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Abstract

In recent years, a lot of services have been outsourced to the cloud.
Sensitive information stored online and lots of data breaches have lead
to an increase in demand for secure cloud-computing solutions. One
cloud-application where security is of high importance is natural lan-
guage processing, which frequently deals with inherently privacy-sensitive
information. For example, using machine translation can reveal the
contents of otherwise private conversations. Outsourcing natural lan-
guage processing tasks to the cloud while preserving the privacy of
the input is possible thanks to Fully Homomorphic Encryption (FHE)
schemes. FHE schemes allow a server to compute calculations on
encrypted data without gaining any information about it. Natural
language processing frequently relies on Recurrent Neural Network
(RNN), which are challenging to implement in FHE because of their
deep, recursive, nature and hard to approximate activation functions.
However, recent developments in FHE have introduced a novel scheme
that promises to be able to evaluate arbitrarily deep functions and non-
polynomial activation functions efficiently. The goal of this thesis is to
investigate the state-of-the-art in privacy-preserving natural language
processing in FHE. We design, implement and evaluate a network for
privacy-preserving machine translation, using this to highlight both
the recent advances and remaining limitations in FHE-based machine
learning.
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Chapter 1

Introduction

Modern machine learning has enabled a wide variety of Natural Language
Processing (NLP) applications including speech recognition and automated
translation. This has enabled automation in a variety of fields that would
have traditionally required prohibitively expensive human operators, trans-
lators, etc. With products like Alexa, Siri, and Google Translate, these tech-
nologies have become ubiquitous in everyday life. Speech recognition makes
using technology not only more convenient but represents a significant ad-
vance in accessibility. Meanwhile, online translation services remove com-
munication barriers and allow for an international spread of information
and discourse.

Due to the size and complexity of the machine learning models, most NLP
applications rely on cloud backends. In order to process the input, the cloud
providers require access to the input (users’ speech or text). While data is
sent to the provider over an encrypted channel, it must be decrypted to
compute on and return the result, e.g. the recognized sentence or translated
text. In addition to this automated process, user data is frequently exposed
to human operators, e.g. for quality control. Furthermore, user data might
be used to get information on user interests for further advertisement strate-
gies or just to get a general fingerprint to simplify other activities.

Leakage of information can pose significant risks to the user, especially in
countries that actively monitor internet usage and heavily censor speech in
general. For example, voice-based assistants are frequently activated un-
intentionally, leading to private conversations being leaked to the cloud
provider [20]. Meanwhile, where translators are used to enable conversa-
tions, they also reveal at least half the conversation to the cloud provider. In
many cases, abstaining from these services is not possible (e.g. accessibility)
or feasible (e.g. too expensive to use human translators). Instead, it should
be possible to benefit from such services without having to expose one’s data
to a potentially untrusted third party. This can be achieved by using secure

1



1. Introduction

computation techniques to make machine translation privacy-preserving.

FHE allows one to compute on encrypted data, enabling privacy-preserving
outsourcing of, e.g., machine learning applications [15]. There has been a
significant amount of work in the area of FHE-based computer vision for
tasks such as classification and object recognition, showing how to evaluate
deep Convolutional Neural Networks (CNNs) relatively efficiently [6, 16,
14].

Despite language models being even more privacy sensitive (e.g. Alexa), we
have not seen similar progress. This is because NLP applications generally
rely on Recurrent Neural Networks (RNNs) which are difficult to realize in
common FHE schemes because of their deep, recursive, nature [22].

In FHE, each computation executed on the ciphertext adds some noise, to
the ciphertext. Eventually, this noise grows to a point where decryption
fails, with especially chained multiplications quickly leading to an explosion
of noise. While even the very first FHE schemes introduced bootstrapping
techniques that reset the noise, these were generally too inefficient to be of
much practical use. As a consequence, these FHE schemes remained limited
in the depth of neural networks they could evaluate.

Natural Language Processing (NLP) applications use especially large and
complex neural networks. The vast majority use RNNs to be able to deal
with the context dependent nature of natural language, both in spoken and
in written form. RNNs include a feedback mechanism and can thus make
future predictions based on past inputs. These models therefore work by
calculating very long chains of multiplications, making it challenging for
FHE to work correctly.

However, a recent development introduced a novel scheme, which signif-
icantly improves the performance of bootstrapping in this setting [11, 10].
This allows us to calculate arbitrarily long multiplicative chains in a feasi-
ble time. It is an important improvement since it may allow us to build
privacy preserving deep neural network applications, in particular NLP ap-
plications.

Our goal is to implement a Recurrent Neural Network (RNN) for NLP using
this new FHE scheme to assess the new state of the art limits for deep neural
networks. Towards this, we want to develop a toolbox containing the most
important components used for building such machine learning models.
From this, we want to create an end-to-end NLP application, e.g. a privacy-
preserving online translator. We want to closely document the toolbox we
develop, such that they can also be used by other developers, either to learn
from or to build other projects upon ours. Finally, we will benchmark our
solution thoroughly, comparing it against the previous state of the art.
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Chapter 2

Background

In this section, we briefly introduce core notions of Fully Homomorphic
Encryption (FHE) and Machine Learning (ML).

2.1 Fully Homomorphic Encryption

In this section, we introduce the TFHE encryption scheme [9]. TFHE in-
ternally uses three different types of encryption which interact to form the
overall TFHE scheme.

2.1.1 LWE-based Encrypton

The security of this scheme is based on the Learning with Errors (LWE)
assumption. The underlying LWE problem is to deduce a linear function
f with n arguments over a finite ring from samples yi = f (xi) with the
points being offset by small errors. The LWE assumption is that this is
computationally hard to solve and therefore of good use for encryption.
The important factors in setting the parameters for the TFHE scheme are
security, precision of the ciphertexts and computational efficiency [17].

An LWE ciphertext c is created from the following equation:

c = (a, b) = (a, a ∗ s + µ + e)

where a is the mask which is sampled from a random distribution whenever
a ciphertext is created, s is the secret key which is a n-dimensional vector
with entries 0 or 1, µ is the (encoded) message, and e is the noise. The mask
is stored with the ciphertext such that the secret key holder is able to decrypt
again.

The noise e is sampled from a Gaussian distribution whose standard devi-
ation is chosen by the user. The larger the standard deviation the higher
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2. Background

the security, because we have a larger random number which blurs our ci-
phertext. If we choose a large standard deviation there has to be a greater
distance between the possible encoded messages, because we need the space
between the possible messages to be larger than the noise such that we can
round it away again.

Symmetric Encryption

For µ = m/q, m ε Zq, a $←− Tq, s $←− {0, 1}n and ε
χ←− Tq, symmetric encryption

is defined as follows.

Encs(µ) =
(
a1, ..., an,

[
∑ aisi + µ + ε

])
(a1, ..., an, b) (2.1)

ct0 =
[
∑ aisi + µ + ε

]
ct1 = a1, ..., an = a
ct = (ct1, ct0)

(2.2)

Decryption is correct as long as the rounding to the next valid point in the
torus (i/q for 1 ≤ i ≤ n), denoted by [. . . ]1, is correct, which is always the
case for a freshly encrypted ciphertext.

Decs(ct) = ct0 − ct1s =
[
b−∑ aisi

]
1 = [µ + ε]1 = m (2.3)

Asymmetric Encryption

From the symmetric scheme, a public-key scheme follows naturally by using
an encryption of zero as the public key.

Encs(0) =
(

a1, ..., an,
[
∑ aisi + ε

]
1

)
= pk (2.4)

pk0 =
[
∑ aisi + ε

]
1

pk1 = a1, . . . , an = a
pk = (pk1, pk0)

(2.5)

This encryption of zero is then re-randomized during public key encryption.
Note that for simplicity, we omit [. . . ]1 here:

Enca(µ) =
(
aiu + e1,

(
∑ aisi + ε

)
u + µ + e0

)
= ct (2.6)

ãi = aiu + e1

ct0 =
[
∑ aisi + µ + ε

]
ct1 = (ã1, . . . , ãn) = ã
ct = (ct1, ct0)

(2.7)
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2.1. Fully Homomorphic Encryption

Again, we assume that the parameters are selected appropriately as to guar-
antee correct rounding for fresh (public key encrypted) ciphertexts.

