
Automated Noise Guided Circuit
Analysis & Optimisation for FHE

Master Thesis

Moritz Winger

Monday 13th September, 2021

Advisors: Alexander Viand, Prof. Dr. Kenny Paterson

Applied Cryptography Group
Institute of Information Security

Department of Computer Science, ETH Zürich

Abstract

Fully Homomorphic Encryption (FHE) allows computations on en-
crypted data, but applying FHE efficiently and securely is a challeng-
ing task requiring deep understanding of the underlying cryptographic
protocols. Therefore, there is a need to make FHE accessible to the
general user. Recently, FHE compilers have been developed aiming
to automate homomorphic evaluation of user-written programs. FHE
encryption introduces an error term called noise which grows during
operations. We aim to minimize this error term, since handling larger
noise requires larger instances which lead to slower evaluation of FHE
computations. In this work, we apply noise heuristics from [18] and
[10] to guide automatic rewriting of arithmetic circuits and study the
impact of circuit rewriting on computational efficiency of homomor-
phic evaluation. In particular, a set of algorithms to insert operations
that reduce computational complexity of evaluation in an arithmetic
circuit based on decisions guided by noise heuristics has been devel-
oped and tested. We find that the proposed optimisation strategy’s
effects on computational runtimes are highly dependent on the nature
of the considered arithmetic circuit.

i

Contents

Contents iii

1 Introduction 1

2 Background 5
2.1 Basic Notation and Preliminaries 5
2.2 The RLWE Problem . 7
2.3 The Brakerski/Fan-Vercauteren Scheme 7

2.3.1 Textbook BFV . 7
2.3.2 BFV in Microsoft SEAL 11

2.4 Noise Growth Heuristics . 16

3 Design 19
3.1 FHE Compilation . 19
3.2 Circuit Optimisations and Noise Heuristics 22

3.2.1 Identifying Areas of Significant Noise Growth 22
3.2.2 Cone Rewriting of Arithmetic Circuits 24

3.3 Circuit Rewriting based on noise-guided Modulus Switching 27

4 Implementation and Evaluation 33
4.1 Implementation . 33

4.1.1 Noise Heuristics in the ABC 33
4.1.2 Evaluation Setup . 34

4.2 Circuit Rewriting based on noise-guided modulus switching 35

5 Discussion 49

A Noise Growth Heuristics 51
A.1 Theoretical Bounds . 51
A.2 Heuristic Bounds . 53
A.3 Noise Heuristics in ABC . 55

iii

Contents

Bibliography 57

iv

Chapter 1

Introduction

In recent years the use of cloud computing services has become increas-
ingly prevalent. A significant number of businesses and organisations have
moved data storage and services to the cloud, generating a need for security
and confidentiality of outsourced data. While standard encryption can pro-
tect data during transit and while at rest, data must generally be decrypted
before computation is possible. Since this undermines the protection of-
fered, the need for techniques to perform computations on encrypted data
has arisen.

Fully Homomorphic Encryption (FHE) allows third parties to perform arbi-
trary computations on encrypted data, eliminating the need to decrypt the
data and expose it to potential security risk while in use. FHE has long been
considered impossible to achieve, until a first feasible scheme was proposed
by Craig Gentry in 2009 [14]. In the last decade, homomorphic encryption
has evolved from a theoretical concept to reality with a variety of practical
open-source implementations available.

These technological advances have made a wide selection of applications
possible, such as implementations of FHE in privacy-preserving genome
analysis [20] and mobile applications [24]. Recently, FHE has been applied
in the implementation of a new feature of the Microsoft edge browser, the
Password Monitor, that notifies users if any of their saved passwords have
been found in a third-party breach [26].

However, it remains a challenging task to build secure and efficient FHE
calculations. Current FHE schemes are efficient if used correctly, but the
gap between the highest possible efficiency achievable and what is practi-
cally achieved by the general user remains high. This is due to the fact that
operations over encrypted values introduce noise into the ciphertext which,
if not carefully managed, will grow to a point where decryption fails. Noise
growth can be managed by rearranging the computation, as well as by in-

1

1. Introduction

troducing certain maintenance operations on encrypted data and choosing
appropriate parameters. Maintenance operations consist of operations that
are specific to FHE schemes and can be applied to a ciphertext to reduce its
noise. It is this, highly application dependent, noise management and se-
lection of parameters that makes developing an FHE application a complex
and frequently tedious task. As a result, tools have emerged that aim to sim-
plify this process in the form of FHE libraries and compilers that translate
high level programs to low-level FHE programs [30].

Existing work takes one of two approaches to manage noise growth. The
first uses heuristic bounds on the noise growth to try and automatically
calculate the optimal parameters for a given computation. However, these
estimates are currently still considerably too conservative and do not result
in optimal performance. The second type of tools instead tries to automat-
ically rearrange or rewrite the computation to achieve better noise growth
characteristics. However, these tools either require the developer to manu-
ally choose parameters or use simplistic methods that lead to very inefficient
choices.

This thesis aims to improve noise management for the inexperienced user,
by combining both approaches into a more complete and holistic solution.
While the potential for improvement in heuristics used for parameter selec-
tion seems to be limited [10], existing solutions consider a fixed computation
and do not consider rearrangements. Similarly, while existing rewriting-
based tools have limited impact in real-world programs [2, 30], they use
either no or overly simplistic heuristics of noise growth.

Intuitively, the interdependence of parameters and applications suggests
that there might be further optimization opportunities by considering both
holistically. As a first step one could use heuristics to identify and select
parts of the computation that would most benefit from rewriting. This leads
us to pose our main research question: Can hybrid constructions offer ben-
efits beyond what is possible by applying these approaches independently?
The work conducted in this thesis extends the Automated Batching Com-
piler (ABC) framework for the homomorphic evaluation of arithmetic cir-
cuits by a novel automatic circuit rewriting functionality, namely the au-
tomatic insertion of so-called modulus switching operations based on noise
information.

Specifically, noise heuristic calculations are used to identify regions of sig-
nificant noise growth present in a given arithmetic circuit. Based on these
computations, the above strategy has been pursued to rewrite the circuit
to improve computational efficiency while ensuring correctness of the com-
putation. Further, based on previous work on rewriting circuits to reduce
multiplicative depth, we apply noise heuristics to identify regions, where
rewriting the computation would be most beneficial to reduce noise growth

2

or increase computational efficiency.

Goals of this thesis FHE encryption introduces a noise term that increases
when performing computations. We aim to use the quantity of noise to aid a
general user to design computation circuits optimally and to develop an au-
tomatic circuit rewriting framework that, based on noise-guided decisions,
produces a semantically equivalent circuit that can be evaluated with greater
computational efficiency. Specifically, we aim to implement noise-heuristic
calculations to efficiently analyse a circuit in terms of noise properties and
use this information on the circuit to automatically rewrite the circuit by
performing modulus switching at appropriate points in the computation.

Outline In Chapter 2, we discuss the mathematical background underly-
ing FHE schemes, basic notions and definitions are presented. We continue
to discuss the specifics of Simple Encrypted Arithmetic Library (SEAL) and
present theoretical bounds on ciphertext noise arising through homomor-
phic operations. Then, we show the most recent results on noise heuristics,
which we shall later use as a metric to study noise growth in given arithmetic
circuits. Chapter 3 presents the specifics of the ABC framework and we
present algorithms to rewrite circuits to improve performance using noise
heuristics, and the additions introduced throughout the current project. In
Chapter 4, we measure their effectiveness in terms of noise growth and com-
putational performance.

3

Chapter 2

Background

In this section we present the mathematical background of a somewhat homo-
morphic encryption scheme based on the Ring Learning With Errors (RLWE)
problem [23]. A somewhat homomorphic encryption scheme is a scheme,
where addition and multiplication are indeed homomorphic operations but
it is only possible to evaluate functions of limited complexity, whereas a
Fully Homomorphic Encryption (FHE) scheme alllows the evaluation of ar-
bitrary functions. We describe the Brakerski/Fan-Vercauteren (BFV) scheme
presented in [13] and its variant implemented in the Simple Encrypted
Arithmetic Library (SEAL) library for homomorphic encryption [22].

The first Fully Homomorphic Encryption (FHE) scheme proposed by Gentry
[14] was based on a shortest vector problem of an ideal lattice. The hardness
of the RLWE problem can be related to the shortest vector problem on ideal
lattices. Gentry first proposed a somewhat homomorphic encryption scheme,
and then made it fully homomorphic by introducing the bootstrapping tech-
nique to reduce ciphertext noise and be able to continue computations on
said ciphertext. In practice, since the bootstrapping procedure requires sig-
nificant computational effort, it is rarely used. Instead, levelled FHE is used,
supporting the evaluation of arbitrary circuits composed of multiple types
of gates of bounded (pre-determined) depth.

2.1 Basic Notation and Preliminaries

The mathematical object under consideration is the ring R = Z/(f (x)), with
f (x) a monic irreducible polynomial of degree d with coefficients in Z. In
most Fully Homomorphic Encryption (FHE) schemes, the polynomial f (x)
is chosen to be the m-th cyclotomic polynomial Φm(x). Here, we choose
to take f (x) = xd + 1 with d = 2n for a fixed positive integer n. Let a =

5

2. Background

∑d−1
i=0 aixi ∈ R. We define the infinity norm of the polynomial a as

‖a‖ := max
i∈{0,...,d−1}

{ai} (2.1)

and the expansion factor of the ring R as

δR := max
a,b∈R
{‖a · b‖/‖a‖ · ‖b‖}. (2.2)

Let q > 1 be an integer and denote with Zq the finite set of integers Z/qZ.
We denote by Rq the set of polynomials in R with coefficients in Zq. Further,
we denote by [a]q the image of an integer a under the projection map

π : Z −→ Zq; a 7→ [a]q := a mod q. (2.3)

For an element a ∈ R, we denote by [a]q as the element in R obtained by
reducing all coefficients ai (i ∈ 0, . . . , d − 1) modulo q. Let x ∈ R. We
shall denote rounding x to the nearest integer by bxe, and bxc, dxe to denote
rounding down or up.

From an algebraic point of view, it is often convenient to view the ring R as
the ring of integers OQ(ζm) of the m-th cyclotomic field Q(ζm), where ζm is a
primitive m-th root of unity. This ring has a Z-basis given by {1, ζ, . . . , ζd−1}
(see [25] for a proof). An embedding of a cyclotomic number field Q(ζm)
is a ring homomorphism σi : Q(ζm) −→ C fixing the elements of Q. The
field Q(ζm) has precisely d embeddings, that come in complex conjugate
pairs. The embeddings are defined on their action on the powers of ζm. We
shall assume that σ1 is the identity map. We define the canonical embedding
σ : Q(ζm) −→ Cd of an element a ∈ Q(ζm) as the d-dimensional vector given
by

σ(a) = (σ1(a), . . . , σd(a)) . (2.4)

We define the canonical embedding norm of the ring element a ∈ R as

‖a‖can := max
i∈{1,...,d}

‖σi(a)‖, (2.5)

where ‖·‖ denotes the infinity norm as defined above. The canonical em-
bedding norm has the properties, that for any polynomials a, b ∈ R, ‖a‖ ≤
‖a‖can and ‖a · b‖can ≤ ‖a‖can · ‖b‖can.

For a probability distribution D, we denote by x ← D, whenever x is sam-
pled from D. Similarly, given a set S, if x is sampled uniformly from S, we
write x ← S. To define a distribution χ on the ring R, we use a discrete
Gaussian distribution DZ,σ̃, where σ̃ denotes the variance.

6

2.2. The RLWE Problem

2.2 The RLWE Problem

We briefly introduce the Ring Learning With Errors (RLWE) problem, which
underpins most modern FHE schemes.

Definition 2.1 (Decision-RLWE) Let f (x) be a m-th cyclotomic polynomial of
degree d = ϕ(m), where ϕ denotes the Euler totient function. Consider the ring
R = Z[x]/(f (x)). Let q ≥ 2 be an integer and let s ∈ Rq be a random element.

Let χ be a probability distribution over R and denote with A(q)
s,χ the distribution

obtained by choosing an element a ← R uniformly at random and a noise term
a← χ and outputting (a, [a · s+ e]q). Then, the problem of distinguishing between

the distribution A(q)
s,χ and the uniform distribution U(R2

q) is called the decision
RLWEd,q,χ problem.

It has been shown that the RLWE problem can be reduced to the shortest
vector problem over ideal lattices, a polynomial-time reduction from the
shortest-vector problem to the RLWE problem has been presented in [23].

The decision-RLWE is used to define to modern homomorphic encryption
schemes as we shall see in the following.

2.3 The Brakerski/Fan-Vercauteren Scheme

We provide a brief description of the Brakerski/Fan-Vercauteren (BFV) scheme,
both in its original ”textbook” variant as described in [5, 13] and the slightly
modified version used in Microsoft’s Simple Encrypted Arithmetic Library.

