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Abstract

The Transport Layer Security (TLS) protocol is the de-facto means of securing
communication on the Internet. The protocol is used by billions of people on a
daily basis and is virtually the foundation of our modern Internet-based civiliza-
tion. Throughout its more than two decades of history, TLS has been the subject
of numerous security researches and several high-profile attacks. Recently, the
pressure to improve performance, along with the many weaknesses identified, has
led the IETF to develop a new version of the protocol, namely TLS 1.3.

In developing the new version of the protocol, the IETF pursued three main
groups of objectives: efficiency, security and interoperability. In this thesis, we
take a closer look at the IETF’s endeavours to meet these objectives. After giving
a detailed summary of the protocol, we name the specific objectives, discuss the
incentives to pursue them and identify possible design trade-offs between the
groups of objectives. We describe the defining design decisions, the circumstances
that required them, and their concrete implications in the protocol. Besides,
we untangle workarounds needed to make the protocol functional and evaluate
their effectiveness. We conclude by commenting on the current priorities of the
protocol.
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Chapter 1

Introduction

The Internet has become a platform on which much of our everyday life takes
place. Many services, including markets, banking and news, are in transition
or have already migrated to their "online" version. The gradual increase in the
importance of the platform and our growing dependence on it is irrefutable. An
essential part of this growth and many innovative applications has been the ability
to send information with some security guarantees. In particular, it is crucial that
the information transmitted is not manipulated, forged or read by anyone other
than the sender and receiver. As applications become increasingly sensitive and
consumers become security-conscious, Internet traffic is becoming more and more
encrypted. Google has reported that more than 90% of traffic across its services
and websites was encrypted in January 2020, up from 50% in January 2014 1.

For more than two decades, TLS has been the most widely used protocol
for secure Internet communication. As a result, it has become a protocol on
which our new Internet-based civilization fundamentally depends. Recently, this
protocol has been updated to ensure better privacy, security and performance.
The new version is poised to provide the foundation for encrypted Internet com-
munications for decades to come. In this thesis, we take a closer look at the
transformation of TLS into its new version. In particular, we analyze the de-
sign decisions that characterize the protocol and identify trade-offs between its
objectives.

Given the vitality and eventual longevity of TLS 1.3, we believe it is war-
ranted that key design decisions are identified, reasoned and evaluated. With
this thesis, we attempt to capture the consensus regarding compromises made
during the protocol’s standardization process. Doing so may facilitate compar-
isons between the transformation at hand and previous ones or allow predictions
about future redesigns. It may also contextualize possible future attacks due
to compromises made. Furthermore, differentiating between ordinary protocol
changes and incidental workarounds is crucial. Such an analysis helps to clarify
the limits in protocol redesign, leads to a better understanding of previous version
iterations and illustrates the state of the protocol’s ecosystem.

1https://transparencyreport.google.com/https/overview
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1. Introduction 2

This thesis is structured as follows: In Chapter 2, we give a brief background
to TLS. We describe the protocol in general and introduce the actors involved in
its development. We also give a quick overview of attacks and their impact on the
protocol. In Chapter 3, we provide a detailed summary of TLS 1.3. We highlight
the main differences to previous versions and describe the defining new features.
In Chapter 4, we outline the objectives of TLS 1.3, describe the various design
decisions that were made to achieve them, and point out the trade-offs made
when the objectives collided. In Chapter 5, we briefly evaluate the trade-offs
between each group of objectives. Chapter 6 concludes this thesis.



Chapter 2

Background

2.1 TLS/SSL and the IETF

Transport Layer Security TLS is the most widely used protocol for encrypted
communication on the Internet and is considered the de-facto standard. Netscape
Communications developed its predecessor, Secure Sockets Layer SSL, in the
1990s. SSL Version 2 was released in 1995, followed by SSL Version 3 in 1996.
The IETF introduced TLS in 1996 with its decision to standardize a version of
SSL in response to the growing need for e-commerce support and the increasing
adoption of SSL. TLS 1.0 was released in 1999, followed by TLS 1.1 in 2006, TLS
1.2 in 2008, and TLS 1.3 in 2018. At the time of writing, TLS 1.2 is the most site
supported version, with 96.5%, TLS 1.1, TLS 1.0, and TLS 1.3 follow with 73%,
62.9%, and 22%, respectively.1 In the following, we will use TLS when referring
to both TLS and SSL in general.

The primary purpose of TLS is to establish a secure channel between the com-
municating entities, namely the client and the server [Res18, Section 1.]. This
secure channel provides confidentiality and integrity of data during transmission
over untrusted networks. In particular, the protocol provides these security ser-
vices for protocols that run at the application layer. TLS is used in HTTPS
for encrypted web browsing, combined with IMAP or SMTP for cryptographi-
cally protected e-mail traffic and also for secure communication with embedded
systems, mobile devices, and payment systems.

The protocol is composed of a number of sub-protocols, the two major sub-
protocols being the channel setup protocol called Handshake, and the transport
protocol called Record [Res18, Section 2.]. The handshake protocol is used to ne-
gotiate all cryptographic parameters. These include the TLS version, the authen-
tication method, the key exchange method and the symmetric key algorithm to be
used in the record protocol. The client lists its capabilities in the ClientHello
message, and the server selects the parameters to be used from those offered
in the ServerHello message. In the record protocol, symmetric-key cryptogra-

1https://www.ssllabs.com/ssl-pulse/

3



2. Background 4

phy is used in combination with a session key and sequence number to protect
the application data. For example, if the server and the client agree on the
TLS_ECDHE_ RSA_WITH_AES_128_GCM_SHA256 cipher suite in TLS
1.2, RSA is used to authenticate the server with a certificate, ECDHE for key
exchange, AES in GCM mode to encrypt the application data, and SHA256 for
message authentication [DR08, Appendix A.5.]. A similar protocol called DTLS
is also available, which is based on UDP instead of TCP with similar objectives.

Since TLS 1.0, the Internet Engineering Task Force (IETF) has been respon-
sible for maintaining and improving the protocol [PvdM16]. The IETF is a self-
organized group of software developers, implementors, and vendors focused on
creating and maintaining standards for the Internet. The standardization process
is carried out by working groups (WGs) organized in different areas. The WGs
publish standards as Request for Comment documents (RFCs) free of charge.
Various RFCs define additional specifications, such as cryptographic algorithms
and extensions. Besides TLS, the IETF is also responsible for IP, HTTP, and
other widely used protocols. This makes the IETF the de-facto technical forum
for Internet protocol standards. Later in chapter 4, we will take an in-depth look
at the various decisions the IETF had to make in the standardization process of
TLS 1.3.

Based on the standards of the IETF, the vendors implement the actual soft-
ware to be used. Often these implementations have subtle differences, making
some implementations more vulnerable to attacks than the others [BBD+17].
Popular server-side implementations include OpenSSL, GnuTLS and NSS Secure
Transport. On the client-side, most connections come from popular browsers like
Firefox, Chrome, and Safari. Due to this somehow decentralized nature of the
TLS ecosystem, the state of TLS is dependent on many factors, and changes need
the coordination of several actors.

2.2 Attacks

Several attacks and security issues have plagued TLS in its more than two decades
of history. Consequently, an iteration of changes in the server/client software and
in the protocol itself was necessary. From the early days of the Bleichenbacher
attack on RSA in SSLv3 to the Selfie attack on TLS 1.3, this widely used proto-
col has experienced more than two dozen high-profile attacks. The circumstances
that made these attacks possible, their complexity and practical feasibility, the
theoretical foundations exploited, and the countermeasures adopted were very
diverse. Often these attacks were implementation-dependent since different im-
plementations interpret the RFCs in different ways. There have been compres-
sion attacks such as CRIME, TIME, and BREACH, downgrade attacks such as
FREAK and LOGJAM, and attacks on CBC mode encryption such as BEAST,
Lucky 13, and POODLE, to name a few. In the following, we give a brief glimpse
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into TLS attacks with sample attacks. We will explain the security flaws that
made them possible and what impact they had on the protocol.

