
Parallel Virtual Machines with RPython

Remigius Meier

Department of Computer Science

ETH Zurich

Zürich, Switzerland

Armin Rigo

PyPy Project

www.pypy.org

Switzerland

Thomas R. Gross

Department of Computer Science

ETH Zurich

Zürich, Switzerland

Abstract

The RPython framework takes an interpreter for a dynamic

language as its input and produces a Virtual Machine (VM)

for that language. RPython is being used to develop PyPy, a

high-performance Python interpreter. However, the produced

VM does not support parallel execution since the framework

relies on a Global Interpreter Lock (GIL): PyPy serialises the

execution of multi-threaded Python programs.

We describe the rationale and design of a new parallel ex-

ecution model for RPython that allows the generation of par-

allel virtual machines while leaving the language semantics

unchanged. This model then allows different implementations

of concurrency control, and we discuss an implementation

based on a GIL and an implementation based on Software

Transactional Memory (STM).

To evaluate the benefits of either choice, we adapt PyPy

to work with both implementations (GIL and STM). The

evaluation shows that PyPy with STM improves the runtime

of a set of multi-threaded Python programs over PyPy with

a GIL by factors in the range of 1.87× up to 5.96× when

executing on a processor with 8 cores.

Categories and Subject Descriptors D.3.4 [Programming

Languages]: Processors—Run-time environments

Keywords global interpreter lock, transactional memory,

Python, RPython, parallelism, virtual machine, dynamic

language

1. Introduction

The RPython framework aids in the development of high-

performance Virtual Machines (VM) for dynamic languages.

The framework has the goal of separating language specifica-

tion from implementation aspects, making the latter reusable

among VMs. The interpreter serves as the specification of

the language, and the framework combines the interpreter

with other components that handle various implementation

aspects. Given an interpreter for a language, the framework’s

toolchain produces a complete VM that, in addition to that in-

terpreter, has a garbage collector and a just-in-time compiler.

The most prominent example of a VM developed with

the RPython framework is PyPy, a Python VM. The PyPy

VM is one of the fastest Python implementations available.

However, it cannot execute any Python code in parallel,

even if a program makes explicit use of threads. For the

last decade, processor performance has primarily increased

through the availability of multiple execution engines (cores),

but Python programs running on PyPy cannot benefit from

this development and their performance is, thus, severely

limited.

The source of this limitation lies within the RPython

framework. Because the framework takes an executable

interpreter as its input, that interpreter needs an execution

model that allows parallel execution. An execution model

defines the concurrent units of a language and the ways these

units can interact with each other. RPython’s execution model

is a threading model with shared memory, but interaction

and execution of threads is defined with a Global Interpreter

Lock (GIL). Each thread is allowed to progress only after it

exclusively acquired the GIL, and a thread must explicitly

yield the GIL to other threads. Hence, the execution is

serialised over all threads. The only workaround for Python

programs to benefit from parallel platforms is to use multiple

VMs in separate processes with explicit communication

channels.

Because the source of this limitation is within the RPython

framework itself and, hence, affects all VMs developed with

that framework, the goal is to design a new execution model

for RPython that allows for parallel execution with the same

semantics. Parallel execution is only possible by removing

the current model’s reliance on the GIL. However, the GIL

provides one strong and useful guarantee for protected code:

atomic execution.

Atomic execution can be supported by other means such

as fine-grained locking. IronPython [1] and Jython [2], two
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Python implementations, avoid the GIL with a lot of dupli-

cated effort and manual work. However, the RPython frame-

work requires a solution that is reusable among different

interpreters, so we describe an alternative solution based on

transactional memory (TM).

TM provides the abstraction of a transaction, which en-

sures atomic execution for a group of operations and its mem-

ory accesses. There have been previous attempts to replace

the GIL with hardware TM [3; 4; 5], but these efforts were

plagued by various implementation problems and, to some ex-

tent, imposed restrictions on the interpreter. Such restrictions

violate the goal of separating language specification from

implementation aspects, a crucial factor if we want to use the

RPython framework for different languages and interpreters.

In this paper, we first describe the issues of the current

execution model of RPython with the example of PyPy, the

Python interpreter. We detach the model from the GIL by

introducing the concept of quantised atomicity [6], the divi-

sion of a concurrent execution into atomic quantum regions

(quanta). A quantum is an abstraction that helps with speci-

fying concurrency semantics of an interpreted language and

that makes concurrency control an exchangeable component

within RPython’s execution model. We then introduce a new

concurrency control component that uses software TM (STM)

to supports parallel execution of quanta.

As a small case study, we report on the issues encountered

with the PyPy interpreter by the introduction of STM. We

then compare the two versions of PyPy, one with a GIL-

based component to handle concurrency and one with an

STM-based component, on a set of multi-threaded Python

programs. This case study demonstrates that parallel Python

programs obtain real benefits through parallel execution, and

that RPython can be used to construct a high-performance

VM that supports parallelism.

In short, the contributions of this paper are the following:

• The introduction of a new, parallel execution model for

RPython that is freed from the GIL legacy with the help

of quantised atomicity;

• a description of using the new quantum abstraction to

specify concurrency semantics in interpreters;

• a description of a parallel implementation of the new

model using STM;

• a case study of porting PyPy to use the new STM-based

component;

• a performance comparison between two versions of the

PyPy VM, one based on the GIL, and one using the STM

component on a set of multi-threaded Python programs.

2. The PyPy Project

The PyPy project aims to deliver a high-performance Virtual

Machine (VM) for the language Python. The parts most

relevant for this discussion are the PyPy interpreter and the
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Figure 1. The RPy toolchain translates the PyPy interpreter

to a PyPy VM and mixes in additional VM components.

RPython framework. The former is a Python interpreter that

uses the latter to generate a Python VM.

2.1 The RPython Framework

A VM is an implementation of a language. It provides a

(portable) execution environment for programs written in that

language. A VM usually contains an interpreter as well as

other components such as a garbage collector or a just-in-

time compiler. These components cooperate and provide the

execution environment. For example, the interpreter executes

the program while a garbage collector reclaims memory and a

just-in-time compiler specialises the program for the concrete

platform.

The RPython framework is a flexible framework for de-

veloping such VMs for dynamic languages. The framework

consists mainly of the language RPython, libraries and com-

ponents written in RPython, and the RPython toolchain.

