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9.1 Register allocation
§ IA32 demands that (at least) one operand of an instruction is in a register

§ Other machines (RISC architectures like MIPS, Power, SPARC, …) demand that all
operands reside in registers

§ There is a finite number of registers
§ Given an expression tree, choice of evaluation order may help (reduce register 

demands)
§ Some expression trees require more registers than provided by the target 

architecture

§ Compiler must manage
§ Which operand resides in a register
§ Which register is used to hold operand
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Register allocation

§ Many approaches, many papers…
§ Interesting problem: compiler must manage a limited 

resource
§ Try to do a good job
§ Finding a perfect (optimal) solution not practical
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Recall: Code generation for operand accesses

§ (Back in lecture ”7.0 Code generation”)
§ Approach: produce code (select instructions) and assume 

unlimited number of registers
§ “Virtual registers”
§ Later phase maps virtual registers to real registers

§ (Recommended) alternative for Homework 4:
Handle register shortage “on the fly”
§ Need a register? Free a register
§ Save register contents onto stack
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Register allocation: Problem statement

§ (Let’s assume code generator uses virtual registers)
§ HotSpot C1 compiler also uses this approach

§ High-level IR – uses virtual registers
§ Low-level IR– uses real registers

§ Given an IR program with virtual registers v1, v2, …
§ Decide when a virtual register is assigned to a real (physical) 

register
§ Like %eax, %ebx, …
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Register allocation: Problem statement

§ If no physical register is available then store virtual register 
in memory
§ Retrieve and store as needed

§ Start: find out where virtual registers are live
§ Two virtual registers cannot be given same register if alive at the same 

point P in the program
§ “live simultaneously”
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Live ranges
§ Range where a { virtual register | variable } is live

§ Range:  a sequence of instructions
v1 = a + b
c = v1 + k
v2 = b * 2
v3 = v1 + v2
d = v3 * j
v4 = v3 + 1
e = v4 * 2

9v2v1 v3 v4



Computing live ranges

§ Virtual register live if there is another use
§ Idea: treat virtual registers like variables in global dataflow

§ Compute liveness information

§ Set LP: virtual registers live at point P
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Live ranges
§ Range where a virtual register is live

§ Range:  a sequence of instructions
v1 = a + b
c = v1 + k
v2 = b * 2
v3 = v1 + v2
d = v3 * j
v4 = v3 + 1
e = v4 * 2
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L=∅
L={v1}
L={v1}
L={v1,v2}
L={v3}
L={v3}
L={v4}



§ What about normal variables? Consider
§ ISlightly) different instructions

v1 = a + b
c = v1 + d
v2 = b * 2
v3 = v1 + v2
b = v3 * d
v4 = v3 + 1
e = v4 * b
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Live ranges

§ Range where a { virtual register | variable } is live

v1 = a + b
c = v1 + d
v2 = b * 2
v3 = v1 + v2
b = v3 * d
v4 = v3 + 1
e = v4 * b
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L={a,b,d}
L={v1,b,d}
L={v1,b,d}
L={v1,v2,d}
L={v3,d}
L={v3,b}
L={v4,b}



Computing live ranges

§ Virtual register live if there is another use
§ Idea: treat virtual registers like variables in global dataflow

§ Compute liveness information
§ Compute reaching definitions
§ Set LP: virtual registers live at point P
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Live ranges
§ One possible understanding: live range ends “on the right hand 

side” of a statement, starts on “the left hand side”
§ Allows us to realize that a register freed by an operand can be used for the 

result
§ Many compilers do not work with such a fine-grained model

§ Live range extends till the end of the statement, live range includes 
complete statement

§ Model of live range can be extended to basic blocks
§ Live range of a variable or virtual register v is the set of basic blocks Bi such 

that v ‘s live range includes a statement S from Bi.
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§ Compiler computes live ranges – here shown for statements
§ Live ranges inside a basic block

v1 = a + b
c = v1 + d
v2 = b * 2
v3 = v1 + v2
b = v3 * d
v4 = v3 + 1
e = v4 * b

22
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Recap: Problem statement
§ Decide when a virtual register is assigned to a real (physical) 

register
§ Like %eax, %ebx, …

§ If no physical register is available then store virtual register in 
memory
§ Retrieve and store as needed