Lucky 13

In 2013, Alfardan et al. [AP13] published a padding oracle attack on CBC
mode block cipher encryption, which was the only option besides RC4 stream
cipher encryption in TLS 1.1 and earlier. The attack was based on a padding
oracle, which tells an attacker whether or not padding was correctly formatted,
which was shown to exist in TLS in earlier works [Vau02]. In particular, the
record processing time during decryption needed to be the same regardless of
whether the padding was correct or not. If this was not the case, a time difference
between good and bad padding would be apparent in the time it takes for error
messages to appear on the network. The padding oracle with a delicate timing
analysis would provide a decryption capability. Lucky 13 presented a set of
attacks, including a full plain text recovery attack. The attacks were also made
possible by a coincidence of various factors such as the MAC tag size, the block
size of block ciphers, and the number of header bytes. The attacks required the
analysis of a large amount of ciphertext and were well suited for data transmitted
in many sessions at the same position, such as passwords and HTTP cookies.

Attacks on RC4

RC4 is a stream cipher that has been commonly used since 1994 as part of a
variety of cryptosystems, including TLS. The stream cipher has been particularly
popular for its short description and fast software implementation. However, it
is also known to have several weaknesses. Shortly after Lucky 13, another set
of attacks by Alfardan et al. [ABP+13] was made public, which exploited these
weaknesses to recover plaintexts. The attacks were based on biases in the RC4
keystream, i.e. deviations from the uniform distribution at certain positions. One
of the attacks exploited a complete view of all single-byte biases that occur in
the first 256 bytes of the keystream. These biases had long been known at the
time, and it had been recommended to routinely dropped the first few hundred
keystream bytes before encryption. Nevertheless, popular implementations such
as OpenSSL were using RC4 encryption without taking the recommendation
into account. The publishers of the attack admitted that the attack was not
sophisticated and stated that it was alarming that such a simple attack on TLS
was possible. With additional attacks by Vanhoef et al. [VP16] the use of RC4
in TLS was made indefensible.

FREAK

As Beurdouche et al. [BBD+17] argue, TLS has been popular in part be-
cause of its flexibility. The protocol supports a variety of authentication modes,
key exchange methods, extensions, and protocol versions. For example, TLS 1.2
specifies 37 cipher suites [DR08, Appendix A.5.], which add to the many cipher
suites already specified in previous versions. Some of the early cipher suites are
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Figure 2.1: Negotiated TLS Versions and high-profile attacks[KRA+18]

known to be unsafe but are still supported for backward compatibility. For ex-
ample, Export RSA, the legacy cipher suite used to mount the FREAK attack,
has been intentionally weakened to comply with U.S. export regulations of the
1990s and was included in SSLv3 and TLS 1.0. Although these regulations have
since been relaxed, many libraries contain code to handle these cipher suites, and
some servers still support them. This legacy issues, coupled with the complexity
of implementing the combination of the wide range of options, presented a secu-
rity vulnerability. Factoring RSA EXPORT keys, dubbed FREAK [BBD+17], is
a downgrade attack made public in 2017 that forces the client and server to use
RSA keys with a lower security level. The publishers of the attack have shown
that the sub-strength keys of RSA export can be factored within hours in today’s
hardware. Since many implementations reuse the same public key, a factorized
key could be used for an attack lasting for days. The attacker would then be able
to read what the client sends to the server and send messages to the client as the
server. Several patched implementations have been released in response to this
attack.

TLS attacks, including those described above, have played an integral role
in the adoption and demotion of TLS versions and certain cipher suites. For
instance, SSLv2 and SSLv3 have become deprecated in 2011 and 2015, meaning
that TLS servers and clients are required not to negotiate these versions when
establishing connections as they no longer provide sufficient security considering
many attacks [TP11] [BTPL15]. Lucky 13 and the attacks on RC4 have arguably
played a major role in the faster adoption of Authenticated Encryption with As-
sociated Data (AEAD), thus TLS 1.2. Notably, until the introduction of AEAD
in TLS 1.2, the cipher suites in TLS were "MAC-then-Encrypt", using either
block ciphers in CBC mode or RC4 stream cipher for encryption. A sequence
of attacks on CBC mode encryption, namely BEAST (2011), Lucky 13 (2013),
POODLE (2014), and attacks on RC4 from 2013 onwards, forced a shift away
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from these cipher suites and thus a shift to the then-latest TLS 1.2. The recom-
mended countermeasures were in case of POODLE completely disabling SSLv3,
in case of BEAST switching to TLS 1.1 or 1.2, in case Lucky 13 and RC4 attacks
switching to TLS 1.2. Kotzias et al. [KRA+18] showed in their study of TLS con-
nections that the use of RC4 and CBC mode encryption significantly decreased
in 2018 compared to their predominant use in 2012 primarily in response to these
attacks. In particular, RC4 had disappeared entirely in the 2018 measurements,
and the use of CBC mode had dropped to 10%.



Chapter 3

TLS 1.3

In the spring of 2014, the IETF began drafting TLS 1.3 in response to the many
weaknesses identified in TLS 1.2 and growing demand for better performance.
After 28 drafts and more than four years of a standardization process, TLS
1.3 was released in August 2018. The new version of TLS brought enhanced
security by using modern cryptographic algorithms, improved performance by
introducing a new protocol flow, and achieved better privacy by encrypting more
of the protocol. In the later part of this chapter, we describe the protocol as
required for the subsequent analysis, according to the RFC [Res18].

The standardization process of TLS 1.3 differed from previous versions in
its proactive fashion, and its deployment was notably rapid. Unlike the stan-
dardization process of earlier versions, there were several contributions from the
research community. Besides, several tools were used for the protocol analysis
to ensure security objectives. This process was a departure from the IETF’s
earlier approach of design-release-break-patch to a new design-break-fix -release
standardization process, as described by Paterson et al. [PvdM16]. The deploy-
ment pace of TLS 1.3 also differed from previous versions, especially that of TLS
1.2. As Holz et al. showed [HARV19], TLS 1.2 connections accounted for essen-
tially 0% of TLS connections in 2012, four years after its release. In April 2019,
just a few months after its release, TLS 1.3 accounted for 4.6% of TLS connec-
tions. Faster deployment was mainly due to major Internet companies such as
Cloudflare, Google, Facebook, and Mozilla. In particular, their control over both
endpoints of the connection has made faster deployment easy. It has also enabled
them to experiment with the protocol prior to its release.

3.1 Major differences to TLS 1.2

TLS 1.3 has a significant structural departure from previous versions, even though
it was initially intended to be an incremental improvement to TLS 1.2 [PvdM16].
Radical changes were necessary to achieve the desired efficiency and not to carry
the shortcomings of older versions. In the following, we will list some significant
differences to previous versions, mainly to TLS 1.2.

8



3. TLS 1.3 9

The handshake has been restructured to reduce the number of necessary round
trips from two to one [Res18, Section 1.2.]. Encrypted application data can now
be sent after only one round trip. Besides, a zero round-trip time (0-RTT) mode
has been introduced, which saves a round trip for some application data, at
the cost of some security properties. 0-RTT is achieved by using a Pre-Shared
Key (PSK), described in the following sections. Furthermore, the payload is
now encrypted as early as possible to support a higher level of privacy. Any
message after the ServerHello is now protected. With the introduction of a
new EncryptedExtensions message, server certificates, and various extensions
that were sent unprotected in the ServerHello in previous versions can now be
sent encrypted. Unnecessary messages like ChangeCipherSpec have also been
removed to simplify the protocol. Further, the version negotiation mechanism in
TLS 1.2 has been deprecated in favour of a supported version list in an extension.