2.3.1 Textbook BFV

We define an RLWE-based encryption scheme implementing somewhat ho-
momorphic encryption scheme following the exposition in [13].

Definition 2.2 (RLWE-encryption scheme) Let t > 1 be an integer and define
∆ := bq/tc. Denote with rt(q) = q mod t. Fix σ̃ = 3.2 as the variance of the
distribution χ. We define the RLWE-encryption scheme consisting of:

• Secret Key Generation: sample s← χ and output sk= s.

• Public Key Generation: set s =sk, sample a← Rq, e← χ and return

pk = ([−(a · s + e)]q, a). (2.6)

• Encryption: This procedure takes as input a message m ∈ Rt and the public
key pk. Let p0 := pk[0] and let p1 := pk[1]. Sample u, e1, e2 ← χ and
output

ct =
(
[p0 · u + e1 + ∆ ·m]q, [p1 · u + e2]q

)
. (2.7)

7

2. Background

• Decryption: Take as an input the secret key sk and a ciphertext ct and set
s = sk, let c0 := ct[0] and c1 := ct[1]. The decryption procedure computes:[⌊

t · [c0 + c1 · s]q
q

⌉]
t
. (2.8)

The parameters for the RLWE encryption scheme are chosen according to a
security parameter λ. In the following, we refer to the parameter q as the
coefficient modulus and the parameter t will be called the plaintext modulus.

The RLWE encryption scheme defined above has been shown to be seman-
tically secure ([23]) and serves as the basis for most modern FHE schemes.
Correctness follows from the next lemma.

Lemma 2.3 Considering the above encryption scheme and assuming that there ex-
ists an integer B such that ‖χ‖ < B, then

[c0 + c1 · s]q = ∆ ·m + v (2.9)

with ‖v‖ ≤ δR · B2 + B. This implies that if 2 · δR · B2 + B < ∆/2, the ciphertext
decrypts correctly.

Proof Using the definition of the BFV scheme, we can write

c0 + c1 · s = p0 · u + e1 + ∆ ·m + p1 · s · u + e2 · s mod q
= ∆m + (p0 + p1 · s) · u + e1 + e2 · s mod q
= ∆m + e · u + e1 + e2 · s mod q.

(2.10)

Setting v := e · u + e1 + e2 · s, and since e, e1, e2, u, s ← χ, we obtain the
bound

‖v‖ ≤ 2 · δR · B2 + B. (2.11)

Let ε := q/t− ∆ < 1. Writing

c0 + c1 · s = ∆ ·m + v + q · r (2.12)

for a polynomial r with integer coefficients and multiplying by the factor
t/q we get

t
q
(c0 + c1 · s) = m +

t
q
· (v− ε ·m) + t · r. (2.13)

In order for the rounding to be correct and decryption to yield the correct
plaintext m, we require

t
q
· ‖v− ε ·m‖ < 1

2
. (2.14)

Since m ∈ Rt, the given bound follows. �

8

2.3. The Brakerski/Fan-Vercauteren Scheme

Definition 2.4 (Ciphertext Noise) The term

v = ∆m + e · u + e1 + e2 · s (2.15)

is called the noise contained in the ciphertext.

To derive the BFV scheme from the encryption scheme in Definition 2.2,
we will assume that the polynomials s and u are sampled from R2, thus
simplifying the bound from Lemma 2.3 to ‖v‖ ≤ B · (2 · δR + 1).

We note that with Equation (2.9), we can interpret the elements of a cipher-
text ct as the coefficients of a polynomial

ct(x) = c0 + c1(x). (2.16)

Evaluating this polynomial in s yields

[ct(s)]q = ∆ ·m + v, (2.17)

from which it is possible to recover the plaintext m. We shall use this repre-
sentation of the ciphertext to derive the homomorphic operations of addition
and multiplication.

Addition: Consider two ciphertexts ct1(s) and ct2(s). Since [cti(s)]q =
∆ ·mi + vi for i ∈ {1, 2}, the addition of the two ciphertexts evaluates to

[ct1(s) + ct2(s)]q = ∆ · [m1 + m2]t + v1 + v2 − ε · t · r, (2.18)

where ε = q/t−∆ < 1 and m1 +m2 = [m1 +m2]t + t · r with r ∈ R such that
‖r‖ ≤ 1. We therefore see, that the noise grows additively by a maximum
of t when adding two ciphertexts. We define the addition operation on
ciphertexts:

Add(ct1, ct2) := ([ct1[0] + ct2[0]]q, [ct1[1] + ct2[1]]q). (2.19)

Multiplication: Multiplying two ciphertexts of the form [cti(s)]q = ∆ ·
mi + vi introduces a non-linear term, resulting in a ciphertext that consists
of three ring elements instead of two. This issue can be resolved by a relin-
earisation step.

Consider two ciphertexts cti(x), i ∈ {1, 2} and their evaluation in s in R

cti(s) = ∆ ·mi + vi + q · ri. (2.20)

Multiplying those expression yields

(ct1 · ct2)(s) =∆2 ·m1 ·m2 + ∆ · (m1 · v2 + m2 · v1)

+ q · (v1 · r2 + v2 · r1)

+ v1 · v2 + q · ∆ · (m1r2 + m2 · r1) + q2 · r1 · r2.

(2.21)

9

2. Background

This shows that the product of two ciphertexts needs to be scaled by a factor
1/∆ in order to obtain a ciphertext that decrypts to the product of plaintexts
[m1 ·m2]t. However, since ∆ does not necessarily divide q, scaling by 1/∆
could potentially introduce significant noise due to rounding error. There-
fore, in the BFV scheme, it is chosen to scale by t/q and for a product of
ciphertexts of the form ct1(x) · ct2(x) = c0 + c1 · x + c2 · x2, the approxima-
tion

t
q
· (ct1 · ct2)(s) = bt · c0/qe+ bt · c1/qe · s + bt · c2/qe · s2 + ra (2.22)

is used, introducing an approximation error ra with ‖ra‖ < (δR · ‖s‖+ 1)2/2.

The following lemma shows the effect of multiplying two ciphertexts on
noise growth:

Lemma 2.5 Let cti (i ∈ {1, 2}) be two ciphertexts, where [cti(s)]q = ∆ ·mi + vi
and suppose there exists an integer E, such that ‖vi‖ < E < ∆/2. Let ct1(x) ·
ct2(x) = c0 + c1 · x + c2 · x2. Then,

[bt · c0/qe+ bt · c1/qe · s + bt · c2/qe · s2]q = ∆ · [m1 ·m2]t + v3, (2.23)

where ‖v3‖ < 2 · δR · t · E · (δR · ‖s‖+ 1) + 2 · t2 · δ2
R · (‖s‖+ 1)2.

Proof See [23] for a detailed proof. �

This lemma shows that the noise is multiplied by a factor of approximately
2 · t · δ2

R · ‖s‖ upon multiplication.

Relinearisation: When multiplying two plaintexts, the number of elements
in the ciphertext increases. Relinearisation is a procedure that takes a degree
2 ciphertext polynomial and reduces it again to a degree 1 ciphertext poly-
nomial. This step requires a relinearisation key, sometimes also referred to
as the evaluation key.

Let ct = [c0, c1, c2] denote a degree 2 ciphertext. Then, it is the goal to find
a ciphertext ct’ = [c′0, c′1] such that

[c0 + c1 · s + c2 · s2]q = [c′0 + c′1 · s + r]q, (2.24)

where ‖r‖ is small.

Sampling a0 ← Rq and e0 ← χ, we define the relinearisation key

rlk :=
[(
[−(a0 · s + e0) + s2]q, a0

)]
. (2.25)

Setting
c′0 = c0 + rlk[0]c2 (2.26)

10

2.3. The Brakerski/Fan-Vercauteren Scheme

and
c′1 = c1 + rlk[1]c2 (2.27)

gives

c′0 + c′1 · s = c0 +
(
−(a · s + e0) + s2) c2 + c1 · s + c2 · s2 − e0 · c2

= c0 + c1 · s + c2 · s2 − e0 · c2,
(2.28)

which is the desired expression except for the term e0 · c2. This term, how-
ever, will very likely cause the decryption process to fail, since c2 has coeffi-
cients up to size q. This issue can be solved by writing c2 in terms of some
small base T:

c2 =
`

∑
i=0

Ti · c(i)2 mod q, (2.29)

where ` = blogT qc and the coefficients of c(2i) are in RT. Instead of a single
relinearisation key pair we get `+ 1 pairs

rlk :=
[(

[−(ai · s + ei) + Ti · s2]q, ai

)
: i ∈ {0, . . . , `}

]
, (2.30)

with ai ← Rq and ei ← χ. Defining

c′0 =

[
c0 +

`

∑
i=0

rlk[i][0]c(i)2

]
q

(2.31)

and

c′1 =

[
c1 +

`

∑
i=0

rlk[i][1]c(i)2

]
q

(2.32)

yields

c′0 + c′1 · s = c0 + c1 · s + c2 · s2 −
`

∑
i=0

ei · c(i)2 mod q. (2.33)

Hence, we have successfully replaced the large additive term that appeared
in the naive approach above with a term of size linear in T. We note that the
noise introduced by relinearisation is bounded by (`+ 1) · B · TδR/2.

2.3.2 BFV in Microsoft SEAL

In this section, we describe the differences in the encryption scheme imple-
mented in the Simple Encrypted Arithmetic Library library [22] to BFV. In
practice, some operations in SEAL are done differently, or in more general-
ity than in textbook BFV. Further, we will elucidate how noise calculation is
performed in SEAL and introduce the noise budget of a ciphertext.

11

2. Background

Probability distribution In SEAL, the distribution χ is defined as the distri-
bution on Rq obtained by choosing each coefficient of the polynomial from
a discrete Gaussian distribution over Z.

Plaintext and Ciphertext space Plaintext elements in SEAL are polynomi-
als in Rt, precisely as in textbook BFV. Ciphertexts in SEAL are k + 1-tuples
of polynomials ct = (c0, . . . , ck) in the ring Rq of length at least 2. This is a
generalisation of textbook BFV, where the ciphertexts are always of length
two.

Encryption Scheme The encryption scheme in SEAL is the same as in text-
book BFV, except for decryption, which is adapted to general ciphertexts of
length k. A SEAL ciphertext ct = (c0, . . . , ck) is decrypted by computing[⌊

t
q
[ct(s)]q

⌉]
t
=

[⌊
t · [c0 + c1 · s + . . . + ck · sk]q

q

⌉]
t

. (2.34)

Addition Let ct1 = (c0, . . . , cj) and ct2 = (d0, . . . , dk) be two SEAL ci-
phertexts encrypting two plaintext polynomials m1 and m2, respectively.
Suppose j ≤ k. Then,

ctadd =
(
[c0 + d0]q, . . . , [cj + dj]q, dj+1, . . . , dk

)
(2.35)

is an encryption of [m1 + m2]t.

Multiplication Let ct1 = (c0, . . . , cj) and ct2 = (d0, . . . , dk) be two SEAL
ciphertexts. Then, the ouput of the multiplication ctmult = (C0, . . . , Cj+k) is
a ciphertext of size j + k where

Cm =

[⌊
t
q

(
∑

r+s=m
cr · ds

)⌉]
q

. (2.36)

Negation SEAL provides a function that computes the negation of a given
ciphertext.

Plaintext-ciphertext operations SEAL provides functions that, given a ci-
phertext ct encrypting a plaintext m ∈ Rt, and unencrypted plaintexts madd
and mmult, compute encryptions of m + madd and m ·mmult, respectively:

Definition 2.6 (Plaintext-ciphertext addition) Let ct = (x0, . . . , xj) be a ci-
phertext encrypting a plaintext m1 ∈ Rt and let m2 ∈ Rt be a plaintext polynomial.
Then, the ciphertext encrypting the plaintext polynomial m1 + m2 is given by

ctpadd := (x0 + ∆ ·m2, x1, . . . , xj). (2.37)

12

2.3. The Brakerski/Fan-Vercauteren Scheme

Definition 2.7 (Plaintext-ciphertext multiplication) Let ct = (x0, . . . , xj) be
a ciphertext encrypting a plaintext m1 ∈ Rt and let m2 ∈ Rt be a plaintext polyno-
mial. Then, the ciphertext encrypting encrypting the plaintext polynomial m1 ·m2

ctpmult := (m2 · x0, . . . , m2 · xj). (2.38)

When one of the operands in either addition or multiplication does not need
to be encrypted, these operations can be used to significantly improve per-
formance over first encrypting the plaintexts madd and mmult and subse-
quently performing the homomorphic ciphertext addition or multiplication.

Relinearisation Relinearisation in SEAL works in the same way as in text-
book BFV and takes as input a ciphertext of length k to produce a ciphertext
of length k− 1. Repeated application of the relinearisation procedure yields
a ciphertext of length two.

