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Abstract

Understanding and identifying performance problems is dif-
ficult for parallel applications, but is an essential part of
software development for parallel systems. In addition to
the same problems that exist when analysing sequential pro-
grams, software development tools for parallel systems must
handle the large number of execution engines (cores) that
result in different (possibly non-deterministic) schedules for
different executions. Understanding where exactly a concur-
rent program spends its time (esp. if some aspects of the pro-
gram paths depend on input data) is the first step towards im-
proving program quality. State-of-the-art profilers, however,
aid developers in performance diagnosis by providing hot-
ness information at the level of a class or method (function)
and usually report data for just a single program execution.

This paper presents a profiling and analysis technique that
consolidates execution information for multiple program ex-
ecutions. Currently, our tool’s focus is on execution time
(CPU cycles) but other metrics (stall cycles for functional
units, cache miss rates, etc) are possible, provided such data
can be obtained from the processor’s monitoring unit. To de-
tect the location of performance anomalies that are worth
addressing, the average amount of time spent inside a code
block, along with the statistical range of the minimum and
maximum amount of time spent, is taken into account.

The technique identifies performance bottlenecks at the
fine-grained level of a basic block. It can indicate the prob-
ability of such a performance bottleneck appearing during
actual program executions. The technique utilises profiling
information across a range of inputs and tries to induce per-
formance bottlenecks by delaying random memory accesses.
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The approach is evaluated by performing experiments on the
data compression tool pbzip2, the multi-threaded download
accelerator axel, the open source security scanner Nmap and
Apache httpd web server. An experimental evaluation shows
the tool to be effective in detecting performance bottlenecks
at the level of a basic block. Modifications in the block that
is identified by the tool result in performance improvement
of over 2.6x in one case, compared to the original version of
the program. The performance overhead incurred by the tool
is a reasonable 2-7x in majority of the cases.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging; D.1.5 [Programming
Techniques]: Concurrent Programming

Keywords Performance bugs, Profiling, Localisation, Mea-
surement, Dynamic binary instrumentation, Software de-
fects, Parallel programming

1.

Performance problems are becoming more prevalent in mod-
ern software systems [8, 14, 16, 18] as software grows in
size. The widespread adoption of multi-core processors and
the use of concurrent and multi-threaded programming to
utilise these machines have contributed heavily to perfor-
mance problems. Software correctness and safety constraints
in the presence of concurrency may exacerbate the situa-
tion even further and lead to performance anomalies in re-
leased software. These performance anomalies render soft-
ware slow and unresponsive. Performance problems may
lead to poor user experience, lower system throughput, and
a waste of computational resources[4]. Software that is slow
may not only frustrate the end users, but also cause financial
losses [14]. Following the convention adopted by other re-
searchers in dealing with performance issues[14, 21, 25], we
consider an anomaly to be a performance bug if it affects the
speed or responsiveness of a program and relatively simple
source code changes may lead to significant improvement in
performance, while preserving functionality.!

Introduction

!'Our goal is to identify possible performance anomalies but possible trans-
formations to address the performance issue are beyond the scope of this



Performance anomalies exist widely in production soft-
ware. For example, Jin et al.[14] report that Mozilla devel-
opers have fixed 5-60 performance bugs reported by users
every month over the past 10 years. There are many sources
of inefficiency (e.g., poor design, inefficient data structures),
and these problems may plague sequential programs as well.
Concurrent software is subject to the same issues, but a soft-
ware developer must in addition deal with unexpected or
rare resource contention scenarios involving multiple pro-
gram threads. The rare resource contention scenarios cause
performance anomalies in programs and may only mani-
fest under rare circumstances, such as a unique interleaving
of the program threads. Furthermore, as has been observed
by others, safety/correctness and performance are two goals
for software developers that sometimes exert contradicting
pressures. The goal of correctness requires programs to be
thread-safe - and as a consequence may require additional
synchronization; the goal of fast execution may encourage
developers to minimize synchronization in a program.

