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Abstract

Collective cyber defense leveraging Cyber Threat Intelligence (CTI) shar-
ing has recently gained considerable interest in addressing the rise of
cyber threats and incidents that organizations and individuals face by
training advanced machine learning models to predict and detect fu-
ture threats. However, cyber threat intelligence sharing remains sub-
optimal due to the lack of confidentiality guarantee for shared cyber
threat information, holding back stakeholders from contributing to col-
lective cyber security.

Federated Learning (FL) is a decentralized approach to machine learning
that enables multiple parties to train models collaboratively by keep-
ing their datasets locally while only exchanging model updates. Recent
work has revealed that federated learning is vulnerable to various in-
ference attacks by analyzing the leakage of released local and global
models.

In this work, we propose a hybrid Privacy-Preserving Federated Learning
(PPFL) construction to address the problem of cyber threat intelligence
sharing in an K-party federated setting. Our construction combines
Multi-Party Homomorphic Encryption (MHE) and Differential Privacy (DP)
to guarantee the confidentiality of the training data and intermediate
models in the passive-adversary threat model, assuming collusions up
to K− 1 parties.

Our experimental results show that our hybrid solution outperforms
fully encrypted learning and achieves similar accuracy to non-private
federated learning. We evaluate our hybrid construction by training
neural networks on the MNIST and CIFAR-10 datasets, distributed
among 3 parties.
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Chapter 1

Introduction

In this chapter, we first justify the need for global Cyber Threat Intelligence
(CTI) sharing to address current cyber defense challenges and then intro-
duce Privacy-Preserving Federated Learning (PPFL) to enable such decentral-
ized data-sharing scenarios. We then review related and concurrent PPFL
constructions, and list the main contributions of our work.

1.1 Overview & Motivation

1.1.1 Cyber Threat Intelligence Sharing

Cyber Defense Challenges

Over the past two decades, the dramatic increase in new cyber threats and
incidents has become a growing concern for individuals and organizations.
These incidents, which may result in data breaches, system downtime, or
intellectual property theft, can be devastating, as they usually induce repu-
tation damage, business disruption, and financial losses.

As attackers constantly devise new ways to circumvent security systems,
companies must stay on top of the latest threats to keep up with the ever-
changing nature of modern cyber attacks and proactively adjust their de-
tection and mitigation systems accordingly. Incident response time and co-
ordination are critical to defend against these threats. As a consequence,
organizations and institutions must allocate a significant budget to cyber
defense to mitigate these new threats and improve their cyber resilience.

Collaborative Cyber Security

Access to real-time threat intelligence data is also crucial in effectively ad-
dressing the growing number of cyber incidents organizations face. Indeed,
companies can improve their defense capabilities by globally sharing their
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1.1. Overview & Motivation

cyber information, such as malware hashes, system logs, or source IP ad-
dresses of phishing attempts, allowing security analysts to train advanced
models to predict and detect future incidents. Furthermore, sharing cyber
information can benefit the offensive side by enabling joint investigations to
combat cyber crime. For these reasons, collective cyber defense is therefore
gaining interest in the cyber security industry.

Cyber Information Retention

Implementing CTI sharing faces the Free-Rider Problem, describing the situa-
tion in which all participants want to reap the benefits of collective defense
and improved threat response but restrain from sharing sensitive cyber in-
formation due to the lack of confidentiality guarantees. As a result, actors
tend to limit the information they share, reducing the effectiveness of col-
laborative cyber security.

This problem expresses the trade-off between the benefits of improved threat
response capabilities and the drawbacks of disclosing sensitive cyber infor-
mation. CTI sharing thus remains sub-optimal, preventing the full potential
of collective defense from being realized. It is therefore essential to imple-
ment robust privacy protection mechanisms to guarantee the confidentiality
of shared cyber intelligence and encourage stakeholders to contribute to col-
laborative cyber security.

Privacy-Preserving Information Sharing

To this end, the 2020 annual report of the World Economic Forum (WEF) [3]
highlights the combination of Machine Learning (ML) and Privacy-Enhancing
Technologies (PETs), as a promising privacy-preserving framework for infor-
mation sharing that can address the current cyber defense challenges [45].
On the one hand, ML algorithms enable automating cyber attack diagnosis.
On the other hand, PETs provide security guarantees for data analysis while
preserving utility.

This new information-sharing paradigm allows institutions to minimize the
risk of exposure of their sensitive cyber information while benefiting from
improved predictive and preventive defenses. In terms of implementation,
CTI sharing is one of the many use-cases of PPFL that we introduce below.

1.1.2 Privacy-Preserving Federated Learning

Federated Learning (FL) is an ML technique that collaboratively trains a global
model on multiple datasets distributed over separate clients without any
data exchange, ensuring some level of data privacy by design.

The rapid development of FL is mainly due to the massive success of ML
applications with the explosion of big data as well as legal regulations on
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1.1. Overview & Motivation

data privacy protection worldwide, such as the General Data Protection Reg-
ulation [19] in the EU, the California Privacy Rights Act [7] in the US, and the
Personal Data Protection Act [24] in Singapore. These regulations emerging
from user data privacy concerns have significantly boosted the development
of FL, and especially PPFL.

Privacy Leakage

However, recent work has shown that FL is vulnerable to many data poi-
soning attacks impacting prediction accuracy, and inference attacks compro-
mising data privacy [32, 54], raising concerns about using FL as a privacy-
preserving mechanism alone.

Privacy-Preserving Mechanisms

We describe below the most popular privacy-preserving mechanisms ap-
plied to FL, including Secure Multi-Party Computation (SMC), Homomorphic
Encryption (HE), and Differential Privacy (DP).

• SMC-based PPFL. SMC is an interactive cryptographic scheme that
enables a set of parties to collaboratively compute a public function
without revealing their private data [51]. It is mainly used in PPFL
constructions to secure the aggregation protocol involving the local
model updates [4]. While SMC offers strong privacy guarantees and
high accuracy, it does not scale with the number of parties because of
its significant computational overhead and communication costs.

• HE-based PPFL. HE schemes enable computations directly on en-
crypted data [39] and are widely used to protect data privacy by ag-
gregating encrypted local model updates during the training process
[38]. Although HE provides robust confidentiality guarantees and pre-
serves utility, the computational cost induced by the encrypted opera-
tions significantly degrades performance.

• DP-based PPFL. DP is a rigorous mathematical framework for privacy-
preserving data analysis that quantifies personal information disclo-
sure in a dataset [15]. The main idea is to add sufficient noise to the
training process to prevent data leakage from intermediate and aggre-
gated model updates. DP has become a popular privacy-preserving
approach to FL due to its natural trade-off between data privacy and
utility which is controlled by the added amount of noise. We distin-
guish two applications of DP to FL:

1. Global Differential Privacy (GDP) assumes a central server adding
noise to the aggregated global model preventing malicious parties
from inferring private information from the shared global model

3
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[23]. However, GDP is vulnerable to a malicious server as it re-
ceives clear model updates from participants.

2. Local Differential Privacy (LDP) involves adding noise during lo-
cal training to protect local model updates sent to the server and
thus removes trust in the central aggregator [47, 10], as required
in GDP. Nevertheless, LDP requires a larger total amount of noise
than GDP and is therefore less accurate than GDP for an equiv-
alent level of security, because LDP protects the privacy of each
party’s data separately. Intuitively, the local data in LDP is gener-
ally more granular and less informative than the aggregated data
in GDP and is therefore more vulnerable to inference attacks.

1.2 Related Work

Since privacy-preserving cryptographic techniques, such as SMC and HE,
have computational and communication overheads, and DP tends to de-
grade data utility, many recent hybrid PPFL constructions have been pro-
posed. By combining these techniques, researchers hope to achieve better
performance, privacy, and utility trade-offs than each method alone. Hybrid
constructions typically include different combinations of SMC, HE, and DP.

Among them, Truex et al. [46] proposed a PPFL system combining SMC
and LDP to train various ML models. Their solution calibrates the amount
of local differential noise by a trust parameter that considers the number
of honest, non-colluding parties. However, using the Paillier additive HE
scheme [36] in their SMC protocol makes their system vulnerable to quan-
tum attacks.

In addition, Hao et al. [25] designed a PPFL construction for large-scale AI
by combining an LWE-based additive HE scheme with LDP, where local dif-
ferential noise also depends on the ratio of colluding parties. Nevertheless,
their experiments showed that the achieved accuracy of the NN seriously
degrades when more than half of the participants collude.

Sav et al. [41] introduced POSEIDON, a novel PPFL system based on a
combination of SMC and HE, better known as Multi-Party Homomorphic En-
cryption (MHE). This work supports privacy-preserving NN training in the
passive-adversarial model allowing collusions of up to K− 1 parties by per-
forming the whole training process under encryption. Although POSEIDON
achieves high accuracy for a simple NN (3 layers), the significant computa-
tion and communication overhead caused by MHE makes it unusable for
training more complex NNs.

4
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1.3 Contributions

Our work makes the following contributions to the field of PPFL:

1. A novel hybrid approach to PPFL combining MHE and GDP that pro-
tects the confidentiality of the training data and intermediate model
updates in a semi-honest threat model allowing collusions up to K− 1
parties.

2. An analysis of the sensitivity and total privacy loss of our differentially
private SGD algorithm implementing GDP.

3. A performance analysis of a fully encrypted FL for a 3-layer NN train-
ing using benchmarks from Lattigo [18], an open-source lattice-based
MHE library in Go.

4. An experimental evaluation and benchmark of our hybrid solution on
the MNIST and CIFAR-10 datasets, showing superior performance to
fully encrypted approaches (POSEIDON) and comparable accuracy to
non-private FL.

5. An investigation of the trade-offs between performance, privacy, and
accuracy in applying DP to FL.

1.4 Outline

Chapter 2. Background

This chapter introduces theoretical background on deep learning and PETs
for the rest of the thesis. We present SGD and NNs that we will use to eval-
uate our PPFL solution and describe the MHE scheme that our construction
relies on.

Chapter 3. Differential Privacy

We first motivate the need for DP in the context of privacy-preserving data
analysis, and explain its intuition. Next, we provide the mathematical frame-
work that formally defines DP, introducing key definitions and describing
mechanisms and techniques for achieving DP. We conclude this chapter by
discussing the application of DP to ML.

Chapter 4. Privacy-Preserving Federated Learning

In this chapter, we first define the system and threat model we consider in
the context of CTI sharing to design our PPFL solution, and evaluate FL as
an individual privacy-preserving mechanism highlighting its vulnerabilities
to various inference attacks. We then present a fully encrypted construction
similar to POSEIDON that we will use as a comparison. Next, we describe
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our PPFL solution combining MHE and DP, including our differentially pri-
vate learning algorithm implementing GDP. We finally derive a bound on
our algorithm’s sensitivity and provide a lower bound for the differential
noise variance.

Chapter 5. Experimental Evaluation

This chapter describes our evaluation setup and presents the experimental
results of the two conducted experiments; we evaluate our hybrid construc-
tion by training a simple 3-layer NN and a more complex one on the MNIST
and CIFAR-10 datasets distributed among 3 parties.

Chapter 6. Conclusion

We summarize our work and discuss the limitations of the practical appli-
cation of DP and propose future work to improve the different trade-offs of
our hybrid PPFL construction.
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Chapter 2

Background

We first provide the necessary background on SGD and NNs and then
present the MHE scheme on which our hybrid construction relies to per-
form privacy-preserving NN training in a federated K-party setting.