Homomorphic operations in the Residue Number System (RNS) Opera-
tions on ciphertexts in a BFV scheme are performed on the ring Rq for an
integer q. We therefore can write q as a product of primes q = q1 · · · qm.
By the Chinese Remainder Theorem (CRT), we have a ring isomorphism
Rq ∼= Rq1 × · · · × Rqm . Therefore, operations can be performed in the factors
Rqi separately. In SEAL, all the homomorphic operations over the polyno-
mial coefficients ring is implemented based on the RNS arithmetic. A variety
of optimization techniques, as proposed in [3], in low level arithmetic im-
plementation adopted in SEAL improve performance of the FHE scheme
significantly.
We recall that in order for the product of two ciphertexts to decrypt cor-
rectly, we need to scale the result of homomorphic multiplication by the
factor ∆ = bq/tc. Since q is usually a large parameter, homomorphic multi-
plications are slow. It is faster to use a RNS to represent the integer q as the
product of the prime numbers qi.
Let x ∈ Rq be given in CRT representation (x1, . . . , xk) and let t ∈ Z be the
coefficient modulus. If we want to scale x by the factor ∆, we can use the
following equality presented in [16]:

y :=
⌈

t
q
· x
⌋
=

[⌈(
k

∑
i=1

xi · (q̃i ·
t
qi
)

)⌋]
t

, (2.39)

where q̃i =
q
qi
∈ Z. Results presented in [16] suggest that this transformation

reduces the runtime of homomomorphic multiplication significantly.

Key Sampling We have seen that in textbook BFV, the secret key is a poly-
nomial uniformly sampled from R2. In SEAL, however, the secret key is
sampled from R3.

13

2. Background

Invariant Noise and Noise Budget Noise analysis in SEAL is similar to
textbook BFV, however it must be extended to ciphertexts of arbitrary length.

Definition 2.8 (Invariant Noise: SEAL) Let ct = (c0, . . . , ck) be a ciphertext
of length k + 1 that encrypts the plaintext m ∈ Rt. The invariant noise w is the
polynomial with the smallest infinity norm such that

t
q
ct(s) =

t
q

(
c0 + c1 + . . . + cksk

)
= m + w + r · t, (2.40)

for a polynomial r with integer coefficients.

We note that in the case of a BFV scheme, the polynomial w is precisely
the polynomial (t/q) · (v− ε ·m) from the proof of Lemma 2.3. The invari-
ant noise describes the notion that if the noise w is not rounded correctly,
decryption fails.

Lemma 2.9 Decryption (Equation (2.34)) correctly decrypts a ciphertext ct en-
crypting a plaintext m, if the invariant noise w satisfies

‖w‖ < 1/2. (2.41)

Proof The result follows directly from Equation 2.14 and the proof of Lemma
2.3. �

A further, sometimes more useful notion is the noise budget, a quantity that
captures, how much noise there is left until decryption will fail:

Definition 2.10 (Noise Budget) Let w be the invariant noise of a ciphertext ct
encrypting the plaintext m ∈ Rt. The noise budget of ct is defined as − log2(2 ·
‖w‖).

From this definition and Lemma 2.9 the next lemma follows immediately.

Lemma 2.11 Let ct be a ciphertext decrypting a plaintext message m ∈ Rt. De-
cryption as presented in Equation (2.34) correctly decrypts the ciphertext, if the
noise budget of ct is positive.

Noise calculation in SEAL: The noise budget is calculated in the function
Decryptor::invariant_noise_budget. We recall from above that

c0 + · · ·+ ck−1 · sk−1 = ∆ ·m + v + q · r

=
(q

t
− ε
)
·m + v + q · r

=
q
t
·m + v− ε ·m + q · r

=
q
t
·m +

q
t
·w + q · r.

(2.42)

It is the quantity − log2(2 · ‖w‖), that is calculated:

14

2.3. The Brakerski/Fan-Vercauteren Scheme

• The function takes as input a ciphertext ct = (c0, . . . , ck−1).

• Using the secret key, the ciphertext polynomial is evaluated at s to
obtain c0 + · · ·+ ck−1 · sk−1.

• Then, this quantity is multiplied by the plaintext modulus t to get

t · c0 + · · ·+ ck−1 · sk−1 = q ·m + t · (v− ε ·m) + q · t · r. (2.43)

• Reducing modulo q, we get

t · c0 + · · ·+ ck−1 · sk−1 mod q = t · (v− ε ·m), (2.44)

which is precisely the noise w multiplied by the ciphertext modulus q.

• Then, the infinity norm of w is calculated and the noise budget− log2(2 ·
‖w‖) is determined.

Modulus Switching As seen previously, the coefficient modulus q can be
written as the product of primes qi. SEAL automatically creates a modulus
switching chain, which is a chain of other encryption parameters derived
from the original set.

Definition 2.12 (Modulus Switching) Let ct be a ciphertext. Set c0 = ct[0]
and c0 = ct[1]. Let p and q be arbitrary coprime moduli. The modulus switching
operation (ModSwitch) on a ciphertext outputs

(c′0, c′1) :=

([⌊
p
q

c0

⌉]
p

,
[⌊

p
q

c1

⌉]
p

)
. (2.45)

In a BFV scheme, modulus switching introduces noise into the ciphertext
(see Appendix E of [19]), therefore the use of modulus switching in BFV is
limited to ’shaving’ off primes, hence reducing the bitlength of coefficient
modulus, and potentially improve computational efficiency of homomor-
phic operations.

Given a coefficient modulus q = ∏k
i=1 qi, in SEAL, the order of the primes

qi is significant, due to the modulus switching chain. The last prime in
the chain is called the special prime. The first parameter set in the mod-
ulus switching chain is the only one that involves the special prime. All
key objects, such as the secret key, are created at this highest level. All
data objects, such as ciphertexts can be only at lower levels. The special
prime should be as large as the largest of the other primes in the coeffi-
cient modulus, although this is not a strict requirement. Modulus switching
changes the ciphertext parameters down in the modulus chain. When using
a BFVscheme, modulus switching has the following benefits: First, the size

15

2. Background

of the ciphertext is linearly dependent on the number of primes contained in
the coefficient modulus. Thus, if there is no intention to perform any further
computations on a given ciphertext, it is of computational benefit to switch
to the smallest set of parameters in the chain before performing decryption.
Also, since computational effort of homomorphic operations potentially de-
creases with a lower ciphertext modulus, after doing enough computations
such that the noise budget reaches a certain threshold, it could be of compu-
tational benefit to apply modulus switching. In some cases it can be useful
to switch to a lower level slightly earlier, sacrificing some of the noise budget
in the process, to gain computational performance from having smaller pa-
rameters. In this thesis, we intend to evaluate the computational benefit of
the insertion of such operations and use the effects runtime to automatically
rewrite computations to insert modulus switching at appropriate points of
the computation, guided by noise considerations (see Section 3.3).

We note that in other FHE schemes, such as the Cheon-Kim-Kim-Song (CKKS)
[8] and the Brakerski-Gentry-Vaikuntanathan (BGV) [6] schemes, modulus
switching has applications that go far beyond the reduction of computa-
tional complexity.

2.4 Noise Growth Heuristics

Homomorphic operations increase the noise in a ciphertext. For freshly en-
crypted ciphertexts, as well as for ciphertexts resulting from homomorphic
operations, the theory of BFV dictates upper bounds for the noise deter-
mined by the parameters chosen for the encryption scheme, such as the
upper bound on the distribution χ, plaintext modulus, ciphertext modulus
and the ring R, as well as the encrypted plaintext. Theoretical bounds follow
immediately from the definition of the invariant noise and the definition of
the homomorphic operations on ciphertexts (see Appendix A.1). However,
these theoretical bounds result in poor practical estimates and very often
lead to overly conservative parameter choices. Instead, it is useful to ap-
ply a heuristic approach outlined in [15, 10]. This approach relies on the
average distributional analysis, which estimates the expected size of the in-
variant noise in the canonical embedding norm by bounding the canonical
norm of random polynomials whose coefficients are generated from a dis-
crete Gaussian or uniform distribution, as in the BFV scheme. This uses the
fact that given two independent random variables drawn from zero-mean
distributions with variances σ̃1 and σ̃2, the variance of their product is equal
to σ̃1σ̃2 and the variance of their sum is equal to σ̃1 + σ̃2 ([18]).

SEAL uses its own upper bound noise heuristics [22], but there are several
additional studies that evaluate noise heuristics in FHE [27, 10]. Expressions
for theoretical and heuristic bounds on the canonical norm of the ciphertext

16

2.4. Noise Growth Heuristics

noise for homomorphic operations can be found in the Appendix.

Practicality of heuristic bounds Recently, experiments have been conducted
in order to validate the heuristic bounds proposed in [18] by Costache et
al. ([10]). This particular work involved 10000 trials, where the i-th trial
consisted of encrypting the integers i and i + 1 using SEAL, calculating the
sum and the product of the resulting ciphertexts homomorphically, and out-
putting the mean of resulting ciphertext noises for fresh encryption, addi-
tion and multiplication, respectively. The obtained results ([10]) did indeed
confirm that the heuristic bounds presented above are satisfied with high
probability and setting parameters accordingly ensures correctness of the
use of the scheme. However, the heuristic bounds from [18] do not seem to
be tight, as for encryption it is reported that the heuristic bounds predicts
6 to 8 fewer bits of remaining noise budget than observed in practice. This
disparity increases with the number of operations on ciphertexts, for exam-
ple after a single multiplication the gap between heuristically predicted and
measured noise budget reaches 8 to 17 bits.

Parameter Selection: Practical aspects As understood from the preced-
ing sections, parameter selection of a homomorphic encryption scheme is
dictated by noise growth which strongly varies with the number and na-
ture of performed homomorphic operations. Parameter selection has signif-
icant impact on the performance of a homomorphic encryption scheme and
therefore parameter selection is highly dependent on the specific arithmetic
circuit to be evaluated. A factor that strongly affects the noise growth is the
multiplicative depth, the number of consecutively performed multiplications.

Several approaches have been explored to optimise parameter selection given
a certain arithmetic circuit, notably the CINGUPARAM suite ([17]), that de-
termines the multiplicative depth of a circuit and selects parameters using a
predefined parameter database. There exist algorithms that take arithmetic
as an input and rewrite the circuit to minimise its multiplicative depth [2],
one of which, the cone rewriting operator, we shall discuss later in this text.

17

Chapter 3

Design

We begin with a brief overview of the challenges of FHE development,
specifically from the point of view of a compiler. Then, we present how
we can employ existing heuristics about ciphertext degradation to guide
users towards optimising computation circuits to minimise said degrada-
tion. Finally, we present our automated optimisation which can transform
FHE programs into semantically equivalent circuits with optimized perfor-
mance.

3.1 FHE Compilation

Fully Homomorphic Encryption (FHE) has become increasingly popular in
recent years, due to significant advances and performance improvements of
FHE schemes such as the introduction of Single Instruction Multiple Data
(SIMD) style parallelism [28] allowing to encode multiple plaintext values
into single ciphertexts. However, to this day it remains a challenging task to
build efficient applications based on FHE. This is due to the computation
models that FHE dictates, such as data-independent computations, as well
as different performance tradeoffs offered by different FHE schemes. Noise
management in FHE computations is also an important factor in achieving
optimal performance. Minimising the noise build-up in an FHE evaluation
of an arithmetic circuit, allows the choice of smaller parameters, expected to
increase performance.

In practice, it is a complex endeavour to realise efficient FHE computations,
requiring significant expertise in the underlying cryptographic protocols as
well as deep knowledge of high-performance computations. Therefore, FHE
libraries such as SEAL [22] offer higher-level APIs to make basic function-
alities such as key generation, encryption, decryption, as well as homomor-
phic addition and multiplication accessible to the general user. However,
the libraries still remain relatively low-level and leave issues such as noise

19

3. Design

management and circuit design to the user. It was therefore a natural devel-
opment, that in recent years multiple higher-level tools, commonly known
as FHE compilers, have surfaced in the community, aiming to translate pro-
grams given by the user to a set of FHE instructions, while ensuring cor-
rectness of the computations and simultaneously achieving a desired level
of efficiency.

We recall that FHE encryption introduces noise into ciphertexts that grows
during homomorphic computations and can eventually grow to a point
where decryption fails. FHE schemes offer ciphertext maintenance func-
tionalities that can be applied to ciphertexts to limit noise growth.

The focus on currently available compilers lies on improving usability for
the general inexperienced user, while offering optimisations that have pre-
viously been exclusive to the advanced user. There exist a variety of domain
specific optimisations, for example optimising matrix-vector operations [12]
or applications tailored to suit the needs of machine learning [21], [11],
[29]. FHE compilers have made the task of developing FHE computations
much more accessible with compiler-optimised computations outperform-
ing hand-crafted FHE circuits in many instances [4]. However, available
compiler frameworks come with limitations, some domain specific in their
application, being limited to computations that can be expressed by poly-
nomials [1] or offering only limited support of non-polynomial functions
([4]). In many cases, circuit optimisations are not available and ciphertext
maintenance operations are not inserted optimally by the compiler [29]. A
comprehensive overview over available FHE compilers can be found in [30].