Deca(ct) = ct0 − ct1s = ∑ aisiu + εu + µ + e0 −∑(aiu + e1)si

= µ + e0 + εu−∑ e1si + e1s

=
[
µ + e0 + εu−∑ e1si + e1s

]
1

=

[
m
q
++e0 + εu−∑ e1si + e1s

]
1
= m

(2.8)

Homomorphic Operations

One of the key aspects of FHE schemes is the fact that they support homo-
morphic operations over the ciphertxts. For example, it is easy to see how
component-wise addition of ciphertexts leads to a message that encrypts the
sum of the original messages:

[Enc(m1) + Enc(m2] =
(
a1, ..., an,

[
∑ aisi + m1 + ε

])
+
(
a1, ..., an,

[
∑ aisi + m2 + ε

])
=
(
a1, ..., an,

[
∑ aisi + m1 + m2 + ε

])
= Enc(m1 + m2)

(2.9)

We will discuss how TFHE realizes multiplications between LWE ciphertexts
later, when discussing bootstrapping.

2.1.2 RLWE-based Encryption

Ring Learning with Errors (RLWE) is the Learning with Errors (LWE) prob-
lem specialized to polynomial rings over finite fields. RLWE encryption
works similar to LWE encryption, but now each component is a polynomial,
i.e., a ciphertext C is a tuple of polynomials

C = (A(X), B(X))

where B(X) = A(X) ∗ S(X) + δM(X) + E(X) and every component is of
the form F(X) = F0 + F1X + ... + FN−1XN−1. The coefficients, though, are of
different type for every component:

Ai
$←− Tq is the mask element drawn from the uniform distribution.

Si ←−{0,1} is the secret key element known only by the owner.
Ei

χ←− Tq is the noise element drawn from the Gaussian distribution.
∆M(X) = m/q, m ε Zq is an encoded message.

The parameters are the polynomial size, the dimension of the mask and the
standard deviation of the noise. The dimension of the mask refers to the
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2. Background

Figure 2.1: Illustration of an RGSW ciphertext

mask coefficients size. The polynomial size (usually N) refers to the degree
of the polynomial of each component. Every coefficient of the polynomial
can be used to store an encoded message. This means a whole vector of
encoded messages can be encrypted or decrypted at once.

2.1.3 RGSW-based Encryption

The Ring-Gentry-Sahai-Waters scheme is used by TFHE in its bootstrapping
algorithm. An RGSW ciphertext consists of many RLWE ciphertexts, as
seen in Figure 2.1. While the encoded message is the same for each RLWE
polynomial, other aspects such as the mask and the noise are dependent
on their position. The advantage of RGSW ciphertexts is that they can be
multiplied. There exist two different products, the internal and the external.

Formally, an RGSW ciphertext is defined as

C = Z + m ∗ G2

with C ∈ TN [X]2lx2 and Z a vector of 2l RLWE encryptions of 0 and G2 being
the gadget matrix

G2 =

[
g 0
0 g

]
with gT = (2−1, ..., 2−l).

G−1
2 can be used to decompose TN [X] elements (i.e., the components of an

RLWE ciphertext) with respect to G2.
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2.1. Fully Homomorphic Encryption

Figure 2.2: Illustration of a CMUX

Internal Product

The internal product between two RGSW ciphertexts is defined as

C � D = G−1
2 (D) ∗ C =


G−1

2 (d1) ∗ C
.
.
.

G−1
2 (d2l) ∗ C

 =


C � d1

.

.

.
C � d2l

 (2.10)

with G−1
2 (di) having size 2l × 2l, C having size 2l × 2 and the result entry

C � di having size 2l × 2.

External Product

The external product between a RGSW ciphertext and an RLWE ciphertext
d is defined as

C � d = G−1
2 (d) ∗ C (2.11)

with G−1
2 (d) having size 1× 2l, C having size 2l × 2 and the result having

size 1× 2.

Ciphertext Multiplexing

The ciphertext multiplexer is a homomorphic version of a multiplexer, i.e.
a logical gate which selects an input based on the signal of a controller. A
homomorphic multiplexer (CMUX) has the same logical function, but takes
as inputs two RLWE vectors and as controller an RGSW encryption, as seen
in Figure 2.2.

CMUX is implmented using the RGSW external product:

MUX(C, d1, d0) = C � (d1 − d0) + d0

7



2. Background

This is correct as seen from

(C ∧ d1) ∨ (C̄ ∧ d0)

= C ∗ d1 + (1− C) ∗ d0

= C ∗ d1 + d0 − C ∗ d0

= C � (d1 − d0) + d0

(2.12)

where the first equation is the definition of a multiplexer gate.

2.1.4 Bootstrapping

During FHE operations the amount of noise, which is added to the cipher-
text during encryption, might be modified as well. For example, during
addition the noise of the two ciphertexts is summed up (Equation (2.9)).
This is undesired, since it is only possible to round to the correct encoding
point if the noise is in a certain rounding interval. If the noise has grown
larger than half the interval between the encoding points, decryption will
be rounded to the wrong value. The goal of bootstrapping is to reduce the
noise of a ciphertext. In the following, the bootstapping procedure and its
components will be explained in more depth.

Rounding Noise

The main aim of the bootstrapping is to map the noisy message µ? (which
is mod q) to a message µ (in mod p) that corresponds to one of the valid
encoding points. This rounding can be expressed by the following formula

Upperq,p(µ
?) =

q
p

⌈
p
q
∗ lift(µ?)

⌉
(2.13)

where the lift operations denotes a lift of the modulo under which the
operand is given. Essentially, we left shift the message by q

p leaving only
the log q− log p bits behind the decimal point. Then we round these digits,
where the noise is located, off and reverse the shift. An illustration of the
process is given in Figure 2.4.

Test Vector We want to evaluate the rounding function (Equation (2.13))
on an encrypted message in order to reduce the noise. We achieve this
by first building a test polynomial, which has each of it’s coefficients cor-
respond to one of the possible encoded message (after rounding), i.e. we
define

v = v0 + v1X + ... + vq−1Xq−1

with the i-th coefficient set to vi = Upperq,p(imodq) as seen in Figure 2.4.
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2.1. Fully Homomorphic Encryption

Figure 2.3: Illustration of the rounding performed by Equation (2.13) where q = 2Ω, p = 2ω̃+ω,
ω̃ denotes ’padding’ bits, and v is the message without those padding bits.

Figure 2.4: Illustration of the test vector, showing multiple copies of each possible encoded
message.
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2. Background

Figure 2.5: Illustration of the succession of CMUX gates used in blind rotation.

Blind Rotation In order to evaluate the Upper Function on a ciphertext, we
want to treat the test vector as a look up table. We achieve this by multiply-
ing the test vector with Xµ∗ and extracting the constant coefficient. However,
since µ∗ is not available publicly, we must use a succesion of CMUX gates
to perform this rotation blindly.

We pass the test vector through a series of multiplexers. Remember, a mul-
tiplexer is a logical gate which passes an input based on the signal of a
controller, see Section 2.1.3 for the explanation of a homomorphic one. The
bootstrapping key, a sequence of RGSW encryptions of the individual ele-
ments of secret key si ∈ 0, 1, acts as the controller. In the i-th CMUX gate,
we select between the current vector or a copy of the current vector rotated
by ai. This succesion of CMUX gates is the same as choosing which ai we
rotate by, therefore the output of this sequence is equivalent to a rotation by
∑ ai ∗ si, as seen in Figure 2.5

Drift

Polynomials used in RLWE are from ZN [X] modulo XN + 1, here, the group
element X has order 2N. As a consequence, rotations by 2N are equivalent
to not rotating at all, and rotations by k > 2N are equivalent to rotations k
mod 2N. The test vector can therefore only represent 2N values. However,
the noisy message µ? is originally modulo q. Therefore, moving to mod 2N
leads to a rounding error, which is called drift.

