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Abstract

Counting filters are Probabilistic Data Structures (PDS) that support
Approximate Membership Queries (AMQ). They use space and time-
efficient representations of data in order to respond to membership
queries about the data set. Counting filters are often used in envi-
ronments where adversaries can manipulate the inputs, for example
to increase the false positive and false negative rates of the filter. We
study the security of Counting filters. First, we investigate attacks on
Counting filters. Then, we use an existing simulation-based framework
to analyse the correctness of insertion-only Counting filters, and we ex-
tend it to analyse the correctness of Counting filters with deletions. We
compute the adversary’s advantage when Counting filters are secured
replacing hash functions with keyed pseudorandom functions in their
construction.
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Chapter 1

Introduction

Data sets are often queried in order to answer elementary questions such as
whether an items exist in the data set, what are the most frequent items, or
what are the number of unique items. In order to perform these queries,
deterministic approaches such as hash tables were implemented. However,
since data sets are becoming larger and more complex, these traditional
approaches become infeasible [23].

As a response, probabilistic data structures (PDS) were introduced. Proba-
bilistic data structures use space and time-efficient representations of data in
order to respond to queries about the data set. Nonetheless, these structures
do not provide exact responses, introducing non-zero error probabilities.

Some of the most popular probabilistic data structure are Bloom filters, Hy-
perLogLog, or Count-Min Sketch. Bloom filters [6] support membership
queries and are used to test whether an element is a member of a set. Hy-
perLogLog [14] estimates the number of distinct items in data sets. Finally,
Count-Min Sketch [9] provides an estimate of the counts for items and finds
the most frequent items.

Their various applications include packet routing scheme in networks [7],
data mining of biological data [5], and detection of heavy hitters for DoS
attacks and anomaly exposure [29].

Currently, evaluations of the correctness of PDS are usually performed in
a non-adversarial setting. However, these PDS are often used in adversar-
ial settings where the adversary may be able to choose inputs and queries
adaptively to influence those bounds. These attacks on PDS can become very
harmful for the real systems as they can disrupt or reduce their availability.
As an example, considering the previously mentioned case of detection of
heavy hitters for DoS attacks, if an attacker is able to influence the PDS as
desired, the DoS attacks might not be detected before causing serious dam-
age to the availability of the system.
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1. Introduction

By consequence, these probabilistic data structures need to be analyzed in
adversarial setting. Possible attacks should be investigated and the adver-
sarial scenarios clearly defined.

In this thesis, we focus on a specific probabilistic data structure: the Count-
ing filter, introduced for the first time by Li Fan et al. in [13]. The Counting
filter is an extension of the well known Bloom filter but uses counters instead
of bits. This allows Counting filters to answer set membership queries, in
addition to allow deletions as in Cuckoo filters [12].

The main advantages of Counting filters are that, as in Cuckoo filters, they
allow deletions, and as in Bloom filters, they provide answers to queries in
O(1) time. However, compared to Bloom filters, since deletions are allowed,
false negatives arise and introduce a new error probability. Additionally,
more attacks exist against Counting filters compared to Bloom filters due
to deletions. Compared to Cuckoo filters, Counting filters are not based
on recursive entry ”kicking” as the filter approaches its maximum capacity,
thus less elements might be able to be inserted in the filter. We notice that
previous work were released comparing Bloom filters and Cuckoo filters
[12] [25], but never including Counting filters.

In the literature Counting filter usually rely on hash functions. However, we
are going to argue that using hash functions is not secure in any reasonable
setting. In our proofs, we are going to replace these hash functions with
pseudo-random functions (PRFs). A PRF is a keyed function which is de-
terministic but indistinguishable from a truly random function of the input.
We will model the PRFs as truly random functions that the Counting filter
oracle has access to. Using a PRF instead of a hash function is the usual
proposition to secure the filter [8].

1.1 Related Work

Before probabilistic data structures were introduced, simple data structure
were used such as hash tables. In 1993, Lipton et.al. [20] showed that adver-
saries can degrade the performances of systems relying on hash tables, by
adaptively choosing the inputs. Later, Crosby et. al. [10] presented denial
of service attacks against hash table implementations.