The goal of this thesis is to support developers in achieving state of the
art results without having to perform manual tuning by adopting a holis-
tic approach combining rewriting and noise heuristics for FHE applications.
Specifically, we aim to further the development of the Automated Batching
Compiler (ABC) compiling framework to be able to efficiently identify bot-
tlenecks in a circuit via noise heuristics: we apply existing noise heuristics
to guide the developer to manually transform the program to achieve opti-
misation, requiring extending the existing compiler framework to support a
mapping between the high-level input program and the resulting FHE op-
erations in the compiled circuit. Further, we aim to develop a automated
rewriting algorithm guided by noise heuristics. We use noise heuristics to
guide an automated rewriting algorithm to insert modulus switching oper-
ations at appropriate points in the computation.

The ABC functions by translating a high-level input program into a circuit in
the form of an Abstract Syntax Tree (AST), that is later translated into the set
of instructions needed for the FHE library to execute the circuit. An AST is a
tree representation of the abstract syntactic structure of the given high-level
code. In the AST, each node corresponds to a construct from the source code.

20

3.1. FHE Compilation

The ABC compiler translates high-level program descriptions in a C-like
language into the circuit-based programming paradigm of FHE. It does so
while automating as many aspects of the development as possible. The ABC
uses a simple C-like high-level input language, and a parser that translates
a circuit given in this language into an AST, which forms theintermediate
representation (IR). The ABC features a runtime system that can take (circuit-
compatible) ASTs and run them against FHE libraries. Currently, the ABC
framework exclusively supports SEAL.

Optimisations on circuits are performed on the AST. The compilation of a
circuit itself can be divided into three stages:

Program Transformations These AST-to-AST transformations aim to mod-
ify the program to make it more suitable for efficient FHE computations.
These include optimizations common in standard compilers and FHE-specific
optimizations like exploiting opportunities to use the powerful SIMD paral-
lelism (”batching”) present in many FHE schemes.

AST-to-Circuit Transformations These transform the AST into a circuit
by transforming non-compatible operations (e.g., If- and While-Statements)
into their circuit-equivalent using gates. Note that instead of changing to a
wires-and-gates IR, circuits are still expressed using (a subset of) the AST
IR.

Circuit-to-Circuit Transformations These transformations transform a cir-
cuit into a semantically equivalent circuit using certain rewriting rules.

The advantages of translating the program provided by the user into an AST
are that every node can be enriched with properties such as additional vari-
ables that keep track of certain properties, providing a powerful framework
for optimisations.

This thesis aims to use the ABC framework to apply optimisations to given
programs in the form of ASTs. We calculate noise heuristics for each node of
the AST of a given circuit and use these quantities to improve circuit design
automatically.

Noise grows when performing operations on ciphertexts. This means, if the
noise is not managed carefully, the computation will not produce the cor-
rect result. Several strategies of noise management can be pursued, such
as the insertion of relinearisation and modulus switching when appropri-
ately performed. However, noise management is generally considered to
be a difficult task, often inaccessible to a non-expert user. It is not triv-
ial when to insert these maintenance operations, since, for instance, in the
case of modulus switching operations can cause parameter mismatches in

21

3. Design

binary operations performed at a later point in the evaluation of the circuit,
compromising the correctness of the circuit.

We pursue a set of strategies, that are based on noise heuristics, to transform
a given circuit into an equivalent circuit with improved performance. These
will be outlined in the following sections.

3.2 Circuit Optimisations and Noise Heuristics

3.2.1 Identifying Areas of Significant Noise Growth

When homomorphically evaluating circuits, the quantity of the noise of a
ciphertext plays a significant role. When the noise budget reaches zero,
decryption of the result will fail and an incorrect result will be returned
to the user. Noise growth can be limited by adjusting parameters, such
as the polynomial degree of the elements of the ring R and the ciphertext
modulus. However, limiting noise growth this way comes with a significant
computational cost that we aim to minimise. It is therefore useful to identify
regions that are the source of major noise growth in a given circuit to suggest
to the user where there might be potential for circuit redesign. This feature
is aimed towards the novice user that have little to no experience in circuit
design for FHE computations to provide a starting point of potential circuit
optimisation that can be carried out manually.

We view an arithmetic circuit as a directed acyclic graph (DAG) C = (V, E),
where each node represents a value available during homomorphic execu-
tion. Nodes with one or more incoming edges are called instructions, which
compute a new value as a function of the children nodes connected to it.
Each instruction v has an opcode specifying the operation performed at the
node such as homomorphic addition (Add), subtraction (Sub), multiplication
(Mult) and modulus switching (ModSwitch).

We use the heuristic noise budget and the heuristic relative noise budget
decay to identify such regions. The relative noise budget decay is defined as

1
min{E1, E2}

· (min{E1, E2} − E), (3.1)

where E1 and E2 denote the noise budgets of the operands and E denotes
the remaining noise budget after a homomorphic evaluation of a binary
operation. However, these quantities alone can not be used to identify
regions of noise growth: the noise budget will always be the lowest at
the very end of a computation, since homomorphic operations in levelled
FHE build up noise, but never reduce noise. As a simple illustrative exam-
ple, we consider the DAG of the arithmetic circuit computing the function
f (x) = (x · x · x · x) · ((x · x) · (x · x)) (Figure 3.1). We wish to identify the

22

3.2. Circuit Optimisations and Noise Heuristics

x4 · x4

22x4

57x3

80x2

104
x

128

0.19

x
128

0.23

x
128

0.29

x
128

0.61

x4

79
x2

104

0.23

x2

104x
128

0.19

x
128

Figure 3.1: Circuit noise budget analysis for the evaluation of f (x) = (x · x · x · x) · ((x · x) ·
(x · x)). The tree shows remaining noise budgets after each operation (bold black) and relative
noise budget decay for each binary operation (red). Results are shown for a plaintext modulus
of t = 65537 and a polynomial degree of d = 8192.

subtree evaluating the function x · x · x · x. We observe that, indeed, the
heuristic noise budget reaches its lowest value at the end of the computa-
tion. Also the relative noise budget decay does not point us to the source of
most significant noise growth, the subtree evaluating the function x · x · x · x.

To identify such subtrees of significant noise growth in an AST, we propose
an algorithm, that, starting from a root node (result of the computation),
traverses the DAG, recursively visiting the children that exhibit the lowest
noise budget. If all children have the same noise budget, all children are
visited. Eventually, the algorithm terminates and returns one or more leaf
nodes that indicate paths that are the source of significant noise growth.
Algorithm 1 uses the functions getNoiseBudget(node v) that returns the noise
heuristics of a given input node (ciphertext), as well as calcInitNoiseHeur()
that returns noise heuristics for a freshly encrypted ciphertext using Equa-
tion (A.10).

23

3. Design

Algorithm 1 visit(node)
le f t← getNoiseBudget(le f tChild)
right← getNoiseBudget(rightChild)
initial ← calculateEncryptionNoiseHeuristic()
if ((right == le f t) ∧ ((right == initial) ∨ (right == NULL))) then

return node
else if (le f t < right) then

visit(left)
else if (le f t > right) then

visit(right)
else

visit(left)
visit(right)

end if

Lemma 3.1 Algorithm 1 always terminates and returns a node.

Proof We proceed by induction: for trees of size one, the algorithm returns
the single node. Assume the algorithm terminates and returns a node for
a tree of size n − 1. Considering a tree of size n, in the first step of the
algorithm, the algorithm visits a tree of size at most n − 1. Applying the
induction hypothesis, the algorithm terminates and returns a node.

The algorithm produces one or more paths that are potentially subject to
rewriting to limit noise growth during homomorphic evaluation allowing
for a selection of more optimal parameters and consequently increasing
computational efficiency. However, it is important to note that the returned
path is not necessarily a region in the circuit where potential for optimisa-
tion exists, it may well be that the algorithm returns a path that is already
fully optimised. Therefore, the algorithm can merely serve as a basis for
circuit improvement strategies. This poses an additional research question,
namely if there is potential for noise heuristics to provide a basis for auto-
matic circuit rewriting. Automatic circuit rewriting strategies indeed exist
to improve computational efficiency (e.g. cone rewriting), but they are gen-
erally based on much simpler multiplicative depth heuristics instead of noise
heuristics.

In the next section, we will review one such strategy and discuss how noise
heuristics compare to simpler heuristics like multiplicative depth.

3.2.2 Cone Rewriting of Arithmetic Circuits

As an example of an optimisation heuristic, we consider the cone rewriting
approach to reduce the multiplicative depth, i.e., the number of consecutive
multiplications, of FHE circuits [2]. While originally proposed for boolean

24

3.2. Circuit Optimisations and Noise Heuristics

circuits, it can be generalised to arithmetic circuits. It tries to reduce the
multiplicative depth which should improve the noise growth behaviour, al-
lowing smaller parameters to be used. As a trade-off, it increases the overall
number of multiplications in the circuit. Therefore, this transformation is
not guaranteed to improve the circuit and can in fact lead to slower overall
run times.

Consider a Boolean circuit represented as a directed acyclic graph (DAG)
C = (V, E) consisting of a set of nodes V and a set of edges E. The multi-
plicative depth of a Boolean circuit is defined as the number of successively
performed AND operations. The minimisation of the multiplicative depth
permits smaller ciphertext sizes and reduces the overall execution time of a
homomorphic evaluation of the circuit. Let d : V −→ {0, 1} be a function
that returns 1 for AND nodes and 0 otherwise and let pred : V −→ 2V and
succ : V −→ 2V be functions giving the set of predecessors, respectively suc-
cessors, of a node v ∈ V. The multiplicative depth of a given node v is defined
as the maximimum number of AND gates on any path from an input node
of the arithmetic circuit to the node v:

l(v) =

{
0 if |pred(v)| = 0
maxu∈pred(v) l(u) + d(v) otherwise

. (3.2)

Similarly, the reverse multiplicative depth of a node v is defined as the maxi-
mum number of AND gates on any path beginning by a successor of v and
ending with an output node. The reverse multiplicative depth is hence given
by

r(v) =

{
0 if |succ(v)| = 0
maxu∈succ(v) r(u) + d(v) otherwise

. (3.3)

Finally, the multiplicative depth of a circuit is defined as the maximal multi-
plicative depth of all of its nodes, given by

lmax := max
v∈V

l(v) = max
v∈V

r(v). (3.4)

A node v ∈ V is called a critical node if

l(v) + r(v) = lmax. (3.5)

A subcircuit C∗ of a boolean circuit C containing all the critical nodes of C
is called a critical circuit. A critical path is a path in C∗ and a critical cone
is a subset of connected critical nodes with a common descendant. We note
that the multiplicative depth of the circuit C is equal to the multiplicative
depth of the subcircuit C∗. Hence, decreasing the multiplicative depth of C∗

decreases the overall multiplicative depth of the entire circuit.

25

3. Design

In [7], two rewrite operators for Boolean circuits to reduce multiplicative
depth of circuits have been proposed. First an operator which rewrites sim-
ple paths composed of two AND gates only, and second, an operator which
allows obtaining a path with two AND gates from any path of multiplica-
tive depth 2. More specifically, a critical path of length 2 can be rewritten
using the associativity of an AND operation: (x · y) · z = x · (y · z). When
the circuit is rewritten and has the form x · (y · z), multiplicative depth de-
creases only if the multiplicative depth of nodes y and z are less than the
multiplicative depth of node x. If this is the case, then multiplicative depth
decreases by one. When critical paths are of size larger than two, i.e. also
contain inner XOR gates, a second operator is described in [7] that allows
to move an AND gate up the critical path by one place. This operator uses
the XOR distributivity rule (x ⊕ y) · z = (x · z) ⊕ (y · z) and is applicable
to paths with any number of internal XOR gates. The application of this
operator adds an AND gate for each XOR gate on the path. Given a critical
path p = (v1, v2, . . . , v|p|), where v1 and V|p| are AND gates, it is possible to
first move up the END gate v|p| next to v1 yielding a critical path of length
two. Afterwards, this path can be rewritten using the first operator. How-
ever, since there might be multiple parallel critical paths in a circuit, all these
paths have to be rewritten to obtain a circuit of overall lower multiplicative
depth. A so called multti-start heuristic is described that is a priority based
heuristic to rewrite critical paths of multiplicative depth two.
In [2], the two operators described above have been combined into a single
one. The multiplicative depth-2 path operator described in [7] is generalised
to cones of multiplicative depth two. The resulting operator is called the cone
rewriting operator. In [2], a heuristic is presented that aims at minimizing the
multiplicative depth of a Boolean circuit in a single pass: At each iteration a
set ∆min of cones to minimize is computed. If this set is non-empty, the cones
from this set are rewritten and subsequently the multiplicative depths of the
circuit nodes are updated. If the multiplicative depth of the new circuit is
smaller, the circuit is updated. Otherwise, a new set of cones is determined
and the the rewriting algorithm is applied again. The algorithm finally ter-
minates when the set ∆min is empty. The goal of the cone selection method
is to find a minimal set of cones to rewrite, the reduction of which is likely
to lead to a decrease in the overall multiplicative depth. Any cone rewriting
operator adds new nodes to the circuit. Therefore, minimizing the set of
cones to be rewritten also limits the number of additional nodes created by
the rewriting operator.