“RPython” stands for “Restricted Python”, a statically typed

subset of Python. For better textual differentiation from the

word “Python”, we henceforth use the short form RPy.

RPy is an object-oriented language that allows its pro-

grams to be translated to efficient C code, and from there to

a native executable. As such, RPy is not too different from

many other statically compilable languages. Where it differs

greatly, however, is the translation process done by the RPy

toolchain.

The RPy toolchain’s goal is to separate language specifi-

cation from implementation aspects. An interpreter written in

RPy serves as an executable specification of the interpreted

language, and implementation concerns are encapsulated

within separate, reusable components. The RPy toolchain

mixes the two aspects together in a controllable way to pro-

duce the PyPy VM.

Figure 1 depicts this process for the PyPy interpreter: The

PyPy interpreter, which interprets the language Python and

is itself written in RPy, serves as the specification of the

language Python and is given as input to the RPy toolchain.

The RPy toolchain translates that input, mixes in additional

VM components, and produces a full, native VM — the PyPy

VM.

Using an interpreter written in RPy as its input, the RPy

toolchain allows the choice between multiple implementation

strategies to be a parameter of the translation. For example,

the PyPy interpreter can be translated using several garbage
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collection strategies. The toolchain even goes as far as giving

a translation choice for adding a just-in-time compiler to the

VM [7]. This ability to make such advanced VM components

reusable for different interpreters makes the RPy framework

uniquely suited for developing VMs for dynamic languages.

2.2 Specification of Sequential Semantics

To illustrate how an interpreter specifies the semantics of

the interpreted language, and how the RPy toolchain sepa-

rates the language semantics (expressed by the interpreter)

from implementation aspects, we look at a small Lisp-like

language, called Duhton, and examine a small part of its

interpreter.

Duhton supports the special form while that repeatedly

checks a condition and evaluates its arguments if that con-

dition is considered true. Listing 1 is an example of using

that special form to repeatedly increase a counter until it

reaches 10.

Listing 1 A while loop in Duhton counting from 0 to 10

(setq n 0)

(while (< n 10)

(setq n (+ n 1)))

The semantics of while, i.e., the meaning of the con-

struct, is a concern separate from, e.g., how garbage collec-

tion reclaims memory from temporary values created by the

expression (+ n 1). The semantics is also independent of

how a just-in-time compiler (JIT) expresses the above loop

in native code. RPy abstracts these implementation aspects

and allows an interpreter for Duhton to specify the semantics

of while in the following way:

Listing 2 while implementation in RPy

def duhton_while(head, tail, frame):

while True:

jit_merge_point(...)

if not head.eval(frame).is_true():

break

duhton_progn(tail, frame)

Listing 2 shows an RPy function that takes the head and

tail of the special form while and evaluates them in the

current frame. The evaluation is expressed with a loop that

repeatedly evaluates the condition in head. If the evaluation

yields true, the body in tail gets evaluated using another

function duhton_progn, and otherwise the loop exits.

The function duhton_while expresses the semantics

of the special form while without managing interme-

diate values constructed by, e.g., head.eval(frame).

The interpreter can assume that there is some form of

garbage collector that reclaims the memory. Further, there

is jit_merge_point, a hint to a possibly mixed-in JIT.

That hint is needed to communicate to the JIT where loops

start and close in Duhton, which is right before evaluating

the condition of Duhton’s while. Additionally, the choice

of a garbage collector and whether to use a JIT or not is made

with a translation option passed to the RPy toolchain.

However, the above examples illustrate only how the

interpreter specifies the sequential semantics of Duhton in

RPy, but a language with concurrency also has a concurrency

semantics. For Python, which supports concurrent threads,

we thus need a way to implement its concurrent execution

model and specify its concurrency semantics in RPy. But

first, an accurate description of Python’s execution model is

needed.

2.3 Python’s Concurrent Execution Model

A concurrent execution model of a language consists of the

units, the structure, and the semantics of concurrency. The

concurrent units are the smallest, indivisible units of execu-

tion. The structure describes the coarse-grained organisation

of these units and defines a (partial) order as well as ways

to interact for these units. The concurrency semantics finally

defines the possible outcomes of a concurrent program that

follows the model.

Python instructions (pyops) are the units of Python’s

execution model. The units are structured in threads that

execute with access to a shared memory. A thread is a stream

of pyops, defining a partial order for these units based on the

in-thread sequential order (program order). Multiple threads

can run concurrently and interact with each other through

shared memory. Each pyop can freely access and modify the

shared memory, and, importantly, executes atomically.

pyop atomicity originates from a choice to use a Global

Interpreter Lock (GIL) in Python’s reference implementation

CPython [8], which suffers from the same lack of parallel

execution as the PyPy VM. Whenever CPython executes

a pyop, the GIL must be exclusively acquired during the

whole execution of that pyop. Hence, each pyop executes

atomically without overlapping with the execution of pyops

from concurrent threads.

2.4 Implementing Python’s Execution Model

Because interpreters written in RPy are executable, they fol-

low the execution model of RPy. Thus, to implement Duh-

ton’s or Python’s execution model, the respective interpreters

need to emulate these models within RPy’s model. However,

because RPy is a subset of Python, it also inherits its execu-

tion model. Hence, interpreters, like Python programs, are

provided with instruction-level atomicity and suffer from a

lack of parallel execution.

Within the PyPy interpreter, RPy functions implement

the semantics of each pyop. For example, there is a pyop

for multiplying two arguments together, and there is a corre-

sponding RPy function that implements the semantics of that

pyop. Hence, for the execution of a single pyop, several

lines of RPy code are executed. To support pyop atomicity,
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Figure 2. The PyPy VM’s architecture for executing multi-

threaded Python programs with VM threads.

Listing 3 Pseudocode of PyPy’s interpreter loop

while True:

instr = fetch_pyop()

execute_pyop(instr)

break()

the PyPy interpreter thus needs to ensure atomic execution

not just for a single RPy instruction, but for multiple lines and

functions. Hence, even if RPy’s execution model provides

instruction-level atomicity, the interpreter requires another

mechanism to ensure atomicity for several instructions to-

gether.

To emulate Python’s execution model, PyPy uses the

architecture shown in Figure 2. Each Python thread executes

within a VM thread that executes the core interpreter loop of

PyPy’s interpreter (Listing 3). Each VM thread can access

the shared memory without restrictions. However, the loops

within the threads do not execute in parallel; instead, only

one loop progresses at any time and a break() instruction

within the loop periodically yields the execution to another

VM thread.