2.1 Deep Learning

Deep Learning (DL) is a subfield of ML that has recently gained popular-
ity due to its state-of-the-art performance in solving complex problems in
various fields, including computer vision or natural language processing,
and enabling significant advances in image classification, speech and facial
recognition, and language translation. Unlike traditional ML models that
rely on manual feature engineering, deep learning algorithms train artifi-
cial NNs to automatically extract and learn meaningful features and intri-
cate patterns from raw data through multiple layers, effectively representing
high-dimensional data such as images, speech, and text. As a result, deep
learning has become a popular tool for various applications in industry and
academia.

2.1.1 Gradient Descent

Gradient Descent (GD) is a first-order optimization algorithm used as a ML
training technique for finding the values of the model parameters that mini-
mize a given loss function. It consists of iteratively adjusting the parameters
toward the direction of the negative gradient of the loss function until we
reach a minimum. We formally define gradient descent below.
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2.1. Deep Learning

Definition 2.1 (Gradient Descent Update) Given a dataset D = {x1, ..., xn} ∈
Rn×m, a batch of training samples B ⊆ D, a loss function L(θ) = 1

|B| ∑x∈B L(θ, x)
with respect to the model parameters θ ∈ Rd, the gradient descent function fθt

updates the parameters θ of iteration t ∈ [T] as follows:

fθt : Rd → Rd

θt 7→ θt −
η

|B| ∑
x∈B
∇θL(θ, x)︸ ︷︷ ︸

θt+1

where η ∈ R+ is the learning rate which determines the step size of the update, and
∇θL(θ, x) is the gradient of the loss function L(θ).

Specifically, the loss function L(θ) provides a measure of how well the
model fits the dataset and represents the penalty for mismatching the train-
ing data. The goal of learning is to find the model parameters θ that produce
an acceptable loss.

2.1.2 Neural Networks

Neural Networks (NNs) are DL models that enable the extraction of relatively
complex non-linear relations from the input data. They have many appli-
cations, such as data analysis, pattern recognition, and forecasting. NNs
consist of several layers of neurons performing linear and non-linear trans-
formations iteratively on their input data. A weight that adjusts during the
learning process is assigned to each edge connecting neurons of different
layers. Each training iteration comprises a feed-forward step (forward pass)
updating the weights and a backpropagation step (backward pass) updating
the gradients.

Multi-Layer Perceptrons (MLPs) are well-known Fully-Connected (FC) NNs
composed of an input layer, one or multiple hidden layer(s), and an out-
put layer, where each neuron in one layer is connected to all neurons in the
next layer. We represent FC layer operations as matrix multiplications.

Formally, considering an iteration t, we denote by a matrix Wt
j the weights

between two layers j and j + 1, and by a matrix At
j the activation of the neu-

rons in layer j. Each training iteration consists of the feed-forward and back-
propagation phases, which repeat until the convergence of a set of weights
that produce accurate predictions about the training data.

Forward Pass

The forward pass divides into two steps: a linear combination of the weights
with the activation values of the previous layer

Ut
j = Wt

j · At
j−1

8



2.2. Privacy-Enhancing Technologies

and an evaluation of the activation function ϕ to compute the values of the
neurons for each layer

At
j = ϕ(Ut

j ).

Backward Pass

Backpropagation is a method that applies gradient descent to minimize the
prediction error of each iteration by adjusting the model weights accord-
ingly. We provide below the update function of mini-batch GD in matrix
form, where a random batch of sample inputs B is used in each iteration.

Wt
j+1 = Wt

j − η∇Wt
j

where η is the learning rate and ∇Wt
j denotes the gradient of the loss func-

tion (error matrix E) with respect to the model weights and computed as

∇Wt
j =

∂E
∂Wt

j
.

We note that backpropagation requires several matrix and transpose opera-
tions applied to vectors and matrices.

2.2 Privacy-Enhancing Technologies

The need for Privacy-Enhancing Technologies (PETs) stems from the growing
concern for personal privacy in the digital age. With the rapid growth of
cyber technologies, large amounts of sensitive information are being col-
lected, stored, and processed by various organizations and entities. As a
result, there is a growing risk of data breaches, identity theft, and privacy
violations.

By implementing PETs, organizations and individuals can gain more con-
trol over their personal information and enjoy greater privacy in their online
activities. They ensure secure and responsible management of personal in-
formation and can thus help restore trust in the digital world.

2.2.1 Secure Multi-Party Computation

First introduced in 1986 by Yao [52], Secure Multi-Party Computation (SMC)
is a well-studied and highly relevant problem in cryptography that we can
state as follows.

Definition 2.2 (Secure Multi-Party Computation Problem) A set of K par-
ticipants {P1, ..., PK}, each owning private data x1, ..., xK respectively, wants to
jointly compute the value of a public function over their private inputs F(x1, ..., xK),
while keeping their own inputs private.

9



2.2. Privacy-Enhancing Technologies

Solutions to this problem are of great interest for securing distributed data-
sharing scenarios where the participants do not fully trust each other but
must collaborate on a computation. SMC protocols, enabling collaborative
computation among multiple parties, have many real-world applications, in-
cluding secure voting, financial services, healthcare, and in our case, Privacy-
Preserving Machine Learning (PPML). Generally, SMC protocols are interac-
tive and satisfy the next two properties.

1. Input privacy. No party should be able to infer more information
about private data held by the other parties (from messages sent dur-
ing protocol execution) than what is deducible from the output of the
joint computation.

2. Correctness. The result of the joint computation is correct and consis-
tent with the agreed public function and private inputs of the parties.

Adversarial Model

The security of SMC protocols is defined in terms of the capabilities and
behavior of the modeled adversary and assumptions made about the parties.
In the multi-party setting, the adversary may participate in or control the
internal parties of the protocol. In the context of CTI sharing, we consider
the semi-honest model with dishonest majority that assumes the following:

• Private Inputs. Each party has a private input that it wishes to keep
confidential.

• Computational Resources. Each party has access to sufficient compu-
tational resources to perform the computations required by the proto-
col.

• Communication Channels. Parties can communicate with each other
over a secure channel that is not susceptible to eavesdropping, inter-
ception, or tampering by the adversary.

• Majority Control. The adversary controls a majority of the parties.
This assumption is realistic in real-world scenarios, as an attacker may
be able to compromise a large number of devices or nodes in a net-
work.

• Semi-Honest Behavior. Dishonest parties strictly follow the proto-
col as specified but may attempt to infer sensitive information about
the private inputs of other parties from the received messages during
protocol execution. Semi-honest behavior is also known as passive,
rational, or honest-but-curious.

• Colluding Parties. Collusion is defined as any cooperative behavior
between several parties controlled by the adversary to break the se-
curity guarantees of the protocol. Corrupted parties may collude by
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2.2. Privacy-Enhancing Technologies

sharing their private inputs and intermediate results to derive sensitive
information about the private data of honest parties.

• Limited Computation. The adversary is computationally bounded,
i.e., it can only perform polynomial-time computations and is, there-
fore, unable to break cryptographic schemes in a reasonable time.

Implementations

The predominant implementation of generic SMC solutions uses secret shar-
ing schemes that generate shares of the private inputs and randomly dis-
tribute them among the parties. Each share is a piece of information that
contains a partial representation of a party’s private data but leaks no infor-
mation about the private input itself. Then, the parties jointly perform the
computation on the shares to get the final result without revealing anything
about their private data. Intuitively, security is achieved because any set of
shares looks randomly distributed. However, current approaches have high
communication overhead because they generally require per-party commu-
nications that increase at least linearly with the number of parties. Therefore,
this quadratic factor quickly becomes a bottleneck as we scale the number
of parties.

2.2.2 Fully Homomorphic Encryption

Homomorphic Encryption (HE) enables computations on encrypted data, un-
locking a wide range of privacy-preserving applications in many fields, such
as healthcare, insurance, and cyber defense. The most powerful form of
homomorphic encryption is known as Fully Homomorphic Encryption (FHE),
which allows the evaluation of arbitrary circuits composed of multiple types
of gates of unbounded depth.

Hardness Assumption

The security of modern FHE schemes relies on the hardness of the Decision
Ring-Learning-With-Errors (Decision-RLWE) problem which has brought HE
from being practical to being efficient.

Definition 2.3 (RLWE Distribution) Let Rq = Zq[X]/ f (X) be a quotient ring
with modulus q ≥ 2 and cyclotomic polynomial f of degree N, and χ be an error
distribution over Rq. Considering a secret s ←$ Rq, an RLWE distribution Aq

s,χ
samples arbitrarily many independent samples (a, b = a · s + e) ∈ Rq ×Rq where
a←$Rq and e←$ χ(Rq).

Definition 2.4 (Search-RLWE Problem) For a random but fixed secret s←$Rq,
and given arbitrary many independent samples (a, b = a · s + e)← Aq

s,χ, recover s
with non-negligible probability.
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Definition 2.5 (Decision-RLWE Problem) Given arbitrary many independent
samples (a, b) ∈ Rq ×Rq, distinguish between the RLWE distribution Aq

s,χ and
the uniform distribution over Rq ×Rq with non-negligible probability.

Leveled Homomorphic Encryption

A weaker form of homomorphic encryption is called Leveled Homomorphic
Encryption (LHE) and supports the evaluation of arbitrary circuits of pre-
determined multiplicative depth. Specifically, in leveled mode, each cipher-
text is assigned a level corresponding to the number of homomorphic multi-
plications that can be performed on it. This way, for a ciphertext at an initial
level L, an L-depth circuit can be evaluated at most.

Technical Challenges

• Noise Growth. As ciphertexts are inherently noisy, performing multi-
ple homomorphic operations on them combines error terms of the two
operands, which increases the noise magnitude in the resulting cipher-
text. When the noise of a ciphertext exceeds a threshold determined by
the scheme’s parameterization, decryption correctness breaks, and no
further operation can be performed on it, making it unusable. Noise
growth depends on the specific HE scheme and homomorphic opera-
tions performed.

Boostrapping reduces the amount of noise accumulated in a ciphertext,
enabling further homomorphic operations to be performed on it. It re-
freshes a ciphertext by returning its associated level to its initial value,
overcoming the computational limitations posed by noise growth. This
technique, therefore, enables FHE schemes to support the homomor-
phic evaluation of arbitrary-length circuits. However, bootstrapping is
a computationally intensive procedure that remains the major bottle-
neck in FHE implementations.

• Ciphertext Growth. Another limitation of HE schemes is the expo-
nential growth in the size of the resulting ciphertext after sequential
homomorphic multiplications. As the number of homomorphic mul-
tiplications increases, the size of the ciphertext can quickly become
impractical, requiring additional storage and computing resources.

Relinearization is a homomorphic primitive that limits the growth of
ciphertext size after multiplication. It is used to keep the size of ci-
phertexts manageable to enable further computations on them.

12
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FHE Schemes

Although Gentry’s first FHE scheme [22] was far from practical, his ma-
jor theoretical breakthrough paved the way for a long line of work. Since
then, the research community has expended tremendous efforts to improve
performance and make FHE schemes more efficient.

Modern and popular FHE schemes rely on the Decision-RLWE hardness as-
sumption and include BFV [5, 20], BGV [6] and CKKS [9].

BFV & BGV. The Brakerski/Fan-Vercauteren (BFV) and Brakerski-Gentry-
Vaikuntantan (BGV) schemes are part of the so-called second generation of
FHE schemes. These cryptosystems typically operate on integers in the lev-
eled mode and enable efficient packing of plaintext values in a single cipher-
text for SIMD-like computations.