Performance bugs have only rarely been the focus of re-
search on software defects. There are a number of reasons
why performance bugs have received considerably less at-
tention than their functional counterparts. First, developers
can check for functional correctness by relying on well es-
tablished testing techniques for detecting functional bugs[5,
9, 15, 26]. Second, there exist formal approaches to soft-
ware verification and testing based on symbolic execution
that allow (some degree of) automation[6, 7]. Third, most
approaches for performance modelling of parallel and dis-
tributed systems offer limited support for performance ori-
ented software engineering, or they are capable of dealing
with only small programs - as previously pointed out[22].
Lastly, performance bugs are hard to diagnose because of
their non-failure semantics i.e., they do not cause failures or
program crashes. Furthermore, existing approaches for de-
tecting software performance problems are limited in their
functionality and report on resource consumption for a sin-
gle program execution. The resource consumption of a pro-
gram is usually dependent on the efficiency of the algo-
rithm being used, and the size of program input. Concur-
rent programs further complicate matters because of their
non-deterministic nature and large number of thread sched-
ules. Different program inputs or thread schedules may lead
to different program behaviour. The state-of-art for perfor-
mance bug diagnosis is the use of profiling tools (e.g., oprof
or gprof [12, 17]). However, profiling tools are generally
limited in their functionality because they base their reports
on a single execution profile of the program being tested.
Furthermore, CPU time profilers usually report performance
bugs at the level of hot methods/routines. These reported
methods can be arbitrarily long. Locating the source of these
computational intensive and time-consuming code regions

paper. We expect a user to analyse the situation and to modify the source
code, employ a different data structure, or to use a different algorithm.
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inside a method can prove to be a challenging task in large
software systems.

Profiling tools often fail to discover dormant performance
problems that may appear under rare circumstance. Simi-
larly, compilers might miss out on optimising a routine that
has (real or assumed) side-effects, and identifying the places
where cycles are wasted is far from easy. One of the key
reason for the lack of better profiling and detection tools for
performance bugs is that developers focus on removing func-
tional bugs more often since correctness often outweighs the
need for performance, and better tool support is available
for functional bugs. In contrast to procedures and tools for
detecting functional bugs, tools and procedures for perfor-
mance bugs are seriously lacking in functionality.

1.1 Contributions

Although current software tools for profiling performance
anomalies are useful, they are still severely lacking in func-
tionality. One of the major problem with software profiling
techniques is that they provide information only about a spe-
cific program run. However, in realistic settings, it is quite
likely that different executions of a program with different
inputs and/or different thread schedules may lead to different
execution profiles of the program. (The program still com-
putes the intended result — otherwise there is a functional bug
as well.) The approach presented in this paper detects per-
formance bottlenecks by dynamically collecting profiling in-
formation about multiple program executions. The approach
aggregates information about multiple profiling executions
of the program to detect non-deterministic or rare perfor-
mance bottlenecks. Rare bottlenecks are those bugs that ap-
pear rarely in program executions and require some specific
program input and/or environment conditions to manifest.
Performance bottlenecks that are deterministic are detected
and localised with a single profiling run of the program.

In short the approach presented in this paper makes the
following key contributions.

e The approach presented here combines multiple execu-
tion profiles of the program to provide a better picture
of resource consumption for a wide range of program in-
puts. The use of multiple execution profiles also enables
our approach to report on rare resource contention sce-
narios that would otherwise be missed. Our profiler does
not rely on hotness information for a single input or exe-
cution alone. Instead, the profiler uses information about
the amount of CPU execution time taken by a basic block
for a range of inputs during different executions.

e The approach provides information about performance
bugs at a finer-grain level than earlier tools. This is done
by identifying the relevant basic block(s) instead of re-
porting an entire function or class. In certain cases mod-
ifying the identified basic block leads to an improvement
in program performance of more than 2.6x. (details in
Section 4). The approach is not prone to report false pos-



itives since it reports exactly what the user indicates, i.e.
basic blocks with a contribution to execution time that
exceeds a given threshold (i.e., percentage of the pro-
gram’s total execution time). Of course, not every time-
consuming block or set of blocks reported leads to a per-
formance bottleneck that can be fixed; some computa-
tions may take a lot of time but this property is due to the
problem at hand and the program may already contain
the most appropriate algorithm. Our approach attempts
to eliminate such false positives by looking at the statisti-
cal range of the CPU execution time spent inside a basic
block for all executions.