With this design, the PyPy interpreter ensures no interfer-

ence by other threads for lines 1 to 3 of Listing 3, i.e., atomic

execution for whole pyops. Interference from other threads,

and thus a break of atomicity, only happens with the execu-

tion of the break() instruction, which is placed in-between

the execution of two consecutive pyops.

Unfortunately, the only implementation of break()

available with the current RPy framework is that of releasing

and acquiring a single, global lock, i.e., a GIL. Further, the

GIL is required to protect RPy internals for all interpreters

that implement concurrency with VM threads. Hence, the

GIL is a limitation of the RPy framework itself, affecting all

such interpreters written in RPy.

To lift this limitation, we introduce the concept of quan-

tised atomicity in RPy’s execution model and thereby detach

the model from any specific implementation of concurrency

control. With quantised atomicity, we separate the means

of specifying concurrency semantics with RPy from the im-

plementation of the model by providing a native way for

emulating atomicity guarantees of interpreted languages.
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Figure 3. The concurrency model of Parallel RPy, which

combines multi-threading in shared memory with quantised

atomicity.

3. Parallel RPython

In this section, we introduce quantised atomicity in RPy’s

execution model. Quantised atomicity offers a new way to

specify concurrency semantics in an interpreter and enables

parallel execution. We refer to the new, extended RPy as

Parallel RPy.

3.1 Parallel RPython’s Execution Model

Interpreters written in RPy get translated into graphs of

indivisible operations, which we call qops. qops are to

RPy programs what pyops are to Python programs, but

these qops follow Parallel RPy’s execution model. Parallel

RPy’s model (Figure 3) inherits a lot from Python’s: It, too,

is a threading model with shared memory. VM threads define

the structure of concurrency, each executing a sequence of

operations (qops). qops are the concurrent units that either

perform a calculation in local registers or access the shared

memory. Multiple threads run concurrently, but in contrast

to Python’s pyop atomicity, Parallel RPy has quantised

atomicity.

Quantised atomicity [6] is a form of atomicity that di-

vides the sequence of qops in a thread into quantum re-

gions (quanta qi in Figure 3), each of them guaranteed to

execute atomically and partially ordered by their in-thread

sequential order (program order). A concurrent execution of

qops must have the same outcome as some serial execution

of the quanta that contain the qops, i.e., each quantum sched-

ule must be serialisable. One valid concurrent execution of

the quanta from Figure 3 is depicted in Figure 4.

Each quantum can contain an arbitrary number of qops.

Quanta are delimited with qbreak() instructions, i.e.,

“quantum breaks”, which the writer of the interpreter in-

serts. qops before a qbreak() belong to a different quan-

tum than qops after the instruction. Or in other words, a

qbreak() instruction ends the current quantum and begins
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instructions over qops to quanta.

a new quantum that contains all qops executed until the next

qbreak() instruction.

Quantum breaks give the interpreter writer the ability to

define consciously what must be executed as an atomic unit

and where atomicity can be broken. Importantly, the division

into quanta is not static, but can depend on runtime infor-

mation. I.e., an interpreter can break atomicity conditionally

based on the interpreted program. Such dynamic quanta al-

low mapping the different atomicity guarantees of interpreted

languages onto Parallel RPy’s execution model as we will

discuss in the following section.

3.2 Implementing Execution Models with Quanta

With the introduction of quantised atomicity, an interpreter

can emulate a language’s execution model by mapping atomic

units of that language to RPy’s quanta. In PyPy’s case,

the break() instruction of Listing 3 can be seen as a

marker that ends the current quantum and begins a new one,

i.e., a quantum break. In that location, the break defines

a quantum to contain the remainder of the loop body and

thereby guarantees atomic execution for lines 1 to 3, i.e.,

the execution of a pyop. Essentially, there is a one-to-one

mapping from pyops to quanta. This mapping is shown

as example 1© in Figure 6. The interpretation of a pyop

involves the execution of several qops from the interpreter.

To achieve pyop atomicity, these qops all map to a single

quantum.

Other languages may require different mappings: A lan-

guage similar to Java, whose programs may consist of jops

(Java operations) that do not require atomic execution, can

give each qop involved in the interpretation of a jop its own

quantum (example 2©).1 Such a fine-grained mapping gives

an implementation of Parallel RPy’s execution model more

opportunities to break atomicity, which may result in better

performance.

On the other side of the spectrum of quantum mapping

granularity is, e.g., support for atomic blocks in a language

like Python (example 3©). Atomic blocks enforce the atomic

execution of all contained pyops. To achieve atomicity for

a group of pyops, the qbreak() instruction in the inter-

preter loop executes conditionally, i.e., only if the current

pyop is not within an atomic block. Thus, several pyops

and their corresponding qops are mapped to a single quan-

tum, and thereby are guaranteed atomic execution through

quantum atomicity.

Defining concurrency semantics by mapping onto quanta

is a natural approach. However, for some languages that

do not require atomic execution at all, not even for single

qops, this approach gives guarantees that are too strong.

As a result, performance may be impaired. Finding ways to

weaken atomicity for specific cases and in safe ways may

improve the situation for such languages, but exploring such

directions is outside the scope of this paper.

Importantly, interpreters do not deal directly with the ac-

tual implementation of RPy’s execution model. Instead, they

utilise the abstraction of quanta to implement an execution

model and specify its concurrency semantics. Quanta make

correct synchronisation a concern of the RPy framework

where previously the interpreter had to synchronise the exe-

cution itself. As a result, we achieve the necessary separation

that enables the development of alternatives to the GIL as

a concurrency control component within the Parallel RPy

framework.

3.3 Parallel Execution for Quanta

break() from the current RPy framework supports atomic

execution for quanta by protecting them with a single global

lock, a GIL. The GIL serialises the execution of quanta

on multiple VM threads as depicted in Figure 4. However,

1 An additional transformation in the RPy toolchain can insert the

qbreak() instructions between qops automatically.
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in some cases, quanta from different threads could run in

parallel without violating quantum atomicity, as illustrated

in Figure 5. If, e.g., the qops of a quantum q3 all access

different memory locations than the qops of a quantum q5,

i.e., q3 and q5 cannot influence each other, then executing

q3 and q5 in any order produces the same outcome. Even a

parallel execution of q3 and q5 has the same outcome and

is therefore a serialisable quantum schedule. Other cases,

represented by q1 and q4 in Figure 5, may still allow a partly

overlapping execution of two quanta from different threads.