§ Start: find out where virtual registers are live
§ Two virtual registers cannot be given same register if alive at the same 

point P in the program
§ Note: virtual registers and program variables are treated the same
§ "Live range"
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Simplification of example

v1 = a + b
c = v1 + d
v2 = b * 2
v3 = v1 + v2
b = v3 * d
v4 = v3 + 1
e = v4 * b
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Simplification of example

v1 = 1 + b
c = v1 + d
v2 = b * 2
v3 = v1 + v2
b = v3 * d
v4 = v3 + 1
e = v4 * b
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Register allocation: Problem statement

§ If no physical register is available then store virtual register 
in memory
§ Retrieve and store as needed

§ Start: find out where virtual registers are live
§ Two virtual registers cannot be given same register if alive at the same 

point P in the program
§ “live simultaneously”  -- live ranges of virtual registers overlap
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Interference
§ Two live ranges interfere if they overlap

v1 = 1 + b
c = v1 + d
v2 = b * 2
v3 = v1 + v2
b = v3 * d
v4 = v3 + 1
e = v4 * b

28
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Interference graph

§ Nodes of the graph: live ranges
§ Labelled with name of { virtual register | variable }

§ Note: for variables subscript distinguishes between different live ranges for same 
variable

§ Remember: There are multiple definitions for the same variable

§ Edges indicate if the live ranges interfere
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Interference graph

§ Nodes of the graph: live ranges
§ Edges indicate if the live ranges interfere
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Interference – precise view
§ Two live ranges interfere if they overlap

v1 = 1 + b
c = v1 + d
v2 = b * 2
v3 = v1 + v2
b = v3 * d
v4 = v3 + 1
e = v4 * b

31
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Interference graph

§ Nodes of the graph: live ranges
§ Edges indicate if the live ranges interfere
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Observation

§ We assigned one node in the graph for every definition of a 
variable v
§ Remember: Live range is the intersection of instructions

where a definition of variable v reaches with instructions
where variable v is live

§ What would happen if we used only liveness information?
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Live ranges
§ Range where a { virtual register | variable } is live

v1 = a + b
c = v1 + d
v2 = b * 2
v3 = v1 + v2
b = v3 * d
v4 = v3 + 1
e = v4 * b
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L={a,b,d}    R={Da,Db,Dd}
L={v1,b,d}   R={Dv1,Db,Dd}
L={v1,b,d}   R={Dv1,Db,Dc,Dd}
L={v1,v2,d}  R={Dv1,Dv2,Db,Dd,Dc}
L={v3,d}  R={Dv1,Dv2,Dv3,Db,Dd,Dc}
L={v3,b} R={Dv1,Dv2,Dv3,D’b,Dd,Dc}
L={v4,b} R={Dv1,Dv2,Dv3,Dv4,D’b,Dd,Dc}



Interference graph
§ w/ reaching definitions § w/o reaching definitions
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Observation

§ We assigned one node in the graph for every definition of a 
variable v
§ Remember: Live range is the intersection of instructions

where a definition of variable v reaches with instructions
where variable v is live

§ What would happen if we used only liveness information?
§ Unnecessary restriction: Both “versions” of variable b must 

be kept in the same register
§ Also, we have one node the interferes with four others
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9.2 Register allocation and graph coloring

§ Register allocation problem modeled as graph coloring 
problem

§ Given K colors, determine colors for the nodes of the  
interference graph so that nodes connected by an edge have 
different colors
§ If possible we say the graph is K-colorable

§ If live ranges are simultaneous (there is an edge in the graph) 
they have different colors (reside in different registers)
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Interference graph
§ Assume three colors

§ EAX
§ EBX
§ EDX
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Interference graph
§ Assume two colors
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Graph coloring

§ Can we efficiently find a coloring for a given graph?
§ Can we compute the minimal number of colors required to 

color a given graph?
§ What can we do if there are not enough registers?

§ I.e., for some number K we cannot find a coloring with K colors, and 
we cannot increase K
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Graph coloring

§ Unfortunately a hard problem
§ K=2 special case…
§ For K > 2
§ Is a graph G K-colorable? NP-complete

§ Better bounds for special graphs – but interference graphs 
rarely have these special properties
§ Cycles, chordal graphs, ladders, …
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Example
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Graph coloring
§ Kempe’s algorithm (1879), for K > 2
§ Phase 1: Remove a node if it has K-1 or fewer neighbors

§ Such nodes can later be colored w/o problems
§ Push on a stack when removing
§ Remove edges connected to node
§ Remove … 

… until there are K nodes – optimistic
§ Not guaranteed to succeed
§ Can also stop with a graph such that each node has ≥ K neighbors
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Graph coloring

§ Kempe’s algorithm removes nodes with < K edges
§ This step is called simplification