TLS 1.3 supports more secure cryptographic primitives and removes all legacy
symmetric encryption algorithms to enhance security. It has only five cipher
suites, compared to the several hundred that were allowed in previous versions
[Res18, Appendix B.4.]. The five cipher suites are all Authenticated Encryption
with Associated Data (AEAD). Furthermore, the concept of cipher suites has
changed. A cipher suite in TLS 1.3 is a pair of AEAD and hash algorithms.
In particular, key exchange and authentication mechanisms are now negotiated
independently.

A single PSK key exchange, to be described in the following section, has re-
placed both session resumption and PSK-based cipher suites of previous versions
[Res18, Section 1.2.]. Moreover, (EC)DHE key exchange is now the only public
key-based key exchange mechanism available, which notably provides forward se-
crecy. For (EC)DHE key exchange, there is a reduced option of five elliptic curve
groups (ECDHE) and five finite groups (DHE) [Res18, Section 4.2.7.].

Another change is the redesign of the key derivation functions to allow more
straightforward cryptographic analysis [Res18, Section 7.1.]. The new key deriva-
tion uses HKDF (HMAC-based extraction and extension key derivation) as an
underlying primitive. Significant removals include static RSA and Diffie-Hellman
cipher suites, non-AEAD symmetric encryption, i.e. RC4 and CBC mode, cus-
tom Diffie-Hellman ephemeral groups (DHE), signature algorithms DSA, MD5,
SHA-1 and compression.

3.2 Handshake protocol

The handshake sub-protocol is used at the beginning of each connection to nego-
tiate a protocol version, select cryptographic parameters, and authenticate each
other [Res18, Section 4.]. In TLS 1.3, one can think of the handshake as hav-
ing three phases, as shown in figure 3.1. The key exchange phase is used to
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Figure 3.1: TLS 1.3 handshake
+ Indicates noteworthy extensions sent in the previously noted message, * Indicates optional or
situation-dependent messages/extensions, {} Indicates messages protected using handshake keys, []
Indicates messages protected using application keys

determine the security capabilities of the communicating entities and create a
shared keying material, using one of the three key exchange modes. After that,
everything is encrypted using a key derived from the negotiated keying material.
In the second phase, the server sends parameters that ware not required in the
first phase. These include most extensions sent within the EncryptedExtensions
message and a CertificateRequest message that indicates whether client au-
thentication is desired. In the last phase, the server (and optionally the client)
authenticates its self with a certificate, additionally with the Finishedmessage, a
hash of the handshake script, the peers provide key confirmation and the integrity
of the handshake.

ClientHello

When a client connects to a server, the first message it sends is a ClientHello
[Res18, Section 4.1.2]. The structure of this message is the same as in pre-
vious versions for interoperability reasons. The message consists of four fields:
"legacy_version", "random" (32 bytes nonce), "legacy_session_id", "cipher_suites",
"legacy_compression_methods" and "extensions". The legacy fields have no ac-
tual relevance, and most parameters are sent via extensions.

With the ClientHello, the client provides four sets of options for a cryp-
tographic negotiation [Res18, Section 4.1.1]. First, a list of the cipher suites it
supports in the "cipher_suites" field. Second, a list of (EC)DHE groups it sup-
ports in "supported_groups" extension, and shares for some or all of these groups
in "key_share" extension. Third, a list of PSK identifiers known to the client
in a "pre_shared_key" extension, and modes that may be used with the PSKs
provided in a "psk_key_exchange_modes" extension. Fourth, signature algo-
rithms the client accepts in a "signature_algorithms" extension and algorithms
specific to certificates in a "signature_algorithms_cert" extension.
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Depending on the key exchange mode, the client is attempting, one or both
of the second and third option sets may be required [Res18, Section 4.2.9.]. Due
to a version intolerance problem, the client specifies its version preference with
the "supported_versions" extension. This extension must always be present.
Otherwise, the message will not be interpreted as a TLS 1.3 ClientHello.

ServerHello

A ServerHello message is sent in response to a ClientHello if the server can
find acceptable connection parameters [Res18, Section 4.1.3.]. The structure of
this message is the same as in previous versions, as with the ClientHello. The
message consists of four fields: "legacy_version", "random" (32 bytes nonce),
"legacy_session_id_echo", "cipher_suite", "legacy_compression_method", and
"extensions". As in ClientHello, the legacy fields have no actual relevance.

The negotiation on the server-side is done by selecting parameters from the
ones provided by the client as follows [Res18, Section 4.1.1]. First, the server
selects a single cipher suite to be sent in the "cipher_suite" field. Second, the
server selects a single group for which the client has also provided a share. A share
corresponding to the selected group is to be sent in a "key_share" extension.
Third, the server selects a single PSK key exchange mode and a single PSK
identifier to be sent in a "pre_shared_key" extension.

Depending on whether the server has agreed to a PSK key exchange and,
if so, which mode it has selected, one or both of the second and third selec-
tions may be required [Res18, Section 4.2.9.]. The ServerHello must contain a
"supported_versions" extension to indicate that it is a TLS 1.3 ServerHello,
and also to indicate which version is selected and in use. After an exchange of
CleintHello and ServerHello messages, the peers have a shared secret keying
material. Extensions other than those already mentioned are sent separately in
the EncryptedExtensions message, followed by other handshake messages en-
crypted with a handshake key derived from the established keying material.

PSK and key exchange modes

Once a handshake is complete, the server may send a NewSessionTicket
message [Res18, Section 4.6.1.]. This message creates a unique association be-
tween a label and a secret PSK derived from secrets established in the initial
handshake. NewSessionTicket includes a PSK identifier or label in the field
"ticket" and a value unique across all tickets issued on this connection in the
field "ticket_nonce". The PSK associated with the "ticket" field value is gener-
ated using HKDF functions as follows.

HKDF − Expand− Label(resumption_master_secret, ”resumption”,

ticket_nonce,Hash.length)
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Figure 3.2: Handshake with PSK (a) Initial Handshake (b) Subsequent Handshake

Upon receiving a NewSessionTicket message, the client can independently
compute the PSK using the "ticket_nonce" value and shared secrets estab-
lished in the initial connection. If it intends to use the PSK in later con-
nections, it sends the corresponding "ticket" value in a "pre_shared_key" ex-
tension to the server [Res18, Section 4.2.11.]. The client must also send a
"PSK_key_exchange_modes" extension, indicating which modes it supports
with the PSKs it sends.

Three Key Exchange Modes in total, including two PSK modes, are defined
[Res18, Section 4.2.9.]. With (EC)DHE mode, the connection is established using
(EC)DHE shares, as shown in figure 3.2 a. With PSK-only mode, PSK is used
to bootstrap the cryptographic state. Additionally, a full handshake is avoided.
In particular, peer authentication with a certificate is skipped as authentication
happens as a side effect of key exchange. PSK with (EC)DHE mode combines
the first two modes, i.e. peers exchange (EC)DHE group shares in addition to
PSKs, as shown in figure 3.2 b. PSK with (EC)DHE provides forward secrecy
(section 4.2), which PSK-only does not provide. PSKs can also be established
out of bound, i.e., without an initial connection.