CKKS. In 2016, Cheon et al. proposed the Cheon-Kim-Kim-Song (CKKS)
scheme, which supports floating-point arithmetic and operates on real and
complex numbers with high precision while minimizing ciphertext size. In
practice, CKKS, which belongs to the fourth generation, is more efficient
than BFV and BGV due to its efficient bootstrapping procedure. It also
benefits from efficient SIMD batch computations over real-number vectors.

2.2.3 Multi-Party Homomorphic Encryption

Our hybrid PPFL solution relies on the CKKS [9] variant of the MHE scheme
proposed by Mouchet et al. [33]. We motivate the choice of this scheme in
our construction as follows.

1. CKKS is particularly well suited for PPML involving real-valued data
as it supports floating-point arithmetic.

2. CKKS relies on the hardness assumption of Decision-RLWE (Section
2.5.), making our system robust against quantum attacks.

3. MHE enables secure and flexible collaborative computations between
parties while preserving the confidentiality of local data.

In this multi-party scheme, a collective public key is known by all parties,
and the corresponding secret key is distributed such that decryption re-
quires the collaboration of all parties.

Cryptographic Description. The plaintext and ciphertext spaces are de-
fined by a cyclotomic polynomial ring RQL = ZQL [X]/(XN + 1), where N is
a power-of-two integer, with QL = ∏L

i=1 qi where each moduli qi is a unique
prime, and QL is the ciphertext modulus at an initial level L. We denote by
c = (c0, c1) ∈ R2

QL
and p ∈ RQL a ciphertext and a plaintext respectively.

13
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For a ciphertext c, we denote by Lc, Sc, L and S, the current level of c, the
current scale (bit precision) of c, the initial level and the initial scale of a
fresh ciphertext respectively, and we use similar notations for plaintexts.

Message msg

C
N
2

Plaintext p

RQL = ZQL [X]/(XN + 1)

Ciphertext c

R2
QL

= (ZQL [X]/(XN + 1))2

Ciphertext c′

R2
QL

= (ZQL [X]/(XN + 1))2

Plaintext p′

RQL = ZQL [X]/(XN + 1)

Message msg′

C
N
2

Encode Encrypt

Compute f

DecryptDecode

We describe below the main functionalities that our system provides to en-
able PPFL. Operations expressed as ∏ are distributed K-party protocol ex-
ecuted among all the secret-key-holders, whereas the remaining operations
can be performed locally by any party holding the collective public key.

• SecKeyGen(1λ) : Returns a set of secret keys {ski}K
i=1

• ∏PubKeyGen({ski}) : Returns a collective public key pk

• Encode(msg ∈ C
N
2 ) : Returns p̄ ∈ RQL with scale S

• Decode( p̄ ∈ RQLp
) : Returns msg ∈ C

N
2

• Encrypt(pk, p̄) : Returns cpk ∈ R2
QL

with scale S

• ∏Decrypt({ski}, cpk) : Returns p̄ ∈ RQLc
with scale Sc

• Add(pk, cpk, c′pk) : Returns (c + c′)pk at min(Lc, Lc′), max(Sc, Sc′)

• Sub(pk, cpk, c′pk) : Returns (c− c′)pk at min(Lc, Lc′), max(Sc, Sc′)

• Mulpt(pk, p̄, cpk) : Returns ( p̄ · c)pk at min(Lp, Lc) and (Sp · Sc)

• Mulct(pk, cpk, c′pk) : Returns (c · c′)pk at min(Lc, Lc′) and (Sc · Sc′)

• Rescale(cpk) : Returns cpk at level Lc − 1 with scale Sc
qLc

• Relin(cpk ∈ R3
QLc

) : Returns cpk ∈ R2
QLc

• ∏KeySwitch({ski}, cpk, pk′) : Returns cpk′

• ∏Bootstrap({ski}, cpk, Lc, Sc): Returns cpk with initial level L and scale S

To control scale growth due to homomorphic multiplication, the Rescale(·)
primitive is applied to the resulting ciphertext after each multiplication.
Encode(·) enables packing several plaintext values into one ciphertext and
processing them in parallel, benefiting from SIMD instructions.
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Semantic Security

The CKKS-based MHE scheme is IND-CPA secure, if the advantage of any
probabilistic polynomial-time (PPT) adversary A when playing the IND-
CPA security game

Game IND-CPAA(λ)

b←$ {0, 1}
{ski}K

i=1 ←$ SecKeyGen(1λ)

pk← ∏PubKeyGen({ski})
(m0, m1)← A(pk)
cpk ← Encrypt(pk,Encode(mb))

b′ ← A(pk, cpk)

return b = b′

is negligible, namely

AdvIND-CPA
A (λ) =

∣∣∣∣Pr[IND-CPAA(λ) = 1]− 1
2

∣∣∣∣
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Chapter 3

Differential Privacy

This chapter first introduces the context of privacy-preserving data analysis
and motivates the need for DP. It then provides the mathematical frame-
work, stating key definitions and presenting mechanisms and techniques
for achieving DP. We conclude this chapter by discussing the application of
DP to ML.

3.1 Motivation

3.1.1 Privacy-Preserving Data Analysis

Companies’ growing use of customer data to improve their products and
services has become a significant concern for privacy advocates in today’s
digital landscape. The collected data becomes increasingly personalized and
sensitive, and if it were to leak, it could cause harm to individuals. On the
other hand, customers are attracted by the high utility of these applications.
They, therefore, are willing to share more data with the companies, which
in turn become more powerful and valuable to them. Thus, there is ten-
sion between the needs of companies seeking to improve their products and
services using customer data and the privacy concerns of those same cus-
tomers.

Despite the best efforts of security researchers, more than the industry’s
standard best practices, such as data encryption, data retention, and access
control, are needed to fully protect customer data’s privacy. These practices
are effective at protecting the data in transit or at rest but do not address the
issue of what information ML models themselves can reveal about the un-
derlying training data. These models can still expose sensitive information,
even if the data is encrypted. The challenge, then, is to find ways to analyze
data while preserving privacy.

16



3.1. Motivation

Privacy-preserving data analysis has many applications across various in-
dustries, such as healthcare, financial services, marketing, social networking,
and e-commerce. As the use of data continues to increase, the importance of
protecting customer data is growing, making privacy-preserving data anal-
ysis a crucial aspect in different areas.

3.1.2 Data Anonymization

Data anonymization is a technique used to protect the privacy of individuals
by removing or obscuring personally identifiable information (PII) from a
dataset. This process aims to make data sharable and usable for research
or analytics purposes while ensuring that individuals cannot be identified
through the data. However, despite its advantages, data anonymization fails
in practice because of the following attacks on privacy:

1. Re-identification occurs when a third party can match an anonymized
dataset with another dataset that contains PII, such as the zip code,
birthday, and gender, or with publicly available information to identify
individuals in the anonymized dataset.

2. Linkage refers to linking records in a dataset to other records, even if
they do not contain any direct PII. For instance, by combining infor-
mation from multiple sources, an attacker could link anonymized data
to an individual’s identity.

3. Inferences are deductions made about an individual based on patterns
or correlations in the data. For instance, an attacker could infer sensi-
tive information about an individual based on location, demographics,
or activity patterns.

The limitations of data anonymization have been demonstrated in various
real-world cases, including:

• Netflix Prize: In 2006, Netflix held a competition to improve the accu-
racy of its movie recommendations. However, researchers were able to
re-identify many individuals in the anonymized dataset using infor-
mation from IMDb and other sources.

• AOL Search Data: In 2006, AOL released a dataset of search queries
for 658,000 users, which was anonymized by removing usernames and
other identifying information. Nevertheless, researchers were able to
re-identify many users based on patterns in their search queries.

• Cambridge Analytica and Facebook: In 2014, Cambridge Analytica
obtained data from millions of Facebook users through an app that
promised to provide personality predictions. Although the data was
anonymized, Cambridge Analytica could use it to profile and target
users for political advertising.
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While being a valuable tool to protect privacy, data anonymization does
not provide any strong guarantee. Real-world cases demonstrate the limita-
tions of data anonymization, highlighting the need for innovative privacy-
preserving protections that apply to ML models.

3.1.3 Intuition

Differential privacy is a mathematical framework that provides a rigorous
definition of privacy for data analysis. Its textual definition states that the
outcome of an analysis is equally likely to occur, regardless of the participa-
tion of an individual in the dataset, and allows the knowledge of the gen-
eral trends of the population without revealing private information about
individuals. By plausible deniability, there is no privacy compromise if the
information learned cannot be tied to a single individual. The goal is thus
to protect the privacy of individuals by making it impossible or infeasible
for an attacker to determine any individual’s contribution to the results of
data analysis.

However, privacy can still be compromised if a particular outcome becomes
much more likely or unlikely after a data record has been removed or added
to the dataset, indicating that information about a specific individual has
leaked. Instead, the analyst should learn about the population as a whole
and not about a specific individual in the dataset. DP thus guarantees that
the information learned remains the same even if an individual is replaced
by another random member of the population.

The key idea behind DP is to add a controlled amount of random noise to
the data so that the privacy of individuals is protected while still allowing
for meaningful analysis to be performed. In other words, DP ensures that
the presence or absence of a single individual in the dataset does not sig-
nificantly change the outcome of the analysis. This way, even if the data is
disclosed, the privacy of individuals in the dataset is protected.

3.2 Mathematical Formalization

This section provides the mathematical framework of differential privacy.

3.2.1 Database

In data analysis, a database or dataset (used interchangeably) can be defined
mathematically as a collection of tuples, where each tuple, also called record,
is a structured list of attributes that usually describes the characteristics of
an individual.
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Definition 3.1 (Generic Database) A generic database D ∈ D containing n
records is defined as:

D = {x1, ..., xn},

where xi is an m-dimensional row vector representing the attributes of a single
record, and where D is the space of all such databases.

We also define the notions of database size, and distance between databases,
which will serve as building blocks for the following.

Definition 3.2 (Database Size) The l1-norm of a database D is denoted ∥D∥1. It
measures the size of D, i.e. the number of records it contains, and is defined as:

∥D∥1 =
|D|

∑
i
|xi|.

Definition 3.3 (Distance Between Databases) The distance between two data-
bases D, D′ ∈ D, denoted ∥D− D′∥1, is a measure of how many records differ
between both databases and is defined as:

∥∥D− D′
∥∥

1 =
max |D|,|D′|

∑
i

|xi − x′i |.

To formally define DP, we will mainly be interested in adjacent databases,
namely a pair of databases that only differ in a single record.

Definition 3.4 (Adjacent Databases) Two databases D, D′ ∈ D are called adja-
cent if their l1-distance is bounded by 1, that is:

∥∥D− D′
∥∥

1 =
max |D|,|D′|

∑
i

|xi − x′i | ≤ 1.

3.2.2 Statistical Query

A statistical query to a database refers to a mathematical operation per-
formed on the database that extracts statistics about the underlying popula-
tion represented by the data.

Definition 3.5 (Statistical Query) Given a database D ∈ D, a statistical query
can be defined as a function f : D → Rd, where f (D) provides statistical informa-
tion about the underlying data distribution of the database.

An example of a statistical query could be a function computing the mean
of a particular attribute, such as the average salary or age, of individuals in
employment records.
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3.2.3 Definitions

The first definition of DP has been stated in 2006 by Dwork et al [14]. Its
formal definition involves a randomized algorithm that we define as follows.

Definition 3.6 (Randomized Algorithm) For a ∈ A , a randomized algorithm
M : A→ B outputsM(a) = b with probability Pr[M(a) = b].