Such (partial) parallel execution is achievable for statically

defined quanta using fine-grained locking. With this method,

projects like Jython [2] and JRuby [9] avoid the GIL for the

languages Python and Ruby. However, using fine-grained

locking to implement Parallel RPy’s execution model based

on dynamic quanta proves to be prohibitively difficult: To

provide atomicity for quanta, fine-grained locking needs to

conservatively lock all resources required by a quantum be-

fore its execution. However, if quanta are defined dynamically,

no static analysis of the interpreter can accurately infer the

required resources in general. Thus, fine-grained locking is

not a viable alternative to the GIL within the RPy framework.

Instead, a dynamic approach to synchronisation is needed.

Instead of having to exhaustively and conservatively col-

lect all resources that a dynamic quantum may need before

its execution, a dynamic approach can make use of actual run-

time information and thereby find the exact set of resources.

In addition, a dynamic approach can be optimistic and can

correct overly optimistic decisions at runtime. For these rea-

sons, a dynamic synchronisation approach, such as one based

on transactional memory, is currently the most appropriate

choice for the Parallel RPy framework.

3.4 Quantum Atomicity with Transactional Memory

Transactional Memory (TM) provides the abstraction of

transactions for synchronising concurrent accesses to shared

memory. A transaction allows a group of operations to

execute in complete isolation from other groups, and to make

each group’s execution appear to happen atomically. TM

further guarantees that all possible transaction schedules are

serialisable, meaning the outcome of a schedule is equal to

the outcome of some serial execution of its transactions.

TM also supports optimistic concurrency control: Assum-

ing that two concurrent transactions rarely access the same

memory location, transactions are started in parallel. If, how-

ever, two transactions access the same location and at least

one of the accesses is a write, the two transactions have a

conflict. In that case, one transaction may be rolled back (or

aborted) to restore atomicity and isolation guarantees, since

not both transactions can commit their state to the shared

memory without violating transaction schedule serialisabil-

ity.

Supporting Parallel RPy’s execution model with TM is

straightforward: Because quanta provide roughly the same

guarantees as transactions, we map one (or multiple) quanta

to a transaction. Thereby, quantum atomicity and quantum

schedule serialisability is guaranteed. Further, at runtime, the

TM component may attempt to start multiple transactions in

parallel on multiple threads. As a result, the TM component

can reduce the overall runtime of multi-threaded programs

running on multi-threaded VMs by overlapping the execution

of quanta in time, similar to the illustration in Figure 5.

There have been previous attempts [3; 4; 5] of replacing

the GIL with Hardware TM (HTM), i.e., TM implemented in

hardware. HTM promises good performance and works trans-

parently. However, hardware has inherently stricter limits

than software. Current implementations of HTM limit the size

of dynamic quanta, thereby hurting backwards-compatibility

of the RPy framework. By exposing such an implementa-

tion limitation, the goal of separating specification and im-

plementation aspects is violated. Hence, we chose Software

TM (STM) to avoid this restriction. But we do not dismiss

the possibility that future HTM generations, or even hybrid

solutions, may lift that limitation.

4. Introducing Software Transactional

Memory to the RPython Framework

In this section, we introduce the Software Transactional

Memory (STM) component to the RPy toolchain. With that,

the RPy toolchain gains the ability to switch between a

concurrent GIL component and a parallel STM component

for Parallel RPy’s execution model.

4.1 Executing Quanta Atomically

The RPy toolchain’s translation performs several transforma-

tions on the interpreter it receives as its input. Some of the

transformations are standard compiler optimisations, such as

inlining and constant folding, but others mix in Virtual Ma-

chine (VM) components that are controlled by hints within

the interpreter. The transformation that adds the concurrency

control component for Parallel RPy’s execution model is an

instance of the latter. With hints that delimit the quanta, that

transformation ensures quantum atomicity in concurrent as

well as parallel executions on multiple VM threads.

The qbreak() instruction is a hint that ends the current

dynamic quantum and begins a new one. These qbreak()

instructions mark the points within the interpreter where

breaking quantum atomicity is allowed. Listing 4 revisits

the example of PyPy’s interpreter loop from Listing 3 and

illustrates that the version using quanta to implement pyop

atomicity looks essentially the same.

Listing 4 The PyPy interpreter’s simplified dispatch loop

expressed with quanta in Parallel RPy

while True:

instr = fetch_pyop()

execute_pyop(instr)

qbreak()
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The execution model transformation can work in two ways,

depending on which component is chosen as its implemen-

tation. If the choice is made to use the GIL component, the

qbreak() instruction translates to the original break()

function that uses an explicit lock. But if the choice is made

to use the STM component, the instruction translates to a

function that may commit the current transaction and start a

new one; thus, mapping quanta to transactions.

Since qbreak() is a hint and therefore only a potential

point of breaking atomicity, both, the GIL as well as the STM

component, can ignore one or several qbreak() instruc-

tions with the effect of merging multiple quanta together. For

both components, merging has the advantage that the cost

of a real qbreak() can be amortised by making quanta

longer. Releasing and reacquiring the GIL, or committing

and starting a new transaction in-between every quantum can

be too expensive for fine-grained quantisation.

With the GIL component, a series of qops executed be-

tween two qbreak() instructions, i.e., a quantum, executes

sequentially while no other thread can progress. The GIL

achieves quantum atomicity by disallowing all concurrent

execution. But the STM component must ensure a quantum’s

atomicity even if another thread progresses in parallel. Hence,

quanta need to be isolated from other quanta. To enable this

isolation, the transformation inserts read and write barriers

before qops to let the STM component manage all accesses

to shared memory that could otherwise break the isolation.

With these barriers, the STM component can create dif-

ferent views on shared memory. Each transaction can see a

different version of an object, thereby isolating the transac-

tion from others. The barriers further manage the read and

write sets of transactions. These sets determine if a transac-

tion is in conflict with committed state and, thus, needs to

abort, or if its changes can be successfully committed.