In [2], the effect of the minimisation of the multiplicative depth of circuits on
homomorphic execution has been studied and yields more favourable run-
times of homomorphic execution compared to results from [7]. However,
in the context of an homomorphic execution of Boolean circuits, the mini-
mization of multiplicative depth is beneficial only if the number of newly

26

3.3. Circuit Rewriting based on noise-guided Modulus Switching

created AND gates is below a threshold. However, circuit rewriting based
on multiplicative-depth heuristic to reduce noise growth is of limited use in
arithmetic circuits, which tend to feature significantly lower depths to be-
gin with. In general, the effects of heuristics are highly dependent on the
nature of the circuit. If a circuit’s noise growth is dominated by a path that
is not subject to cone rewriting, as for example a large number of consec-
utive additions, cone rewriting strategies have little to no effect on circuit
optimisation.

When considering optimisations based on noise heuristics, there is currently
no direct way to translate from high noise growth to circuit improvement in
the same way that we can translate high multiplicative depth into the re-
duction of multiplicative depth through simple heuristics. However, there is
indeed an optimisation that immediately follows from understanding noise
growth behaviour of a circuit, which we will define and explore in the fol-
lowing to evaluate its effect on computational efficiency of homomorphic
circuit evaluation.

3.3 Circuit Rewriting based on noise-guided Modulus
Switching

For any given function, one can design a large number of arithmetic cir-
cuits evaluating that function. However, when evaluating a function ho-
momorphically, circuit design is of great importance. Some circuits accu-
mulate more ciphertext noise than others caused by different factors, such
as the number of consecutively performed multiplications or the placement
of ciphertext maintenance operations such as relinearisation and modulus
switching. As mentioned before, it is a challenging task for a user to man-
ually optimise circuits in terms of noise growth and computational perfor-
mance. As we aim improve the computational efficiency of circuit evaluation
using FHE by automatically rewriting user-input circuits, we present a pair
of algorithms that uses noise heuristics to insert modulus switching opera-
tions at appropriate points to reduce the bitlengths of ciphertext moduli to
accelerate homomorphic evaluation of the rest of the circuit.

In BFV, ciphertexts are large polynomials with potentially large coefficients.
For performance reasons, the coefficients are split into smaller parts, that are
easier to handle computationally. The idea of rewriting a circuit based on
noise-guided modulus switching is to improve runtimes of the homomor-
phic evaluation by reducing the bitlengths of ciphertexts involved in homo-
morphic binary operations. Further, for hardware specifically designed to
perform FHE evaluations, the acceleration achieved is limited by memory
bandwidth. When reducing bitlengths of ciphertexts, the acceleration can
be maximised, making the insertion of modulus switching at appropriate

27

3. Design

points in a circuit relevant.

In BFV encryption schemes, the coefficient modulus q can be written as the
product of primes qi. We write q = ∏r

i=1 qi = {q1, . . . , qr}. In SEAL, it
is possible to specify the bitlengths of the primes q1, . . . , qr. As described
previously, it is possible to increase computational eficiency by ’dropping’
primes in order to reduce the total bitlength of the modulus q using modulus
switching (ModSwitch). Based on the constraints discussed in Paragraph
2.3.2, the proposed algorithm (Algorithm 2) considers the operands of each
multiplication in a given circuit and calculates the noise budget that has been
spent during the computation to automatically apply modulus switching
operations to the operands if the number of bits in a ciphertext occupied by
noise exceed the bitlength of the last prime in the modulus switching chain.
If this is the case, the algorithm applies modulus switching to the operands.

We note that, when inserting ModSwitch nodes into the DAG, to ensure cor-
rectness of the computation, for binary operations involving two ciphertexts
ct1 and ct2, it must be satisfied that both have the same ciphertext modulus.
As the ModSwitch operation changes the coefficient modulus of a ciphertext,
it must be ensured that two ciphertexts involved in a homomorphic binary
operation have the same coefficient modulus at all times. We have seen that
after enough computations have been performed it is reasonable to perform
ModSwitch, but we must ensure that for both ciphertexts the bitlength of the
noise term is larger than the bitlength of the last prime qs in the product of
remaining ciphertext modulus {q1, . . . , qs}.

We propose an algorithm (Algorithm 2) that uses the quantity of ciphertext
noise to decide whether the insertion of a modulus switching operation in a
circuit is possible without compromising the computation. Specifically, the
proposed algorithm uses noise heuristics calculated for each node of a given
circuit. We consider the difference of the noise budget of a fresh cipher-
text and the noise budget of a node in the DAG and shall call it the spent
noise budget. For each binary operation in the circuit, the operands’ spent
noise budgets are compared to the bitlengths of the last prime factors of the
operands’ ciphertext moduli. If their difference exceeds the last prime in
the modulus switching chain and the binary expression is a multiplication,
a ModSwitch operation is possible and inserted in the circuit by the function
insertModSwitch(operand). This function takes the operand ciphertext as
input. In this step of the algorithm, it is ensured, that no parameter mis-
matches occur in the considered binary operation, i.e. both operands of the
multiplication have the same ciphertext modulus. Then, the noise heuris-
tics of the new circuit are recalculated. If the noise budget at the root node
of the DAG remains greater than zero, the changes are accepted and the
circuit is updated. The proposed algorithm makes use of a set of auxil-
iary functions. The functions getLe f tOperand(op) and getRightOperand(op)

28

3.3. Circuit Rewriting based on noise-guided Modulus Switching

take a binary operation op as an input and return the left, respectively right,
operand. The function getLastPrimeIndex(v) takes a ciphertext node as an
input and returns the index of the last prime in the ciphertexts coefficient
modulus chain. To calculate the bitlength of specific primes in the coefficient
modulus, the function bitLen(qi) has been defined. Finally, the function
spentNoiseBudget(node) takes as input a ciphertext and returns the spent
noise budget as defined above.

As mentioned above, we must ensure that coefficient moduli of ciphertexts
involved in binary operations match at all times. It is therefore necessary
to perform second pass over the circuit to ensure the new circuit fulfills the
constraint of matching ciphertext moduli. The procedure, as described in
Algorithm 3, starts at the root of the DAG and visits all binary expressions
in ascending order towards the root node and compares the ciphertext mod-
uli of the input nodes (children) of the current binary expression. If there is
a mismatch, then ModSwitch operations on the operand with the larger ci-
phertext modulus are performed until the operands’ ciphertext moduli are
equal. This may be done, since the resulting spent noise budget after any
binary operation will exceed the size of the primes dropped.

Lemma 3.2 The Algorithms 2 and 3 terminate and produce a valid arithmetic cir-
cuit.

Proof The main loop of algorithm 2 terminates, since there are finitely many
binary instructions in a tree. Also, Algorithm 3 returns a valid tree, since it
ensures that the number of primes in the moduli is equal for operands in
each binary expression. �

As we will discuss when evaluating the influence of circuit rewriting using
the proposed algorithms, there is indeed a difference if a modulus switch-
ing operation is inserted before an addition or a multiplication. The homo-
morphic evaluation of an addition is relatively fast compared to modulus
switching and multiplication, since ciphertexts are added component-wise
which is a fast operation. The operations underlying modulus switching in
BFV schemes underlies more complex mathematical operations and there-
fore inherently greater computational complexity. This can impact the per-
formance of a circuit evaluation negatively, if the algorithms insert modulus
switching before additions. Further, since noise heuristics generally over-
estimate the spent noise budget of a ciphertext, the position of modulus
switches inserted does not necessarily correspond to the insertion site ob-
tained from real noise calculations. However, since Algorithm 2 recalculates
the noise heuristics of the entire circuit after each insertion of a modulus
switching operation, the correctness of the circuit is always guaranteed.

29

3. Design

Algorithm 2 rewrite(circuit)
for op : binaryOps(circuit) do

if (op.opcode == Mult) then
tempCircuit← circuit
le f t← getLe f tOperand(op)
right← getRightOperand(op)
le f tIndex ← getLastPrimeIndex(le f t)
rightIndex ← getLastPrimeIndex(right)
di f f ← indexLe f t− indexRight
if (di f f > 0) then

sum← 0
for (i = le f tIndex; i = le f tIndex− (|di f f |+ 1); i−−) do

sum← sum + bitLen(coe f f Modulus[i])
end for
if (sum < spentNoiseBudget(le f t)) ∧ spentNoiseBudget(right) >
bitLen(coe f f Modulus[rightIndex]) then

tempCircuit.insertModSwitch(right)
for (j = 0; j = |di f f | − 1; j ++) do

tempCircuit.insertModSwitch(le f t)
end for

end if
if (tempCircuit.getNoiseBudget(root) > 0) then

circuit← tempCircuit
end if

else if (di f f < 0) then
sum← 0
for (i = rightIndex; i = rightIndex− (|di f f |+ 1); i−−) do

sum← sum + bitLen(coe f f Modulus[i])
end for
if (sum < spentNoiseBudget(right)) ∧ spentNoiseBudget(le f t) >
bitLen(coe f f Modulus[le f tIndex]) then

tempCircuit.insertModSwitch(le f t)
for (j = 0; j = |di f f | − 1; j ++) do

tempCircuit.insertModSwitch(right)
end for

end if
if (tempCircuit.getNoiseBudget(root) > 0) then

circuit← tempCircuit
end if

else
if bitLen(coe f f Modulus[le f tIndex]) > spentNoiseBudget(le f t) ∧
bitLen(coe f f Modulus[rightIndex]) > spentNoiseBudget(right) then

tempCircuit.insertModSwitch(le f t)
tempCircuit.insertModSwitch(right)
if (tempCircuit.getNoiseBudget(root) > 0) then

circuit← tempCircuit
end if

end if
end if

end if
end for
return circuit

30

3.3. Circuit Rewriting based on noise-guided Modulus Switching

Algorithm 3 visit(node)
if isBinaryExpression(node) then

if (node.getLe f t().hasChild() ∧ node.getLe f t().visited() == f alse) then
visit(node.getLe f t())

end if
if (node.getRight().hasChild() ∧ node.getRight().visited() == f alse)
then

visit(node.getRight())
else if (getLastPrimeIndex(node.getLe f t()) 6=
getLastPrimeIndex(node.getRight())) then

insertModSwitch
end if

end if

31

Chapter 4

Implementation and Evaluation

4.1 Implementation

All implementations of functionalities and algorithms relevant for this thesis
are included in the ABC Compiler Framework.

4.1.1 Noise Heuristics in the ABC

To efficiently analyse the noise growth present in a given circuit to be eva-
lutated using FHE via the ABC framework, it is useful to have a means of
monitoring noise growth without having to evaluate significantly time con-
suming operations on ciphertexts using actual FHE schemes. Therefore, we
have implemented a Runtime System into the ABC compiler that calculates
noise heuristics as given in Section A.2 for each node of an AST obtained
from a given arithmetic circuit. The calculation of noise heuristics is done
in the class SimulatorCiphertext, which can be used in complete analogy
to the already existing class SealCiphertext that evaluates arithmetic cir-
cuits given by an AST using the FHE scheme SEAL. The reader is referred
to Section A.3 for performance analysis and comparison to previous noise
heuristics calculations [10] and evaluations using SEAL.

Recording Noise Heuristics in the AST We recall that the ABC takes a
high level program and translates it to an AST which is in turn evaluated in
SEAL or as a simulation calculating noise heuristics depending on the user’s
choice. The AST is evaluated by the RuntimeVisitor class of the ABC. We
have modified this class to maintain a map from the node id to the current
noise budget left in the ciphertexts. This allows efficient analysis of arith-
metic circuits in terms of noise growth heuristics and serves as a metric for
identification of areas of significant noise growth in a given circuit provid-
ing a basis for suggesting optimisation and parameter choice. Noise Heuris-
tics have been implemented in a separate class called SimulatorCiphertext

33

https://github.com/moritzwinger/ABC

4. Implementation and Evaluation

that evaluates noise heuristics for encryption, binary operations and modu-
lus switching based on the noise heuristics of operands’ ciphertexts. Since
noise heuristics calculations require high numerical precision, the class uses
the GNU Multiple Precision Arithmetic library (https://gmplib.org) to rep-
resent noise values. Evaluation of the implementation and calculated noise
heuristics in comparison to results from [10] are shown in the Appendix.

Identifying Areas of Significant Noise Growth The logic of Algorithm 1
can be found in the class IdentifyNoisySubtreeVisitor and has been im-
plemented as a visitor that recursively visits binary expression starting at the
root node of an arithmetic circuit’s AST. The visitor follows the operands
with the smaller noise budget, or both, if equal and returns the leaf nodes
of the AST corresponding to the subtrees generating the largest noise in the
AST.