Randomized algorithms can be viewed as deterministic algorithms taking
two inputs: a database and a random bit string. The definition of DP in-
cludes a probability operator over the randomness of the random bit string
(internal randomness of the algorithm), holding a fixed database. The in-
put space is the space of all possible databases, while the output space is
the space of database query results. In deep learning, it is often a space of
learnable model parameters (e.g. NN weights).

Definition 3.7 (ε-Differential Privacy) A randomized algorithm M : D → R
is ε-differentially private if for all adjacent databases D, D′ ∈ D, and for any subset
of outputs S ⊆ R:

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S],

where ε > 0 is the privacy loss of the randomized algorithmM.

Here, the privacy loss ε intuitively quantifies information leakage. When ε
vanishes, we have zero privacy loss (perfect privacy) because the two prob-
abilities are equal. However, maximum privacy is achieved at the cost of
adding so much noise that the result is no longer useful. It is thus pos-
sible to quantitatively compare different ε values for different randomized
algorithms. Intuitively, the closer ε is to zero, the closer the two probability
distributions are, and the higher the level of privacy.

The limitation of pure ε-DP is that events with tiny probability (which are
negligible in real-world applications) can dominate the privacy analysis.
This motivates us to move to a more relaxed notion of differential pri-
vacy, such as approximate (ε, δ)-DP, which is less sensitive to low-probability
events.

Definition 3.8 ((ε, δ)-Differential Privacy) A randomized algorithmM : D →
R is (ε, δ)-differentially private if for all adjacent databases D, D′ ∈ D, and for any
subset of outputs S ⊆ R:

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] + δ,

where ε > 0 is the privacy loss of the randomized algorithmM.

Here, δ represents an upper bound on the probability that a differentially
private algorithm is allowed to fail. If δ = 0, (ε, δ)-DP is equivalent to ε-
DP. As mentioned above, pure ε-DP (δ = 0) takes into account all events
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with non-zero probability, even the very unlikely ones, meaning that events
characterized by a small probability are given unduly large consideration,
even though they may never happen in practice. Instead, approximate (ε, δ)-
DP does not consider events with probability less than δ, which informally
states that ε-DP holds with probability 1− δ. In practice, we should keep
δ negligible with respect to the inverse of the database size. A common
heuristic to choose δ for a database with n records is δ ∈ O( 1

n ).

3.2.4 Sensitivity

The sensitivity of a query is a crucial concept in differential privacy that
helps evaluate the worst-case privacy loss induced by the presence of in-
dividuals in the dataset. Specifically, the sensitivity measures the extent to
which its result changes when a single data record is added or removed
from the database. In other words, it captures the maximum amount of pri-
vacy loss that occurs when we replace an individual in the database. The
intuition is that the more sensitive a query is, the more the query result
changes, and the more privacy is compromised.

Its purpose is to determine the amount of noise that needs to be added to
the query result to protect the privacy of individuals in the dataset, as the
sensitivity quantifies the maximum impact of a data record on the outcome
of a query. Therefore, by adding noise proportional to the sensitivity of the
query, we ensure that the privacy of individuals in the database is protected.

Definition 3.9 (l2-Sensitivity) Given a statistical query f : D → Rd mapping
a database to a d-dimensional real value, and adjacent databases D, D′ ∈ D, the
l2-sensitivity ∆ f is defined as:

∆ f = max
D,D′

∥∥ f (D)− f (D′)
∥∥

2.
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3.2.5 Mechanisms

Mechanisms are the basic building blocks to make advanced real-world ap-
plications differentially private.

Definition 3.10 (Gaussian Distribution) A random variable X has a Gaussian
distribution with mean µ and variance σ, if its probability density functionN (µ, σ2)
is:

N (µ, σ2) =
1

σ
√

2π
e−

1
2

(
|x−µ|

σ

)2

.

We define a Gaussian mechanism as follows.

Definition 3.11 (Gaussian Mechanism) Given any function f : D → Rd, the
Gaussian mechanism is defined as

M f (D, ε) = f (D) + (X1, ..., Xd)

where Xi are independent and identically distributed random variables drawn from
the Gaussian distribution N (0, σ2).

The Gaussian mechanism approximates an arbitrary function with a multi-
dimensional output by adding noise sampled from the normal distribution
where the noise variance is calibrated to the l2-sensitivity of the function.

Theorem 3.12 (Gaussian Mechanism) Given an arbitrary ε ∈ (0, 1), and any

function f : D → Rd, a Gaussian mechanismM f with parameter σ ≥ ∆ f
√

2 log 1.25
δ

ε
is (ε, δ)-differentially private.

Proof See Theorem A.1 [15]. □

3.2.6 Composability

A crucial property of differentially private algorithms is their behavior un-
der composition, which is independent of their actual implementation. Com-
position states that by running multiple differentially private algorithms
on the same database, the resulting composed algorithm is also differen-
tially private, albeit with some degradation in the privacy parameters (ε, δ).
Specifically, the composition property is quantitative, meaning that the dif-
ferential privacy guarantee of the composed algorithm depends on the num-
ber of differentially private algorithms and their privacy parameters. The
exact relationship between these quantities can be relatively complex, and
various composition theorems provide bounds on the global privacy param-
eters based on the parameters of the differentially private subroutines.

This property is critical to the success of DP, particularly for algorithm de-
sign, as it allows modular constructions of complex differentially private
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algorithms from basic differentially private subroutines and helps analyze
the privacy guarantee of such composed algorithms.

We will consider sequential adaptive queries performed on the same database
for the next two reasons. First, this setting accounts for a realistic adversary
that adapts its sequential queries to the same database based on all the pre-
vious output statistics she has received. Second, sequential adaptive queries
fit well the iterative nature of gradient descent training, as each iteration is
a function of the model parameters of the previous iteration.

Definition 3.13 (Sequential Adaptive Composition) Let D ∈ D be a database,
and Mi : D ×∏i−1

j=0 R → R be an adaptive mechanism, taking the output results
x0, ..., xi−1 of previous mechanisms as input. The composition of k adaptive mech-
anisms Mi(D, x0, ..., xi−1) = xi, denoted by M = (Mk ◦ ... ◦M1), is called a
k-fold sequential adaptive composition.

Basic Composition

Many composition theorems already exist in the literature. Of these, the
simplest is known as Basic Composition and informally states that the privacy
parameters of sequential adaptive mechanisms add up under composition.

Theorem 3.14 (Basic Composition [13]) LetM = (Mk ◦ ... ◦M1) be a k-fold
sequential adaptive composition of (ε, δ)-differentially private mechanisms. Then,
M is a most (kε, kδ)-differentially private.

Proof See Appendix A.1. □

Basic Composition shows a worst-case linear degradation of the global pri-
vacy parameters with the number of adaptive mechanisms in the composi-
tion. Improving this bound is of great interest because we could get more
utility from any differentially private algorithm under the same privacy
guarantees. We present below a direct consequence of Theorem 3.14 that
enables a direct derivation of the privacy loss ε of an individual mechanism
Mi depending on the global privacy loss εg of a k-fold sequential adaptive
compositionM.

Corollary 3.15 (Basic Composition [13]) Suppose a (εg, δg)-differentially pri-
vate k-fold sequential adaptive composition M = (Mk ◦ ... ◦M1). Then, each
mechanismMi is ( εg

k , δg
k )-differentially private.

Advanced Composition

Dwork, Rothblum, and Vadhan [16] showed that if we are willing to tolerate
a tiny increase in the δ term, the privacy loss only degrades proportionally
to
√

k instead of k (Theorem 3.14), where k is the number of adaptive mech-
anisms composed sequentially. This result was later improved by Kairouz,
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Oh, and Viswanath [27] and then clearly stated in the lecture notes of Adam
Smith and Johnathan Ullman [42].

Theorem 3.16 (Advanced Composition [27, 42]) For all ε, δ, δ′ ≥ 0, the class
of (ε, δ)-differentially private mechanisms satisfies (ε′, kδ + δ′)-differential privacy
under k-fold adaptive composition for:

ε′ = ε

√
2k log

1
δ′

+ kε
eε − 1
eε + 1

.

Proof See Section 3. [42]. □

Theorem 3.16 improves Basic Composition by showing that privacy de-

grades by a function of O(
√

k log 1
δ′ ), which is an improvement if δ′ = 2−O(k).

A direct consequence of Theorem 3.16 expresses the privacy loss ε of an in-
dividual mechanismMi depending on the global privacy loss εg of a k-fold
sequential adaptive compositionM.

Corollary 3.17 (Advanced Composition [16]) Considering εg, ε ∈ (0, 1) and
δ, δ′ > 0, the k-fold sequential adaptive compositionM = (Mk ◦ ... ◦M1) satis-
fies (εg, kδ + δ′)-differential privacy, if each mechanism Mi is (ε, δ)-differentially
private, where

ε =
εg

2
√

2R log 1
δ′

and

δ =
δg − δ′

k
.

Proof See Appendix A.2. □

3.2.7 Privacy Amplification by Subsampling

In this section, we now focus on mechanisms using data subsampling and
evaluate how it impacts privacy. The intuition behind privacy amplification by
subsampling is that running a differentially private algorithm on a random
subset of the data introduces additional uncertainty regarding the inclusion
or exclusion of individuals in the analysis, which significantly boosts pri-
vacy. In particular, this uncertainty makes it more challenging for potential
attackers to carry out generic attacks, ultimately contributing to privacy pro-
tection.

Lemma 3.18 (Privacy Amplification by Subsampling) Suppose ε ∈ (0, 1), a
database D, a sample S ⊆ D including each record of D with probability q ∈
(0, 1), and an (ε, δ)-differentially private mechanismM, thenM(S) is (2qε, qδ)-
differentially private.
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Proof See Appendix A.3. □

While subsampling is mainly used in statistical analysis, it also finds its ap-
plications in differentially private deep learning, particularly in SGD, where
we select a random subset of the training data, also known as mini-batch,
rather than using the entire dataset for training. Subsampling thus reduces
the computational cost of learning and improves the privacy guarantee of
the training algorithm.

3.3 Differentially Private Learning

In recent years, ML applications have become widespread in various fields,
leading to a surge in research on the security and privacy of these methods.
Researchers have identified several critical vulnerabilities and attacks associ-
ated with ML models, prompting discussions about developing appropriate
defenses. Among the attacks that compromise the privacy of training data,
model inversion [21] and membership inference [53] have received consid-
erable attention.

As DP has emerged as a popular defense mechanism to mitigate these at-
tacks, we present the different steps to make a ML task differentially private.

3.3.1 Data & Model Release

The research community addresses privacy issues in ML applications from
two different angles.

1. Data Release. This approach sanitizes the original data by remov-
ing or hiding sensitive information, allowing for its publication and
model training without privacy concerns. Privacy-preserving data re-
lease techniques include basic anonymization, which generally does
not guarantee privacy as discussed in Section 3.1.2, to other advanced
methods that transform data points or generate new synthetic data.

While data release algorithms allow training ML models on released
data without privacy constraints, implementing these methods on real-
world datasets with complex data types is challenging and often re-
sults in weak privacy guarantees and poor predictive performance.

2. Model Release. This line of work provides a privacy guarantee for
the model parameters before releasing it by enforcing privacy during
training for each model update.

Privacy-preserving model release methods offer less flexibility than
data release techniques as they release a specific trained model. Nev-
ertheless, model release is preferred because these algorithms enjoy
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better performance and accuracy, are generally easier to implement,
and provide stronger privacy guarantees than data release.