§ Simplification either ends with an empty graph or a graph  
such that each node has ≥ K edges
§ Now we have to do something

§ Either try out all possible K-colorings
§ Graph surgery
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Graph surgery

§ (If all nodes have  ≥ K neighbors)
§ Idea: Pick a node and remove it

§ We discuss later how to pick a node (heuristics)
§ Node is spilled: won’t get a register and is assigned to memory
§ Remove until no node has  ≥ K neighbors

§ Color (remaining) graph
§ Color nodes pushed on stack in Phase 1
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Outline

§ 9.1 Introduction
§ Live range
§ Interference graph

§ 9.2 Graph coloring
§ 9.3 Live range spilling
§ 9.4 Live range splitting
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9.3 Spilling

§ Given a graph that has been simplified (but is not empty)
§ Pick a node and remove this node and all its edges from the 

graph
§ The live range represented by this node is not allocated a register
§ It  is “spilled” – the home location is in memory

§ We discuss later how to pick a node
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Graph coloring, revised
§ Phase 1: Remove a node if it has K-1 or fewer neighbors

§ Push on a stack when removing
§ Remove … until all nodes have  ≥ K neighbors or the graph is empty

§ Phase 2: (If all nodes have ≥ K neighbors): Pick a node and remove 
it with all its edges
§ Continue simplification 

§ Can’t continue as all nodes have ≥ K neighbors: Pick a node and remove it

§ Phase 3: (Graph is empty): Color graph 
§ Pop node from stack
§ Assign color

64



Spilled live ranges
§ A spilled live range resides in memory

§ Create temporary, usually stored in the activation record

§ What should we do with a spilled live range when generating 
code?

v1 = a + b
c = v1 + d
v2 = b * 2
v3 = c + 5

b, c are spilled 65

v2v1 v3 a b dc
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Spilled live ranges
§ Target machine (x86) requires that at least one operand 

resides in a register
§ The other one can be supplied by memory

§ Spilled live range ⇒ operand in memory
§ v1 = a + b : constraint that b must be in memory
§ OUCH
§ Now the register allocator determines instruction selection

§ a must reside in register R, R must hold v1
§ a must be dead or must be copied

§ Must run register allocation prior to instruction selection 67



Phase coupling

§ Code selection depends on code scheduling
§ Code scheduling depends on register allocation
§ Register allocation depends on code selection
§ Close coupling of different code generator phases 69

Code selection

Register allocation Code scheduling



Spilled live ranges
§ Target machine (x86) requires that at least one operand 

resides in a register
§ The other one can by supplied by memory

§ Spilled live range ⇒ operand in memory
§ v1 = a + b : constraint that b must be in memory

§ And what if a is spilled as well?
§ Same problem for RISC machine:  All operands must be in a register

70



Spilled live ranges
§ Code generator may need a register for a spilled live range 

(… or for two live ranges, or for destination if destination live 
range is spilled)

§ Option 1: Spare registers
§ Code generator keeps spare registers that are not allocated by register 

allocator
§ 1 register enough on IA32, 2 needed on RISC machine

§ Depends…  not all registers may be created equal

§ Register allocator finds (K-2)-coloring
§ or (K-1)-coloring

§ Maybe OK on a RISC with 32 or 64 registers
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Option 2: More graph surgery

§ When spilling a node, introduce a new temporary, rewrite 
the IR and start over

§ Example
v1 = a + b

with b spilled. Introduce a temporary temp101, stored at 
(say) ebp+40

§ Rewrite to          temp101 = *(ebp + 40)
v1 = a + temp101

§ *(ebp+40): shorthand for “load temporary” 72



Temporary live ranges
§ Live range of temporaries is very small

§ Just one instruction

§ Graph should be easier to color
§ Temporary has smaller number of edges than spilled live range
§ A different temporary is used for each use of the spilled variable

§ Rebuild interference graph and start over
§ And if the graph still cannot be K-colored: Pick another node for 

spilling
§ As long as number of registers > number of (asm) operands the 

process terminates with a legal K-coloring 74



Example
§ Consider an interference graph with 5 variables
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Example with 3 registers
§ v4 is removed by 

simplification
§ All remaining nodes ≥ 3 

edges

§ Let v5 be spilled
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Interference graph reconstruction
§ Introduction of temporaries adds 

nodes to interference graph
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Another attempt to color 
§ New interference graph can be 

colored (K=3)
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More graph surgery