10



2.1. Fully Homomorphic Encryption

µ? = b +
n

∑
j=1

sj ∗ aj (mod q)

µ̃? = b̃ +
n

∑
j=1

sj ∗ ãj (mod 2N)

b̃ =

⌈
2N(b mod q)

q

⌉
ãj =

⌈
2N(aj mod q)

q

⌉
(2.14)

Furthermore, the RLWE vector has N entries and we want to display every
possible entry in the space with each coefficient, but the mod 2N space has
two times the entries. We therefore cut off a padding bit, the most significant
bit from µ̃?, to reduce the space to N values:

vi = Upperq,p

( q
2N
∗ i mod q

)
(2.15)

2.1.5 Programmable Bootstraping

One of the major features of TFHE is that we can apply a function during
bootstrapping with no additional cost by simply modifying the test vector.
We apply the desired function f to the coefficients vi before using the Upper
function. The test vector essentially acts like a look up table, i.e. it is a list of
function evaluations at different points. The step size between the evaluated
values is given by the number of different possible messages. Now when
executing the bootstrapping, the result has reduced noise and returns the
function of the argument.

This is also used to realize ciphertext-ciphertext multiplication, by comput-
ing a ∗ b = 1

4 (a + b)2 − 1
4 (a − b)2, where the squaring and subsequent di-

vision by four are realized using programmable bootstrapping. Since the
divison by four can be folded into the same Look-Up-Table, the entire com-
putation requires only two bootstrap operations. Correctness is easy to see:

1
4
(a + b)2 − 1

4
(a− b)2 =

1
4
(a2 + 2ab + b2)− 1

4
(a2 − 2ab + b2)

=
1
4
(a2 + 2ab + b2 − a2 + 2ab− b2)

=
1
4
(4ab)

= ab

(2.16)
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Chapter 3

Introduction to Concrete

In order to implement the homomorphic operations in our program, we
use the Concrete library [10]. This is a state-of-the-art library published
recently (fall 2020), implementing an improved version of the Torus Fully
Homomorphic Encryption (TFHE) scheme [10]. The library is written in
Rust, which is designed to be a memory-safe but high-performance alter-
native to C/C++. While initial documentation is available [5], it is limited
to a few basic operations and does not sufficiently explain how to develop
more complex programs. Therefore, this chapter provides an introduction
to Concrete based on the insights we gained while working and exploring
this novel library and the associated literature.

3.1 Parameter Selection

In Concrete one has to choose from a predefined set of parameters, offer-
ing either 128 bit or 256 bit security. There are two settings that deter-
mine the parameters for an LWE-based encryption: the dimension of the
mask and (the log of) the standard deviation of the noise (log std dev).
Selecting the first requires a trade off between security and computational
efficiency while the second imposes a trade off between security and the
precision of the encryption. The combinations can be accessed by pro-
viding the name of a predefined parameter set to encode encrypt func-
tion. The possible combinations are listed in the Concrete source code in
concrete/src/lwe params.rs.

3.1.1 Encoder

The encryption algorithm needs to map potentially continuous inputs to a
finite number of discrete points. We need space between the encoded val-
ues, since we need to be able to round away noise between the points. This

13



3. Introduction to Concrete

Figure 3.1: Example encoding with min = 0, max = 10 and bprec = 2

noise is an important part of the security of the encryption, but must be re-
movable as part of the decryption. Discrete points, with a rounding interval
around them, will naturally lead to a loss of precision. This precision can
be specified by the user and is a trade-off with the capacity to handle noise
growth.

The encoding is defined by four encoding parameters, which the user has to
specify. The Encoder takes an interval specified by max and min, and it also
takes a number of precision bits bprec, which lets the encoder compute the
sub-intervals, whose edges it will round to. Therefore the precision defines
the number of possible values in the interval. The last parameter needed
is the number of padding bits bpad. Padding bits are additional storage
allocated to the ciphertext. They will later be used when operations require
further information storage, for example when an operation maps outside
of the encoding interval to keep the same precision with a larger interval a
padding bit is used. They do not play any role in the initial encoding of a
message. A possible encoding of an interval can be seen in Figure 3.1.

The mapping of the message to the plain text encoding is given by the fol-
lowing equation:

14



3.2. Homomorphic Operations

µ =

⌊
m

margin

⌉
∗margin

where the margin is the interval between two points. It will be further
explained in the next paragraph. Notice, that the encoding is actually a bi-
jective function and therefore does not do any rounding yet. Rounding to
the next margin will only happen if we use the encoder in a rounding con-
text, which explicitly instructs Concrete to perform rounding. Otherwise,
the encoding function will not round to the next margin, but just display
the result on the torus with the precision of the computer.

In Concrete the encoding is computed by methods implemented in the en-
coder class. The encoder class is instantiated with the four parameters given
above. Inside the class there exists four attributes, the offset o, the size of
the interval ∆, the number of precision bits bprec and the number of padding
bits bpad. The delta is max−min+margin and represents the range of values

one can encode. The margin =
[

max−min
2bprec−1

]
is the interval between two points.

Notice that the last half margin in the ∆ will round to a value outside of the
interval, which will then wrap around to zero. Encoding values outside of
the interval will lead to undefined behavior.

Sometimes, granularity is used instead of margin. The granularity is sim-
ilar to the margin but can be computed directly from the attributes of the
encoder, e.g. ∆ instead of max and min:

granularity =

[
delta
2bprec

]
=

[
max−min + margin

2bprec

]

3.2 Homomorphic Operations

The main components and features implementing the homomorphic opera-
tions will be discussed in the following subsections.

3.2.1 Adding a Constant to a Ciphertext

Adding a constant m homomorphically can be done either by shifting the en-
coding or adding to the ciphertext. The function add constant dynamic encoder

can be used to shift the encoding by m, while the function add constant static encoder

adds a constant m to the ciphertext itself and leaves the encoding unchanged.
Since the encoding stays the same, one should use the latter function if the
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3. Introduction to Concrete

following operation requires the same input encoding interval as the one de-
fined in the beginning. It is advantageous if one can calculate an encoding
in the beginning which matches all operations and is then able to execute
the computations without the need to change the encoding again.

Shifting the encoding allows us to change the encoded message for “free”
without modifying the underlying ciphertext. This means, that we use a
different interval for decoding than the one initially specified. This leads
to a different mapping between message and plaintext. Using an interval
shifted by m for the decoding leads to a message which is exactly m larger,
as we can see from Section 3.1.1. It is therefore equivalent to adding a
constant. Shifting does not require any specific encoding interval and can
be done with any constant. The result of the addition also does not need to
be inside the initial encoding interval. The precision stays the same, since it
depends only on the number of bits available and the interval size, which
do not change. Since the operation is does not affect the ciphertext, it does
not add noise to the ciphertext.

Alternatively, we can modify the underlying ciphertext by performing a ho-
momorphic plaintext addition. This adds the constant m to the ciphertext’s
body, which leads to an encryption corresponding to the original message
plus the constant. LWE encryption is linear, i.e., the ciphertext c encrypt-
ing m0 is defined as c = (c0, c1) = (a ∗ s + m0 + e, a). Therefore, we can
directly add a constant m to c0 and obtain a valid encryption of m0 + m:
c + m = (c0 + m, c1). While any encoding can be used, since the output
encoding is exactly the same as the one initially given, only additions in
the interval are possible. Since the operation remains inside the interval, no
padding bits are consumed. This operation does, on the other hand, add
some small amount of noise, since it is calculated on the ciphertext itself.