3.3.2 Differentially Private Gradient Descent

Most research on private ML focuses on privacy-preserving model release
algorithms. In 2016, Abadi et al. [1] contributed significantly by proposing
a novel Differentially Private Stochastic Gradient Descent (DP-SGD) algorithm
to train deep learning models while protecting data privacy. In addition,
they introduced the Moments Accountant (MA) technique which has since
been extensively used in modern PPML to limit the cumulative privacy loss,
providing tighter bounds than Advanced Composition. There are essentially
two strategies to protect the privacy of the training data in gradient descent.

Output Perturbation adds differential noise to the final model parameters re-
sulting from the training process, treating the whole procedure as a black
box. However, since a rigorous characterization of the dependence of these
final parameters on the training data is generally not available, the noise is
therefore selected based on the worst-case analysis, which adds overly con-
servative noise to the final parameters, destroying the utility of the learned
model.

Therefore, we prefer a more fine-grained and sophisticated technique, called
Gradient Perturbation, in which we seek to control the influence of the original
data during the training process, precisely in each gradient descent update.
It considers each intermediate model update a sensitive release and distorts
each computed gradient with differential noise. This approach is followed
by Adabi et al. but also in previous works [43].

The DP-SGD algorithm is essential for understanding our contributions in
the next chapter, and we briefly describe it in the pseudo-code below (ada-
pted from Adabi et al.).
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3.3. Differentially Private Learning

Algorithm 1 Differentially Private Gradient Descent
Inputs
Dataset D = {x1, ..., xN}, Loss function L(θ) = 1

N ∑i L(θ, xi)
Parameters
Dataset size n, Number of local iterations T, Batch size B, Learning rate η,
Clipping constant C, Noise variance σ
Initialize θ0 randomly
for t ∈ [T] do

Batch
Randomly sample a batch Bt
with probability q = B

N
Gradient
for i ∈ Bt do

gt(xi)← ∇θL(θt, xi)

Clipping
ḡt(xi)← gt(xi) ·max

(
1, C
∥gt(xi)∥2

)
Noise
g̃t ← 1

B (∑i ḡt(xi) +N (0, σ2C2I))
Descent
θt+1 ← θt − ηt g̃t

Return θT

(ε, δ)-DP Guarantee

As every intermediate model θt is considered a sensitive release, we must
first ensure that each step of Algorithm 1 is (ε, δ)-DP. To do so, we follow
the next procedure.

1. Consider each training step as the following model update function
(Definition 2.1)

fθt : Rd ×D → Rd

(θt, D) 7→ θt −
η

B ∑
x∈B
∇θL(θ, x)︸ ︷︷ ︸

θt+1

where ∇θ denotes the clipped gradient with l2-norm and constant C.

2. Upper-bound the l2-sensitivity of fθt (Definition 3.9), as follows

∆ fθt = max
D,D′

∥∥ fθt(D)− fθt(D′)
∥∥

2.
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3.3. Differentially Private Learning

3. Apply a Gaussian mechanism to each training step fθt (Definition 3.11),
as below

M fθt
(D, ε) = fθt(D) +N (0, σId)

with noise variance σ ≥ ∆ f
√

2 log 1.25
δ

ε (Theorem 3.12). This guarantees
that each step is (ε, δ)-differentially private with ε ∈ (0, 1) and negligi-
ble δ.

4. If the batch is randomly sampled in fθt (with probability q), use privacy
amplification by subsampling (Lemma 3.18) to achieve (2qε, qδ)-DP for
each step.

5. Use the composition property to bound the total privacy loss over all
iterations.

• Basic Composition (Theorem 3.14)

• Advanced Composition (Theorem 3.16)
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Chapter 4

Privacy-Preserving Federated Learning

We first define the system and threat model we consider in the design of our
PPFL solution and evaluate FL as an individual privacy-preserving mecha-
nism highlighting its vulnerabilities to various inference attacks. Then, we
present a fully encrypted construction similar to POSEIDON [41] that we
use as a comparison. Next, we describe our PPFL solution combining MHE
and GDP, including our differentially private learning algorithm. We finally
derive the sensitivity of our learning algorithm and provide a lower bound
for the differential noise variance.

4.1 Threat Model

In this section, we build on the adversarial model presented in Section 2.2.1
to define the threat model in the CTI sharing scenario, including the stake-
holders’ roles and security assumptions. A stakeholder may endorse multi-
ple overlapping roles within the infrastructure of a given organization.

1. Data Providers. This includes any organization involved in CTI shar-
ing scenarios, such as government intelligence agencies or cyber de-
fense groups, providing authentic and reliable cyber threat data.

2. Data Processors. They perform data processing and analysis either
internally or externally, relying on a private or public cloud.

3. Data Consumers. Data analysts or information security experts can
use the final trained model to predict or detect future threats within
these organizations.

We assume all stakeholders to be semi-honest (passively adversarial) as in
Section 2.2.1 and recall that we allow for K− 1 collusions between any par-
ticipating organizations. We recall that parties controlled by the adversary
follow the protocol but can share their inputs and intermediate results dur-
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4.2. System Model

ing the training phase to extract information about the private data of non-
colluding parties.

4.2 System Model

We consider a federated framework in which K parties collectively train a
NN model on their local private data and describe the associated system
model.

• The system is a fully-distributed and topology-agnostic network with
K parties, e.g., a fully-connected network, or a star topology in which
each party communicates with a central server.

• Parties involved in the federated training process want to preserve the
confidentiality of their local data, the intermediate model updates, and
the final model.

• When encryption is used, each party has a collective public and private
key pair to encrypt intermediate model updates generated during the
learning process.

• Once the training process is complete, a querier – either one of the K
parties or an external entity – can request and use the final trained
model to get prediction results on its private data.

4.3 Centralized Learning

In the centralized approach, depicted in Figure 4.1, all participants involved
in the CTI sharing scenario send their private data to a central server re-
sponsible for training the model on the aggregated data and broadcasting
the final model to all parties.

While centralized learning allows parties to outsource training computation
to a powerful cloud server and prevent data sharing between them, this
architecture suffers from the following drawbacks:

• Communication overhead. Data transfer from participants to the cen-
tral server can be slow for large datasets.

• Computational scalability. As the central server must process large
amounts of data, centralized learning may not scale to the number of
parties or large datasets.

• Trust requirement. Parties must trust the central server and com-
pletely lose control over their private data, which leads to legal or
ethical concerns about data ownership.
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Figure 4.1: Centralized Learning.

• Single point of failure. As the private data of all parties is stored in
one location, if the central server fails or is compromised, the entire
system becomes unusable, and all data can also be compromised.

These limitations justify the need for the popular federated architecture.

4.4 Vanilla Federated Learning

First proposed by McMahan et al. [29] in 2016, FL is a decentralized ap-
proach to ML that enables multiple parties to train models collaboratively
without exchanging or centrally storing their data. The main principle is
that parties only send their local model updates to the central server rather
than their entire dataset. Thus, training is distributed among the parties and
performed locally instead of centralizing data in a training server.

In gradient descent learning, parties initially receive a pre-trained or random
model from the server and locally perform GD training on this model using
their private data for several local iterations. Then, each party sends its
updated model to the central server, aggregating all local models into a
global one and distributing it to the parties, as represented in Figure 4.2.
This process is repeated over several communication rounds until the final
global model converges.

FL presents several advantages over the centralized approach. First, training
locally and sending models instead of datasets reduces data transfer and
communication rounds, enhancing server-side performance and scalability.
Second, as data is stored locally, it does not transfer or trivially disclose the
raw data and it provides more data control to the parties.
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4.4. Vanilla Federated Learning

Figure 4.2: Vanilla Federated Learning.

4.4.1 Privacy Leakage

Recent work [35, 30, 49, 55, 40] has revealed that FL fails to preserve the
privacy of the training data, as released model information and query results
can lead to serious privacy leakage through various inference attacks.

Adversarial Setting

We distinguish two types of actors with different capabilities as potential
adversaries.

1. Insiders. Internal adversaries include the participants and the central
server responsible for orchestrating the entire training process.

2. Outsiders. External adversaries comprise model consumers accessing
and querying the final model and eavesdroppers intercepting commu-
nication between the parties and the central server.

We consider internal actors and model consumers as potential adversaries,
excluding eavesdroppers, as we assume secure communication channels be-
tween the parties and the server (using TLS 1.3). In addition, we suppose
passive white-box attacks in which adversaries can observe the model infor-
mation exposed during the training phase, including local and aggregated
model weights (as shown in Figure 4.3), as well as the final model, but also
query results on the final model, obtained in the inference phase.

32



4.4. Vanilla Federated Learning

Figure 4.3: Compromised Federated Learning: Passive adversary controlling K− 1 parties.

Passive adversaries can then use the model-related information within their
reach to conduct inference attacks to extract and reveal sensitive information
about the private training datasets of participants.

4.4.2 Inference Attacks

FL is vulnerable to different inference attacks that are classified as follows
[17].

Membership Inference. This family of inference attacks aims to determine
the presence of a data sample in the training dataset that generated a given
model [35]. For example, these attacks can determine whether records of a
specific patient were used to train a classifier related to a particular disease.

Properties Inference. These attacks infer auxiliary properties from the trai-
ning dataset by guiding the global model to learn separable data represen-
tations with and without the target property [30]. Property inference attacks
assume the existence of auxiliary training datasets labeled with the target
property.

Class Representatives Inference. This type of attack attempts to extract
synthesized generic data samples, called class representatives, instead of
the actual data samples used in the training phase [49]. A famous example
of this attack, also known as model inversion, was proposed by Fredrikson
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et al. [21], who extracted sensitive features from input images and generated
face images from facial recognition models with relatively high accuracy.

Data Sample & Label Inference. These are the most powerful attacks as
they recover the original training samples and corresponding labels, notably
from publicly shared model gradients [55], or loss function [40].

These attacks are particularly successful in iterative algorithms where the
number of features is equal to or larger than the size of the dataset, such
as deep learning, because a large amount of aggregated data (potentially
leaking private data) is released at each iteration.

The current situation raises regulatory concerns about using FL as a stan-
dalone privacy-preserving technique, especially in light of the European
Union’s General Data Protection Regulation [48]. As a result, the research
community has devoted considerable efforts to prevent such attacks by en-
forcing the privacy of the training and inference phases.

4.4.3 Privacy Objectives

Our main objective is to enable the privacy-preserving training and evalua-
tion of NNs in the above system and threat model. In particular, we want
to protect the parties’ private data, as well as intermediate and final model
weights vulnerable to the aforementioned inference attacks. Therefore, dur-
ing the training and prediction phases, we aim to ensure the following:

• Data Confidentiality. No party Pi should learn more information about the
private input data Xj of any other party Pj (for j ̸= i).

• Model Confidentiality. No party Pi should be able to infer information
about the intermediate local model weights of other parties Pj (for j ̸= i).

4.5 Encrypted Federated Learning

This section presents a fully encrypted variant of FL that provides robust
privacy-preserving guarantees by leveraging HE during the training and
inference phases to prevent the inference attacks mentioned above. The
construction depicted in Figure 4.4 is a simplified description of POSEIDON
[41] that guarantees data and model privacy by using the CKKS-based MHE
scheme introduced in Section 2.2.3.

Specifically, intermediate model updates stay encrypted under the parties’
collective public key throughout the training process. The homomorphic
computation property of CKKS enables operations required for NN train-
ing involving the parties’ local data and the encrypted model weights. The
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Figure 4.4: Fully Encrypted Federated Learning.

scheme’s distributed key-switching functionality ∏KeySwitch(·) enables obliv-
ious inference on the encrypted final model by collectively re-encrypting the
prediction results with the querier’s public key.