2. Approach and Methodology

The approach to obtaining basic blocks that contribute the
most to the overall execution time of a program is divided
into two phases. These two phases are concisely summarised
in Algorithm 1 and Algorithm 2. The first phase of our ap-
proach is concerned with on-line profiling of the program
under test. In this phase, the program under test is executed
multiple times with different inputs?. For each execution of
the program, our tool records hotness information and the
amount of CPU execution time taken by every basic block.
In the context of our tool, hotness of a basic block refers
to how often (i.e., frequently) a basic block is executed dur-
ing a given program execution. The execution frequency of
a basic block contributes to its hotness, i.e., the more fre-
quently a basic block is executed, the hotter it becomes. The
tool records and maintains the minimum, maximum, and av-
erage amount of CPU execution time for each basic block
in the program under test. The average time is calculated by
maintaining a moving average of the CPU execution time,
making it possible to capture the effects of non-deterministic
events (e.g., a call to sleep for some random amount of time)
on a basic block and help eliminate outliers. The diversity
of inputs to the program as well as the number of times the
program is to be executed is for the user to decide. In this
phase the tool tries to influence the scheduler to cause dif-
ferent schedules of the executing program threads. Influenc-
ing the scheduler makes it possible for the tool to unearth
rare resource contention scenarios that may otherwise go un-
noticed during normal testing. Influencing the scheduler is
achieved by delaying random shared memory accesses for
a small amount of time. At the end of this phase, the pro-
filed information for each execution is written to disk and is
available for analysis in the second phase of our approach.
The second phase of our approach is outlined in Algo-
rithm 2. This phase performs off-line analysis of the data
recorded during the first phase. In this phase, the recorded
information is analysed to identify potential performance
bottlenecks. The bottlenecks correspond to basic blocks in-

2 Inputs can be supplied by the user or a separate program to generate test
input, see the extensive literature on test generation, but this topic is beyond
the scope of this paper.
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input : PUT - Program under test
output: profile - A log file containing hotness and
timing information per basic block

1 instrument(PUT) ;
2 while PUT.isAlive do
3 for each BB in PUT do
4 BB.execFreq+=1;
5 execTime=BB.exitTime-BB.entryTime;
6 if BB.execFreq >1 then
7 BB.avgTime= (execTime +
(BB.avgTime*BB.execFreq))/(BB.execFreq+1);
8 BB.minTime = min(BB.minTime,
execTime);
9 BB.maxTime = max(BB.maxTime,
execTime);
10 end
11 else
12 BB.avgTime = BB.minTime=
BB.maxTime = execTime;
13 end
14 end
15 end

-

6 WriteProfileLog(PUT);

Algorithm 1: Phase 1: On-line profiling of the programs
under test.

side the program under test. Performance bottlenecks for our
approach are those basic basic blocks where the program
spends a large® portion of its overall execution time. The
overall execution time is the total CPU execution time taken
by the entire program in a single execution. If the portion
of execution time spent in a basic block, and the statisti-
cal range of the execution time spent in that basic block, is
above a certain threshold (i.e., percentage of the total exe-
cution time), then the basic block is reported as a potential
performance bottleneck. The threshold value of the total ex-
ecution time may be specified by the user. Any basic block
for which the total execution time and the statistical range
of execution time is equal to or above the threshold speci-
fied by the user is reported for further inspection. For a basic
block to be reported as a performance bottleneck, its signif-
icance value as well as range must be higher than the speci-
fied threshold. The significance value is a product of the ob-
served average time and the execution frequency for a basic
block in the recorded program executions (line 21 of Algo-
rithm 2). The statistical range is the difference between the
lowest and highest amount of CPU execution time observed
in the recorded executions (line 22 of Algorithm 2). Exe-

3 The programmer decides what is considered to be large by specifying a
threshold.



input : profileLog - A log of profiled data from
Alg.1

input : eThreshold - A threshold percentage value of
total program execution time

output: pbList - A list of potential performance

bottlenecks
1 totalExecTime = read Profile(profileLog) ;
2 eThreshold <+ (totalExecTime*eThreshold)/100;
3 bbList < empty ;
4 while more profileLog exist do
5 read(profileLog);
6 for each BB in profileLog do
7 if bbList.exists(BB) then
8 prevAvg = bbList.BB.avgTime;
9 prevFreq = bbList.BB.execFreq ;
10 prevMin = bbList.BB.minTime;
11 prevMax = bbList. BB.maxTime;
12 bbList.BB.avgTime = max(BB.AvgTime,
prevAvg);
13 bbList.BB.execFreq = max(BB.execFreq,
prevFreq);
14 bbList.BB.minTime = min(BB.minTime,
prevMin);
15 bbList.BB.maxTime = max(BB.maxTime,
prevMax);
16 end
17 bbList.add(BB);
18 end
19 end

20 for each BB in bbList do

21 bbSig <— BB.execFreq * BB.avgTime ;

22 bbRange <— BB.maxTime - BB.MinTime ;
23 if bbSig >= eThreshold and bbRange >=

eThreshold then
24 | pbList.add(BB);
25 end

26 end
27 Report(pbList);

Algorithm 2: Phase 2: Off-line analysis and reporting of
performance bottlenecks.

cution frequency refers the number of times a basic block is
executed during a single program run.