Regarding PDS, several works were released on Bloom filters under adver-
sarial environments. Gerbet et al. [16] constructed adversary models for
Bloom filters, computed the worst-case parameters in adversarial settings,
and proposed several countermeasures to mitigate their attacks. Naor and
Yogev [22] also considered Bloom filters in the adversarial model, analysed
adversarial correctness of Bloom filters in a game-based setting, and pro-
posed a construction of a more robust Bloom filter. From a more practical
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1.2. Outline

point of view, Antikainen et al. [3] presented DoS attacks against broad
classes of Bloom-filter-based protocols.

In our work, we will use simulation-based security frameworks. Pater-
son and Raynal [24] focused on Hyperloglog and introduced attacks and
simulation-based definitions to study its correctness under adversarial in-
puts. In a more general work, Filić et. al. [21] developed simulation-based
security definitions for analysing the security of Approximate Membership
Queries (AMQ)-PDS. They used their security models to analyse Bloom and
Cuckoo filters. We will extend their work in Chapter 4.

Focusing on Counting filters, two main works were released on Counting
filters in adversarial setting. Reviriego and Rottenstreich [26] described two
attacks against Counting filters, and Clayton et al. [8] provided a provable-
security treatment of Bloom filter and Counting filters in adversarial envi-
ronments. They derived a bound on the adversarial correctness of Counting
filters using a game based approach. This approach requires the introduc-
tion of a winning condition for the adversary.

1.2 Outline

Our goal is to study Counting filters in adversarial environments using a
simulation based approach. Compared to Clayton et al. [8] using a game
based approach, using a simulation based approach allows us to remove the
requirement of a winning condition for the adversary.

In Chapter 2, we present Counting filters. We explain their syntax and al-
gorithms. We also give concrete examples of Counting filter’s applications,
and introduce the adversarial scenarios.

In Chapter 3, we investigate the most important attacks on Counting fil-
ters. We explain the adversary’s goals and how to achieve them in practice.
Additionally, we implement a specific attack on Counting filters where the
adversary has access to insert, delete, and reveal queries. We show how
much harm an adversary can cause in this model. Finally, we discuss the
impact of these attacks on the different applications of Counting filters.

In Chapter 4, we derive a bound on the correctness of insertion-only Count-
ing filters under adversarial inputs and queries. In this scenario, the ad-
versary has access to the filter’s content, and is allowed to insert elements.
However, the adversary is not allowed to delete elements. We use an ex-
isting simulation-based security framework for AMQ-PDS and extend it to
insertion-only Counting filters.

In Chapter 5, we extend the simulation-based framework from Chapter 4,
and we derive a bound on the correctness of Counting filters with dele-
tions under adversarial inputs and queries. In this case the filter cannot
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1. Introduction

be revealed to the adversary, and the adversary is allowed to insert and
also delete elements. The derived correctness bounds allow us to learn how
much more damage an adversary can cause to the structure in an adversarial
setting.

Finally, we conclude in Chapter 6.

1.3 Preliminaries

In this work, we use the same notation as in [21]. We repeat it for clarity.

We denote by [m], the set {1, 2, ..., m} for m ∈ Z≥1. Given a set S, we write
P(S) the power set of S, and Plists(S) the set of all lists with non-repeated
elements form S. We denote as {} a key-value store in an algorithm where
every index is initialised with the value ⊥, and we consider ⊥< n, ∀n ∈ R.
We write as a← b the assignment of value b to the variable a. If the assigned
value is output by a randomised algorithm, we use ←$ instead. We denote
by |S|, the number of elements in a set S. We denote the identity function
over a set S as IdS : S → S. We write as Funcs[D,R], the set of functions
from a set D to a second set ℜ. We denote by F ←$ Funcs[D,R] a random

function F such that D F−→ ℜ. We write as x ←$ D the sampling of variable x
according to a probability distribution D. We denote by U(S), the uniform
distribution over a finite set S.

We will use a pseudo-random function (PRF) F : D → ℜ, with the finite set
D =

⋃L
l=0{0, 1}l for some large but finite value of L , and ℜ depending on

the Counting filter algorithms and public parameters.

ExpPRF
R (B)

1 : K ←$ K; F ←$ Func[D,ℜ]
2 : b←$ {0, 1}; b′ ←$ BRoR

3 : return b′

Oracle RoR(x)

1 : if b = 0; y← RK(x)
2 : else : y← F(x)
3 : return y

Figure 1.1: The PRF experiment.