POSEIDON implements several optimizations to reduce the performance
overhead induced by HE, such as efficient packing schemes to take advan-
tage of SIMD instructions’ parallelism and polynomial approximations of
multiple activation functions and their derivatives to enable their evaluation
under encryption.

However, POSEIDON requires computationally costly bootstrapping oper-
ations to refresh ciphertexts and be able to perform complex operations in-
volved in the forward and backward passes of NN training. In particular,
POSEIDON trains a 3-layer NN on the MNIST dataset (m = 784 features
and n = 60000 samples) distributed among K = 10 parties in 1 hour and 28
minutes. While this execution time may be acceptable in ML, it can become
impractical for training complex NNs with potentially hundreds of hidden
layers.

4.6 Hybrid Federated Learning

This section presents our main contribution to the field of PPFL. We propose
a hybrid construction, represented in Figure 4.5, combining the CKKS-based
MHE scheme described in Section 2.2.3 and DP to achieve data and model
confidentiality in the above system and threat model.

In our approach, DP guarantees the privacy of local training data when the
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Figure 4.5: Hybrid Federated Learning.

intermediate model weights are released, while the homomorphic property
of CKKS enables secure aggregation by the central server, ensuring confi-
dentiality of the local contributions to the global model.

In the following sections, we first motivate our choices for the design of
our solution, then provide a detailed description of our federated gradient
descent algorithm, and finally explain how to achieve the DP guarantee
introduced in Chapter 3.

4.6.1 Algorithm Design

When applying DP to FL, we recall the two options for adding differential
noise in the learning process: LDP and GDP (introduced in Section 1.1.2).
In the former, the noise is added to the local models by the parties, whereas
it is added to the aggregated model by the central server in the latter. We
chose GDP in the design of our construction for the following reasons.

1. Model accuracy. GDP requires adding less noise than LDP for an
equivalent security level, thus resulting in higher prediction accuracy.

2. Colluding Parties. In LDP, corrupted parties can exchange the noise
each one has added to its local model and subtract the total amount
from the aggregated model to infer sensitive information. PPFL con-
structions implementing LDP [47, 25] consider a collusion parameter,
accounting for the number of colluding parties, that increases the mag-
nitude of local noise and thus degrades utility. GDP is robust to the
collusion of K − 1 parties, as the magnitude of differential noise that
the central server adds to the aggregated model is unknown to them.

One advantage of LDP over GDP is the removal of the central aggregator
from the architecture. However, the presence of a central server is not a
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drawback per se, as vanilla FL assumes a central entity by default. Further-
more, to reduce the trust GDP typically requires from the central aggregator,
the model aggregation is performed under encryption using HE. In this way,
the central server cannot observe the parties’ local consider updates, and we
can therefore model it as passively adversarial.

4.6.2 Hybrid Federated Gradient Descent

We describe every step of our hybrid PPFL solution in Algorithm 2. We
denote by θk

r,t the model weights of party Pk at round r and local iteration t,
and by θk

r,t its encrypted version.

1. Once the key generation procedure is complete, every party Pi owns a
secret key ski and a collective public key pk.

2. Initially, either the central aggregator or each party individually ini-
tializes the model parameters θ0 randomly.

3. At the beginning of each round, the parties collectively decrypt the
global aggregated model of the previous round using the set of their
secret keys {ski}K

i=1.

4. Each party locally performs gradient descent on its private dataset
involving the next steps:

a) Randomly sample a disjoint batch Bt such that Bt ∩
⋃t−1

i=1 Bi = ∅.

b) Compute the gradient of the loss function for the batch Bt with
respect to the model parameters θ.

c) Clip the gradient vector gt such that its l2-norm is at most a
threshold C.

d) Update the model parameters θr,t by gradient descent for the next
local iteration.

5. At the end of the local training, each party encrypts its local model
weights θr,Tk and sends it to the central aggregator.

6. The central server receives the encrypted local model updates θk
r,Tk

of each party and produces an aggregated global model θr using the
homomorphic arithmetic operations of the CKKS-based MHE scheme.

7. Finally, the central aggregator adds Gaussian differential noise where
the variance σ is calibrated at the sensitivity of a single round.

The following section details the derivation of the sensitivity for Algorithm
2, which provides an lower bound on the Gaussian noise variance required
for the (ε, δ)-DP guarantee.

37



4.6. Hybrid Federated Learning

Algorithm 2 Federated Differentially Private Gradient Descent
1: Inputs
2: Dataset D = {x1, ..., xn}, Loss function L(θ) = 1

n ∑i L(θ, xi)

3: Parameters
4: Dataset size n, Number of parties K, Number of rounds R,
5: Number of local iterations T, Batch size B, Learning rate η,
6: Clipping constant C, Noise variance σ

7: procedure Key Generation(λ)
8: {ski}K

i=1 ← SecKeyGen(1λ)
9: pk← ∏PubKeyGen({ski})

10: for k ∈ [K] do
11: Initialize θk

0 randomly

12: for r ∈ [R] do
13: for k ∈ [K] do
14: procedure Client(θr−1)
15: θr ← ∏Decrypt({ski}, θr−1)
16: for t ∈ [Tk] do
17: Batch
18: Randomly sample a disjoint batch Bt
19: Gradient
20: for i ∈ Bt do
21: gt(xi)← ∇θL(θk

r,t, xi)

22: Clipping
23: ḡt(xi)← gt(xi) ·max

(
1, C
∥gt(xi)∥2

)
24: Descent
25: θk

r,t+1 ← θk
r,t −

η
B ∑i ḡt(xi)

26: Encryption
27: θk

r,Tk
← Encrypt(pk, θk

r,Tk
)

28: procedure CentralAggregator({θi
r,Tk
}K

i=1)
29: Encrypted Aggregation
30: θr ← Add(pk, {θi

r,Tk
}K

i=1)

31: θr ← Mulpt(pk, 1
K , θr)

32: Differential Noise
33: θr ← θr +N (0, σ2C2I)
34: Return θR
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4.6.3 Differentially Private Guarantee

To provide Algorithm 2 with an (ε, δ)-differentially private guarantee pro-
tecting the intermediate and final model weights, we follow the same pro-
cedure as in Section 3.3.2. We aim to find the tightest lower bound on the
variance of Gaussian noise that the central server adds to the aggregated
model to minimize accuracy loss while preserving privacy. To do so, we
apply a Gaussian mechanism to each round and model Algorithm 2 as a
sequential adaptive composition for which we can derive an (ε, δ)-DP guar-
antee.

We begin by formally defining each round of our federated differentially
private gradient descent algorithm as follows.

Definition 4.1 (Model Update Function) Assuming K parties, every round r of
Algorithm 2 can be represented as the model update function fθr producing a global
aggregated model by averaging the K local models and defined as:

fθr : Rd ×DK → Rd

(θr, {Di}K
i=1) 7→

1
K ∑

k∈K

[
θk

r,Tk−1 −
η

B ∑
x∈B
∇θL(θk

r,Tk−1, x)

]
︸ ︷︷ ︸

θk
r,Tk︸ ︷︷ ︸

θr+1

where Di is the local dataset of party Pi, and ∇θ denote the clipped gradient with
l2-norm and constant C.

Sensitivity

The next step is to derive an upper bound for the l2-sensitivity (Definition
3.9) of the model update function defined above.
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Lemma 4.2 (Global Sensitivity) Given the model parameters θr, the datasets
{Di}K−1

i=1 ∈ DK−1 and D, D′ ∈ D that differ in a single record xD ̸= xD′ with
∥D− D′∥2 = 1, the sensitivity ∆ f of the model update function fθr : Rd ×DK →
Rd is defined as:

∆ f = max
D,D′

∥∥∥ fθr(θr, {Di}K−1
i=1 ∪ D)− fθr(θr, {Di}K−1

i=1 ∪ D′)
∥∥∥

2

= max
θ,x

∥∥∥∥∥ 1
K ∑

k∈K

[
θk

r,Tk−1 −
η

B ∑
x∈B
∇θL(θk

r,Tk−1, x)

]
− 1

K ∑
k∈K

[
θk

r,Tk−1 −
η

B ∑
x∈B′
∇θL(θk

r,Tk−1, x)

]∥∥∥∥∥
2

= max
θ,x

1
K

∥∥∥∥∥∑
k∈K

[
θk

r,Tk−1 −
η

B ∑
x∈B
∇θL(θk

r,Tk−1, x)

]
− ∑

k∈K

[
θk

r,Tk−1 −
η

B ∑
x∈B′
∇θL(θk

r,Tk−1, x)

]∥∥∥∥∥
2

= max
θ,x

1
K

∥∥∥∥∥θk
r,Tk−1 −

η

B ∑
x∈B
∇θL(θk

r,Tk−1, x)− θk
r,Tk−1 +

η

B ∑
x∈B′
∇θL(θk

r,Tk−1, x)

∥∥∥∥∥
2

= max
θ,x

1
K

∥∥∥∥∥ η

B ∑
x∈B′
∇θL(θr,Tk−1, x)− η

B ∑
x∈B
∇θL(θr,Tk−1, x)

∥∥∥∥∥
2

= max
θ,x

η

BK

∥∥∥∥∥ ∑
x∈B′
∇θL(θr,Tk−1, x)− ∑

x∈B
∇θL(θr,Tk−1, x)

∥∥∥∥∥
2

= max
θ,xD ,xD′

η

BK
∥∥∇θL(θr,Tk−1, xD′)−∇θL(θr,Tk−1, xD)

∥∥
2

≤ 2Cη

BK

Our derivation is consistent with previous work from Wei et al. [50].

Gaussian Mechanism

We then apply a Gaussian mechanism to each round of Algorithm 2, repre-
sented by fθr , as below

M fθr
(θr, {Di}K

i=1, εr) = fθr(θr, {Di}K
i=1) +N (0, σId),

with noise variance σ ≥
∆ f

√
2 log 1.25

δr
εr

(Theorem 3.12), εr ∈ (0, 1) and negligible
δr, ensuring that each roundM fθr

is (εr, δr)-differentially private.

Sequential Adaptive Composition

We model Algorithm 2 as a sequential adaptive composition (Definition 3.13) of
Gaussian mechanisms M = (MR ◦ ... ◦M1) and then use the composition
property to derive the DP parameters (εr, δr) of each mechanism Mr. In
particular, given global target parameters (εg, δg) for the whole algorithm,
we obtain two pairs of (εr, δr) parameters depending on whether we use
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Basic Composition (Theorem 3.14) or Advanced Composition (Theorem 3.16),
both of which providing a closed-form expression for the DP parameters of
a single round.

(εr, δr) ∈



(
εg

R
,

δg

R

)
︸ ︷︷ ︸

Basic Composition
Corollary 3.15

,

 εg

2
√

2R log 1
δ′

,
δg

R + 1


︸ ︷︷ ︸

Advanced Composition
Corollary 3.17


Gaussian Noise Variance

Given the sensitivity of a single round ∆ f computed above, and fixed global
DP parameters (εg, δg), we derive a lower bound on the Gaussian noise vari-
ance using Theorem 3.12. Since our goal is to reduce the negative effect of
noise on prediction accuracy, we choose the minimum noise variance that
provides the DP guarantee to our hybrid federated gradient descent algo-
rithm.