Noise-based insertion of modulus switching operations in ASTs The iden-
tification of binary expressions in an AST that are suitable candidates for
an insertion of a modulus switching operation to potentially improve per-
formance of homomorphic execution has been implemented as a visitor in
InsertModSwitchVisitor. The visitor recursively visits binary expressions
and examines their operands’ noise budgets, if inserting a modulus switch-
ing is feasible. Since the visitor needs to compare the operands’ coefficient
moduli bitlengths with the spent noise budgets, a map is maintained that
contains the ciphertexts’ coefficient moduli. The InsertModSwitchVisitor

produces a vector of potential modulus-switching insertion sites. In the
same class, the function insertModSwitch has been implemented that in-
serts the modulus switching operations into the AST based on the visitor’s
results and updates the coefficent modulus map. We note that the function
insertModSwitch is not a visitor. After insertion of modulus switches, it is
required to pass over the AST a second time to avoid parameter mismatches
at binary operations. For this, a second visitor has been implemented in
the separate class FixParamMismatchVisitor that, based on the maintained
map containing the coefficient moduli for each ciphertext, inserts additional
modswitches to one of the operands of the binary expression to allow correct
homomorphic execution of the AST.

4.1.2 Evaluation Setup

Benchmarking on a variety of arithmetic circuits has been performed to eval-
uate the effect of suggested circuit improvements on computational runtime.
The machine used for performance measurements is an Apple M1 CPU (3.2
GHz) with 8 GB RAM. Circuits have been evaluated using SEAL for a variety
of polynomial degrees and plaintext and ciphertext moduli calculated auto-
matically from SEAL based on the chosen polynomial degree. To analyse

34

https://gmplib.org

4.2. Circuit Rewriting based on noise-guided modulus switching

effect on execution time of the developed circuit optimisation tools, a se-
lection of arithmetic circuits from the EPFL Combinatorial Benchmark Suite
have been used for experimentation. A parser translating circuits from the
Benchmark Suite given in verilog format to the domain specific language
used by the parser employed by the ABC has been implemented in the class
VerilogToDsl. Circuits selected for evaluation have been truncated in or-
der to allow their correct homomorphic evaluation using SEAL without the
noise budget becoming zero.

4.2 Circuit Rewriting based on noise-guided modulus
switching

In this section, we evaluate the effect of automatic circuit rewriting based on
noise-guided modulus switching, in particular the effects of consecutively
applying Algorithms 2 and 3 to a selection of arithmetic circuits. We show
that the application of said algorithms can have different effects on run-
time of homomorphic evaluation, dependent on the nature of the arithmetic
circuit considered. First, we evaluate the runtimes of single homomorphic
binary operations and modulus switching to show the effect of modulus
switching insertion on single operations.

We will show that introducing modulus switches is not always beneficial for
runtimes. The devised strategy however, is of potential benefit in terms of
memory usage, since ciphertexts with smaller coefficient moduli require less
space in memory. This has implications for the use of hardware acceleration
specifically designed for FHE computations.

Benchmarking. Runtimes in microseconds averaged over 1000 homomor-
phic evaluations of the binary operations addition and multiplication at dif-
ferent levels in the modulus-switching chain compared to the average run-
time of modulus switching at the same level are shown in Tables 4.1 and
4.2 for polynomial degrees d ∈ {16384, 32768}. We observe that the aver-
age runtime of a modulus switching operation lies above the runtime for
an addition, indicating that it will have adverse effects on performance if
Algorithms 2 and 3 insert modulus switching instructions before homomor-
phic additions. However, it can be seen that the cost of performing modulus
switching on both operands and then multiplying ciphertexts with resulting
smaller coefficient moduli indeed benefits performance. In the following, we
construct circuits based on these observations and evaluate their runtimes
with and without the insertion of modulus switching to study the effects of
modulus switching in a variety of circumstances. We further evaluate the
the effects of Algorithms 2 and 3 on runtimes of a subset of circuits of the
EPFL Benchmarking Suite.

35

4. Implementation and Evaluation

d = 16384 Mult Add ModSwitch

Level 1 30189(31) 220(1) 1167(2)
Level 2 25733(11) 208(2) 1036(2)
Level 3 21786(12) 191(2) 856(1)
Level 4 18030(4) 143(1) 855(1)

Table 4.1: Benchmarking for binary ciphertext-ciphertext operations as well as modulus switch-
ing using SEAL for the polynomial degree d = 16384. Results are shown in µs and standard
errors are given in brackets.

d = 32768 Mult Add ModSwitch

Level 1 149681(191) 844(4) 4375(7)
Level 2 135788(87) 740(1) 4038(4)
Level 3 124121(89) 699(1) 3747(3)
Level 4 110709(50) 648(1) 3774(2)

Table 4.2: Benchmarking for binary ciphertext-ciphertext operations as well as modulus switch-
ing using SEAL for the polynomial degree d = 32768. Results are shown in µs and standard
errors are given in brackets.

We analyse the effect of circuit rewriting based on noise-guided modulus
switching on a selection of circuits to represent best-case scenarios as well
as worst-case scenarios to show that the pursued strategies can have various
effect on circuits of varying nature. In addition, we use circuits from the
EPFL benchmarking suite to evaluate the effect on a non-constructed cir-
cuit. Note that the circuits from the EPFL benchmarking suite are designed
to benchmark hardware design tools and are not realistic in terms of what
is feasible with homomorphic evaluation. Hence, truncated versions have
been chosen to represent realistic and non-biased non-pathological circuits.
Evaluated circuits have been selected to clearly show the effect of the num-
ber of performed additions in a circuit on the efficacy of the optimisations
introduced. The overall effect on runtime of homomorphic circuit evalua-
tion after application of Algorithms 2 and 3 is relatively small, usually in
the range of 2 percent. Table 4.3 shows the ratios of observed average run-
times of homomorphic evaluation of the original circuits and the runtimes
measured after insertion of modulus switching instructions by Algorithms
2 and 3. Bootstrapping on the benchmarking data has been performed to
obtain a distribution of averages, from which the average speedup has been
calculated. From the Table 4.3 it can be seen, that circuit rewriting based on
modulus switching does not necessarily have a positive impact on compu-
tational performance. We will see that the effect of applying Algorithms 2
and 3 is highly dependent on the circuit considered.

Consider the circuit representing the evaluation of the polynomial f (x, y, z) =
(x4 + y) · z4 (Figure 4.1). Noise heuristics calculations are shown for a poly-

36

4.2. Circuit Rewriting based on noise-guided modulus switching

Circuit d = 8192 d = 16384 d = 32768
(x4 + y) · z4 1.02 1.02 1.01

(x4 + y) · z4 + ∑12
i=1 ai 0.93 0.98 0.98
Adder - 1.00 0.99
Bar - 1.00 1.02
Max - 1.02 1.00

Table 4.3: Average speedup factors for the evaluation of selected circuits. Speedup factors have
been calculated as the ratio of runtimes without modulus switching and with modulus switching.

(x4 + y) · z4

33z4

251z3

279z2

307
z

335

z
335

z
335

z
335

x4 + y

251y
335

x4

251
x

335

x3

279
x

335

x2

307
x

335

x
335

Figure 4.1: Circuit noise budget analysis for the evaluation of f (x, y, z) = (x · x · x · x + y) · (z ·
z · z · x) using noise heuristics from [18] and for a polynomial degree of d = 16384. The tree
shows remaining noise budgets after each operation (bold black).

nomial degree of d = 16384. By construction, the algorithms insert a mod-
ulus switching operation applied to each of the operands (x4 + y) and z4

precisely before the calculation of the final result (x4 + y) · z4, In Table 4.4
and Figure 4.2 we show a comparison of average over 100 runtime evalu-
ations when computing the circuit with and without ModSwitch before the
last operation using SEAL for polynomial degrees d ∈ {8192, 16384, 32768}.
Table 4.3 shows a speedup factor greater than 1 when inserting modulus
switching. We observe improvement in runtime when including modulus
switching into the homomorphic evaluation of the circuit while ensuring the
correctness of the computation’s result.

This is, however due to the nature of the circuit, since there are no additions
present in the circuit, whose operands need to undergo modulus switching
as a consequence of the rewriting of the circuit. To illustrate the importance

37

4. Implementation and Evaluation

of the nature of the arithmetic circuit on runtime improvement and to show
that the application of Algorithms 2 and 3 can indeed have a detrimental
effect on the runtimes of homomorphic circuit evaluation we consider the
circuit evaluating the function (x4 + y) · z4 + ∑12

i=1 ai. As in the previous ex-
ample, Algorithm 2 inserts a modulus switching operation before the mul-
tiplication (x4 + y) · z4. In order to compensate for parameter mismatches
in the consecutive additions, Algorithm 3 applies modulus switching to the
summands ai, (i ∈ {1, . . . , 12}). This, however, has a negative effect on run-
times of homomorphic evaluations as shown in Table 4.5 and Figure 4.3,
as well as Table 4.3. We observe slower runtimes after the application of
Algorithms 2 and 3 compared to evaluating the original circuit.

d ModSwitch no ModSwitch

8192 75(0.2) 76(0.02)
16384 323(1) 338(8)
32768 1605(4) 1624(5)

Table 4.4: Average runtime in ms for the evaluation of f (x, y, z) = (x4 + y) · z4 using SEAL with
and without performing modulus switching on the operands of the last multiplication. Standard
errors are shown in parentheses.

38

4.2. Circuit Rewriting based on noise-guided modulus switching

Figure 4.2: Point plots of average runtimes (ms) with error bars of the homomorphic evaluation
of the function f (x, y, z) = (x4 + y) · z4 using SEAL with (left) and without (right) the insertion
of modulus switching operations using the Algorithms 2 and 3. Results are shown for polynomial
degrees of 8192 (top), 16384 (middle), and 32768 (bottom).

39

4. Implementation and Evaluation

Figure 4.3: Point plots of average runtimes (ms) with error bars of the homomorphic evaluation
of the function (x4 + y) · z4 + ∑12

i=1 ai using SEAL with (left) and without (right) the insertion
of modulus switching operations using the Algorithms 2 and 3. Results are shown for polynomial
degrees of 8192 (top), 16384 (middle), and 32768 (bottom).

40

4.2. Circuit Rewriting based on noise-guided modulus switching

d ModSwitch no ModSwitch

8192 82(1) 76(0.2)
16384 340(1) 333(1)
32768 1662(7) 1628(4)

Table 4.5: Benchmarking results in ms of the homomorphic evaluation of the arithmetic circuit
evaluating the function (x4 + y) · z4 + ∑12

i=1 ai before (right column) and after (left column)
insertion of modulus switching operations using Algorithms 2 and 3. Standard errors are shown
in brackets.

To study the effect of automatic circuit rewriting based on noise-guided
modulus switching on realistic arithmetic circuits, we further performed
benchmarking on a subset of arithmetic circuits from the EPFL Combinato-
rial Benchmark Suite, a set of circuits that are intentionally left sub-optimal
to allow testing of optimisation strategies. The set of arithmetic circuits cho-
sen for testing consist of the circuits Adder (Adder), Barrel Shifter (Bar), and
Max (Max) and circuits have been truncated to ensure the correctness of ho-
momorphic evaluation. Runtime evaluation of the circuits with and without
inserted modulus switching operations is presented in Tables 4.6 and 4.7,
as well as in Figures 4.4, 4.5 and 4.6 for polynomial degrees d = 16384 and
d = 32768, respectively. Speedup factors are presented in Table 4.3. The
Adder circuit’s evaluation time in fact increases upon the insertion of mod-
ulus switches by the algorithms, which is likely due to the large number of
additions in the circuit. For the other two circuits, we observe some improve-
ment in runtime. These results suggest that we cannot predict a significant
runtime improvement in a general circuit’s homomorphic evaluation and
that the efficacy of the proposed rewriting algorithms is highly dependent
on a circuit’s number of performed additions.

d = 16384 Adder Bar Max

no ModSwitch 4902(14) 2421(3) 8914(46)
ModSwitch 4858(2) 2413(3) 8775(25)

Table 4.6: Benchmarking results in ms for the homomorphic evaluation of selected circuits from
the EPFL Combinatorial Benchmarking Suite using SEAL for a polynomial degree d = 16384.
Standard errors are given in brackets.

41

4. Implementation and Evaluation

d = 32768 Adder Bar Max

no ModSwitch 26074(25) 13130(31) 53479(225)
ModSwitch 26322(68) 12830(19) 53520(186)

Table 4.7: Benchmarking results in ms for the homomorphic evaluation of selected circuits from
the EPFL Combinatorial Benchmarking Suite using SEAL for a polynomial degree d = 32768.
Standard errors are given in brackets.

Figure 4.4: Point plots of average runtimes (ms) with error bars of the homomorphic evaluation
of the Adder circuit using SEAL with (left) and without (right) the insertion of modulus switching
operations using the Algorithms 2 and 3. Results are shown for polynomial degrees 16384 (top),
and 32768 (bottom).