Hence, the STM component can, with the help of barriers,

isolate the quanta of Parallel RPy code. However, not every

part of a VM produced with the RPy framework is written

in RPy. Non-RPy parts are not under the control of the

RPy toolchain, do not have the necessary barriers, and can

therefore not be isolated easily with STM. Hence, we need

to integrate such external code with the execution model of

Parallel RPy and its quanta.

4.2 Invoking External Code

VMs commonly interface with external code in libraries and

the operating system. Particularly for dynamic language VMs,

performance critical functionality is frequently implemented

externally in low-level languages that are more amenable to

aggressive optimisations. Examples of such functionality are

numerical algorithms, existing libraries, and system calls. We

refer to such code as VM-external.

The invocation of VM-external code can be seen as a

special type of qop. However, executed as part of a quantum,

VM-external code may break the isolation and atomicity

between quanta executing in parallel. Unfortunately, the

RPy toolchain cannot know statically what RPy code may

be part of a quantum, as quanta are delimited dynamically

with the qbreak() instruction. Missing a way to prove

the absence of external code invocations within a quantum,

enforcing a restriction on the types of qops that are allowed

within a quantum is thus impractical. Instead, all types need

to be supported. Hence, we need to fit the invocation of

external code into our execution model and explain how

implementations can deal with it.

4.3 Categorising qops

Since not all VM-external code behaves the same and we

model VM-external code as special qops, a categorisation

of all qops according to their behaviour and possible effects

on concurrent quanta is the first step. There are three basic

categories:

I Fully managed qops

II External-atomic qops

III Arbitrary-effect qops

Category I are VM-internal qops: These qops are fully

under the control of the RPy toolchain. In particular, they

access only managed shared memory or operate only in local

registers. On the other hand, Categories II and III are the

VM-external qops.

In Category II are qops that invoke atomic, VM-external

code. Such external code must guarantee that no VM-internal

code or data is influenced by its execution and that it executes

atomically as seen by other VM-external and -internal code.

This type of atomicity is common in the exported functions

of libraries with a thread-safe implementation.

Finally, Category III contains VM-external qops that rep-

resent VM-external code with unknown effects and without

any useful atomicity guarantee2. An example is a call to a li-

brary that is not thread-safe, i.e., not safe to call from multiple

threads in parallel.

4.4 Integrating VM-External qops with Quanta

Based on the possible effects of qops in each category, the

qops can be integrated into the execution model of Parallel

RPy in different ways.

Category I is already covered by the description of the

execution model in Section 3.1. Quanta made up of only

Category I qops are VM-internal quanta. These quanta are

delimited explicitly by qbreak() instructions. In Figure 7,

Scenario A shows the execution of two consecutive quanta,

interrupted by a qbreak().

A qop in Category II, however, can be mapped in two

ways: First, it can execute in its own, VM-external quantum

due to the strong atomicity guarantees of the invoked external

code, which makes the invocation appear to happen atomi-

cally in the view of every other quantum. Second, it can be

2 Also in this category are qops that access memory that is not managed by

RPy (raw memory). For simplicity we consider these as VM-external.
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Figure 7. Three scenarios for integrating the categories of

qops within Parallel RPy’s execution model. Scenario A and

Scenario C use only VM-internal quanta, but Scenario B also

uses a VM-external quantum.

embedded in a VM-internal quantum, thereby inheriting the

quantum atomicity guarantee. Both scenarios are shown in

Figure 7 as Scenario B for the former, and Scenario C for the

latter mapping.

Finally, qops in Category III must be embedded in a

VM-internal quantum (Scenario C), because they do not

provide any atomicity guarantees themselves. The enclosing

VM-internal quantum must ensure atomicity and provide

protection from any concurrent quantum.

4.5 Supporting VM-External Code with the GIL and

the STM Component

The GIL component. Supporting the scenarios shown in

Figure 7 is straightforward with a GIL: The execution of

quanta is serialised and can, thus, protect even embedded

external code easily (Scenario C).

Scenario B is exceptional since it enables a bit of parallel

execution even with the GIL component. VM-external quanta

guarantee their own protection and therefore do not need the

GIL. Instead, the GIL stays available for any VM-internal

quantum that is ready to execute. Consequently, a VM-

internal quantum can execute in parallel to any number of

VM-external quanta. Thus, in PyPy and other GIL-based

VMs, Python code can run in parallel to external code in

Category II. However, Scenario B is the only such exception;

all VM-internal quanta are forced to run serially.

Category II qops can be handled by the GIL with ei-

ther Scenario B or Scenario C. For long-running qops, Sce-

nario B is preferable since it benefits from parallel execution.

But for short-running qops, the overhead of breaking the

VM-internal quantum cancels out the potential benefits, and

thus, Scenario C is preferable.

The STM component. With STM, multiple VM-internal

quanta can run in parallel if the underlying transactions do

not conflict. STM can readily support Scenario A, which is

required for qops in Category I.

Conveniently, the advantage of Scenario B also applies to

STM: VM-external quanta are synchronised outside of STM,

do not break the isolation of transactions, and therefore do not

require the protection of a transaction. Hence, they can run

in parallel to any transaction and, thus, to any VM-internal

quantum.

Scenario C, however, cannot be directly supported by

STM. VM-external qops can break the isolation of an

enclosing transaction. These qops in general cannot be

undone, and this property is required if a transaction needs to

abort. Hence, even short-running Category II qops would

require Scenario B and suffer from the overhead of breaking

the VM-internal quantum. But fortunately, there is still an

important subcategory of qops in Category II that never

break the isolation of a transaction and never need to be

undone: the subcategory of pure qops.

Purity for qops requires that the result of the computation

depends only on the arguments of a qop and that there are

no observable side-effects. These properties guarantee that

the isolation between transactions cannot be broken and that

aborting a transaction does not require undoing any effects

of pure qops. An important group of qops with these

properties are math functions, such as sqrt() or log().

These qops can still be handled with Scenario C by the STM

component without additional overhead.

Unfortunately, qops in Category III are neither pure nor

can they be handled by Scenario B; and thus, they absolutely

require Scenario C. For these cases, STM allows transactions

to turn inevitable [10; 11] directly before executing such

qops. After a transaction turns inevitable, it is guaranteed

to be able to commit. However, as a consequence, there

can only ever be one inevitable transaction at any time.

Hence, inevitable transactions are considered to be expensive.

If many concurrent transactions need to turn inevitable,

their execution is essentially serialised. In the worst case,

transactions rarely execute in parallel and essentially revert

to a serial execution similar to the GIL’s.