To perform the pruning of false positives and identify po-
tential performance bottlenecks, our approach chooses the
highest recorded values for the execution frequency, the av-
erage and maximum amount of execution time, and the low-
est recorded value for minimum execution time when aggre-
gating these values from multiple profiled program execu-
tions. Selecting recorded values in the aforementioned fash-
ion may be important because non-deterministic execution
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scenarios involving contention for resources which leads to
performance bugs may be of more concern to programmers
than just average values.

The final step in the second phase of our approach reports
potential performance bottlenecks to programmers. The per-
formance bottlenecks report consists of (for each potential
bottleneck) the recorded execution frequencies of the basic
block in the profiled program runs, as well as the average,
minimum, and maximum amount of CPU execution times
recorded for each basic block. The execution frequencies for
a basic block signify its hotness across different program
inputs as well as whether the basic block is executed in a
deterministic/non-deterministic fashion in the recorded pro-
gram executions. The minimum and maximum CPU execu-
tion times show the range of time spent in a basic block for
different program inputs, while the average amount of CPU
times show the average time spent in a basic block in all
the recorded execution of the program. The reported values
may be further analysed by using a box plot for the reported
values, or the standard deviation for the values may be com-
puted before further investigation.

3.

The prototype implementation of our approach uses dynamic
binary instrumentation using the PIN [13] instrumentation
framework to collect run-time information about the execu-
tion behaviour of the program. At run-time the tool keeps
track of the hotness for each basic block by keeping track
of how often the basic block is executed during a single
program run. Basic blocks are delineated by conditional
branches taken by the program (i.e., executing a conditional
jump in the program creates a new basic block). When a new
conditional branch is taken, the previous basic block ends.
Figure 1 shows the process of collecting dynamic execution
profiles of the program under test. The tool keeps track of
the amount of CPU time consumed by each basic block dur-
ing a single execution, as well as the total time consumed by
the whole program. For each basic block the tool stores the
minimum and maximum amount of CPU time consumed by
each basic block, apart from computing and storing a mov-
ing average of the time spent in the basic block during a
single execution. For each execution of the program with
the same or different input, this information is stored per-
manently and written to a file on disk. Storing information
in a permanent location (disk) ensures that profiling infor-
mation is not lost, since profiling takes a large portion of
the procedure. At the end of the profiling phase, the log files
containing the recorded information from several executions
of the program are available for the analysis phase.

During the analysis phase the tool reads the information
from log files containing the profiling information and feeds
it into the analysis engine. During this phase occurrence
probabilities are calculated for each basic block. The occur-
rence probability for a basic block indicates the likelihood

Implementation



Profile 1

Execution 1

BB Freq. Min Max  Avg.
bri-br2: 1506 391 867 391
br2-br2: 7472 394 1014 394
br2-br3: 1038 407 1037 423
br3-br4: 3155 388 828 388
Execution n-1 Profile n-1
BB Freq Min Max  Avg.
bri-br2: 1506 426 1147 426
br2-br2: 7472 388 661 388
br2-br3: 1308 391 811 391
br3-br4: 3155 426 30872 435

Profile 2

Execution 2

bri-br2: 21259 411

br2-br2: 837 394

br2-br3: 843 391

br3-br4: 887 393

Execution n Profile n

bri1-br2: 840 409

br2-br2: 31072 437

br2-br3: 849 394

br3-br4: 1132 391

Figure 1: Samples of captured dynamic program profiles (Profiles 1 and 2 as well as (n-1) and n are shown).

for a basic block to be executed during actual program runs.
The analysis keeps track of the overall minimum and max-
imum amount of CPU time, as well as the maximum value
for the frequency and the average in all of the recorded exe-
cutions. Figure 2 graphically depicts the process of selecting
these aforementioned values, that are later used to perform
pruning of basic blocks that are below the threshold specified
by the user.