3.2.2 Adding two Ciphertexts

There are two ways to add ciphertexts, which both modify the underlying ci-
phertext, but differ in whether or not they consume padding. Adding two ci-
phertexts by consuming padding is implemented in the function add with padding

and there exists an equivalent operation for subtraction. Adding two ci-
phertexts without consuming any padding can be done with the function
add with new min, however this is only possible if we have some additional
knowledge on the range of values encrypted by the ciphertext. Unfortu-
nately, there does not exist an equivalent subtraction without padding yet.

In general a homomorphic addition works as follows. As we have previ-
ously already seen in the FHE theory section, the LWE ciphertext c encrypt-
ing m0 is defined as c = (ca, cb) = (a ∗ s + m0 + e, a). Adding two ciphertexts
c and c′ is done component-wise, i.e. c + c′ = (c0 + c′0, c1 + c′1). This opera-
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tion is relatively efficient and fast. Note, that the noise of the two ciphertexts
has been summed up to build the noise of the result.

Additions of large numbers can have a carry out and therefore the resulting
ciphertext might need to consume a padding bit. Even though, this will not
always be the case, because of the nature of FHE, which needs all compu-
tations and allocations to be independent of the input, the homomorphic
operation always consumes one bit of padding. Decrypting with the initial
interval would not give the correct result, add with padding therefore uses
the interval [min1 + min2, max1 + max2] to achieve correct additions. This
interval covers the whole range of results possible with the initial encodings
of the operands and has the same length as the size of the two previous
intervals combined. A larger interval with still the intial bprec leads to much
less precision. We therefore limit the intervals to be the same length, such
that the resulting interval is exactly double and we can always keep the orig-
inal precision by consuming one padding bit. One bit more gives double the
encoding points and can therefore encode a twice as large interval with the
same precision. This output encoding is done by Concrete internally and
does not need to be specified by the user.

We want to be assured in advance to keep the initial precision by consuming
one padding bit. The function, therefore, only accepts two ciphertexts that
are encoded with the same delta (delta = max−min + margin see encoding
section). Thus, the two need to have the same max − min and number of
precision bits because the margin is directly dependent on them. Further-
more, they must have the same amount of padding bits. You will produce a
compile error if you input other configurations.

Adding without padding is suitable if we know that the operands are from
a sub-interval of their encoding. We can then predict that the result can also
just be in a sub-interval of the added input intervals. For example, if we
are working in [−10, 10], the naive output interval would be [−20, 20]. If
we know that the inputs are positive, e.g., because they are the results of a
squaring operation, the output interval can be restricted to [0, 20]. Concrete
can then encode the result of the addition with the same precision without
using padding bits, since the interval size remains the same.

In order to add two ciphertext without consuming padding, the user has to
give a parameter min′ to the function which should satisfy that the result
of the addition lies inside of the interval [min′, min′ + (max1 − min1)]. The
interval has the same size as the one from the two operands, but is translated
to a position given by min′. We therefore have to know beforehand the range
in which the result will lie and then deduce a min′. We can avoid using
padding with this method, because we narrow down the interval the result
can be in. Concrete then does not have to use the whole possible addition
range for the encoding of the result and can thus circumvent using extra
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precision bits from the padding.

The disadvantage of this method, is that we have to know an interval of the
same range as our originals, where the result is going to lie in. If we have a
number of operations, with similar outputs this might make sense, but when
calculating arbitrary computations the interval will not be known. The user
will not be warned when the result is outside of the specified interval and
undefined results will be given as output.

The preconditions for add with new min are that the two ciphertexts have to
be encoded with the same delta (same max-min and number of precision
bits). Because we do not use padding bits for additional precision, both in-
tervals need to have the same delta to keep the original precision. If different
operands with different deltas are given an error message will be returned.
In the end, the delta of the encoding is preserved and the result has the same
interval size, precision and padding bits.

3.2.3 Multiplying a Ciphertext by a Constant

Multiplying with a constant in Concrete can be done by doing a ”real” ho-
momorphic multiplication or by only modifying the encoding, which has
the same effect, but is not actually a homomorphic operation on the cipher-
text. The first can only multiply with small integer constants, but preserves
the precision and does not use padding. On the other hand, the second can
multiply with real constants from any size, but one has to take into account
that the encoding interval is enlarged, the rounding intervals therefore get
larger, i.e. precision gets worse by 1

constant . However, padding can be con-
sumed to improve this precision.

Multiplying a constant without using padding can be done by using the
function mul constant static encoder. Here, the encoding is static, thus
the result of the multiplication has to be inside the interval and the resulting
encoding is the same as the initial one. Remember, that the LWE ciphertext c
encrypting m0 is defined as c = (c0, c1) = (a ∗ s + m0 + e, a). One multiplies
a constant m with both components and obtains the encryption of c ∗ m =
(c0 ∗m, c1 ∗m). If the noise has not grown too much during computations,
the last equation can be rounded to the nearest rounding interval edge,
which corresponds to the result with a precision of half the margin (see
Section 3.1.1). Note, that the noise was also multiplied by the constant and
therefore has grown. Nevertheless, the order of magnitude of the noise is
still way smaller than the rounding intervals and therefore not yet posing
a problem for the correctness, only multiple multiplications will eventually
lead to a false rounding.

Multiplication with constants, which are real or lead to a result outside of the
interval, can be calculated with the function mul constant with padding.
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This function does not actually homomorphically compute on the cipher-
text, it merely changes the encoding. The basic idea of the procedure is,
that the encoding interval is multiplied by the constant m, i.e. m ∗min and
m ∗ max. The interval length (max − min) therefore also gets m times big-
ger, but we still have the same number of precision bits, thus the precision
decreases by a factor 1

m . The value of the encoded and encrypted message
we want to multiply still keeps its relative position in the encoding interval
and therefore after decoding again, the procedure is equivalent to a multi-
plication with the constant m. However, one can double the precision by
consuming a padding bit. The number of possibilities for a binary num-
ber is doubling with every bit, equivalently each extra padding bit gives us
double the amount of points we can encode and therefore doubles the pre-
cision. The function takes the number of padding bits to be consumed as an
argument.

3.2.4 Programmable Bootstrapping

With Bootstrapping, we want to reduce the noise of an LWE ciphertext. We
refer to Section 2.1.4 for an explanation of the underlying procedure, and
simply recall that bootstrapping forces a rounding context, i.e. the plaintext
space is collapsed into a discrete set of points. In addition, bootstrapping
introduces further precision loss (drift) and needs one padding bit, which is
not consumed.

Using the the bootstrapping mechanism, we can not only reduce the encryp-
tion noise but also apply a function to the message encrypted in a ciphertext.
It allows us to compute any univariate function, implemented as a Look Up
Table (LUT). The LUT is automatically generated from a lambda function,
making the process transparent to the developer.

In Concrete, the precision of the applied function depends, by default, only
on the precision of the input and output encoder. Achieving the target preci-
sion requires sufficient capacity in the encryption key setup (bootstrapping
key and RLWE secret key). For the bootstrappping key the parameters are
the level and logbase. The RLWE secret key is dependent on the number of
bits for security and the dimension, which need to be chosen from a prede-
fined set of configurations (lwe params.rs). The user will receive a warning
if the target precision is not supported by the underlying keys.

While bootstrapping generally introduces some random drift in the results,
we can use rounding to ensure determinism. This means the result will first
be rounded to a set of 2bprec discrete points, then the function is applied, and
finally the result is rounded again. In the following, we are going to show
a small example, which shows how to calculate the precision of the output,
when a function with bootstrapping is applied using an encoding under the
rounding context.

19



3. Introduction to Concrete

In our example, the encoding is defined by min = 0, max = 10, bprec = 2
and bpad = 1, which is visualized in Figure 3.1. We apply the function
f (x) = x ∗ x = x2 to a ciphertext encrypting x = 3. The encoded points,
which the program rounds to, are therefore multiples of 3.3, up to 13.3.
First, x is rounded to the next interval edge xround = 3.3. Then, we apply the
function via the look up table f (xround)= x2

round = 3.32
= 11.1 Note that, in

this example, the resolution of the LUT is much higher than our encoding
(Resolution is of the magnitude of the RLWE polynom) and is therefore not
considered. We then again round to the nearest interval edge, which leads
to f (xround)round = 10, which is the result of the operation.