42

4.2. Circuit Rewriting based on noise-guided modulus switching

Figure 4.5: Point plots of average runtimes (ms) with error bars of the homomorphic evaluation
of the Barrel Shifter circuit using SEAL with (left) and without (right) the insertion of modulus
switching operations using the Algorithms 2 and 3. Results are shown for polynomial degrees
16384 (top), and 32768 (bottom).

43

4. Implementation and Evaluation

Figure 4.6: Point plots of average runtimes (ms) with error bars of the homomorphic evaluation
of the Max circuit using SEAL with (left) and without (right) the insertion of modulus switching
operations using the Algorithms 2 and 3. Results are shown for polynomial degrees 16384 (top),
and 32768 (bottom).

To further elucidate potential runtime improvement as a function of per-
formed multiplications in an arithmetic circuit, we measure runtimes of ho-
momorphic evaluations of the circuit evaluating the function

(
∑n

i=1 x2
i
)
· y8

for n = 2r, (r ∈ {0, . . . , 9}). We apply modulus switching to the variables xi
before calculating their respective squares and to y8 and compare runtimes
to the circuits evaluating the same function without modulus switching for
polynomial degrees d = {16384, 32768}. Overall runtimes are shown in
Figure 4.7 and average speedup factors calculated from bootstrapping per-
formed on the benchmarking data is shown in Figure 4.8.

44

4.2. Circuit Rewriting based on noise-guided modulus switching

Figure 4.7: Runtime evaluation of the circuit evaluating
(
∑n

i=1 x2
i
)
· y8 for n = 2r as function

of the number of summands x2
i for polynomial degrees 16384 (left) and 32768 (right). Runtimes

in milliseconds are shown for the evaluation with (blue) and without (brown) inserted modulus
switching operations before calculating squares of xi, i ∈ {1, . . . , n} and after calculating y8.

Figure 4.8: Average speedup factor of the homomorphic evaluation of
(
∑n

i=1 x2
i
)
· y8 for n = 2r

as function of the number of summands x2
i for polynomial degrees 16384 (left) and 32768 (right).

The speedup factor has been calculated as the fraction of the bootstrapped averages over the
runtimes without modulus switching divided by the bootstrapped averages over the runtimes
with modulus switching.

To illustrate the adverse effect the automatic insertion of modulus switching
operations can have on performance, we consider the circuit evaluating the
function (x4 + y) · z4 + ∑n

i=1 ai, again for n = 2r, (r ∈ {0, . . . , 9}). As before,
Algorithm 2 inserts a single modulus switching operation that has to be
compensated for by applying modulus switching to all operands ai of the
following additions. Runtimes are shown in Figure 4.9 and speedups are
presented in Figure 4.10 for for polynomial degrees d = {16384, 32768}.

45

4. Implementation and Evaluation

Figure 4.9: Runtime evaluation of the circuit evaluating (x4 + y) · z4 + ∑n
i=1 ai for n = 2r as

function of the number of summands ai for polynomial degrees 16384 (left) and 32768 (right).
Runtimes in milliseconds are shown for the evaluation with (blue) and without (brown) inserted
modulus switching operations.

Figure 4.10: Average speedup factor of the homomorphic evaluation of (x4 + y) · z4 + ∑n
i=1 ai

for n = 2r as function of the number of summands x2
i for polynomial degrees 16384 (left)

and 32768 (right). The speedup factor has been calculated as the fraction of the bootstrapped
averages over the runtimes without modulus switching divided by the bootstrapped averages over
the runtimes with modulus switching.

These results show that it is indeed possible to achieve both, performance
improvement and deterioration thereof, depending on the nature of the
arithmetic circuit, when applying Algorithms 2 and 3. Results indicate a
significant increase of performance of a homomorphic evaluation, when ap-
plying modulus switching to operands of multiplications early in the com-
putation. However, a negative effect on runtime has been observed when
applying modulus switching before additions, highlighting the need of re-
fining Algorithms 2 and 3. We suggest, that the algorithms proposed could
be adapted to only accept the insertion of modulus switching when there
are few or no additions affected by the changes. As seen in Tables 4.1 and
4.2, modulus switching operations are fast compared to multiplication, but
slow compared to additions. Therefore, if one intends to achieve runtime
improvements of the homomorphic evaluation of arithmetic circuits, it is

46

4.2. Circuit Rewriting based on noise-guided modulus switching

advisable to apply modulus switching solely operands of multiplications.
However, to avoid parameter mismatches and therefore ensure correctness
of the circuit, this is not always feasible, since the automatic insertion of a
modulus switching operation can cause the insertion of modulus switches
to the operands of an an addition at later points in the computation. This is
expected to limit the overall runtime improvement of the automatic insertion
of modulus switches in a general circuit.

However, circuit rewriting based on noise-guided modulus switching is ex-
pected to have favourable effect on the throughput for hardware accelerated
FHE by minimising the use of memory requirements of homomorphic eval-
uation.

47

Chapter 5

Discussion

The current work explores automatic circuit rewriting to optimise homo-
morphic evaluations. In particular, the quantity of ciphertext noise has been
used to guide a user to potentially problematic areas in the given circuit, as
well as to identify regions of circuits where rewriting is possible and poten-
tially beneficial in terms of evaluation performance.

Noise heuristics Noise heuristics from [10] have been implemented in the
compiling framework of the Automated Batching Compiler (ABC). Noise
heuristic calculations are fast compared to actual homomorphic circuit eval-
uations and therefore are a well suited to serve as a base for rewriting algo-
rithms. Noise heuristics generally overestimate actual ciphertext noise, but
are indeed a useful quantity characterising the quality of arithmetic circuits.

Cone Rewriting We used the example of the existing Cone Rewriting opti-
mization [2] to explore the state of the art of circuit transformations. While
cone rewriting has many opportunities to improve efficiency of the evalua-
tion of large binary circuits (see results in [2]), the method is less beneficial
for arithmetic circuits, since many arithmetic circuits do not fulfill the spe-
cific requirements for the application of cone rewriting. As an example, one
might consider the circuit evaluating the χ2 test as done in [30], where cone-
rewriting is not applicable. Further, binary circuits are usually evaluated
using the TFHE scheme [9], which uses per-gate bootstrapping. In this set-
ting, cone rewriting has a negative effect on efficiency because depth is not a
factor and runtime is instead correlated only to the number of logical gates,
which cone rewriting increases.

Noise-guided modulus switching We present a novel automatic circuit rewrit-
ing technique that is capable of rewriting circuits based on insights gener-
ated from noise heuristics. The algorithms insert modulus switching oper-

49

5. Discussion

ations before homomorphic multiplications at appropriate points while en-
suring correctness of decryption of the final result of the computation. When
applying modulus switching to ciphertext operands of a multiplication, we
observe improvement in runtime of homomorphic evaluation. However,
since ciphertext moduli of operands of a binary operations must match, it
is possible that in order to retain correctness of the arithmetic circuits, ad-
ditional modulus switching operations must be inserted in different parts
of the circuit, including before additions. Our results show that this can
have a detrimental effect on runtime of homomorphic evaluation. Therefore,
this optimisation strategy is–like the existing Cone Rewriting optimization–
strongly dependent on the nature of the considered circuit.

Considering potential future developments in hardware design specifically
for FHE, which will probably be bottle-necked by memory rather than com-
pute, the developed algorithms could be beneficial for limiting ciphertext
size from the earliest possible point on in the circuit. This should allow
higher throughput and is expected to more significantly impact performance
of FHE calculations on such accelerators.

Outlook Future work could entail a refinement of the set of algorithms
that insert modulus switching. A strategy could be pursued that avoids
the insertion of modulus switching operations before a multiplication if too
many operands of additions need to undergo modulus switching as a con-
sequence.

Another promising outlook is the effect of the developed algorithms on
memory usage of homomorphic evaluations paving the way for optimisa-
tions for high throughput FHE specific hardware.

50

Appendix A

Noise Growth Heuristics

A.1 Theoretical Bounds

We present theoretical bounds on the noise of freshly encrypted ciphertexts,
as well as noise resulting from homomorphic ring operations in SEAL. In
this section, we use Definition 2.8 for the noise. In the following we shall
use the notation rt(q) = q mod t and consider a distribution χ such that
‖χ‖ < B for an integer B.

Initial Noise:

Lemma A.1 Let ct = (c0, c1) be a freshly encrypted ciphertext of the plaintext
m ∈ Rt. Then, the noise v contained in ct satisfies the bound

‖v‖ ≤ rt(q)
q
‖m‖+ tB

q
(2d + 1). (A.1)

Proof See the Appendix of [22] for a proof. �

Addition of ciphertexts:

Lemma A.2 Let ct1 = (c0, . . . , cj) and ct2 = (d0, . . . , dk) two ciphertexts that
decrypt to m1 ∈ Rt and m2 ∈ Rt and with noises v1 and v2, respectively. Then,
the noise in the sum ctadd = ct1 + ct2 is vadd = v1 + v2 and satisfies ‖vadd‖ ≤
‖v1‖+ ‖v2‖.

Proof See the Appendix of [22] for a proof. �

Multiplication of ciphertexts:

Lemma A.3 Let ct1 = (x0, . . . , xj1) and ct2 = (y0, . . . , yj2) be two ciphertexts
encrypting m1 and m2 with noises v1 and v2, respectively. Let the number of non-
zero terms in the polynomials m1 and m2 be bounded by Nm1 and Nm2 , respectively.

51

A. Noise Growth Heuristics

Then, the noise vmult in the product ctmult = ct1 · ct2 is given by

vmult = m1 · v2 + m2 · v1 + v1 · v2 + (v1 · a2 + v2 · a1)t +
t
q

j1+j2

∑
i=0

ε isi, (A.2)

where a1 and a2 are polynomials with integer coefficients. The ciphertext ctmult
satisfies the bound

‖vmult‖ ≤
[
(Nm1 + d)‖m1‖+

dt
2
· dj1+1 − 1

d− 1

]
‖v2‖

+

[
(Nm2 + d)‖m2‖+

dt
2
· dj2+1 − 1

d− 1

]
‖v2‖

+ 3d‖v1‖‖v2‖+
t

2q

(
dj1+j2+1 − 1

d− 1

)
,

(A.3)

where d denotes the degree of the cyclotomic polynomial f (x) from Definition 2.1.

Proof See the Appendix of [22] for a proof. �

Relinearisation:

Lemma A.4 Let ct be a ciphertext of size M + 1 encrypting the plaintext m ∈ Rt.
Denote by v the noise of ct. Let ctrelin be the ciphertext of size N + 1 obtained by
relinearisation of the ciphertext ct. Then, 2 ≤ N + 1 ≤ M + 1 and the noise vrelin
is given by

vrelin = v− t
q

M−N−1

∑
j=0

`

∑
i=0

e(M−j),ic
(i)
m−j. (A.4)

Its infinity norm can be bounded by

‖vrelin‖ ≤ ‖v‖+
t
q
(M− N)nB(`+ 1)w. (A.5)

Proof See the Appendix of [22] for a proof. �

Ciphertext-plaintext addition:

Lemma A.5 Let ct = (x0, . . . , xj) be a ciphertext that encrypts a plaintext m1 ∈
Rt with noise v and let m2 ∈ Rt be a plaintext. Let ctpadd denote the ciphertext
obtained by ciphertext-plaintext addition of ct and m2. Then the noise vpadd in
ctpadd satisfies

‖vpadd‖ ≤ ‖v‖+
rt(q)

q
‖m2‖. (A.6)

Proof See the Appendix of [22] for a proof. �

52

A.2. Heuristic Bounds

Ciphertext-plaintext multiplication:

Lemma A.6 Let ct = (x0, . . . , xj) be a ciphertext that encrypts a plaintext m1 ∈
Rt with noise v and let m2 ∈ Rt be a plaintext. Let Nm2 be an upper bound on
the number of non-zero terms of the polynomial m2. Then, the noise vpmultof the
ciphertext ctpmult resulting from the plaintext-ciphertext multiplication of m2 and
ct satisfies

‖vpmult ‖ ≤ Nm2‖m2‖‖v‖. (A.7)

Proof See the Appendix of [22] for a proof. �

Negation:

Lemma A.7 Let ct be a ciphertext that encrypts a plaintext m ∈ Rt with noise v
and let ctneg be its negation with noise vneg. Then,

vneg = −v (A.8)

and
‖vneq‖ = ‖v‖. (A.9)

Proof See the Appendix of [22] for a proof. �

A.2 Heuristic Bounds

We show noise heuristics for encryption and homomorphic operations as
shown in [18, 10], as they have been studied and compared with experi-
mental bounds in [10] and therefore are most relevant for the current work.
There are also noise heuristics presented in the SEAL manual [22], however
noise heuristics presented in [18] present tighter bounds on the noise lead-
ing to a better approximation of noise derived from actual homomorphic
operations. The noise heuristics discussed in [18] use the notion of invariant
noise from Definition 2.8.