The analysis phase makes use of a threshold value to
judge whether a basic block is a potential performance bot-
tleneck. The threshold corresponds to a percentage portion
of the total execution time of the program. For example,
the programmer might be concerned about a basic block
that takes more than a certain portion of the total execu-
tion time. For each basic block, the tool compares the prod-
uct of its hotness and average amount of CPU time as well
as the statistical range of the CPU time spent in the ba-
sic block with the threshold value. If the product and the
range are higher than or equal to the threshold value, then
the basic block is reported to the programmer, otherwise, it
is removed from the list of reported basic blocks. The for-
mat for the report containing potential performance bottle-
necks that is presented to the user is shown graphically in
Figure 3. The analysis utilises the product of maximum av-
erage time profiled in all executions of the program, with the
maximum frequency for a basic block to ensure that basic
blocks consuming a high portion of the program execution
time are identified. However, the basic blocks identified us-
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| =Min (E1, E2,...En) ! '

BB Freq.| |Min Max Avg.time
bri-br2: 1506 | |391 21259 426
br2-br2:  [7472| |388 31072 437
br2-br3:  |1308| |388 1037 423
br3-br4: 3155| |387 30872 435

Figure 2: Program profile to prune out basic blocks below
the threshold.

ing the product of average time and frequency may very well
be a consequence of the algorithm being used by the pro-
gram. The analysis therefore, utilises the statistical range of
the time spent in a basic block in conjunction with the afore-
mentioned product value to ensures that non-deterministic
events or contention for resources are accounted for and re-
ported to the programmer.

The reported information is mapped back to the original
program so that it may be understood in source language
terms and must be inspected by the programmer.



C = Number of times code block executed
O = number of observed instances
brX-brY:

Frequencies: {C1:01, C2:02,...,Cn:On}
Min Times: {T1:01, T2:02....,Tn:On }
Max Times: {T1:01, T2:02....,Tn:On }

Avg Times: {T1:01, T2:02....,Tn:On }

T = CPU cycles
O = number of observed instances

Figure 3: Format of the report for each identified basic block.

4. Evaluation

The tool implementing our approach was applied to differ-
ent real-world applications written in C/C++. The selected
applications include a data compression tool pbzip2 version
0.9.4 [10], a security scanner for network exploration and
audits called Nmap version 6.49 [19], and the download ac-
celerator axel version 2.3 [1]. The results are presented in
Table 1. The first three columns show the results for exper-
iments performed with a single execution profile, while the
last two columns show the results for a setup when multiple
profiles of the program under test are recorded and analysed.

The experiments for pbzip2 using a single execution pro-
file revealed that it spends around 5% of its total execution
time inside of a for loop in the block sorting algorithm of
the non-parallel bzip2 utility. Bzip2 is the data compression
part of the parallel pbzip2 utility. The block sorting algo-
rithm uses Knuth’s increments and uses 3 copies before up-
dating the increment. However, the third copy fails to exe-
cute most of the time and program execution breaks off back
to the main loop to select a new increment. After modifying
the bzip2 implementation to remove the third copy, the ex-
periments were performed again with the same input. These
experiments revealed a slightly over 0.24% increase in per-
formance with a few inputs. However, this behaviour needs
to be investigated further with more inputs before arriving
at a solid conclusion. To further validate the technique, an
artificial workload was introduced inside of pbzip. The ex-
periments were run again to find out if the newly inserted
artificial bottleneck is detected, and whether the tool would
point to the exact basic block. The artificial workload con-
sisted of a while loop involving some basic arithmetic. The
workload added slightly over 5% performance overhead to
the original version of the program. The threshold execution
portion was set to 5% of the total execution time of the pro-
gram as before. The bottleneck was correctly identified and
localised to the inserted while loop using logs from just one
execution profile. The bottleneck identified in the original
version of the program also appeared in the list of reported
bottlenecks as expected. Recording and analysing multiple
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execution profiles for pbzip2 report another 3 bottlenecks
that point to the compression process inside of bzip2.