3.2.5 Multiplying two ciphertexts

Multiplication of two ciphertexts is not a native operation in TFHE, as it is in
other schemes. Instead, it is realized by combining other homomorphic op-
erations and programmable bootstrapping. Specifically, multiplication is re-
alized by using a ∗ b = 1

4 (a + b)2− 1
4 (a− b)2, where the squaring is done via

programmable bootstrapping. In the Concrete library, multiplication is im-
plemented by mul from bootstrap which internally uses add with padding,
sub with padding, mul constant with padding and bootstrapping with function.

In order to make all the underlying homomorphic operations work, we need
to have compatible input encodings. Both encodings need to have the same
interval size. The multiplication also needs two ciphertexts encoded with
the same number of padding bits. The operation consumes two padding
bits, because it uses the addition and subtraction which consume a padding
bit. The output encoding gets calculated internally by a function called
square divided by four. This function adjusts the encoding to the addi-

tion, squaring and division, such that the result will be inside the output
encoding.
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Chapter 4

Design

Our goal is to implement a neural network which is able to translate Ger-
man sentences to English while preserving the privacy of the text being
translated. In order to approach this task we have to answer multiple design
questions. The neural network architecture and internal structure should be
suitable to learn long input sequences. The input should be transformed
to an embedding which can be efficiently processed by the network. In the
next step, we have to implement the neural network under the limitations
given by the Concrete FHE library. Specifically, we have to choose suitable
encoding parameters, like the precision and range. We have to select from
the Concrete library the appropriate functions which let us efficiently com-
pute operations such as matrix multiplication, vector addition and execution
of functions on a vector.

4.1 Neural Network Architecture

In order to process sentences which are composed of many letters and
spaces, we need to learn on long sequences. Natural Language Process-
ing therefore mostly relies on Recurrent Neural Networks (RNNs), which
are a type of neural networks that are able to learn sequences. This is be-
cause an RNN has so called recurrent layers. These recurrent layers have a
feedback mechanism, which is a loop from the output back to the input of
the recurrent layers. This lets the system learn the relationship between se-
quential data points. For an RNN, the next output is dependent on not just
the current data point but also previous ones. Effectively, the RNNs inner
state is able to remember the sequence.

4.1.1 LSTM Cell

Today, the most common form of RNN is the Long-Short-Term-Memory
(LSTM) cell, which is an improvement to regular recurrent cells. Regu-
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lar recurrent units only have a hidden state h, which is bounded in the
range [−1, 1] by the hyperbolic tangent. For longer sequences the bounded
hyperbolic tangent is prone to vanishing gradients. Because of its bound-
edness the derivative of the hyperbolic tangent starts to be negligible for
large values. A negligible gradient leads to the chain rule used in the back-
propagation multiplying very small values and therefore quickly being be-
low the computer precision and not able to go back further. The vanishing
gradient problem is a common problem in deep networks, because the mul-
tiplication chains in the back propagation are so long. In RNN, the loops
lead to a similar length of multiplicative chains.

A LSTM cell has, in addition to h, also a cell state c which is unbounded,
since it includes (a product with) the old cell state (ct−1), as seen in Equa-
tion (4.1). This is helpful for creating a “long-term” memory. If the acti-
vation function of a node is unbounded, also for large inputs the deriva-
tive is not getting negligible. The cell state is unbounded and has its input
passed by a previous cell state which is also unbounded, this leads to the
back-propagation being able to pass through these nodes with the gradient
staying non-negligible for much longer. This is equivalent with being able
to learn also from layers which are very far back. In our case, layers which
are many loops back.

it = σ(Wiixt + bii + Wihht−1 + bih)

ft = σ(Wi f xt + bi f + Wh f ht−1 + bh f )

gt = tanh(Wigxt + big + Whght−1 + bhg)

ot = σ(Wioxt + big + Whoht−1 + bho)

ct = ft ◦ ct−1 + it ◦ gt

ht = ot ◦ tanh ct

(4.1)

The ◦ denotes the Hadamard product, which is the entry-wise multiplica-
tion of two matrices. The other operations consist of vector-matrix multipli-
cations, additions of vectors and a function application to a vector.

4.1.2 Translation Task

We use the Multi30k dataset [3], which includes a set of translation map-
pings from German to English sentences. A neural network internally only
calculates with tensors, which are higher-dimensional matrices. We, there-
fore, have to transform our sentences, which are strings to another repre-
sentation. We process our sentences word for word and thus we only have
to give a tensor representation of each word. This is done using standard
dictionaries, for example, the language processing library Spacy can convert
the German sentence strings to a sequence of one-hot vectors referencing a
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dictionary that has 7854 words in the German part and 5893 words in the
English. For any word in the dictionary, Spacy returns a one-hot vector
corresponding to the index of the word.

These one-hot vector representations have size equal to the amount of words
in the dictionary, but vectors of size 5000-8000 are too large to efficiently
work with. Hence, a further step in processing a word is creating an em-
bedding. The one-hot index is passed through an embedding layer [1].
The embedding layer is basically a pre-trained Look-Up-Table, which maps
every of the 7854 one-hot vectors to a smaller (real-valued) vector of a cho-
sen size, in our case we select a dimension of 400 as a trade-off between
compactness and accuracy.

4.1.3 Encoder-Decoder Architecture

For our implementation of the private machine translator, we used an encoder-
decoder architecture [4]. In the last years this type of architecture has proven
to be the best for sequence-to-sequence predictions [2]. The encoder-decoder
architecture is able to directly train on source and target sentences and can
handle input and outputs with variable size.

The embedding vector is the input to our recurrent encoder unit. The recur-
rent unit is composed of two stacked LSTM units. The output of the LSTM
units is not used until the input sequence has reached the end-of-sentence
token. If reached, the inner state represents the seen sequence and is passed
to the output.

This output is then passed through a fully connected layer, which returns
logits representing the probability for each entry to be one in the one-hot
encoding. If the model trains well this should then be approximately one
at one entry and approximately zero at all others. We then apply argmax
to get the index of the one-hot entry. The index of the encoded German
sequence part is then passed to the decoder. The decoder takes the index
and creates a new embedding. We pass the embedded vector through a
recurrent unit, existing again of two stacked LSTM units. This recurrent
unit learns how to map the embedding to a sequence of English language.
At every step of processing done by the recurrent unit an output one-hot
vector corresponding to an English word is returned, which ultimately is
our translated sentence.

4.2 Privacy-Preserving Translation

We want the machine learning model to be able to translate encrypted vec-
tors. Therefore it should be able to execute a forward pass on encrypted
sentences. The model is trained in Pytorch on unencrypted data (Multi30k
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dataset). After training our model on the data for 30 epochs, we export
the weights. We use the plaintext weights and homomorphically operate
with them on the encrypted input to achieve a forward pass and therefore a
translation of a sentence.

Our goal is to be able to homomorphically evaluate a forward pass on a
translation model stored on a server. The encoder embedding is evaluated
client-side as it is outside the core network and does not have to be trained
over sensitive data. However, the decoder embedding has to be evaluated
under FHE as it is nested in the middle of the model. Converting the one-
hot indexed output of each step to an English word stored in the dictionary
could also be done outside of the model and therefore is feasible to be done
by the client. However, in order to conserve bandwidth, instead of sending
the one-hot vector, we send a single ciphertext containing the index. This in-
dex needs to be computed for the next stage anyway, making this bandwidth
optimization effectively free.

In Concrete, one has to consider multiple parameters when computing mul-
tiple operations after each other. One has to decide in advance for all the
operations which encoding and Concrete operation suits best. The user has
to make sure all the operations result inside the output encoding-interval
of the specific operation. Also one has to ensure that all the results have
the correct encoding for the next operation, which most of the time has to
be the same as the second operand. If the computations are longer and
operands are used multiple times, it gets very complicated if the encoding
intervals change after each operations. Therefore we recommend using Con-
crete functions which do not change the encoding interval, such that one can
specify the same encoding interval for all operands in the beginning and ex-
ecute all operations with no further adjustments required. With this strategy
one has to calculate in advance a range which holds all results.