§ A (better?) approach is to split the live range

79v2v1 v3 v4 v5 v2v1 v3 v4 v5-1 v5-4…



A new interference graph
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9.4 Splitting

§ Splitting reduces number of instructions that are needed to 
load (store) “temporary” variables
§ Variables that are spilled to memory

§ Which live ranges to split?
§ Where to split them?
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Spilling and splitting

§ Two techniques to reduce register pressure
§ Could be done in either order

§ Splitting in the limit like spilling (separate live range for each use)

§ Need to discuss spilling decisions before splitting
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Graph coloring, revised

§ First: Simplification
§ (Kempe’s algorithm)

§ (All nodes have  ≥ K neighbors): Pick a node and remove it with all 
its edges
§ Continue simplification 

§ Can’t continue as all nodes have ≥ K neighbors: Pick a node and remove it

§ (Graph is empty): Color graph 
§ Pop node from stack
§ Assign color

84



Picking the spill victim

§ A number of heuristics have been tried.
§ Pick a node at random (Chaitin, 1982)
§ Pick node with lowest spill cost estimate (Chow, 1983)

§ How do we estimate spill cost?

§ Pick node with lowest use count 
§ …
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Estimating spill cost

§ Need to estimate how often a basic block is executed
§ Use profile from past execution of program

§ Input dependent?

§ Use profile of current execution
§ Can be done in JIT (Just-in-time compiler)
§ Guess: past predicts the future
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Estimating spill cost

87

Consider a  well-structured 
program

Bars indicate a loop

Profile from past execution 
may give us “trip count” 
(number of times a loop body 
is executed)



Estimating spill cost

§ Need to estimate how often a basic block is executed
§ Use profile from past execution of program

§ Input dependent?

§ Use profile of current execution
§ Can be done in JIT (Just-in-time compiler)
§ Guess: past predicts the future

§ Guess by rule-of-ten: loops execute 10 times
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Extensions

§ Spill cost estimate can be extended to identify splitting 
candidates

§ Don’t forget: interference graph rebuilt after each split 
decision
§ Requires computation of live ranges!
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9.5 Comments

§ Sometimes spills may not even be necessary.
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Example – 2 registers
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Example

§ Although each node (after removing e, f) has ≥ 2 edges, we 
find a 2-coloring.

§ Can we exploit this insight in the register allocator?
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Coalescing (cont’d)
§ We can coalesce these live ranges

§ Removes the need to have a copy assignment
§ May make life harder for register allocator as combined node (v1/v2) may not be 

removed by simplification

§ Heuristics to decide when to coalesce
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Moves, again

§ Another example of a copy
=  v2 + …

v3   =  v2  // not last use of v2

=  … + v3

=  v2

§ Now live ranges of v2 and v3 conflict

109
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Potential conflicts

§ If one live range duplicates the value of another live range 
then give special treatment to edges in interference graph

=  v2 + …
v3   =  v2  // last use of v2

=  … + v3
=  v3

111

v3v2§ Edge v2—v3 indicates copy 
property
§ Attempt to give these nodes the 

same color



Machine features

§ Some instructions work with specific registers
§ mul on x86: reads eax, defines eax and edx

§ Must make sure operands are in these registers
§ Other registers not allowed

§ “Pre-color” these operands
§ Assures that operand is assigned to this register
§ Color node for operand in interference graph  
§ Pre-colored nodes are not removed during simplification
§ Coloring starts when all other nodes are removed 112



Machine features

113

§ The interference graph for x86 architectures must reflect 
that accesses to different parts of the same physical register 
are possible
§ Low order bytes and lower half-word have separate names

§ 64bit register space shares resources with 32bit registers (and 16 bit 
registers (and 8 bit registers))

§ Not a topic for our compiler

ah al

ax

eax

ra



Register allocation… 

§ Once considered to be beyond the reach of compilers
§ Need for expert programmers

§ C programming language contains register storage class
§ Hint to compiler to put variable into a CPU register
§ register int loopcntr;
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Register allocation… 

§ First formulation as coloring problem (paper ~1970s by 
Cocke, Yershov, Schwartz, first workable implementation 
published by Chaitin in 1981)

§ Today:  Compiler produces good results in many cases
§ Some compilers produce multiple color assignments and then pick 

“the best”
§ Even C compilers ignore the register directive
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Register allocation… 

§ Many iterations may be needed
§ Various heuristics create many options

§ Major steps
§ Liveness analysis, interference graph construction
§ Coloring – Simplification
§ Spill/split decisions

§ Rewrite code
§ Actual coloring
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