σ ≥
∆ f

√
2 log 1.25

δr

εr

≥ min
εg,δg,R


2RCη

√
2 log 1.25R

δg

BKεg︸ ︷︷ ︸
Basic Composition

,
4Cη

√
2R log (R+1)

δg

√
2 log 1.25(R+1)

δg

BKεg︸ ︷︷ ︸
Advanced Composition


For a fixed sensitivity ∆ f = 2Cη

BK , and fixed global DP parameters (εg, δg),
the Gaussian noise variance σ only depends on the number of rounds R, as
shown in Figure 4.6.
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Figure 4.6: Noise variance with respect to the number of rounds R according to Basic and
Advanced Composition (δ′ = δr) for a global privacy loss εg = 1, negligible failure probability

δg = 10−5, number of parties K = 3, batch size |B| = 128, clipping constant C = 1, and learning
rate η = 0.01.
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Chapter 5

Experimental Evaluation

This chapter describes our evaluation setup and presents the experimental
results of our two experiments. As no CTI dataset met our requirements in
terms of dataset size and class distribution, we decided to conduct a repre-
sentative analysis on popular and publicly available datasets. Specifically,
we evaluate our hybrid construction by training a simple 3-layer NN and a
more complex one on the MNIST and CIFAR-10 datasets distributed among
3 parties.

5.1 Implementation

We implement our hybrid PPFL solution on top of PyTorch [37] and Lattigo
[18], an open-source library for lattice-based cryptography in Go [12] using
multi-party cryptographic primitives. Specifically, we build a decentralized
system in which parties communicate over TCP via secure channels (TLS
1.3).

5.2 Experimental Setup

We leverage the computational capacity of Amazon Elastic Compute Cloud
(Amazon EC2 [2]) to evaluate our construction in a virtual network (1 Gbps
bandwidth) simulating a federated environment. This decentralized net-
work consists of 3 CPUs, clocked at 3 GHz using 4 cores (Intel Xeon Scal-
able Broadwell E5-2686 v4) and 16 GB RAM, emulating K = 3 parties, and a
single GPU (NVIDIA T4 Tensor Core) running at 2.5 GHz on 8 cores (Intel
Xeon Scalable Cascade Lake P-8259L) and 16 GB RAM, that performs NN
learning for all parties. One of the three nodes acts as the central aggregator,
which receives the encrypted local models of the two remaining nodes and
aggregates all local models under encryption.
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Regarding the cryptographic parameters of the CKKS-based MHE scheme,
we use 32-bit precision, a ring dimension N = 213, and number of levels
L = 6.

5.3 Evaluation Metrics

We experimentally evaluate the performance, privacy, and accuracy of our
hybrid PPFL solution according to the following metrics:

• Performance : Per-round execution time

• Accuracy : Prediction accuracy of the final model

• Privacy : Global (ε, δ) parameters

Baseline. We consider a non-private FL architecture similar to the one pre-
sented in Section 4.4. On the one hand, this approach does not implement
any privacy-preserving mechanisms, such as HE or DP, and is therefore
vulnerable to inference attacks. On the other hand, we can consider it as an
ideal baseline precision and runtime as it does not suffer from any accuracy
loss incurred by DP or computational overhead caused by HE.

Full Encryption. We compare our hybrid PPFL solution with the construc-
tion described in Section 4.5 (POSEIDON) to show the performance gain
over fully encrypted approaches to FL. Since POSEIDON’s implementa-
tion is no longer compatible with Lattigo’s latest version, we provide an
extrapolation of the execution time for the training phase of a 3-layer fully-
connected NN on the MNIST dataset using the CKKS-based MHE scheme in
Appendix A.4. We use benchmark runtimes for the different homomorphic
matrix operations presented in Section 2.1.2, which consider Lattigo’s lat-
est optimizations. In addition, we assume that fully encrypted FL achieves
similar accuracy as non-private FL constructions since HE has no impact on
prediction accuracy.

5.4 Methodology

This section presents the procedure we follow for each experiment to evalu-
ate our hybrid PPFL solution.

1. For the chosen NN model, we fix the optimal hyperparameters (learn-
ing rate η and batch size B) that achieve high accuracy for our baseline
while minimizing the number of rounds R needed to reach conver-
gence.

2. To obtain an optimal clipping constant C that achieves high accuracy
while limiting the amount of differential noise in the DP setting, we
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first set a relatively high clipping constant C so that the baseline accu-
racy is unaffected. Then, we gradually reduce the value of C for each
run until prediction accuracy decreases slightly.

3. After fixing parameters η, B, and C that define sensitivity ∆ f , we apply
DP to the NN model as described in Algorithm 2 by introducing global
target DP parameters (εg, δg) in our setting. Typically, we set δg < 1

n
where n is the number of samples in the dataset, and training is said
to be in high privacy regime when εg ∈ (0, 1).

5.5 Empirical Results

This section reports on our experimental evaluation of our hybrid construc-
tion and results on two widely used and publicly available image datasets:
MNIST and CIFAR-10.

From Algorithm 2, we recall that parties update the NN model using their
whole local dataset, i.e., the model is trained on the entire dataset at each
round, so one round corresponds to one epoch (R = E).

In the following experiments, we normalize training image samples and
distribute them equally and randomly among the participating parties with
the same class distribution. Note that data and label distribution across
parties and its effects on model accuracy are beyond the scope of this work.

Sensitivity. We emphasize the crucial role that sensitivity plays in the pre-
diction accuracy of our hybrid approach. From Section 4.6.3, the sensitivity
of Algorithm 2 is expressed as

∆ f ≤
2Cη

BK
.

On the one hand, parameters η, B and C must be carefully tuned to obtain
optimal performance and accuracy. On the other hand, they must also be
chosen to minimize the sensitivity, because this quantity directly scales the
amount of differential noise (σ ∝ ∆ f in Section 4.6.3) and thus impacts
prediction accuracy.

Rounds. Section 4.6.3 shows that the Gaussian noise variance is a func-
tion of the number of rounds. Specifically, σ is proportional to R in Basic
Composition and

√
R in Advanced Composition. Therefore, the number of

rounds R must also be adjusted to allow a sufficient number of epochs to
reach convergence while minimizing its effect on the amount of noise added
at each round.
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5.5.1 MNIST

In our first experiment, we train a simple 3-layer fully-connected NN with
a single hidden layer of 92 neurons, using the sigmoid linear unit (SiLU) as
activation function and cross-entropy loss on the MNIST dataset for hand-
written digit recognition, which consists of n = 60000 gray-scale images of
size 28x28 with m = 28 · 28 = 784 features, classified into hl = 10 classes.

Following the methodology of Section 5.4, we first fix η = 0.01 and B = 128
to reach a baseline accuracy of 96.2% in R = 30 epochs, and find C = 0.5
as an optimal clipping constant empirically. We set δg = 10−5 and consider
different global privacy loss values in the high privacy regime εg ≤ 1.

We present our experimental results for the MNIST experiment in Figure
5.1, which shows the evolution of the prediction accuracy as a function of
the number of epochs (rounds), and summarize the obtained prediction ac-
curacies in Table 5.1.

Accuracy [%]

Baseline 96.2

Fully Encrypted 96.2

Hybrid (εg = 1.0) 93.4

Hybrid (εg = 0.5) 93.1

Hybrid (εg = 0.1) 90.6

Hybrid (εg = 0.05) 81.0

Hybrid (εg = 0.01) 50.8

Table 5.1: Prediction accuracies of the non-private (baseline), fully encrypted and hybrid con-
structions for different global privacy losses εg in the high privacy regime.

The above results demonstrate that our hybrid PPFL solution achieves sim-
ilar accuracy to non-private FL in the high privacy regime (εg = 1.0) and
relatively high accuracy (> 90%) for εg = 0.1 which provides a solid confi-
dentiality guarantee according to Definition 3.8.

We also show the increased performance of our hybrid construction over
fully encrypted FL in Table 5.2. Regarding local training time, we consider
a batch size B = 128 for the non-private (baseline) and hybrid constructions
and B = 256 for the fully encrypted approach, as specified in Appendix
A.4. The total training time for each FL construction is also provided. It
includes the runtime of local training, encrypted aggregation, and collec-
tive decryption without considering the performance overhead generated
by communicating the local model updates to the central server.
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Figure 5.1: Evolution of the prediction accuracy of the non-private and hybrid constructions
over the number of rounds for different global privacy losses εg.

Execution Time [sec]
Local

Training
Encrypted

Aggregation
Collective

Decryption
Total

(30 Rounds)

Baseline 0.58 − − 17.4 [sec]

Fully Encrypted 1159.4 2.01 0.11 9.67 [hrs]

Hybrid 0.61 1.89 0.12 78.6 [sec]

Table 5.2: Time measurements of the local training, encrypted aggregation of K = 3 in-
termediate local models, and collective decryption of the global aggregated model (including
communication between parties).

Regarding local learning runtime, our hybrid algorithm achieves the same
execution time as vanilla FL, and trains much faster than the fully encrypted
construction. While the aggregation step is negligible in non-private learn-
ing, its encrypted version is the bottleneck in the hybrid solution. Since
the NN model is relatively lightweight (654 KB), communications required
in the collective decryption do not produce any overhead, and the whole
operation is fast. The last column shows the total runtime of the train-
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ing phase for R = 30 rounds, which includes the parallel local training of
N
K = 60000

3 = 20000 image samples and the homomorphic aggregation and
collective decryption operations.

5.5.2 CIFAR-10

Although the total training time of fully encrypted FL (9.67 hours) in the
MNIST experiment may be acceptable for a ML task, it quickly explodes
when considering deeper and larger NNs, making fully encrypted NN train-
ing impractical for more involved ML tasks without the help of hardware
acceleration. In this second experiment, we demonstrate the practicality of
our hybrid solution by training a complex NN on the CIFAR-10 dataset [28]
composed of n = 50000 RGB image samples of d = 3 · 32 · 32 = 3072 features
also categorized into hl = 10 classes. More precisely, we train a CNN with
an EfficientNetB2 architecture [44] with 473 layers, using the sigmoid linear
unit (SiLU) as activation function and cross-entropy loss.

To improve our results, we introduce the following optimization concerning
the sensitivity of our hybrid algorithm.

Layer-Specific Sensitivity. Looking at the weights of each layer, we notice
that setting a global clipping constant C for all layers is sub-optimal because
our algorithm often clips gradients of large-component layers (greater than
C) and thus only considers gradients below this threshold. As a result, the
model loses important information by clipping these large gradients, which
results in a significant accuracy loss for the final model. To apply a more
fine-grained clipping at the layer level, we introduce a layer-specific sensitivity
by slightly modifying the derivation of ∆ f (Section 4.6.3). To do so, we pre-
train our NN model θ on the public ImageNet dataset [11], and consider
the norm of each layer ℓi ∈ θ. We modify the clipping value at line 23 of
Algorithm 2 by C · ∥ℓi∥, where the constant C acts as a scaling factor. The
sensitivity of layer ℓi can then be expressed as

∆i
f ≤

2C∥ℓi∥η
BK

.

From Section 4.6.3, we hence obtain a layer-specific noise variance σi which
defines the amount of differential noise to add to each layer’s weights.

We follow the same procedure as before, i.e., we obtain 84.2% baseline accu-
racy in R = 30 epochs by fixing η = 0.005 and B = 128. As specified above,
we find an optimal scaling factor C = 0.01 and set δg = 10−5.