4.2.1 Matrix Multiplication

One of the most important steps in implementing the LSTM is the matrix-
vector multiplication. The vector is an encrypted tensor which represents a
word of the sentence that a client wants to have translated privately. We are
going to look a the more general form of the matrix-vector multiplication the
matrix-matrix multiplication. As we can see from Equation (4.2), the matrix
multiplication basically consist of multiple additions of multiplications.

cij =
k

∑
j=1

aikbkj (4.2)

For the multiplications in Equation (4.2) we choose to use the mul const

static encoder. It requires both operands to have the same encoding inter-
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val, but does also return the same encoding. This operation has a restriction
though. It can only multiply with integer numbers, which is not the case
for the weights in our use case. We decided to still use it but work around
it. We use a very large encoding interval for our ciphertext, multiply the
constant with a large number and round off the part after the decimal point,
which is in our case after the 6th digit. This maps all constants to integers.
We can then use mul const static encoder to multiply this integer number
with our ciphertext and get the result scaled by a known magnitude. We do
this with every product and therefore in the end after summation have all
our ciphertexts scaled up.

We choose the constant for scaling looking at the trade off between the pre-
cision bits needed for the larger interval and the precision loss of the small
constant when not scaled enough before rounding. From Table 5.1 we see
that we can use at most 50 precision bits for the encoding points of our in-
terval. If we want to have precision up until the 6th digit we should use a
constant that is larger than 106 this is given with 222. The interval size is
then given by the available precision bits divided by the constant, which is
250/222 = 228. We should then use an interval size which is of size 227 on the
positive and negative axis. When unscaling, the range in which the number
can lie is 2 ∗ 227/222 = 2 ∗ 25 = 2 ∗ 32 (on the negative and positive axis).
Scaling is a good idea because the constants which in the model really are
weights are mostly smaller than 1 and therefore all will be in the interval
when multiplied with a large constant. We can also make sure that it is
not possible to scale a value outside the encoding interval by setting a min-
imum and maximum on the weight range by looking in which range 90%
of the weights are. Since all multiplications result in the same large interval
we can easily continue the matrix multiplication by adding multiplications
with the encoding interval which is the same for all. Besides using the func-
tion mul const static encoder, which returns the same encoding interval,
for multiplication, we use add with new min for addition and set the new
minimum to the old one, which essentially leads to addition with a static
encoder as well.

We had two ideas on how to re-scale to the original magnitude. The first
one is that we divide the encoding interval after the matrix multiplication,
but this leads to different encoding intervals when adding multiple matrix-
vector product results, which has to be dealt with again (Figure 4.1).

Secondly, we decided to implement it differently and to undo this scaling
at the last step of our LSTM evalution, at the activation function eq. (4.1).
By reversing the scaling with a division of the ciphertext(Figure 4.1). When
applying the activation function via bootstrapping, we can simply divide
the argument by 10. This returns us a look-up-table which is scaled, but
gives us the actual result of our computations. The idea behind this method
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Figure 4.1: Illustration of the scaling

is to calculate all the matrix-vector multiplications and vector additions with
scaled weights and only in the end at the activation function, we rescale to
the real value. This is helpful, since we will have a static encoding interval
for all operations. The idea applied to the first LSTM equation can be seen
in Equation (4.3).

σ(
1
∆
(∆ ∗W1 ∗ x + ∆ ∗ b1 + ∆ ∗W2 ∗ X + ∆ ∗ b2) (4.3)

4.2.2 Activation Functions

One of the main challenges in previous FHE schemes was the implemen-
tation of activation functions. Previous FHE schemes were not able to effi-
ciently implement arbitrary functions, instead being limited to calculating
polynomials. However, it has been shown [19] that networks with activa-
tion functions which are not polynomial are much better for approximating
arbitrary functions, i.e. machine learning.

The TFHE scheme based library Concrete is able to compute any function,
which is a leap forward in this problem. The problem although is only
partially solved, since the function evaluation algorithm which is based on
bootstrapping can only compute with ciphertexts at low precision. In or-
der for the bootstrapping to support a maximum of precision, there are
many different variables one can tweak like the LWE key with its gaus-
sian noise standard deviation and mask dimension, the RLWE key with the
mask dimension, the noise standard deviation and polynomial size and for
the bootstrapping key the level and logbase, as well as the encoding inter-
val size. The precision supported by the bootstrapping is also the precision
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we can evaluate our function at. Often larger parameter lead to higher pre-
cision, but it does not seem to be true in general. The paper [18] shows
that the highest precision they could find with mask dimension not higher
than 4096 was 7 bits of precision, which is not that much considering that at
this size evaluation is already prohibitively expensive in terms of runtime.
In our experiments with the unmodified Concrete library, we were able to
bootstrap with at most 5 bits of precision using the provided settings. At
this precision, bootstrapping remains very efficient. This is in line with re-
cent follow-up work [12] to Concrete’s programmable bootstrapping, that
identifies about 6 bits of bootstrapping precision as the limit of efficiency.
While this follow-up work proposes improvements that increase precision,
an implementation of these techniques is not yet available.

One way we can counter the problems arising from limited precision dur-
ing bootstrapping is using quantization. Quantization is a technique which
lets one compute with neural networks at lower bit sizes. Therefore all the
tensors are represented and trained not with standard 64 bits, but at lower
bit numbers. In Pytorch, quantization to 8-bit integers is natively supported.
Therefore, 8 bits would be desirable to have as a minimal precision. How-
ever, we have to work with even lower precision because of the bootstrap-
ping restrictions we encountered.

4.2.3 Embedding One-Hot Vectors

In the encoder-decoder architecture, the outputs of the decoder cells are
converted into logit vectors by a fully connected layer. Each vector element
represents the estimated probability for this index to be the correct index.
This logit vector is then converted into a true one-hot vector by applying
argmax to identify the index of the largest element. This now represents a
single word in the target language and is output as part of the translated
sequence. Due to the recurrent nature of the decoder, this output is also
passed into the next stage of the network. However, first an embedding is
applied, similar to the embedding used to prepare the input sequence for
the decoder. These processes have a lot of similar elements which ought to
be implemented wisely.

Argmax The fully connected layer takes the output of the recurrent cell
and returns a logit vector over which we need to apply argmax to identify
the output word. Evaluating argmax over large vectors is computationally
expensive in FHE, especially in Concrete, which does not easily allow us to
use batching to pack many elements into a single ciphertext. In Concrete,
a simple linear scan updating the maximum value and associated index is
therefore the most suitable algorithm to find the index of the largest value
in the vector.
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In order to calculate the maximum value and index, we need to implement
both comparisons and conditionally updates. A comparison between two ci-
phertexts a and b can easily be realized by bootstrapping a− b with f (x) = 0
for x < 0 and f (x) = 1 else. This works reliably even at low precision.
Conditional updates, i.e. setting a variable to a or b depending on a bi-
nary condition c can be evaluated using multiplexers, i.e. by computing
c ∗ (a − b) + b. This requires computing a ciphertext-ciphertext product,
which requires two bootstrapping operations as described in Section 2.1.5.
However, these bootstrapping operations need to maintain much more pre-
cision, which makes this approach difficult with the limitations present in
current versions of Concrete.

Instead of using multiplications (realized via bootsrapping), one could alter-
natively use the native CMUX operation in concrete. However, this requires
the condition to be an RGSW ciphertext. While it is theoretically possible to
convert an LWE ciphertext into an RGSW ciphertext homomorphically, this
is expensive and not possible using Concrete’s relatively high-level API. As
a result, the limits of Concrete currently make realizing the argmax step dif-
ficult. While recent follow-up work [12] proposes methods to increase boot-
strapping precision, these techniques are not yet currently implemented.