With the description of how external code is integrated

within Parallel RPy’s execution model, and how the two

components handle it, translating the same interpreter into a

VM with either a GIL component or an STM component for

controlling concurrency becomes possible. Both options are

equal based on functionality. However, the two components

behave differently when it comes to performance, which we

discuss with the case study in the following section.

5. PyPy Interpreter Case Study

The PyPy interpreter is a Python interpreter written in RPy. It

is in use by several companies to speed up their Python envi-

ronment, which makes PyPy an interesting case for studying

the challenges and issues that arise when porting a real-world

interpreter to Parallel RPy and its STM component.

Ideally, switching over from break() to the qbreak()

instruction is all that is required to produce a VM capable

of executing Python threads in parallel. However, certain

patterns of code are detrimental to the performance of STM as
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they prevent successful speculative parallel execution. Below,

we describe some of the issues we encountered within the

PyPy interpreter.

5.1 The Performance Impact of Software

Transactional Memory

The read and write barriers needed by STM add overhead to

the execution of a program, but the amount depends on the

actual STM implementation, which is not the focus of this

paper. Universally harmful, however, are conflicts between

transactions. With two transactions that have a conflict, only

one can successfully commit; the other needs to abort and

undo its changes, and the work done in parallel is lost. It is

therefore essential that the number of conflicts stays low for

parallelisation to pay off.

Importantly, there should be as few conflicts as possible

caused by the VM itself. If, e.g., the interpreter causes a

conflict whenever two concurrent transactions each call a

method, it will be impossible for an application to avoid

these conflicts and reach good performance. And indeed, with

no additional modifications, the PyPy interpreter contained

sources of such conflicts.

5.2 Sources of Conflicts within the Interpreter

Because performance is an important aspect for real-world

interpreters, the PyPy interpreter also implements a number

of techniques to increase interpreter performance3. One opti-

misation that proved to be problematic for the performance

of an STM supported VM is inline caching.

Inline caching is a common technique in dynamic lan-

guage interpreters for avoiding most of the overhead of re-

peatedly looking up a method or an attribute of an object. By

maintaining a cache of the most recent lookup at each lookup

site, the interpreter avoids repeatedly going through the in-

heritance hierarchy to figure out which method or attribute a

name refers to.

The PyPy interpreter implements a variant of monomor-

phic inline caching that stores a table per code object (e.g.,

a Python function). The table has as many entries as there

are names in that code object, and each entry stores the result

of the most recent full lookup of that name. Thus, several

lookup sites with the same name share an entry in the table.

Because inline caching is an interpreter feature and, e.g.,

depends on the interpreted language’s name-lookup seman-

tics, it is part of the interpreter and written in RPy. Hence, the

table is a regular RPy object that is now managed by the STM

component. It follows that updating the table from multiple

threads can be a source of conflicts and cause transactions to

abort. These conflicts are unnecessary, since the cache does

not need to be updated. If the interpreter does not find the

required entry in the table, it simply performs the full lookup.

3 PyPy also has a JIT and the performance of JIT compiled code is often

independent of interpreter performance. However, some optimisations affect

both, and both are important for whole-VM performance.

The full lookup never modifies objects and thus does not

cause conflicts.

One way to avoid these conflicts is to make the caches

thread-local. However, thread-local caches duplicate memory

and need to be warmed up in each thread separately, which

is not ideal. Furthermore, for checking the local cache, an

additional indirection is required for retrieving the cache

belonging to the current thread. For these reasons, we decided

to attack the problem of caches more directly. However, our

solution depends on the very STM system that we use, but

similar solutions may work for other systems.

With support from the STM component, Parallel RPy pro-

vides a way of allocating an object that never causes conflicts

even if modified concurrently. However, any modifications to

that object may get lost. That semantics allows for an efficient

implementation in our STM system and enables fast warm-up

of inline caches with no additional indirection or memory

duplication.

Other than the inline caching optimisation, there were a

few more places where we had to make previously global data

thread-local to avoid conflicts from concurrent modifications.

With these changes, the PyPy interpreter ran without major

sources of conflicts.

5.3 Performance Evaluation

To get a better idea of the performance of a PyPy VM with a

GIL component versus a PyPy VM with an STM component,

we compare the two on a set of benchmarks. The benchmarks

are multi-threaded Python programs that distribute some

workload on a set of threads. If more threads are available,

less work must be done per thread.

On PyPy-GIL, the PyPy VM with the GIL component,

we expect no change in the overall runtime of a benchmark

when increasing the number of available threads, since the

GIL serialises the execution over all threads and, thus, cannot

utilise multiple cores of the CPU to perform work in parallel.4

If there is any change at all, we expect the runtime to increase

with more threads due to the additional overhead of managing

threads and distributing the work.

On PyPy-STM, the PyPy VM with the STM component,

we expect to see shorter runtimes with an increasing number

of available threads. However, if just one thread is avail-

able, the runtime will be longer than the runtime of the same

benchmark on PyPy-GIL. The worse runtime follows from

the additional overhead caused by STM’s read and write bar-

riers, by additional synchronisation work when committing

and starting transactions, and by object version management.

We refer to these sources of overhead collectively as the STM

overhead. With multiple threads, however, we expect the

STM overhead to be amortised by the benefits of distributing

the work on more threads and actually performing work in

parallel on multiple CPU cores. However, the concrete ad-

vantage of PyPy-STM with multiple threads over PyPy-GIL

4 The execution time of Category II qops is negligible in all benchmarks.
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will depend on the concrete STM overhead observed in each

benchmark.

Environment The evaluation was performed on a machine

with 64GB of RAM and an Intelr Xeonr CPU E7-4830

with 4 NUMA nodes. Each NUMA node has 8 cores and

benchmarks were pinned to one node to hide possible NUMA

effects. The operating system was Ubuntu 12.04.5.

PyPy VMs The PyPy VMs were produced from exactly

the same PyPy interpreter, once with the GIL component,

once with the STM component. The translations were done

without adding RPy’s just-in-time compiler to either VM.5

Besides the concurrency control component, the VMs also

use different memory management components: STM needs

its own, STM-aware garbage collector, which has a shorter

history of tuning than the one used with the GIL component.