Experiments with axel* reported 4 potential performance
bottlenecks. The reported bottlenecks belonged to a for loop
and the if conditionals inside it, for displaying download
progress and speed. Since progress is to be displayed and
updated continuously, on a per kilobyte basis, it takes a
major chunk of the overall program execution. To validate
the experiment, the progress and speed reporting routine
was changed from per kilobyte to a larger unit, i.e. to per
megabyte. The minor changes led to a significant improve-
ment in performance. Although we realise that reporting
download progress per megabyte might not be suitable for
smaller download sizes, however, for larger files, per kilo-
byte reporting is probably a nuisance. In our experiments
with the modified version of the program, the program was
used to download a large file °. The average amount of time
(normalised over 100 executions) taken by the modified ver-
sion of the program was compared against the original ver-
sion. The comparison revealed a performance improvement
of 2.6x as compared to the original version of the program.
Six new bottlenecks are reported for axel when multiple exe-
cution profiles are analysed. All of the six bottlenecks corre-
spond to the main loop inside of axel’s axel_do method. The
reported basic blocks correspond to conditionals that belong
to non-deterministic events that deal with making a connec-
tion to the server or waiting for one.

Experiments with Nmap report six bottlenecks. The bot-
tlenecks mostly belong to basic blocks inside of library
routines for the scripting engine used by Nmap. The code
regions belong to library routines for the program lan-
guage Lua, which is used for Nmap’s scripting engine.
These code regions include a loop performing the hash
inside the hashing library function, and conditionals be-
longing to the String library routines of the Lua program-
ming language/environment. When 100 execution profiles
are recorded and analysed, the number of reported potential
bottlenecks almost doubles. Inspection of the 5 newly re-
ported possible bottlenecks include a few more basic blocks
in the Lua programming language’s library routines and two
basic blocks belonging to the traceroute system utility. Over-
all, no bottlenecks could be identified in Nmap itself with a
threshold of 5%.

The tool was also applied to the latest version of Apache
httpd web server (version 2.4.16). Experiments were per-
formed on the startup routine of the web server. Experiments
with the startup routine report three bottlenecks at a pruning
threshold of 5%. The three reported bottlenecks belong to
basic blocks inside a string utility routine used by Apache.
The routine is invoked multiple times when reading configu-

4 The file to be downloaded is served by a local machine to avoid perturba-
tion of the results by wide-area network delays.

3 The downloaded file a CD image (iso) file containing the Debian operating
system and has a size of 627 megabytes.



Table 1: Number of performance bottlenecks and false positives.

Application Profiles | Bottlenecks | Threshold || Profiles | Bottlenecks | Threshold
pbzip2 - original 01 01 5% 100 04 5%
pbzip2 - workload 01 02 5% 100 05 5%
axel - original 01 04 5% 100 10 5%
Apache httpd start 01 03 5% 100 03 5%
Nmap - original 01 06 5% 100 11 5%

ration settings for the web server from the configuration files
on disk. The routine itself probably has little opportunity
for any further optimisation, since the routines perform ba-
sic string manipulation operations, however, the experiments
serve to illustrate the effectiveness of our tool to successfully
identify these time-consuming portions of the program.

The experiments performed using our tool serve to vali-
date the effectiveness and usefulness of our approach. The
key insight gained from these experiments is that our ap-
proach succeeds in identifying locations in the program
where it spends a significant portion of its execution time.
The locations are identified at a fine-grain level, making it
possible to inspect and improve program performance with-
out much effort. For deterministic performance bugs a single
execution profile should usually suffice. However, to unearth
non-deterministic performance bugs multiple executions of
the program with different inputs may be needed. Although
our approach makes an effort to exercise different interleav-
ings of the program threads, however, there are no guaran-
tees that this may work in practice. Further investigation in
the direction of scheduling is outside the scope of our work
and was not explored.

4.1 Performance

The performance overhead of both the on-line and off-line
analysis of our approach is presented in Table 2. These
experiments were performed on a machine with an Intel
core i7 3.50GHz processor, 16 gigabytes of memory, running
desktop Ubuntu version 12.04.5. The selected applications
are of different scale; ranging from a few thousand lines of
code to over 400,000 lines of code in the case for Nmap.
The first phase of our approach has a higher performance
overhead than the second phase. The reason for the higher
overhead is that the first phase is concerned with on-line
profiling of the program being tested. The on-line profiler
uses dynamic binary instrumentation to collect the required
information. Furthermore, the information is collected for
every basic block in the program under test. The second
phase analyses the profiling data collected in the first phase
and is very fast, as can be seen from the fourth column in
Table 2. The advantage of our two-phase approach is that
once all the data is collected in the first phase, the user is
free to conduct more off-line analysis. The data collected in
the first phase is never invalidated by the off-line analysis.
Since the off-line analysis is fast, the user has the advantage
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of experimenting with different threshold values during the
second phase. To fairly judge the performance of the off-line
analysis engine, 100 profiling runs were analysed since they
represent a fairly large number of program executions.