Embedding Embedding one-hot vectors on the decoder side happens in
the middle of the model and therefore has to be done under encryption.
While evaluating the embedding look-up-table using bootstrapping sounds
like a straight-foward approach, the large sizes of the data makes it consider-
ably less straight forward. For example, the embedding has 400 dimensions,
so one has to bootstrap 400 copies of the index with 400 different look-up-
tables, corresponding to the different dimensions of the embedding. In addi-
tion, bootstrapping is also (currently) limited in precision to around 5 bits,
where as this would require dlog(400)e = 9 bits. While higher-precision
versions of bootstrapping are not yet available, one could replace the look-
up-table based embedding by a fully connected layer that is trained during
model training. A fully connected layer requires only matrix-vector mul-
tiplications, additions and activation functions, and is more robust in the
context of lower precision bootstrapping.
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Implementation & Evaluation

In this chapter, we briefly describe our implementation before presenting
the results of our evaluation.

5.1 Implementation

We re-used a model architecture from the 2019 Microsoft Research Private
AI bootcamp [22]. We trained the model for 30 epochs, until we observed a
convergence in validation loss (see Figure 5.1). We export the weights and
biases to csv files for later re-import into the FHE computation.

In Concrete, we reconstruct the weights matrices and bias vectors from the
csv files generated by the Python-based training. We implemented all the
matrix and vector operations needed to rebuild a forward pass on the model.
These are also of independent interest, as they are key components of more
general machine learning and other applications.

In the Design chapter, we already mentioned the issues arising from Con-
crete’s limited precision. Here, we investigate these limits experimentally.
We evaluated a wide selection of parameters and an overview over the avail-
able parameters and the supported precision can be found in Table 5.1. To-

Figure 5.1: Training loss in grey and validation loss in orange.
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n log(σ) p pb Bootstrap (s) KeyGen (s) Size (MB)

256 -5 2 0 2.669 759 49
512 -11 8 5 1.78 20161 97
630 -14 11 4 2.05 932 119
650 -15 12 4 5.531 2695 122
688 -16 13 5 5.056 2929 130
710 -17 14 5 3.917 2992 134
750 -18 15 5 3.741 3064 141
800 -19 16 5 2.549 3121 151
830 -20 17 5 2.643 3181 156
1024 -25 22 4 2.639 3116 193
2048 -52 49 3 6.761 45313 385
4096 -105 - - - - -

Table 5.1: Overview over the precision and performance of bootstrapping in Concrete for differ-
ent predefined parameter sets using different LWE key sizes n. log(σ) is the log of the standard
deviation of the Gaussian error distribution, p is the precision of linear operations in bits, and
pb is the precision of the bootstrapping operation, also in bits. Bootstrap refers to the runtime
of the bootstrapping operation, while KeyGen measures the time required to generate the boot-
strapping keys, both in seconds. Finally, Size indicates the size of the bootstrapping keys in
megabytes. All settings use 128 bit security, base 5 and level 3 (these settings determine how
operations are broken down internally). There is a known bug that prevents execution using
parameters with n = 4096.

wards the end of this thesis, two papers were published which confirmed
our observation that only about 6 bits of bootstrapping precision can be
achieved in practice [18, 12].

A further problem concerning the bootstrapping was the time it takes to
generate the bootstrapping key and their size, as seen in the KeyGen and
Size columns of Table 5.1. Generating a bootstrapping key can take several
hours for higher precision settings. While Concrete provides functions to
save the bootstrapping keys to disk and load it again, we discovered bugs
in this functionality that led to computations with de-serialized keys failing.
Therefore, we had to refrain from using this functionality and re-generate
keys on each run, which made development significantly more tedious.

5.2 Evaluation

We begin our evaluation with micro benchmarks of Concrete’s homomor-
phic operations, to provide a general intuition of the cost of FHE operations
in this setting. Then, we evaluate the runtime of our design and compare it
briefly to other approaches to deep neural networks in FHE. We conducted
our evaluation of Concrete and our design using an AWS m5.xlarge in-
stance with 4 cores and 16 GB of RAM.
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Figure 5.2: Runtime of different operations in Concrete, in milliseconds on a logarithmic scale.
n = 1024 refers to the setting RLWE 1024 LWE 512 while n = 2048 refers to RLWE 2048 LWE 512.

Microbenchmarks We evaluated the operations in the Concrete library by
running a series of microbenchmarks. We provide benchmarks for each of
the linear operations and bootstrapping based operations we covered in Sec-
tion 3.2. For the measurements, we used parameters with 128 bits of security,
512-dimensional LWE keys and either n = 1024 or n = 2048 dimensional
RLWE keys. The measurements presented in Figure 5.2 are the average over
100 (linear operations) or 10 (bootstrapping operations) executions of each
operation.

We note that encryption is two orders of magnitude slower than decryption,
which might be due to the need to generate a large number of random
values for the mask and the Gaussian noise. Interestingly, add constant

dynamic encoder is only slightly faster than add constant static encoder

even though adding a constant with a dynamic encoder only modifies the
encoding without actually performing homomorphic operation as the static
version does. The addition of two ciphertexts takes roughly an order of
magnitude longer than addition with a constant, which is coincidentally
about the same time as that of ciphertext-plaintext (i.e.,ciphertext-constant)
multiplications. For all these operations, the size of the RLWE key does not
lead to significant differences.

However, for bootstrapping-based operation, we can see roughly an order
of magnitude difference between the two parameter sets. As expected, boot-
strapping in general takes much longer than the other operations. Boot-
strapping without a function or with a function performs the same, proving

31



5. Implementation & Evaluation

0.01

0.1

1

10

100

1000

2 4 8 16 32 64 128 256 512 1024

ru
n
ti
m

e
 (

m
s
)

Vector Size

n=512
n=2048

Figure 5.3: Duration of matrix multiplication in milliseconds for different vector/(square) matrix
dimensions. n refers to the size of the LWE keys.

Concrete’s claim of “free” function evaluation. Oddly, mul from bootstrap

performs similar to standard bootstrapping even though the underlying al-
gorithm internally uses two bootstrapping procedures. It is not clear which,
if any, internal optimizations in Concrete, are causing this behaviour.

Matrix-Vector Multiplication The most important operation for implement-
ing a neural network is the matrix-vector multiplication that appears in both
fully connected layers and RNN cell functions. It is the most computational
intensive besides the activation function and therefore it should be as ef-
ficient as possible. For our measurements we used settings with 128 bit
security and either a 512 dimensional or 2048 dimensional LWE key. The
first setting provides 8 bits of guaranteed precision, which corresponds to
PyTorch’s natively supported quantization size. Since matrix-vector multi-
plications between an encrypted vector and a plaintext matrix do not require
bootstrapping, the RLWE key size does not matter here. In Figure 5.3, we
report the runtimes for a variety of vector, and therefore (square) matrix,
sizes. All measurements are the average over ten executions.

We observe some unexpected behavior when we increase the dimension of
the matrix, especially for n = 2048. For vector sizes above 256, we see
unexpected drops in the runtime compared to smaller instances. Since the
number of homomorphic operations increases with increasing size and all
operations are independently computed, the most plausible reason might be
OS or compiler optimizations kicking in, for example AVX512 vectorization
or advanced pipelining optimizations.

Bias Addition An other important operation in the evaluation of the neural
network is the bias addition. The bias addition is the addition of a network
intrinsic bias-weight vector which is unencrypted to an encrypted vector
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Figure 5.4: Runtime of adding a ciphertext and plaintext vector, in milliseconds, for different
vector dimensions. n is the size of the LWE keys.

which results from the weight-matrix multiplication with the input-vector.
Illustrated in Figure 5.5, we show the duration of this operation in millisec-
onds over different vector dimensions. We use the same parameters (128-bit
security, LWE key size 512 or 2048) as before and also report the average
over 10 executions.

The bias addition is an entry-wise addition and therefore as expected the
duration increases according to the dimension.