HelloRetryRequest and downgrade protection

If the server can find acceptable parameters, but the ClientHello does not
contain enough information to proceed with the handshake the server sends a
HelloRetryRequest message [Res18, Section 4.1.4.]. This is especially the case
if the client has provided a list of supported groups that includes a group that
the server also supports, but the client has provided no share corresponding to
the commonly supported group.

For interoperability reasons, the HelloRetryRequest message has the same
structure as ServerHello. A client identifies a ServerHello as a HelloRetryRequest
by checking whether the "random" field value of the message matches SHA-256
of the string "HelloRetryRequest". All other fields have the same meaning as
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in a ServerHello, and the message contains a minimal set of extensions that
the client needs to generate a correct ClientHello for a subsequent connection
attempt. In particular, the message contains a "key_share" extension that in-
dicates a mutually supported group that the server intends to negotiate and for
which it requests a share [Res18, Section 4.2.8.]. The server may also use a
"cookie" extension to offload state to the client.

The "random" value in ServerHello also serves a downgrade protection
mechanism. When a server running TLS 1.3 negotiates a version below 1.3,
it sets the last eight bytes of the "random" field to a unique value specific to the
negotiated lower version. A client running TLS 1.3 checks the "random" field
value to see if it has negotiated a lower version with a server that is also running
version 1.3. If this is the case, the client aborts the handshake. This provides
limited protection against a downgrade attack.

3.3 Record protocol

The TLS record protocol takes the data to be transmitted, fragments it into
manageable blocks, protects the records, and transmits the result [Res18, Section
5.]. Received data is verified, decrypted, reassembled, and then delivered to the
higher-level clients.

Three structures are used for this process: TLSPlaintext, TLSInnerPlaintext,
and TLSCiphertext. The first one contains the data to be transmitted with a
maximum length of 214 bytes. The second contains the data fragment in the first
structure padded with zeros, separated by a "type" field, with values such as
"application_data", "handshake" and "alert". The third structure contains the
encryption of the second structure, using record protection functions. The AEAD
cipher suites used in these protection functions notably provide a unified encryp-
tion and authentication operation [Res18, Section 5.2.]. When a TLSCiphertext
is received, decryption functions reverse the process to obtain a TLSInnerPlain-
text.

As with the handshake protocol, the record protocol takes interoperability
into account. For example, a TLSPlaintext of the type "change_cipher_spec"
may appear unencrypted at any time after a ClientHello and before the peer’s
Finished message. This recording is to be dropped on arrival. Further, TLSCi-
phertext has an "opaque_type" field fixed to the value "application_data" for
middlebox compatibility. The actual type of the transmitted data is to be found
in TLSInnerPlaintext after decryption. TLSCiphertext also has a "legacy_record
_version" field to indicate the TLS version in use, which is redundant since en-
crypted records are not sent until a version has been negotiated.
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0-RTT

When a client attempts to establish a connection with PSK, it can send
application data immediately after the ClientHello message [Res18, Section
2.3.]. The transmitted data is encrypted with a key derived from the first PSK
indicated in the "pre_shared_key" extension in the ClientHello. The client
also sends an "early_data" extension to indicate the use of this functionality
[Res18, Section 4.2.10.]. The handshake proceeds as with any other handshake
with PSK, as shown in Figure 3.2 b. Additionally, the server sends the extension
"early_data" in its EncryptedExtensions message to indicate that it allows
early data to be transmitted with its PSKs and is processing the early data sent
by the client if any. After the client receives the Finished message from the
server, it sends the EndOfEarlyData message to indicate the end of the 0-RTT
data transmission and the change of key [Res18, Section 4.5.].

0-RTT is an additional advantage of the PSK key exchange modes in addition
to avoiding computationally expensive public-key authentication. The parame-
ters of the transmitted early data are those associated with the PSK used. In
particular, for PSKs established via a NewSessionTicket message, those negoti-
ated in the connection that established the PSK. The security properties of early
data are weaker than those of other types of TLS data. Namely, it does not
provide forward secrecy and non-replay guarantees (section 4.2).

3.4 Extensions

Since the structure of the ClientHello and ServerHello messages remains un-
changed for interoperability reasons, functionality has been moved to extensions
[Res18, Section 4.1.2.]. TLS 1.3 defines a total of twenty-two extensions, of
which twenty-one may appear in ClientHello, three in ServerHello, and nine
in EncryptedExtensions [Res18, Section 4.2]. Extensions may also appear in
other handshake and post-handshake messages.

Extensions are generally structured in a request/response fashion, although
some extensions are only indications without a corresponding response. The
client sends its extension requests in ClientHello, and the server sends its exten-
sion responses in ServerHello, EncryptedExtensions, HelloRetryRequest and
Certificate. Similarly, the server sends extension requests in CertificateRequest,
and the client responds in Certificate. The server can also send unsolicited ex-
tensions in NewSessionTicket, though the client does not respond directly to
these.

In TLS 1.3, the use of certain extensions is mandatory, as described in the
sections above. Furthermore, unlike in TLS 1.2, extensions are negotiated for
each handshake, even when using PSK key exchange modes. However, the 0-
RTT parameters are those negotiated in the previous handshake.



Chapter 4

Parameters of a trade-off in the
design of TLS 1.3

In the mid-1990s, when the earliest versions of TLS were developed, the protocol
arguably had only one goal. As its name suggests, to provide secure commu-
nication over the Internet. At that time, the use of the protocol was limited
to e-commerce. In particular, such applications relied only on the functionality
of the protocol. In the mid-2010s, when TLS 1.3 was developed, the landscape
was radically different. On the one hand, the popularity and ubiquitous use of
the protocol meant that it no longer had only one goal. Applications of TLS
have expanded from the initial use of e-commerce to modern applications such
as streaming and IoT. In particular, efficiency was no longer a mere side matter
Decades of protocol adoption also meant that a cluster of infrastructure was built
around the protocol. Unfortunately, these infrastructures are often faulty and sel-
dom change. The situation has gone so far that the infrastructures severely limit
the protocols’ modification. In order to be functional, each new version of TLS
must take several aspects of interoperability into account. In this chapter, we
group the goals of TLS 1.3 into three, describe the challenge in achieving them,
identify trade-offs between the set of goals, and describe the consequences of such
trade-offs for the protocol.

4.1 Efficiency

TLS 1.3 stands out for its efficiency goals more than any other, as reflected in its
new and central features. Namely 1-RTT handshake, early data transmission and
PSK key exchange modes. The efficiency goals could be divided into two groups:
Reducing latency and reducing computation. In the following, we describe the
efficiency goals and name the most important incentives for achieving them.

15
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4.1.1 The challenge from QUIC

Google’s Quick UDP Internet Connections (QUIC) is an application layer trans-
port protocol that relies on UDP transport. QUIC is designed to provide high
performance, reliable in-order packet delivery and security guarantees similar to
TLS [KJC+19]. Google was compelled to start developing the protocol in 2012
due to performance issues encountered with HTTP when running over TCP/TLS.
QUIC was initially released in 2013 and has since undergone rapid development.
Recently, a working group was formed at the IETF to promote it as a standard
for web content delivery [CMTH17].

QUIC has significantly benefited from the continuous improvements made
since its release. By tightly coupling the concepts of TCP, TLS and HTTP, the
protocol is able to use cross-layer information and evolve much faster than its
counterparts [WRWH19] [CJJ+19]. A significant advantage of QUIC over TLS
has been the fact that it only requires 1-RTT to establish a connection. TLS 1.3,
with its new protocol flow, achieves the same latency when only considering the
handshake. Since QUIC runs over UDP instead of TCP, it still retains a 1-RTT
advantage when considering the broader network stack. Notably, TLS requires
an initial TCP handshake, which also takes 1-RTT. QUIC also provides a 0-RTT
feature that allows a client to start a new session without a full handshake. For
this, a client must have previously communicated with the server and a limited
state is stored. This has been another advantage over previous versions of TLS.
As we describe later, TLS 1.3 makes several security compromises to achieve the
same capability.