Figure 5.2 shows our experimental results for the CIFAR-10 experiment us-
ing different global privacy loss values in the high privacy regime εg ≤ 1.
Prediction accuracies of the different scenarios are gathered in Table 5.3.
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Accuracy [%]

Baseline 84.2

Hybrid (ε = 1.0) 82.3

Hybrid (ε = 0.5) 82.7

Hybrid (ε = 0.1) 77.0

Hybrid (ε = 0.05) 13.1

Hybrid (ε = 0.01) 10.7

Table 5.3: Prediction accuracies of the non-private and hybrid constructions for different global
privacy losses εg in the high privacy regime.

Figure 5.2: Evolution of the prediction accuracy of the non-private and hybrid constructions
over the number of rounds for different global privacy losses εg.

Thanks to the optimization of the layer-specific sensitivity, our hybrid con-
struction almost reaches the baseline accuracy for εg = 0.5 and still an ac-
ceptable accuracy (77.0%) for εg = 0.1. To the best of our knowledge, our
hybrid construction is the first to obtain such results on the CIFAR-10 task
while guaranteeing this level of privacy in the federated setting.
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In a similar way, Table 5.2 summarizes and compares the performance of
our hybrid algorithm against non-private FL.

Execution Time [sec]
Local

Training
Encrypted

Aggregation
Collective

Decryption
Total

(30 Rounds)

Baseline 2.72 − − 81.6

Hybrid 2.81 7.84 8.57 576.6

Table 5.4: Time measurements of the local training (B = 128), encrypted aggregation of K = 3
intermediate local models, and collective decryption of the global aggregated model (including
communication between parties).

The model size (62.3 MB) is crucial in explaining these measurements. In-
deed, the EfficientNetB2 model contains more than 7 millions weights that
need to be encrypted and aggregated. This is because the complexity of the
encrypted aggregation is linear with the model size, and collective decryp-
tion involves communication between parties which is also dependent on
the model size. Nevertheless, the runtimes of these two homomorphic op-
erations do not produce significant overhead, and the overall training time
for 30 rounds remains practical.
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Chapter 6

Conclusion

This final chapter summarizes our results, presents the limitations of our hy-
brid PPFL construction, and proposes future research directions to improve
the trade-offs between performance, accuracy, and privacy.

6.1 Summary

Our main objective was to propose a PPFL solution to address the lack of
confidentiality guarantee in CTI sharing and enable collective cyber defense
between different actors of the cyber security landscape. To this end, we re-
viewed the literature on hybrid PPFL constructions based on different com-
binations of privacy-preserving mechanisms, such as SMC, HE and DP, and
proposed a hybrid PPFL construction combining MHE and GDP to guaran-
tee data and model confidentiality in the passive-adversary model.

Our contributions include a thorough analysis of the sensitivity of our hy-
brid algorithm as well as an evaluation of our PPFL solution on the popular
MNIST and CIFAR-10 datasets. Our experimental results show that our hy-
brid construction achieves similar accuracy to non-private FL while ensuring
a strong DP guarantee. Moreover, it enables privacy-preserving training of
complex NNs, which remains impractical with current fully-encrypted FL
implementations without any hardware acceleration.

6.2 Limitations

Differential privacy is of growing interest to the research community and has
become a popular privacy-preserving standard for establishing formal pri-
vacy guarantees. The common way to improve the privacy-accuracy trade-
off in iterative learning algorithms is to tighten the composition bounds
of DP. In this sense, several variations of DP have been proposed, such as
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(ε, δ)-Differential Privacy (introduced in Section 3.8), zero-Concentrated Differ-
ential Privacy (zCDP) [8] or Rényi Differential Privacy [31], which provide tight
analysis of the cumulative privacy loss. These variants reduce the amount
of noise that must be injected to satisfy given ε values, resulting in better
utility.

Nevertheless, there is generally limited understanding of how these DP def-
initions truly impact utility in practice, and it remains unclear how much
privacy leaks in adversarial scenarios. In addition, there is no concrete con-
sensus or guidance on choosing appropriate privacy parameters (ε, δ). As
a result, differentially private ML implementations tend to choose arbitrary
large values for ε to achieve acceptable model utility, with little understand-
ing of the impact of such choices on the meaning of DP guarantees. Fur-
thermore, while increasing the privacy loss enhances model utility, it also
increases the success rate of inference attacks.

In particular, Jayaraman and Evans [26] demonstrated that formal DP guar-
antees are way too conservative, in the sense that practical inference attacks
are far from extracting the maximum leakage predicted by theory. Research
is, therefore, needed to assess the limitations of inference attacks and pro-
vide a tighter estimations of the practical use of DP in privacy-preserving
data analysis.

6.3 Future Work

While our proposal can successfully address the challenges of CTI shar-
ing, there are several avenues for future study to expand on this work. We
propose the following research directions that could enhance our hybrid
construction in terms of performance, accuracy, and privacy.

1. A promising direction to improve the trade-off between privacy and
accuracy is to investigate Optimal Composition [34], which provides a
tighter bound than Basic and Advanced Composition on the privacy
loss of a differentially private algorithm.

2. Another potential extension is to explore the impact on the different
trade-offs of client subsampling by the central server. On the one hand,
from Lemma 3.18, the privacy loss could be scaled down by the sub-
sampling ratio, thus reducing the total amount of differentially-private
noise. On the other hand, only a subset of the entire dataset is used
for training at every round, which would require more rounds to reach
convergence and thus increase noise variance.

3. Future research could also focus on implementing inference attacks
against our PPFL construction to better understand the practical im-
pact of different choices of ε for different variations of DP.
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Appendix

A.1 Basic Composition

Theorem A.1 (Basic Composition [13]) LetM = (Mk ◦ ... ◦M1) be a k-fold
sequential adaptive composition of (ε, δ)-differentially private mechanisms. Then,
M is a most (kε, kδ)-differentially private.

Proof Let D, D′ ∈ D be two adjacent databases, M = (Mk ◦ ... ◦M1) be a
k-fold sequential adaptive composition of (ε, δ)-differentially private mecha-
nisms, and x ∈ Rk+1 be the output results of mechanimsM1, ...,Mk. Then,

Pr[M(D) = xk] =
k

∏
i=1

Pr[Mi(D, x0, ..., xi−1) = xi]

≤ (eεPr[M1(D′, x0) = x1] + δ)
k

∏
i=2

Pr[Mi(D, x0, ..., xi−1) = xi]

≤ eεPr[M1(D′, x0) = x1]
k

∏
i=2

(Pr[Mi(D, x0, ..., xi−1) = xi]) + δ

≤ ...

≤ ekε
k

∏
i=1

Pr[Mi(D′, x0, ..., xi−1) = xi] + kδ

≤ ekεPr[M(D′) = xk] + kδ. □
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A.2 Advanced Composition

Corollary A.2 (Advanced Composition [16]) Considering εg, ε ∈ (0, 1) and
δ, δ′ > 0, the k-fold sequential adaptive compositionM = (Mk ◦ ... ◦M1) satis-
fies (εg, kδ + δ′)-differential privacy, if each mechanism Mi is (ε, δ)-differentially
private, where

ε =
εg

2
√

2R log 1
δ′

and

δ =
δg − δ′

k
.

Proof From Theorem 3.16, the global target privacy loss εg of a k-fold se-
quential adaptive compositionM = (Mk ◦ ... ◦M1) is expressed as

εg = ε

√
2k log

1
δ′

+ kε
eε − 1
eε + 1

. (A.1)

When ε ∈ (0, 1), the quantity eε−1
eε+1 is close to ε

2 . Therefore, we obtain

εg = ε

√
2k log

1
δ′

+
kε2

2
. (A.2)

To express the local privacy loss ε of each mechanism Mi as a function of
the global privacy loss εg, we require

kε

2
≤

√
2k log

1
δ′

(A.3)

which holds for δ′ ≤ 1

e
kε
8

. In practice, this upper-bound on δ′ is loose enough

to benefit from the tightness of the Advanced Composition (Theorem 3.16)
over Basic Composition (Theorem 3.14). Equation A.2 then becomes

εg = ε

√
2k log

1
δ′

+ ε

√
2k log

1
δ′

(A.4)

= 2ε

√
2k log

1
δ′

. (A.5)
□
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A.3 Privacy Amplification by Subsampling

Lemma A.3 (Privacy Amplification by Subsampling) Suppose ε ∈ (0, 1), a
database D, a sample S ⊆ D including each record of D with probability q ∈
(0, 1), and an (ε, δ)-differentially private mechanismM, thenM(S) is (2qε, qδ)-
differentially private.

Proof Let D, D′ ∈ D be two adjacent databases such that D = D′ ∪ {x},
S ⊆ D be an arbitrary sample with sampling probability q, andM : D → R
be an (ε, δ)-differentially private mechanism with ε ∈ (0, 1). Fix a set of
output results E ⊆ R. Note that

Pr(M(D) ∈ E | x /∈ S) = Pr(M(D′) ∈ E), (A.6)
Pr(M(D) ∈ E | x ∈ S) ≤ eεPr(M(D′) ∈ E) + δ, (A.7)

where Equation A.7 directly follows from the definition of approximate DP.
Then,

Pr(M(D) ∈ E) = (1− q)Pr(M(D) ∈ E | x /∈ S) + qPr(M(D) ∈ E | x ∈ S)
= (1− q)Pr(M(D′) ∈ E) + qPr(M(D) ∈ E | x ∈ S)
≤ (1− q)Pr(M(D′) ∈ E) + qeεPr(M(D′) ∈ E) + qδ

= [1 + q(eε − 1)]Pr(M(D′) ∈ E) + qδ

≤ (1 + 2qε)Pr(M(D′) ∈ E) + qδ

≤ e2qεPr(M(D′) ∈ E) + qδ. □
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A.4 Encrypted Neural Network Benchmark

This section provides benchmark timings for encrypted training of a 3-layer
fully-connected NN with a single hidden layer of 92 neurons on the MNIST
dataset using the CKKS-based MHE scheme presented in Section 2.2.3. Our
experimental setup uses the sigmoidal linear unit (SiLU) as activation func-
tion, a batch of 256 samples, and the MSE loss function. We approximate
the SiLU activation function and its derivative by a polynomial of degree 63
in the interval [−16, 16]. Concerning CKKS parameters, we use a precision
of 24 bits, a ring degree N = 216, and an initial level L = 23.

Table A.1 provides the execution time of matrix operations involved in the
forward and backward passes in NN training introduced in Section 2.1.2.

Operations Execution Time [sec]

Matrix Multiplication 0.74

SiLU Activation 0.42

Collective Bootstrapping 1.6

Table A.1: Benchmark of matrix operations in forward and backward passes. By Jean-Philippe
Bossuat, Tune Insight SA, 2023.

Figure A.1 depicts the different matrix operations involved in the encrypted
training of a 3-layer NN using the CKKS-based MHE scheme.

Figure A.1: 3-Layer Fully-Connected NN. Based on material from Jean-Philippe Bossuat, Tune
Insight SA, 2023.

Using Table A.1, we derive the total execution time of the forward and back-
ward passes of a 3-layer fully-connected NN on the MNIST dataset using
the CKKS-based MHE scheme for a batch of 256 samples in Table A.2.
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On average, we assume a single collective bootstrapping operation required
in the backward pass.

Execution Time [sec]

Operations Forward Pass Backward Pass

Matrix Multiplication 3 · 0.74 5 · 0.74

SiLU Activation 3 · 0.42 3 · 0.42

Collective Bootstrapping 3 · 1.6 1.6

Total
8.28 6.56︸ ︷︷ ︸

14.84

Table A.2: Benchmark of a 3-layer fully-connected NN with a single hidden layer of 92 neurons
on the MNIST dataset using the CKKS-based MHE scheme for a batch of 256 samples.
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