Encrypted Vector Addition Furthermore, we measure the addition of two
vectors consisting of LWE ciphertexts, an operation which appears inside
the LSTM cell equations when the result of two matrix-vector products fol-
lowed by bias additions are added together. The addition was implemented
by entry-wise applying add with new min. As usual, Figure 5.5 reports the
average runtime of ten executions, for 128-bit security and either 512 or
2048-dimensional LWE keys.

Activation Function Finally, we evaluate the performance of applying pro-
grammable bootstrapping to a vector to compute a non-polynomial activa-
tion function (e.g., tanh as used in LSTM cells). In fig. 5.6, we report the
average runtime of ten executions, for 128-bit security. Since bootstrapping
uses the RLWE keys, we report results with either 1024 or 2048-dimensional
RLWE keys.

Since the bootstrapping is applied entry-wise the time to execute the boot-
strapping should increase with the vector size, but oddly, the measurements
do not bear this out. Even after verifying our benchmarking setup multiple
times, we cannot account for this oddity. However, given that we already
saw unusual runtimes with multiple bootstrapping operations in the context
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Figure 5.5: Duration of adding two ciphertext vectors in milliseconds for different vector dimen-
sions. n is the size of the LWE keys.
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Figure 5.6: Duration of evaluating an activation function on a vector using bootstrappings, in
milliseconds for different vector dimensions. Here, n refers to the RLWE key sizes.

of mul from bootstrap, there might be internal optimizations in Concrete
that make subsequent bootstrapping more efficient.

LSTM cell Based on our evaluations, we can now determine the runtime
of an entire LSTM cell. Recalling the equations

it = σ(Wiixt + bii + Wihht−1 + bih)

ft = σ(Wi f xt + bi f + Wh f ht−1 + bh f )

gt = tanh(Wigxt + big + Whght−1 + bhg)

ot = σ(Wioxt + big + Whoht−1 + bho)

ct = ft ◦ ct−1 + it ◦ gt

ht = ot ◦ tanh ct

(5.1)
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5.2. Evaluation

runtime (s)
Operation 5 bit 8 bit

it, ft, gt, ot 0.521 0.688
ct 118.477 118.477
ht 118.803 118.969

LSTM Cell 237.801 238.134

Table 5.2: Projected runtime for (the components of) an encrypted LSTM cell (Equation (5.1)).
The 5-bit setting represents the highest-precision bootstrapping that is actually possible in current
versions of Concrete, while the 8-bit setting would be the target precision, if bootstrapping in
this setting were equally precise.

we see that it, ft, gt and ot all consist of two matrix-vector products and two
bias additions followed by a sum between two encrypted vectors before fi-
nally an activation function is applied. ct differs in that it instead features
two component-wise multiplications between encrypted vectors before the
products are added together. Finally, ht requires an activation function fol-
lowed by component-wise multiplications between encrypted vectors. In
our design, all vectors are 400-dimensional and all matrices are 400x400.

In Table 5.2, we provide predicted run-times for the individual components
of the LSTM and the overall cell, for parameters that achieve either 5 bits
of precision (largest setting where bootstrapping still succeeds) or, as a hy-
pothetical comparison, parameters that would provide 8 bits of precision
if bootstrapping were equally precise. We see that it takes just under four
minutes to evaluate one LSTM cell, which is many times slower than the
plaintext version but still practical for non-interactive settings. We can also
see that the vast majority of the time is spent computing ct and ht, which
require ciphertext-ciphertext multiplications, which in turn requires expen-
sive bootstrapping operations. Recent follow-up work [13] extends TFHE
to include non-bootstrapped homomorphic ciphertext-ciphertext multipli-
cations, as seen in other schemes, and could potentially eliminate most of
the overhead of our approach.

While our evaluation does not cover an entire end-to-end RNN, it goes sig-
nificantly further than prior work. For example, the BFV-based RNN cell
implemented in [22] consists of only it and ft, uses x2 as an approximate ac-
tivation function and takes over 90 seconds to evaluate 5 cells, which would
take less than 7 seconds in our system. Since BFV is a levelled scheme,
going beyond five cells would require either increasing the parameters to
infeasible sizes, or performing the prohibitively expensive BFV bootstrap-
ping procedure. In contrast, our solution is indefinitely composable since
all cell outputs are already bootstrapped.
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Chapter 6

Discussion

We compare our results to existing work and close with a discussion of the
current state of deep machine learning in Concrete and FHE in general.

6.1 Related Work

There are two main branches in the exploration of neural network inference
using FHE. The first uses polynomials to approximate ReLU or sigmoid
activation functions, as in CryptoNets [23]. These approaches have been ex-
tended to support batching techniques [8]. Nevertheless, this line of work
has not been able to perform well on deep networks such as ImageNet. On
the other hand, there is a branch of researchers working on achieving infer-
ence of networks with arbitrary depth by using techniques such as binarized
and discretized networks [7].

By using Concrete, we improve on the problem of evaluating activation func-
tions by using the - comparatively - efficient bootstrapping-with-a-function
functionality, which at the same time addresses the problem of calculating
deep networks by resetting noise.

To compare the performance of our system to other works targeting neu-
ral networks, we can have a look at the very recently published DOReN
system [21], where the authors used HElib, which is a library based on
the BGV FHE scheme, and various optimization techniques to optimize the
evaluation of a neural network. Since BGV does not support computing
non-polynomial functions over integer plaintexts, DOReN uses binary em-
ulation, i.e. each bit of a number’s binary representation is encrypted into
its own ciphertext. This requires evaluating complicated arithmetic circuits
homomorphically to perform integer arithmetic. Our system is faster for the
bootstrapping, application of weights and addition than DOReN at smaller
to medium vector sizes, but gets overtaken at large dimensions by DOReN
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due to their ability to use SIMD batching. More importantly, their overall
(non-amortized) time to compute, e.g. something similar to it is several or-
ders of magnitude larger. Thus, our Concrete-based solution would be able
to perform well also in comparison with the latest developments. What is
leaving Concrete in a weaker position, is that it can only use low-precision
(limited LUT bitwidth) evaluations of a given function.

6.2 Discussion

This work explores the state-of-the-art in Fully Homomorphic Encryption
based privacy-preserving machine learning inferences. We show how the
recent introduction of programmable bootstrapping has enabled progress
for FHE in neural network inference. We saw that using programmable
bootstrapping to evaluate activation functions is an attractive alternative to
polynomial approximations, although the current precision limits of 6 bits is
too restrictive in practice. During the evaluation, we have seen that Concrete
at the current state allows us to evaluate LSTM cells in under four minutes.

While improvements to the limited precision of the bootstrapping have re-
cently been proposed [12], these are yet to be made available in Concrete.
Once this happens, we expect that a higher-accuracy version of our system
should be a straight-forward extension. Besides improving bootstrapping
precision, our project identified other aspects of Concrete, which are hin-
dering the user and could be improved. There is a lack of in-depth docu-
mentation, especially regarding the choice of secret keys, and the differences
between the various operations offered in the API. We hope to have some-
what filled this gap with our Introduction to Concrete (Chapter 3) and our
overview of bootstrapping precision in Table 5.1. It would have also been
beneficial to mention in the documentation that about 6 bits of precision is
the limit for bootstrapping at feasible time. Further examples would also
help the users to get a grip of the library and its possibilities to achieve
computations by using FHE-specific approaches. Implementing standard
operations like matrix multiplications in Concrete is unnecessarily complex
for beginners. We have created implementations of standard operations and
plan to make them available as an open-source toolbox for the community.

Besides improving the Concrete library, the developers (Zama) have also
announced that they are working towards creating a machine learning com-
piler targeting Concrete. An FHE compiler converts code in a high-level
programming language to FHE, thus the user does not have be familiar with
FHE or the library. While this should significantly improve user experiences
for machine learning tasks, general-purposes applications will have to con-
tinue to use Concrete directly for the foreseeable future and will therefore
continue to benefit from usability improvements to the library.
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