Studies have shown that QUIC outperforms HTTP + TLS + TCP in almost
every scenario [KJC+19] [CJJ+19] [LRW+17] . In particular, QUIC achieves
a better quality of experience for video streaming and when used in unstable
networks, such as wireless mobile networks. In comparisons made before the
release of TLS 1.3, QUIC reduces Google Search latency by 8% for desktop and
3.5 % for mobile users. Furthermore, QUIC reduces video buffer time by 18%
for desktop and 15.3% for mobile users. Currently, the use of QUIC is limited to
Google servers and the Chrome/Chromium browser. Nevertheless, these already
represent a considerable part of the network traffic. As of 2016, more than 85%
of Chrome requests to Google servers use QUIC [CMTH17]. The performance
advantages of the protocol, Google’s push and the IETF’s standardization process
make QUIC a significant challenger to TLS or even a replacement.

4.1.2 Age of IoT

The Internet of Things (IoT) is a system of interconnected computing devices.
These include smart homes, health care devices, and autonomous driving sys-
tems. These devices are capable of transmitting data over a network without the
need for human-to-human or human-to-computer interaction. Because of their
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Figure 4.1: Variation of energy consumption with increasing transaction sizes
[PRRJ06]

widespread use, some studies predict that there will be nearly 50 billion smart,
interconnected objects by the end of 2020 [BDK16]. Like any device connecting
over the Internet, IoT devices need security. TLS has been proposed to achieve
this goal. Unfortunately, the high security of TLS comes at the cost of high
computational and energy demand. Primarily, this is due to the cryptographic
algorithms incorporated in the protocol. The limited resources available in IoT
devices pose the challenge to achieve a certain level of security while minimizing
resource consumption.

The goal of energy-efficient execution of security protocols can be achieved
in several ways, which can be divided into two broad classes [PRRJ06]. First,
by making the execution of cryptographic primitives efficient through a combi-
nation of hardware and software techniques. Secondly, by allowing the protocols
to change their mode of operation depending on the operating environment. The
second class may involve a deliberate compromise between security and energy
consumption. The trade-offs may come in the form of adjusting the key length,
giving preference to energy-efficient cipher suites, or avoiding computationally
intensive steps. In the case of TLS, public key authentication is most critical,
as it is a significant part of the overall energy dissipation. Especially for small
data transactions, the energy consumed by cryptographic processing consists al-
most exclusively of asymmetric algorithm contributions. As shown in figure 4.1,
with increasing transaction size, symmetric algorithms replace asymmetric algo-
rithms as the dominant contributor. For example, in a transaction with 1 KB
of data, 58% of the energy is consumed by cryptographic algorithms. In such a
transaction, asymmetric algorithms account for more than 90 % of the energy
consumption of cryptographic processing and about 56 % of the total energy
consumption [PRRJ06].
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The design of TLS 1.3 tries to strike a balance between security and resource
consumption, partly in view of IoT applications. For devices with short and
frequent connections, the PSK key exchange modes would make a big difference
in avoiding costly computations. In particular, out-of-band PSKs could be hard-
coded on such devices, so that the ability to make an initial connection is not
even required. Naturally, all this is at the expense of certain security features, as
we will describe in the next section.

4.2 Security

In the following, we discuss the security vulnerabilities of previous versions of TLS
and their causes, list the security requirements set out for the new version and
describe published works proving these requirements. Finally, we note security
vulnerabilities in TLS 1.3, especially in PSK and early data.

4.2.1 Vulnerabilities of earlier TLS versions

Over the years, several security vulnerabilities have been discovered in TLS, and
an iteration of security enhancements has followed. These weaknesses were di-
verse in their cause, subtlety and impact. Properly addressing them has accord-
ingly been a challenge. The design of TLS 1.3 attempts to address this challenge
and also not to repeat the shortcomings of previous countermeasures by adopting
new approaches. In the following, we group the vulnerabilities of earlier versions
of TLS by their cause, describe the countermeasures taken in the past and show
what was done differently in the design of TLS 1.3.

Lack of explicit and complete security goals

Several vulnerabilities in previous TLS versions could be attributed to the
lack of clear security objectives and the subsequent lack of proof-based protocol
engineering. The precise identification of many critical security properties only
happened late in the protocol’s version iteration [PvdM16]. The handshake pro-
tocol, in particular, has suffered severely, consequently. Cipher suite and version
rollback, confusion in the key exchange algorithm and in session resumption, to
name a few. Most security enhancements were a reaction to publicly disclosed
attacks rather than to a predefined goal. Such an approach means that an en-
hancement only targets a specific case of a vulnerability, i.e. an attack, and not
the underlying broader problem. This ad-hoc approach was reflected in the de-
cision to introduce a Finished message to combat a man in the middle attack,
which alters the cipher suites offered by the client [MS13]. However, the measure
left out the ChangeCipherSpec message in the added handshake authentication.
A further enhancement was necessary that required the ChangeCipherSpec mes-
sage to be received before the Finished message to proceed with the connection
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establishment. Granted, the concept of formal security requirements and verifi-
cation tools was in its infancy as TLS came to life, determining how its absence
has affected the protocol is still vital. Moreover, it explains the importance of the
security proofs adopted in the design of TLS 1.3, as well as the challenge resulting
from limitations in the still-developing area of proof-based protocol design.

Broken or unsafe cryptographic building blocks

The security gaps in the record protocol have mainly been a result of the use
of unsafe or broken cryptographic components. Weaknesses in CBC encryption,
information leakage due to compression, and predictable initialization vectors
(IVs), to name a few. Notably, most of the high-profile attacks on TLS have
exploited these vulnerabilities (section 2.2). Adoption of newer and more secure
primitives by the ecosystems has been, as with the above described set of vul-
nerabilities, a reaction to attacks [KRA+18]. A more conservative approach to
cryptographic primitives would have been necessary. Since the biases of RC4 and
the padding oracle of CBC mode had been known for a long time, a switch to
AEAD as soon as TLS 1.2 was introduced would have been appropriate. As the
main objective of the protocol is secure communication, the IETF should have
deprecated unsafe cipher suites and versions sooner. Notably, the security vul-
nerabilities caused by broken or unsafe primitives are the result of a disconnect
between academics and practitioners [BL16]. The lack of response to theoreti-
cal weaknesses in cryptography and the need for TLS-specific attacks for actual
change in the ecosystem are good illustrations. In contrast, the approach taken
in the design of TLS 1.3 to remove any cipher suite considered unsafe is radical.

Flaws by vendors and PKI

In addition to IETF’ s design decisions, vendors and public key infrastructure
(PKI) play a critical role in the security of TLS. A flaw in the implementation,
improper distribution of certificates, or the compromise of a Certificate Author-
ity (CA) have been common in the TLS ecosystem. On the vendor side, the
problems were caused by the complex variety of protocol versions, extensions,
authentication modes, and key exchange methods. Implementation bugs have
allowed several attacks, such as LOGJAM and SKIP [BBD+17]. Formal verifi-
cation tools are being used to reduce the impact of such problems. On the PKI
side, any Certificate Authority can issue a certificate for any domain [SGN+18].
The reliance on a certificate for server authentication makes TLS vulnerable to
phishing attacks. Certificate transparency logs have been proposed as a solution
and are becoming standard in major browsers.