The overhead incurred by the on-line analysis is pre-
sented in the last column of Table 2. The overhead is nor-
malised over 100 executions to allow a fair analysis of the
implementation. The overhead is slightly larger in the case
of pbzip2, however, it is orders of magnitude less for larger
applications like Apache Httpd and Nmap. There are a cou-
ple of reasons for the high overhead in the case for pbzip2.
First, since pbzip2 is a smaller application, the set up time
required by our framework to load and start up the applica-
tion adds a significant overhead to the overall execution time.
Second, pbzip2 uses of large number of conditionals for its
size, and the number of times that these conditionals are ex-
ecuted is fairly high, in part because of its sorting and com-
pression algorithms. Since our profiling engine collects data
at each conditional branch, this setup leads to a higher over-
head for smaller programs with more conditionals. Exper-
iments using the larger applications including Apache and
Nmap serve to validate our claim that the overhead remains
reasonable as applications grow larger in size.

4.2 Threats to Validity

There are a number of issues to consider when dealing with
performance bugs for concurrent programs. First, concur-
rent programs are inherently non-deterministic in nature, and
the number of possible thread schedules are astronomically
large. If the program is not properly synchronized and access
is not properly guarded, then different thread schedules may
lead to different program behaviour - even when the same
program input is supplied. Second, performance bugs in con-
current programs behave the same way as concurrency bugs,
i.e., they appear only under rare circumstances. These rare
circumstances can be a rare interleaving of the program’s
threads leading to contention for resources or a particular
program input. The approach described here attempts to dis-
cover performance bugs from execution profiles that are col-
lected at runtime. If a performance bug does not appear dur-
ing the recorded program executions, then it will be missed
by our approach. The tool presented in this paper tries to in-
fluence the scheduler by delaying random memory accesses,
however, there are no guarantees that this will cause a rare
resource contention scenario to surface.



Table 2: Performance overhead of the on-line profiling and off-line analysis routine.

Application Profiles | Threshold | Offline Analysis | Online Profiling
pbzip2 100 5% 0.100 seconds 28.71x
Apache Httpd 100 5% 0.591 seconds 3.38x
axel 100 5% 0.0464 seconds 1.97x
Nmap 100 5% 1.07 seconds 7.01x

The technique presented here is not prone to false posi-
tives, because it reports events that are above the user spec-
ified threshold. However, these events could very well be
legitimate program statements and unavoidable for certain
programs. The involvement of a threshold value means that
our approach relies on the user’s intuition of what they per-
ceive to be a performance bug. For example, certain users
might not consider a basic block that takes 5% of the total
program execution time to be a performance bug. The ap-
proach only reports information according to the criteria that
is specified by the programmer, and is based on profiling in-
formation collected during the actual program executions.

5. Related Work

Performance bugs have largely been ignored in previous re-
search on software defects. Many research efforts on soft-
ware defects focus on functional rather than performance
bugs. A recent empirical study on performance bugs [14]
presents a good overview of a wide range of bugs collected
from real-world applications and provides a guidance study
for performance bugs detection; the authors explore a rule-
based performance bug detection technique to uncover pre-
viously unknown performance problems.

Most work on detecting performance bugs focuses on
identifying code locations that take a long time to exe-
cute in certain program executions. Profilers like oprof and
gprof [12, 17] periodically sample the program counter dur-
ing a single execution of the program. The samples are then
propagated through the call graph during post-processing to
arrive at estimates on how much of the total running time
was spent in each function of the program. Such profilers
are the standard way to find optimisation opportunities to
improve the performance of a program. Recently, profiling
techniques involving dynamic analysis to detect excessive
memory usage have been proposed. These include tech-
niques for optimising the creation of similar data structures
over the lifetime of a program [28], as well as techniques
that track the life-time of objects to uncover run-time ineffi-
ciencies in programs [29]. Other profiling techniques work
on recording memory access behaviour of programs that
use recursive data structures [24], by capturing the run-time
behaviour of the individual instances of recursive data struc-
tures such as lists and trees. More recent work by Nistor et
al. [21] present a technique for detecting code loops whose
computation has repetitive and partially similar memory-
access patterns across loop iterations. Nistor et al. suggest
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that such repetitive work is likely to be unnecessary and may
be performed faster. Mitchel et al. [20] focus on analysing
data structures at runtime to find their execution cost. Others
track data structures to perform post-mortem analysis of the
collected information [27] and suggest improvements to the
design of data structures. Pradel et al. [23] suggest a perfor-
mance regression testing technique for thread-safe classes.
The technique works by generating multi-threaded perfor-
mance tests and comparing two versions of a class to detect
performance gains.