Encryption noise heuristics: Let ct = (c0, c1) be a freshly encrypted ci-
phertext, encrypting the plaintext m ∈ Rt. Denote by v the noise of the
ciphertext. The variance of the Gaussian variable ‖e · u + e1 + e2 · s‖can is
equal to σ̃

√
4d2/3 + d (see [18] for a proof). Hence, with high probability,

‖v‖can ≤ t
q

(
d(t− 1)

2
+ 2σ̃

√
12d2 + 9d

)
. (A.10)

With Lemma (2.9) it follows that the parameters q, t, d, σ̃ can be chosen such
that

t
q

(
d(t− 1)

2
+ 2σ̃

√
12d2 + 9d

)
<

1
2

. (A.11)

53

A. Noise Growth Heuristics

Noise heuristics after addition Let ct1 and ct2 be two ciphertexts encrypt-
ing having noises v1 and v2, respectively. Then the noise vadd in their sum
satisfies

‖vadd‖can ≤ ‖v1‖can + ‖v2‖can. (A.12)

Noise heuristics after multiplication With very high probability, the invari-
ant noise after the multiplication of two ciphertexts is bounded by

‖vmult‖can ≤ t
√

3d + 2d2 (‖v1‖can + ‖v2‖can)

+ 3‖v1‖can‖v2‖can +
t
q

√
3d + 2d2 + 4d3/3.

(A.13)

Noise heuristics after relinearisation The canonical norm of the invariant
noise after relinearisation can be bounded by

‖vrelin‖can ≤ ‖v‖can +
t
q

Tσ̃d
√

3(`+ 1). (A.14)

Noise heuristics after multiplication with subsequent relinearisation The
total invariant noise growth after multiplication with subsequent relineari-
sation is obtained by combining the above noise heuristics for multiplication
and relinearisation:

‖vmult,relin‖can ≤ t
√

3d + 2d2 (‖v1‖can + ‖v2‖can) + 3‖v1‖can‖v2‖can

+
t
q

(√
3d + 2d2 + 4d3/3 + Tσ̃d

√
3(`+ 1)

)
.

(A.15)

Modulus Switching noise heuristics Noise heuristics for modulus switch-
ing is presented in [10]. Let ct be a ciphertext encrypting a plaintext m with
invariant noise v with respect to a ciphertext modulus q. Let ctmod be the
ciphertext encrypting m obtained by modulus switching to the modulus t.
Then, with high probability, the invariant noise vmod of ctmod satisfies

‖vmod‖can ≤ ‖v‖can +
t
p
·
√

3d + 2d2. (A.16)

Plaintext-Ciphertext operation heuristics For plaintext-ciphertext opera-
tions, one takes the theoretical bounds as seen in Lemmas A.5 and A.6 as
noise heuristics.

54

A.3. Noise Heuristics in ABC

A.3 Noise Heuristics in ABC

In an effort to improve circuit design using noise heuristics, we have imple-
mented the noise heuristics from [18] for ciphertext-ciphertext operations
and from [22] for ciphertext-plaintext operations, as well as the ModSwitch

heuristic from [10].
As in [10], we calculate noise heuristics for d ∈ {4096, 8192, 16384} and a
plaintext modulus of t = 65537, a prime congruent to 1 mod d, which is
required to enable batching in SEAL. All other parameters were kept as
the default parameters from SEAL. We note that SEAL selects a suitable,
but not necessarily optimal, coefficient modulus q based on the polynomial
degree d. Tables A.1 and A.2 show the noise heuristics for ciphertext encryp-
tion and ciphertext-ciphertext operations, ciphertext-plaintext operations, as
well as modulus switching, taken from [10] as well as the heuristics calcu-
lated using the ABC framework. As in [10], we observe an overestimation of
the noise value in comparison to SEAL. We also observe discrepancies when
comparing with results from [10], which is caused by a different coefficient
modulus obtained by different versions of SEAL. However, for the analysis
of arithmetic circuits, the noise heuristics as implemented in the ABC have
suitable properties for identifying regions of noise growth.

Enc Add Mult ModSwitch

d [10] E [10] E [10] E [10] E
4096 71 27 70 26 41 3 25 27
8192 179 128 178 128 148 104 133 128

16384 398 342 397 341 366 317 352 342

Table A.1: Calculated noise heuristics for ciphertext-ciphertext homomorphic operations, as
well as encryption of a fresh ciphertext. Column E gives the noise budget calculated using noise
heuristics from [18] and [10]. The column denoted by [10] shows the result from the noise budget
estimate by Costache et al. using the same noise heuristics ([18]).

Add Mult
d E E

4096 26 0
8192 127 99
16384 341 312

Table A.2: Calculated noise heuristics for ciphertext-plaintext homomorphic operations, as well
as encryption of a fresh ciphertext. Column E gives the noise budget calculated using noise
heuristics from [22].

55

A. Noise Growth Heuristics

Computational Performance of evaluating Arithmetic Circuits using Noise
Heuristics Calculating only noise heuristics is significantly faster than ac-
tual evaluations using SEAL, making the noise heuristics an efficient means
to analyse noise behaviour in given arithmetic circuits. To see this, the total
runtime of the evaluation of an array of arithmetic circuits using the ABC
has been collected according to specifications in Section 4.1.2. Evaluations
have been performed on single binary ciphertext-ciphertext and ciphertext-
plaintext operations, as well as for a selection of other arithmetic circuits.
The resulting runtimes of evaluating arithmetic circuits as ASTs using SEAL
and heuristics from [18] are shown in milliseconds in Figure A.3.

SEAL E
Encryption 320 118

Ctxt-Ctxt Add 317 125
Ctxt-Ctxt Mult 320 118
Ctxt-Ptxt Add 294 128
Ctxt-Ptxt Mult 295 125
x · x · x · x · x 330 119

Table A.3: Runtimes (ms) of evaluating single binary operations and the function x · x · x · x
using SEAL (column denoted by SEAL) and noise heuristics from [18] (column denoted by E).

56

Bibliography

[1] David W. Archer, José Manuel Calderón Trilla, Jason Dagit, Alex Mal-
ozemoff, Yuriy Polyakov, Kurt Rohloff, and Gerard Ryan. RAMPARTS:
A Programmer-Friendly System for Building Homomorphic Encryp-
tion Applications. In Proceedings of the 7th ACM Workshop on Encrypted
Computing & Applied Homomorphic Cryptography - WAHC’19, pages 57–
68, London, United Kingdom, 2019. ACM Press.

[2] Pascal Aubry, Sergiu Carpov, and Renaud Sirdey. Faster homomorphic
encryption is not enough: improved heuristic for multiplicative depth
minimization of Boolean circuits. Technical Report 963, 2019.

[3] Jean-Claude Bajard, Julien Eynard, Anwar Hasan, and Vincent Zucca.
A Full RNS Variant of FV like Somewhat Homomorphic Encryption
Schemes. Technical Report 510, 2016.

[4] Fabian Boemer, Anamaria Costache, Rosario Cammarota, and Casimir
Wierzynski. nGraph-HE2: A High-Throughput Framework for Neural
Network Inference on Encrypted Data. arXiv:1908.04172 [cs], August
2019. arXiv: 1908.04172.

[5] Zvika Brakerski. Fully Homomorphic Encryption without Modulus
Switching from Classical GapSVP. Technical Report 078, 2012.

[6] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled)
Fully Homomorphic Encryption without Bootstrapping. ACM Transac-
tions on Computation Theory, 6(3):1–36, July 2014.

[7] Sergiu Carpov, Pascal Aubry, and Renaud Sirdey. A multi-start heuris-
tic for multiplicative depth minimization of boolean circuits. Technical
Report 483, 2017.

57

Bibliography

[8] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homo-
morphic Encryption for Arithmetic of Approximate Numbers. Techni-
cal Report 421, 2016.

[9] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. Faster Fully Homomorphic Encryption: Bootstrapping in
less than 0.1 Seconds. Technical Report 870, 2016.

[10] Anamaria Costache, Kim Laine, and Rachel Player. Evaluating the effec-
tiveness of heuristic worst-case noise analysis in FHE. Technical Report
493, 2019.

[11] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim
Laine, and Madanlal Musuvathi. EVA: An Encrypted Vector Arithmetic
Language and Compiler for Efficient Homomorphic Computation. Pro-
ceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 546–561, June 2020. arXiv: 1912.11951.

[12] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter,
Saeed Maleki, Madanlal Musuvathi, and Todd Mytkowicz. CHET: an
optimizing compiler for fully-homomorphic neural-network inferenc-
ing. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 142–156, Phoenix AZ USA,
June 2019. ACM.

[13] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully ho-
momorphic encryption. IACR Cryptology ePrint Archive, page 2012.

[14] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD. Disser-
tation, Stanford University, page 209, 2009.

[15] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic Evalua-
tion of the AES Circuit. Technical Report 099, 2012.

[16] Shai Halevi, Yuriy Polyakov, and Victor Shoup. An Improved RNS Vari-
ant of the BFV Homomorphic Encryption Scheme. In Mitsuru Matsui,
editor, Topics in Cryptology – CT-RSA 2019, Lecture Notes in Computer
Science, pages 83–105, Cham, 2019. Springer International Publishing.

[17] Vincent HERBERT. Automatize parameter tuning in Ring-Learning-
With-Errors-based leveled homomorphic cryptosystem implementa-
tions. Technical Report 1402, 2019.

[18] I. Iliashenko. Optimisations of Fully Homomorphic Encryption. PhD thesis,
2019.

58

Bibliography

[19] Andrey Kim, Yuriy Polyakov, and Vincent Zucca. Revisiting Homo-
morphic Encryption Schemes for Finite Fields. Technical Report 204,
2021.

[20] Miran Kim, Arif Harmanci, Jean-Philippe Bossuat, Sergiu Carpov,
Jung Hee Cheon, Ilaria Chillotti, Wonhee Cho, David Froelicher, Nico-
las Gama, Mariya Georgieva, Seungwan Hong, Jean-Pierre Hubaux,
Duhyeong Kim, Kristin Lauter, Yiping Ma, Lucila Ohno-Machado,
Heidi Sofia, Yongha Son, Yongsoo Song, Juan Troncoso-Pastoriza, and
Xiaoqian Jiang. Ultra-Fast Homomorphic Encryption Models enable
Secure Outsourcing of Genotype Imputation. July 2020.

[21] Miran Kim, Yongsoo Song, Baiyu Li, and Daniele Micciancio. Semi-
Parallel logistic regression for GWAS on encrypted data. BMC Medical
Genomics, 13(S7):99, July 2020.

[22] Kim Laine. Simple Encrypted Arithmetic Library 2.3.1. Microsoft Re-
search.

[23] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices
and Learning with Errors Over Rings. Technical Report 230, 2012.

[24] Microsoft. Asure Run. https://github.com/microsoft/SEAL-
Demo/tree/master/AsureRun, 2019.

[25] Jürgen Neukirch. Algebraic Number Theory. Grundlehren der mathema-
tischen Wissenschaften. Springer-Verlag, Berlin Heidelberg, 1999.

[26] Mohammad Saidur Rahman, Ibrahim Khalil, Mohammed Atiquzza-
man, and Xun Yi. Towards privacy preserving AI based composition
framework in edge networks using fully homomorphic encryption. En-
gineering Applications of Artificial Intelligence, 94:103737, September 2020.

[27] Kazue Sako, editor. Topics in Cryptology - CT-RSA 2016: The Cryptogra-
phers’ Track at the RSA Conference 2016, San Francisco, CA, USA, February
29 - March 4, 2016, Proceedings, volume 9610 of Lecture Notes in Computer
Science. Springer International Publishing, Cham, 2016.

[28] N. P. Smart and F. Vercauteren. Fully Homomorphic SIMD Operations.
Technical Report 133, 2011.

[29] Tim van Elsloo, Giorgio Patrini, and Hamish Ivey-Law. SEALion:
a Framework for Neural Network Inference on Encrypted Data.
arXiv:1904.12840 [cs, stat], April 2019. arXiv: 1904.12840.

59

Bibliography

[30] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. SoK: Fully Ho-
momorphic Encryption Compilers. arXiv:2101.07078 [cs], January 2021.
arXiv: 2101.07078.

60

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

	Contents
	Introduction
	Background
	Basic Notation and Preliminaries
	The RLWE Problem
	The Brakerski/Fan-Vercauteren Scheme
	Textbook BFV
	BFV in Microsoft SEAL

	Noise Growth Heuristics

	Design
	FHE Compilation
	Circuit Optimisations and Noise Heuristics
	Identifying Areas of Significant Noise Growth
	Cone Rewriting of Arithmetic Circuits

	Circuit Rewriting based on noise-guided Modulus Switching

	Implementation and Evaluation
	Implementation
	Noise Heuristics in the ABC
	Evaluation Setup

	Circuit Rewriting based on noise-guided modulus switching

	Discussion
	Noise Growth Heuristics
	Theoretical Bounds
	Heuristic Bounds
	Noise Heuristics in ABC

	Bibliography