4.2.2 Requirements of TLS 1.3

In February 2016, two years after the start of the standardization process, it was
pointed out that TLS 1.3 was missing a set of complete and explicit requirements
[PvdM16]. This was surprising, as the standardization processes had already
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progressed far without clear security objectives. When these were later added,
the IETF had to rely on external formal definitions and proofs to assess the
security provided by the protocol [Res18, Appendix E]. The security requirements
the protocol aims to achieve are listed as follows.

Handshake protocol

• The peers should have the same session keys after the handshake.

• The session keys should only be known to the communicating peers.

• If a client believes it is communicating with a certain server, the client
should indeed be communicating with that server. The analogue should
hold for the server in case of mutual authentication.

• Different handshakes should produce different and unrelated session keys.

• The cryptographic parameters should be the same on both sides and should
be the same as if the communication was in the absence of an attack.

• If either party’s long-term key becomes compromised, sessions completed
before the compromise should remain secure. (Forward secrecy)

• Should an attacker compromise the long-term key of one party, the attacker
should not be able to use this key to impersonate an uncompromised party
in communication with that party.

• The server’s identity should be protected against passive attackers. The
client’s identity should be protected against passive and active attackers.

Record protocol

• An attacker should not be able to determine the plaintext of a given record.

• An attacker should not be able to produce an acceptable new record.

• An attacker should not be able to cause the receiver to accept a record
which it has already accepted or cause the receiver to accept record N+1
without having first processed record N. (Non-replayability)

• The attacker should not be able to determine the length of content versus
padding given a record.

• An attacker that compromises an endpoint should not be able to decrypt
traffic encrypted with an old key. (Forward secrecy)
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Contributions from the academic community have enabled a standardization
process with proven security properties. For instance, the symbolic model for
handshake interaction using the tamarin prover by Cremers et al. [CHH+17]
proved the majority of the security requirements mentioned above. Their model
was notably able to incorporate the PSK key exchange modes and early data.
Due to limitations in the model, properties, such as downgrade protection and
endpoint identity protection, were not covered. One flaw discovered in this anal-
ysis was that the protocol allows for "silent" certificate rejection. Meaning that
the client does not receive explicit confirmation whether the server has success-
fully received the client’s response to a certificate request. In particular, peers
may not necessarily share a common view of the session. This is the case with
both regular handshake authentication and post-handshake authentication. The
TLS working group has decided not to fix this behaviour. If a client wants to
be informed about its authentication status, this can be done in the application
layer. However, applications may incorrectly assume that sending a client cer-
tificate and receiving further messages from the server indicates that the server
considers the connection to be mutually authenticated. This may cause problems
in the application layer.

4.2.3 PSK and early data

An only PSK key exchange mode notably does not provide forward secrecy. An
attacker that learns a traffic secret can compute all future traffic secrets on that
connection, including the secret PSKs [Res18, Appendix E.1]. In addition, TLS
does not provide security for data transmitted on a connection after the traf-
fic secret of that connection has been compromised. A fresh handshake with
(EC)DHE is required for better guarantees. Nevertheless, the compromise of one
PSK would not lead to the compromise of another, as PSKs are uniquely driven
from a long-term shared secret.

An early data transmission, i.e. 0-RTT, offers the same security features as
a regular 1-RTT data with two exceptions [Res18, Appendix E.5.]. First, the
transmission mode does not provide full forward secrecy as the data is encrypted
with a traffic key derived from a PSK. Second, the server is not able to guarantee
the uniqueness of the received record, i.e. non-replayability is not guaranteed.
This presents potential harm to the website and the user.

In the case of non-idempotent records, simple duplication of action may result
in side effects. An attacker could also store and replay the data to reorder it with
respect to other messages. Besides, cache timing behaviour could be exploited to
reveal the contents of the message by replaying it to different cache nodes and
measuring latency. The application using TLS should be designed to accept only
idempotent 0-RTT data to counter such attacks. Even if this is the case, a large
number of replays could be exploited for timing attacks, resource exhaustion and
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Figure 4.2: The SELFIE Attack. Eve tricks Alice to believe she is talking to Bob
while she is actually talking with herself. [DG19]

others. The replay behaviour of a client and the inconsistent global state of a
server can be used to force a server to receive multiple copies of an application
message. This behaviour cannot be prevented on the TLS layer and must be
handled on the application layer.

The lack of forward secrecy and non-replay guarantees for PSK and early data
could be addressed by ensuring that PSKs are used only once [Res18, Section 8.1].
This would involve a database managing all outstanding valid tickets and deleting
each ticket as they are used. In case of unknown tickets, the server would fall
back to a full handshake. Since PSKs are always deleted upon use, connections
made in only PSK key exchange mode would have forward secrecy. However,
in a multi-server, distributed environment, sharing the session database between
nodes poses a daunting challenge. It can also result in a lower rate of successful
connections. Other recommended anti-replay mechanisms include ClientHello
recording and ClientHello freshness checking. All of the above mentioned anti-
replay mechanisms are associated with higher operating costs and are unlikely to
be used in practice.

Apart from the weaknesses identified during the standardisation process and
discussed as such in the RFC, PSK was the subject of a reflection attack called
SELFIE [DG19]. The attack is applicable to both PSK key exchange modes.
SELFIE presents an attack scenario in which the sender of an authentic message
could be the receiver itself. The attack requires a node to open two independent
connections in a network, where each node acts as a TLS server and client. As
shown in Figure 4.2, an active eavesdropper can trap communications and reflect
messages from a node to itself. Notably, the attacked node does not explicitly
verify the identity of the node it is communicating with. Consequently, the node
cannot exclude the possibility that it receives an echo of its own messages.
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The attack exploits implicit assumptions made in the design and security
proofs [DG19]. Namely, the protocol assumes that when using PSK, a node
receiving a message knows that the message was also sent by a node that owns
that PSK. Furthermore, it was wrongly assumed that PSKs could not be shared
by more than two nodes, i.e. a client and a server. However, this did not take into
account a scenario in which a PSK only belongs to two nodes, but the nodes can
run as both client and server. In this case, a PSK can be shared by two servers
and two clients in total. Besides, the fact that the protocol does not require an
explicit server and client authentication in each message is used to break mutual
authentication.

4.3 Interoperability

In this section, we describe how the long history of TLS and its widespread
use have impacted the design of the new version. Furthermore, we attempt to
answer the question to what extent the transformation of TLS has been limited by
interoperability factors. With interoperability, we consider features that are not
among the primary objectives of the protocol and are only present to make the
protocol functional. These include backward and forward compatibility, Internet
infrastructure considerations, and issues with vendors.

4.3.1 Starting from scratch

One possible solution to the interoperability problems of TLS is to start from
scratch with a new protocol. A completely different protocol, rather than an
improvement to the existing one, means trivially no legacy issues. Defining an
entirely new set of messages and a new state machine using new mechanisms and
design tools could provide a significant advantage. The much higher degree of
freedom in design means that the objectives of this protocol could be achieved
with less complexity. Consequently, the new protocol could ease the implemen-
tation and verification of security properties. This also could allow developers
to pursue a higher (security) goal than what an improvement allows. QUIC’s
approach to providing the services of HTTP, TLS and TCP in a single protocol
illustrates this (section 4.1.1).

Imagining this possibility puts the design limitations of TLS 1.3 into perspec-
tive and partly explains the subsequent complexity of the protocol. The immense
challenge of achieving an almost entirely different set of goals while maintaining
the more than two decades old TLS framework can only be understated. On the
other hand, the benefits of a completely new protocol regarding security could be
minimal. Problems in redesign caused by limitations in verification mechanisms
or other shortcomings could also arise in the case of a brand new protocol. Also,
implementation errors are not necessarily avoided. The cryptographic primitives
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used would mostly remain the same since TLS already uses the most secure
algorithms known. Besides, creating new libraries if necessary, could be more
error-prone than reusing the existing and reliable ones.