Recently, researchers have presented techniques for iden-
tifying the root cause of a performance bugs within appli-
cations. These include tools like X-ray [2]. X-ray is built us-
ing techniques of dynamic information flow analysis and de-
terministic record and replay. X-ray uses performance sum-
marisation techniques to automatically diagnose the root
causes of performance bugs. The tool assigns costs to each
basic block within the program using certain metrics like
CPU utilisation or network activity by using binary instru-
mentation. The tool then records intervals of program execu-
tion to analyse. The execution recorded by X-ray may then
be replayed during analysis.

Profiling techniques for detecting performance bugs that
utilise multiple program runs include techniques like algo-
rithmic profiling [30]. Algorithmic profiling works by auto-
matically determining an approximate cost function based
on multiple program runs. Other techniques [11] focus on
calculating empirical computational complexity of programs
by running a program with several inputs, and fitting the
costs to a curve to arrive at performance as a function of
workload size.

Our work combines the approach used by state-of-the-art
profilers and those approaches that analyse multiple execu-
tions of the program for detecting performance bugs.

6. Extensions

Experimental results of the implementation for our approach
revealed certain aspects that would benefit from further in-
vestigation in the future. First, the main factor contributing
to the high overhead incurred by our approach is the number
of conditional branches that are executed in a single program
run. The approach relies on collecting profiling information
for basic blocks at the boundary of conditional branches in
the program under test. Thus, the overhead incurred by our
approach is directly proportional to the number of condi-
tional branches that are executed for some program input.



One way to reduce the overhead would be to collect profil-
ing information at a slightly higher granularity than a basic
block. The granularity could be that of defined paths through
the program, e.g., using ideas from the path profiling algo-
rithm presented in [3], instrumentation does not need to oc-
cur at every conditional branch. Implementation at a gran-
ularity higher than that of a basic block would significantly
reduce the overhead of the first phase in our approach. Fur-
thermore, if traditional profiling information at the class or
method level is available, then this information could be used
to mask monitoring the execution of those parts of a program
that contribute less than the threshold to program execution
time.

Second, our approach currently collects profiling infor-
mation about hotness, along with the minimum, maximum,
and average amount of CPU time spent in a basic block. The
approach would benefit from collecting more information at
these code regions, including information regarding cache
misses and stall cycles during the execution.

The current implementation will need to be updated to
accommodate these changes. However, since the basic in-
frastructure is already in place, only a moderate amount of
effort will be required to incorporate these changes in the
infrastructure.

7. Concluding Remarks

Performance bugs are hard to fix and tools to aid program-
mers in detecting these bugs are scarce or lacking in func-
tionality. This paper presents an approach for detecting and
localising performance bugs. A prototype implementation of
the approach is presented to conduct an experimental evalua-
tion of the system. The tool profiles and detects performance
problems in applications using profiled execution informa-
tion. The evaluation of the approach presented in Section 4
shows that the tool indeed detects performance problems in
real-world applications at the level of a basic block.

The implementation employs binary rewriting to collect
data about a program’s execution. Binary instrumentation,
although it incurs an overhead, nevertheless allows the use of
this technique in realistic settings. The overhead is probably
too high to allow the system to be used by default, but the
overhead is low enough to allow its use as soon as a problem
is suspected.

The decision to use basic blocks bounded by conditional
branches in the prototype implementation is based on the
fact that current support for monitoring the execution be-
haviour of programs is limited, especially for multi-threaded
programs. Other options (e.g., to replace binary instrumen-
tation by a compiler framework to keep track of the con-
ditional branches that are executed and to directly use the
processor’s program monitoring unit) are possible and wor-
thy of further investigation. However, the difficulties to ob-
tain valuable data about a program’s execution point to the
need for better program monitoring units. Given the prolif-
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eration of multi-core processors, and the ability to provide
additional functionality in processor implementations, archi-
tects of future processors should pay more attention to the
needs of tools that help software engineers isolate and un-
derstand program performance defects.
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