example – 2 registers

b

de

eax

ebx

Color Register

a

c

Stack:
f

b

de

eax

ebx

Color Register

a

c

Stack:

f

f

b

de

eax

ebx

Color Register

a

c

Stack:

e
f

f

b

de

eax

ebx

Color Register

a

c

Stack:

c
e
f

f

b

de

eax

ebx

Color Register

a

c

Stack:

d
c
e
f

f

b

de

eax

ebx

Color Register

a

c

Stack:

b
d
c
e
f

f

b

de

eax

ebx

Color Register

a

c

Stack:
a
b
d
c
e
f

f

b

de

eax

ebx

Color Register

a

c

Stack:

b
d
c
e
f

f

b

de

eax

ebx

Color Register

a

c

Stack:

d
c
e
f

f

b

de

eax

ebx

Color Register

a

c

Stack:

c
e
f

f

b

de

eax

ebx

Color Register

a

c

Stack:

e
f

f

b

de

eax

ebx

Color Register

a

c

Stack:

f

f

b

de

eax

ebx

Color Register

a

c

Stack:
f

Example

§ Although each node (after removing e, f) has ≥ 2 edges, we
find a 2-coloring.

§ Can we exploit this insight in the register allocator?

105

107

Coalescing (cont’d)
§ We can coalesce these live ranges

§ Removes the need to have a copy assignment
§ May make life harder for register allocator as combined node (v1/v2) may not be

removed by simplification

§ Heuristics to decide when to coalesce

108

v1/v2

Moves, again

§ Another example of a copy
= v2 + …

v3 = v2 // not last use of v2

= … + v3

= v2

§ Now live ranges of v2 and v3 conflict

109

v3v2

110

Potential conflicts

§ If one live range duplicates the value of another live range
then give special treatment to edges in interference graph

= v2 + …
v3 = v2 // last use of v2

= … + v3
= v3

111

v3v2§ Edge v2—v3 indicates copy
property
§ Attempt to give these nodes the

same color

Machine features

§ Some instructions work with specific registers
§ mul on x86: reads eax, defines eax and edx

§ Must make sure operands are in these registers
§ Other registers not allowed

§ “Pre-color” these operands
§ Assures that operand is assigned to this register
§ Color node for operand in interference graph
§ Pre-colored nodes are not removed during simplification
§ Coloring starts when all other nodes are removed 112

Machine features

113

§ The interference graph for x86 architectures must reflect
that accesses to different parts of the same physical register
are possible
§ Low order bytes and lower half-word have separate names

§ 64bit register space shares resources with 32bit registers (and 16 bit
registers (and 8 bit registers))

§ Not a topic for our compiler

ah al

ax

eax

ra

Register allocation…

§ Once considered to be beyond the reach of compilers
§ Need for expert programmers

§ C programming language contains register storage class
§ Hint to compiler to put variable into a CPU register
§ register int loopcntr;

114

Register allocation…

§ First formulation as coloring problem (paper ~1970s by
Cocke, Yershov, Schwartz, first workable implementation
published by Chaitin in 1981)

§ Today: Compiler produces good results in many cases
§ Some compilers produce multiple color assignments and then pick

“the best”
§ Even C compilers ignore the register directive

115

Register allocation…

§ Many iterations may be needed
§ Various heuristics create many options

§ Major steps
§ Liveness analysis, interference graph construction
§ Coloring – Simplification
§ Spill/split decisions

§ Rewrite code
§ Actual coloring

116