Assuming that a supposedly better protocol is developed, a significant chal-
lenge would be to achieve widespread deployment. Introducing only a new ver-
sion of an existing protocol has the advantage of having several vendors who
can facilitate deployment on already running servers. Only organisations such as
Google and Facebook, which control both sides of the connection, could achieve
a significant spread of an entirely new protocol. QUIC’s track to representing
a significant portion of Internet connections by taking advantage of Chrome’s
market share will be a pattern to monitor.

4.3.2 The theory of TLS version iteration

A key question in redesigning TLS has been how much change the protocol allows
without significantly affecting interoperability. This question becomes complex
given the many versions in use and the stagnant server-side implementations. As
will be described later, the situation is further exacerbated by flawed middleboxes.

Ideally, TLS peers would be able to negotiate their preferred common pa-
rameters, including the protocol version, without any issue [Res18, Section 9.3].
Since the parameters to be introduced are not restricted, the protocol would
be compatibly extensible, and version iteration would also be straight forward.
Older protocol versions and features would be used alongside newer ones without
being explicitly deprecated. The newer and better parameters would naturally
overtake based on peers’ preference. Support for older parameters would not be
a weakness, as the protocol guarantees downgrade protection.

Version negotiation between endpoints that potentially support different ver-
sions is a critical aspect of TLS interoperability. With this in mind, ClientHello
messages in all versions since SSLv3 have been designed to be compatible with
each other [Res18, Section 9.3]. This compatibility should allow servers to handle
clients trying to use newer versions as long as a commonly supported version can
be found. Notably, only the ClientHello message is sent before a version is
negotiated. Any message after that is sent according to the negotiated version.
Meaning, any message beyond the ClientHello is allowed to change arbitrarily.
In particular, the format and values contained in messages like ServerHello and
encrypted application data should not be restricted due to interoperability.

Aside from keeping the ClientHello compatible, TLS follows two main prin-
ciples to facilitate seamless transformation [Res18, Section 9.3]. First, a client
should support all the parameters it advertises in its ClientHello, including
supported versions, cipher suites, and extensions. Second, a server receiving
a ClientHello should correctly ignore any unrecognized parameters. A client
should also ignore any unrecognized extensions that are received as part of server
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messages. This way, both the client and the server could ignore any proposed or
requested features they do not support yet without further impact. In theory,
this should allow new features to be introduced into existing versions and more
importantly, new versions to be unrestricted by the existing framework.

Unexpectedly, middleboxes have proven to be a significant challenge in re-
designing TLS than the actual endpoints [Res18, Appendix D.4.]. A middlebox
is any intermediary box performing functions other than the standard functions
of an IP router on the data path between the client and the server. This includes
load balancers, firewalls and proxies. As we will see later, most interoperability
considerations were caused by such devices. In principle, middleboxes should
behave like any other client or server. Moreover, a middlebox that forwards a
ClientHello that it does not understand should not process messages beyond
the ClientHello and should forward all subsequent traffic unchanged. Other-
wise, it cannot work with newer endpoints. Middleboxes that do not follow this
have experienced problems when the endpoints negotiate TLS 1.3.

4.3.3 The reality of redesigning TLS

The design of TLS 1.3 was severely limited by the non-compliance of the protocol
invariants mentioned above, especially by middleboxes. Several workarounds
were required to make the protocol functional. These have led to unnecessary
complexity, which could indirectly affect the security of the protocol. Breaking
connections to or through non-compliant endpoints and middleboxes has not been
an option, as they represent a substantial part of Internet connections.

In contrast to the envisioned interoperability between versions, introducing
new versions of TLS has been a challenge. In the past, flawed TLS 1.0 server-
side implementations have rejected TLS 1.1 ClientHello [Ben]. The same has
happened with TLS 1.2 ClientHello with flawed TLS 1.1 servers. The inabil-
ity to negotiate a commonly supported version by computing the minimum of
the server’s and the client’s maximum supported value had critical consequences.
This issue of version intolerance has been addressed with version fallback, which
means that the client would make a repeated attempt by disabling the rejected
version or feature. Multiple fallbacks might be necessary until the connection is
successfully established. Version fallback trivially bypasses the provided down-
grade protection and allows attacks like POODLE.

The problem of version intolerance was once again repeated with the intro-
duction of TLS 1.3. According to Google and SSL pulse, 1.6% to 3.2% of top sites
rejected a ClientHello with TLS 1.3 as its maximum supported version [Ben]
[Res18, Appendix D]. Since this was a significant part of the Internet and version
fallback has its disadvantages, another workaround was deemed necessary. As
described in chapter 3, the maximum version field in TLS 1.3 is fixed to TLS
1.2, and a new supported version extension is used for the actual version negoti-
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ation. Besides avoiding version fallback, this workaround has the advantage that
individual versions can be advertised instead of a range of versions. The new ap-
proach becomes useful as clients gradually stop supporting earlier versions, and
also facilitates experimentation before deployment.

After version intolerance was addressed, middleboxes presented another chal-
lenge. Field measurements showed that a significant percentage of middleboxes
misbehave when peers negotiate TLS 1.3 [Res18, Appendix D]. Another design
change was necessary to increase the chance of a connection via these middle-
boxes. The TLS 1.3 handshake was modified to resemble a TLS 1.2 session re-
sumption starting with draft 22, also known as compatibility mode [Ben]. In par-
ticular, several dummy fields and messages to be ignored were added. These in-
clude a non-empty "legacy_session_id" field in ClientHello, which is echoed by
the server, and a ChangeCipherSpec message. Similarly, the HelloRetryRequest
message has been modified to look like a ServerHello to avoid upsetting the
middleboxes. The compatibility mode has made the protocol challenging to un-
derstand and possibly difficult to implement correctly. However, this has not
affected the actual flow and security objectives of the protocol.

The design considerations in TLS 1.3 highlight the challenge of introduc-
ing new features while keeping the old ones running, and demonstrate that the
promised extensibility of the protocol is far from reality. As described above, this
is mainly due to servers and middleboxes running flawed implementations. Since
the problem is prevalent, effectively updating buggy servers or middleboxes is
hard, if not impossible. Moreover, some of the errors may not be noticed until a
specific change to the protocol is attempted. Widespread flawed implementation
could also be the case with new TLS 1.3 implementations.

As the protocol’s freedom to introduce new messages or change the old ones
becomes more and more restricted, functionality is shifting to extensions. As
a result, the guarantee that servers (and middleboxes) will correctly ignore un-
recognised extensions becomes increasingly essential. Otherwise, it would be
practically impossible to further enhance the protocol. One measure taken to
preserve the meagre extensibility of TLS is Google’s GREASE [Ben20]. By gen-
erating random extensions and including them in ClientHello messages from
the chrome browser, it attempts to detect errors in implementations and pre-
serve extensibility.



Chapter 5

Evaluating the trade-off in the
design of TLS 1.3

Based on the many aspects of TLS 1.3 discussed so far, in this chapter, we
evaluate the trade-offs made between the protocol’s different sets of objectives.
We name concrete compromises, comment on their necessity and significance.