The final step from C to native code was done with a

patched GCC 5.1.0 and the flags -fno-ivopts, -fno-

tree-vectorize, and -fno-tree-loop

-distribute-patterns. The patches were necessary

for that version of GCC to compile PyPy-STM6, and the flags

disable some optimisations that produced incorrect results7.

All code is available on Bitbucket [12] and further details

about the STM system are described in a technical report [13].

Benchmarks Because threads in Python are currently only

useful for their concurrency but not for performance, we

did not find existing multi-threaded benchmarks. Hence, we

collected a set of small-scale Python programs [14] that we

then parallelised using threads and made into benchmarks.

Here follows a short description of the benchmark set:

• btree, skiplist: These benchmarks insert, remove,

and find elements in a data structure from multiple threads.

Importantly, they make use of experimental atomic blocks

that we introduced to Python. These blocks guarantee

atomicity for a group of Python instructions (pyops)

by ensuring that the block’s execution happens fully

within a single quantum (see 3© in Figure 6). Each of

the aforementioned operations happens inside such an

atomic block. On PyPy-GIL, the atomic block is a critical

section implemented with a lock.

• nqueens, mersenne, mandelbrot, perlin,

raytrace, richards, parsible-bench,

regex-dna, fannkuch-redux,

k-nucleotide: All of these benchmarks perform in-

dependent computations on multiple threads. Their con-

currency generally follows the fork-join pattern.

5 Results with the JIT are comparable, but explaining certain effects observed

in the results require a deeper understanding, and thus, a discussion of the

JIT internals, which we cannot provide in this paper.
6 Some version of the patches is included in the newer GCC 6. We make

ours available on request.
7 On GCC 6, some of the optimisations seem to be fixed.

Measured times are reported as the average and the stan-

dard deviation computed from 30 iterations of a benchmark.

These 30 iterations were collected in each configuration of

each benchmark over 5 VM instances, each doing 6 in-VM

iterations. There are 8 configurations resulting from 2 VMs,

PyPy-GIL and PyPy-STM, and for each VM we set the num-

ber of available threads to 1, 2, 4, and 8.

Results Table 1 shows the results of this evaluation. As

expected, PyPy-GIL does not benefit from more worker

threads and the best runtime was always measured on 1 thread.

The runtime generally worsens with every additional thread

as the management overhead grows and contention on the

GIL increases.

However, in the case of btree and skiplist, the

overhead on multiple threads is unexpectedly high (233% and

137%). We suspect the cause to be the lock used to implement

the critical section in these two benchmarks. On a single

thread, that lock is always available. Lock implementations

are optimised for such a case and, e.g., never do a system

call into the kernel. On multiple threads, however, that lock

is often acquired by another thread, causing the current

one to call into the kernel to sleep. After releasing the

lock, for another thread to wake up and acquire the lock is

comparatively time-consuming. This hypothesis is supported

by the observed number of system calls: When comparing

runs on two threads versus runs on one thread, the number

of system calls is around 600× greater8. The UNIX time

command further reports that the two-thread runs do nothing

for around 80% of the time.

The results for PyPy-GIL suggest that the use of threads

usually makes a program slower in Python. This behaviour is

not only counter-intuitive, but also makes threads a poor

choice for concurrency use cases, such as performing a

background task while keeping a responsive graphical user

interface. With the approach described in this paper, threads

may finally become a reasonable solution for concurrency in

Python.

On PyPy-STM, the results mostly match our expectations.

On just 1 thread, the benchmarks ran significantly slower

than on PyPy-GIL (up to 74% on k-nucleotide). These

results can be attributed to the STM overhead and PyPy-

STM’s less tuned garbage collector. From 1 thread to 8

threads, PyPy-STM scales well, achieving speedups between

3.77× and 7.59×. Except in the benchmarks btree and

skiplist, where the speedups are only 2.17× and 2.14×.

The worse scaling of btree and skiplist results from

our use of the experimental atomic blocks. Because some op-

erations on the data structures conflict with others, using

atomic blocks instead of a critical section means that trans-

actions abort due to these conflicts. The other benchmarks,

on the other hand, only rarely abort transactions, since they

perform independent work in all threads. While for btree

8 The increase comes exclusively from additional calls to the futex kernel

API, which is used to implement the lock.

57



Python VM PyPy-GIL PyPy-STM Max. speedup

Threads 1 2 4 8 1 2 4 8 *

btree 13.94 ±0.2 45.90 ±1.3 46.44 ±0.9 44.24 ±2.3 13.93 ±0.1 10.24 ±0.1 7.99 ±0.1 6.42 ±0.1 2.17×

skiplist 13.85 ±0.4 32.79 ±0.8 28.55 ±1.4 31.45 ±0.7 15.84 ±0.5 11.37 ±0.3 8.96 ±0.2 7.39 ±0.2 1.87×

nqueens 3.65 ±0.0 4.43 ±0.1 4.20 ±0.1 4.35 ±0.2 5.18 ±0.1 2.86 ±0.1 1.65 ±0.0 1.30 ±0.0 2.81×

mersenne 13.76 ±0.0 13.84 ±0.0 13.89 ±0.0 13.90 ±0.0 17.52 ±0.0 8.89 ±0.0 4.45 ±0.0 2.31 ±0.1 5.96×

mandelbrot 8.25 ±0.2 10.08 ±0.1 10.28 ±0.1 10.21 ±0.1 11.20 ±0.0 5.72 ±0.1 2.83 ±0.0 1.48 ±0.0 5.59×

perlin 28.48 ±0.5 34.97 ±0.7 35.22 ±0.3 35.08 ±0.3 37.75 ±0.2 19.53 ±0.1 10.00 ±0.0 10.00 ±0.1 2.85×

raytrace 17.71 ±0.1 19.85 ±0.1 20.38 ±0.1 20.31 ±0.2 21.66 ±0.4 11.36 ±0.2 5.87 ±0.1 3.14 ±0.1 5.64×

richards 11.68 ±0.1 14.01 ±0.5 13.77 ±0.1 14.00 ±0.1 16.90 ±0.1 8.92 ±0.0 4.67 ±0.0 3.12 ±0.0 3.75×

parsible-bench 5.67 ±0.0 5.97 ±0.0 6.07 ±0.0 6.17 ±0.0 7.19 ±0.0 3.99 ±0.1 2.33 ±0.1 1.49 ±0.1 3.81×

regex-dna 2.79 ±0.0 2.79 ±0.0 2.79 ±0.0 2.79 ±0.0 2.68 ±0.0 1.51 ±0.0 1.10 ±0.0 0.71 ±0.0 3.90×

fannkuch-redux 3.77 ±0.0 4.84 ±0.0 4.92 ±0.0 4.82 ±0.1 5.09 ±0.0 2.64 ±0.0 1.31 ±0.0 0.68 ±0.0 5.55×

k-nucleotide 12.10 ±0.1 15.79 ±0.2 15.19 ±0.1 15.40 ±0.1 21.06 ±0.1 11.71 ±0.1 7.21 ±0.1 5.14 ±0.1 2.35×