5.1 Efficiency vs Security

TLS 1.3 has achieved significant efficiency goals. This with regard to reduction in
both latency and computation. The protocol has also mostly addressed the secu-
rity vulnerabilities of previous versions. Many improvements were made without
any compromise between the two sets of objectives, such as the reduction of the
regular handshake latency from 2-RTT to 1-RTT and the removal of unsafe cryp-
tographic components. On the other hand, some efficiency goals were directly
linked to critical security compromises. Namely, the further reduction of the
latency to 0-RTT (early data) and avoiding public key computation using PSK
(only-PSK key exchange mode). These two efficiency goals were the cause of
many design considerations and have led to a conscious decision to forego certain
security objectives, namely, non-replay guarantees and forward secrecy.

Design decisions to achieve higher security have been rather aggressive, as
described in section 3.1. This mainly in order not to carry the shortcomings
of previous versions. Accordingly, the changes in the encryption mechanisms,
key exchange methods and signature algorithms have been radical. In contrast,
this approach is lacking in dealing with weaknesses introduced due to efficiency
objectives. This reluctance raises the question of whether efficiency has taken
over security as the protocol’s top priority. The design of TLS 1.3 was arguably
the first time that efficiency played a central role in the design of a TLS version.
Nevertheless, the design decisions suggest, the protocol’s transformation has been
somewhat hijacked so that the protocol cannot be as secure as it can be. For
this, it suffices to imagine TLS 1.3 without PSK and early data. In such a case,
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the protocol would achieve all of its security goals, with all AEAD cipher suites
and only (EC)DHE key exchange mode. The efficiency improvements would have
also been reasonable with the 1-RTT handshake. All known weaknesses of TLS
1.3 stem from further pursuit of efficiency.

As described in Section 4.1, the urge for more performance was strong, and
the new version has responded accordingly. The design decisions to adapt to
modern applications and to respond to the challenge posed by other protocols
are justified. On the other hand, the subsequent weaknesses arising from the
security compromises in the protocol are significant, as illustrated with attack
potentials disclosed during standardization as well as by the attacks made pub-
lic afterwards. Nevertheless, it is crucial to realize that the protocol only offers
options for endpoints to choose from. The compromises in design only mean
that unsafe options are also included, but the endpoints are not obliged to carry
the security compromises. Meaning, the actual trade-off between efficiency and
security is pushed down from the protocol to the client and server. The end-
points have the option to have both the highest possible security as well as the
best performance with security compromises. Endpoints could disable PSK key
exchange modes and early data in implementations to take full advantage of the
protocol’s enhanced security. To further adjust the trade-off, PSK key exchange
modes could be allowed, but not early data.

We believe that the design of TLS 1.3 has struck the right balance between
its efficiency and its security objectives with the currently available mechanisms.
Future versions, in combination with technical advancements, could minimize the
trade-offs and their impact, so that more of the protocol’s objectives could be
achieved. For instance, reducing the computational cost of the (EC)DHE key
exchange could facilitate PSK with (EC)DHE key exchange mode becoming the
norm and only-PSK key exchange mode being scrapped. This modification would
notably lead to forward secrecy guarantees for all key exchange modes. Besides,
future versions of higher-level protocols could guarantee that the data to be sent
in 0-RTT is always idempotent, thus reducing the risks of earlier data.

5.2 Security vs Interoperability

The security enhancements in TLS 1.3 did not involve significant compromises
due to interoperability, partly due to the protocol’s approach to relying mainly
on removing unsafe mechanisms and retaining the secure once to achieve its
security objectives. This is reflected in the approach to reduce the provided ci-
pher suites to AEAD only and the public key-based key exchange methods to
(EC)DHE only. The additional introduction of security features was not sig-
nificantly restricted by interoperability, as was shown with new curves and new
signature algorithms. The protocol was also able to improve privacy by introduc-
ing the EncryptedExtensions message and improve downgrade protection using
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the "random" field in the ServerHello message. In this regard, the protocol has
achieved the highest level of security it is intended to achieve.

On the other hand, flawed endpoint and middlebox implementations have
led to significant design restrictions. However, thanks to some ingenious solu-
tions, the restrictions did not lead to direct security compromises. In particular,
the adoption of the "supported_versions" extension against version intolerance
instead of version fallback as in previous versions was essential. Notably, down-
grade protection is a central aspect of the protocol’s security objectives which
otherwise would have been bypassed. Similarly, emulating a TLS 1.2 session
resumption against middlebox problems has kept the protocol’s flow and secu-
rity properties intact without affecting interoperability. However, the additional
complexity resulting from the required workarounds is a cause for concern. The
complexity may have made it more challenging to carry out security analysis, re-
sulting in weaknesses possibly being overlooked. Besides, as described in section
4.3, the correct implementation of previous versions, which are more straightfor-
ward compared to TLS 1.3, has already been a challenge for many vendors. The
increased complexity of the new version has frightening implications, especially
for future protocol modifications. In this regard, an analysis of popular TLS 1.3
implementations in a similar fashion to [BBD+17] could help further concretize
the trade-offs between security and interoperability.

The measures adopted to address the trade-off between security and inter-
operability were necessary and very effective. Unlike the compromise between
efficiency and security, this was not between two explicitly laid out sets of ob-
jectives. Instead, the challenges were discovered while attempting deployment,
consequently making the measures taken ad-hoc. Besides, the existence of this
particular trade-off illustrates the state of the TLS ecosystem. In particular, the
actors involved in shaping the ecosystem are very diverse, some more competent
than the others. As the IETF is only one of the many actors involved in shaping
the protocol, this particular trade-off shows that design decisions and published
RFCs have only limited influence in the wild.

5.3 Efficiency vs Interoperability

The efficiency objectives of TLS 1.3 have not been significantly restricted by in-
teroperability. However, the limitation to introduce new messages as with the
HelloRetryRequest being a special ServerHello, and the addition of dummy
fields and messages due to the compatibility mode has resulted in higher band-
width utilization. However, since reducing latency and computational costs were
the main efficiency goals, this compromise is rather insignificant. On the other
hand, the design constraints due to the protocol’s decades-old framework may
have led to a limitation of the protocol’s design goals. As a result, the protocol
is still lagging behind its competitors in terms of performance.



Chapter 6

Conclusion

TLS 1.3 has achieved most of the objectives it set out. As a result, the protocol
is now more secure and faster than ever. Achieving these goals has been a very
tricky challenge. Notably, critical design decisions had to be made when the
protocol’s objectives clashed, and ingenious workarounds were required. In this
thesis, we contextualised the protocol’s objectives, identified trade-offs between
them and evaluated the measures adopted in addressing such trade-offs.

The new version of TLS has features with unsatisfactory security properties,
in contradiction to the main design goal of eliminating anything unsafe in the
protocol. The design decisions made in this regard illustrate the ever-increasing
role of efficiency. The introduction of early data and the prominent role of PSK
mark a turning point in the protocol’s timeline. In particular, efficiency has
become just as crucial, if not more crucial, than security.

We have determined that there is no significant trade-off between efficiency
and interoperability. Thanks to the many workarounds adopted, the impact of
the trade-off between security and interoperability was limited. On the other
hand, the trade-off between security and efficiency played a crucial role and was
at the heart of many design decisions. As a result, the protocol offers options of
both highly secure as well as fast, but with security compromises. These options,
in turn, push the actual compromise between security and efficiency down to the
endpoints.

The design of the TLS 1.3 has illustrated the continually deteriorating state
of the ecosystem. In particular, the technical incompetence of implementers
is having a tangible impact on the transformation of the protocol. Notably,
this issue was not new and was also present in case of prior versions. These
interoperability problems have significantly increased the complexity of the new
version. Which, in turn, may increase the extent of interoperability issues in
the future. The restrictions could make another radical structural departure in
the transformation of TLS nearly impossible without significantly affecting the
interoperability of the protocol.
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