Table 1. Maximum achievable speedup of PyPy-STM over PyPy-GIL on a set of benchmarks. The numbers represent the time

in seconds of one benchmark iteration, reported as the mean and the standard deviation over 30 iterations. For each VM, the

configuration with the best time is highlighted in bold. The last column shows the speedup achieved by the best PyPy-STM

configuration over the best PyPy-GIL configuration.

and skiplist between 10% and 40% of transactions abort

(increasing with the number of threads), in the other bench-

marks that ratio stays below 5%. The comparatively high

rate of conflicts in btree and skiplist thus limits their

scalability.

Each benchmark benefits from parallel execution in PyPy-

STM. Compared to the best result of PyPy-GIL, which is

always on 1 thread, the best result of PyPy-STM, which is

usually on 8 threads, is significantly faster. That maximum

speedup over all configurations ranges from 1.87× up to

5.96×. However, these numbers are the result of tuning some

parameters of these benchmarks.

To reach these speedups, we had to make the amount of

work for each benchmark reasonably high for the runtime to

be longer than approximately 1 second. For shorter runtimes,

PyPy-STM often does not yield any benefits. Further, we had

to adapt the partitioning of the work into chunks so that first,

there are enough chunks for 8 threads to be busy, and second,

each chunk is large enough to amortise the overhead of

dispatching it to a thread. Without adapting these parameters,

PyPy-STM would often not improve the runtime of a program

when compared to PyPy-GIL.

Furthermore, if there are sources of frequent conflicts

within a program, the performance can quickly degrade.

Hence, with the exception of btree and skiplist, our

programs contain no systematic, avoidable sources of con-

flicts. Hence, we conclude that the approach can work well for

multi-threaded programs that perform independent parallel

work, but less so for irregular applications.

Understanding the performance of applications is further

hindered by sources of conflicts being obscured by high-

level operations in Python. Accessing an attribute, e.g., can

invoke a method that contains a source of conflicts. Further,

transactions abort because of one source, but when changing

the program to remove that source, we sometimes find that

there is another source directly following the removed one.

The first source simply hid the one that came later. These

obstacles make understanding an application’s performance

on PyPy-STM difficult.

6. Related Work

There have been several attempts [3; 4; 5] at replacing the GIL

with TM directly in existing Python and Ruby VMs. These

approaches use hardware TM (HTM) instead of software

TM (STM), since HTM is supposed to work transparently

with all native code. Because of this transparency, these

approaches do not need to deal separately with VM-external

code, since HTM handles both, VM-internal and -external

code. However, especially the recent work [4], which exploits

consumer-grade Intelr processors with HTM, shows the

imposed restriction on the size of transactions, and also that

current HTM often aborts transactions for other, hard to

control reasons such as processor interrupts. For the Parallel

RPy framework, the size limitation makes HTM already

unsuitable, but the high rate of uncontrollable aborts suggests

that using Intel’s implementation of HTM may remain a

challenge in the near future.

A project with a lot of similarities to the RPy framework is

Truffle [15]. With Truffle, interpreters are partially evaluated

to just-in-time compile the interpreted program to native code.

In our context, an important difference to the RPy framework

is that Truffle itself does not depend on a GIL. Instead,

interpreters execute in Java’s execution model. However,

Truffle does not provide an abstraction comparable to quanta

that allows interpreters to map atomicity requirements of the

interpreted language onto Java’s execution model. Hence,

for implementing Python’s execution model, for example, an

explicit GIL, or manual fine-grained locking, is necessary.

Swaine et al. [16] introduce slow-path barricading for

incremental parallelisation of VMs. They avoid a major
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revision of the VM by distinguishing between operations that

are safe to run in parallel (often the fast-path) and operations

that are unsafe. Our approach avoids a major revision by

working as a transformation of the RPy toolchain, making

the whole VM safe for parallel execution, but requiring an

RPy interpreter to begin with.

7. Conclusions

Since the single-core performance of processors is stagnat-

ing, Virtual Machines (VM) need to embrace parallelism to

stay relevant. However, VMs developed with the RPython

framework synchronise concurrent execution with the help

of a GIL. Hence, parallel execution with threads becomes

impossible.

By introducing a new execution model based on the con-

cept of quantised atomicity to RPython, Parallel RPython

obtains the powerful abstraction of quanta to emulate exe-

cution models of dynamic languages with RPython’s model.

As an alternative to the GIL, a Software Transactional Mem-

ory (STM) component supports the parallel execution of

quanta with unchanged semantics.

In a case study, we evaluate the new execution model, once

with a GIL component for concurrency control, and once with

an STM component. PyPy, a Python interpreter, is modified

to work with STM. While functionally equivalent, PyPy-STM

needs some internal changes to reduce the rate of conflicts

that otherwise cause unnecessary transaction aborts. With

these modifications, PyPy-STM performs significantly better

than PyPy-GIL on a set of multi-threaded Python programs

if two or more threads are available. The achieved speedups

range from 1.87× up to 5.96×.

The results demonstrate that the transition to the new

execution model to support parallel execution with STM

can be straightforward and can yield significant speedups

for programs that perform independent work on each thread.

While the speedups are encouraging, achieving them is not

always straightforward. Often, the performance of PyPy-STM

is difficult to understand, since Python can obscure sources

of conflicts, and sources can hide other sources. Therefore,

it is essential that future work also considers performance

debugging with an STM component as an important topic.

In summary, we bring the benefits of parallel execution

to Python in a way that allows other interpreters using the

RPython framework to reuse our work. Before becoming

universally applicable, however, further research needs to

explore ways to lower the overhead of STM when only one

thread is active. Otherwise, the STM component cannot serve

as a drop-in replacement for the GIL component in cases

where a large percentage of the runtime is spent in non-

parallelisable parts of a program.
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