Definition 1.1 [21]. Consider the PRF experiment in Figure 1.1. We say a pseu-
dorandom function family R : K × D → R is (q, t, ϵ)-secure if for all adversaries
B running in time at most t and making at most q queries to RoR oracle in ExpPRF

R ,
we have:

AdvPRF
R (B) := |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| ≤ ϵ.

We say B is a (q, t)-PRF adversary.
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Chapter 2

Counting filters: syntax, algorithms,
applications

In this chapter, we introduce Counting filters. We give their syntax, algo-
rithms, and present some applications.

2.1 Syntax and algorithms

A Counting filter is a structure designed to represent a set of elements and
support membership queries. A vector of m counters, initially all set to 0, is
allocated to insert up to n elements. The maxValue determines the maximum
value counters can reach, and therefore the number of bits assigned per
counter. Additionally, an independent mapping function F : D→ ℜ ≡ [m]k

is assigned to the filter. This function takes as input the element x to be
inserted or deleted in the filter, and outputs k integers with range [1, . . . , m]
corresponding to counters positions to be updated in the filter. This map-
ping function is usually a hash function or a pseudorandom function. In
some case, the mapping function producing k outputs cab be substitute by
k mapping functions.

We denote by pp the public parameters m, k, and maxValue of Counting
filters. Additionally, we denote the state of the Counting filter as σ ∈ ∑,
where ∑ denotes the space of possible states of Π. Let the set of elements
that can be inserted into the Counting filter be denoted by D. We explain
the three different type of queries the Counting filter supports: Insert, Delete
and Query.

• The setup algorithm σ← setup(pp) sets up the initial state of an empty
Counting filter with public parameters pp. It always has to be called
first in order to initialise the Counting filter.

• The insert algorithm allows the user to insert an input x into the filter.
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2. Counting filters: syntax, algorithms, applications

setup(pp)

1 : m, k, maxValue← pp
2 : σ← zeros[m]

3 : return σ

qryF(x, σ)

1 : M← F(x)

2 : for i ∈ M
3 : if σ[i] = 0
4 : return ⊥
5 : return ⊤

insertF(x, σ)

1 : M← F(x)

2 : for i ∈ M
3 : if σ[i] < maxValue
4 : σ[i]+ = 1
5 : return ⊤, σ

deleteF(x, σ)

1 : M← F(x)

2 : // Element needs to be inserted or false positive

3 : if σ[i] > 0, ∀i∈M
4 : for i∈M
5 : if σ[i] > 0
6 : σ[i]− = 1
7 : return ⊤, σ

8 : else
9 : // Element not previously inserted

10 : return ⊥, σ

Figure 2.1: Syntax instantiation for Counting filter.

Given an element x ∈ D, the insertion algorithm (b, σ′) ← insert(x, σ)
increments the counters at positions c1, . . . , ck, if they are < maxValue.
Counters c1, . . . , ck correspond to the outputs of the mapping function
F applied to element x such that F(x) = (c1, . . . , ck). The algorithm
returns the state of the Counting filter σ′ after the insertion and a bit
b = ⊤ representing whether the insertion succeeds.

• The delete algorithm allows the user to delete an input x from the
filter. Given an element x ∈ D, the deletion algorithm (b, σ′) ←
delete(x, σ) decrements, if they all are > 0, the counters at positions
F(x) = c1, . . . , ck. It returns the state of the Counting filter σ′ after the
deletion and a bit b ∈ {⊤,⊥} indicating if the deletion succeeded or
not.

• The qry algorithm performs a membership query. Given an element
x ∈ D, b ← qry(x, σ) checks σ’s counters at positions c1, . . . , ck, with
F(x) = c1, . . . , ck. If every counter is > 0, x is considered in the fil-
ter and the algorithm returns a bit b = ⊤. Otherwise, if any of the
counters is equal to 0, x is considered not inserted in the filter and the
algorithm returns a bit b =⊥.
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2.2. False positive and false negative probability

Definition 2.1 (Counting filter) Let m, k, maxValue be positive integers. We de-
fine an (m, k, maxValue)-Counting filter with algorithms defined in Figure 2.1,
with pp = (m, k, maxValue), and F : D→ ℜ ≡ [m]k.

We have to decide what happens when a counter reaches its maximum value
in the filter and we try to update the filter with an element which requires
this counter. We consider the following solution.

We allow increment in the insert function of corresponding counters which
are not yet at maxValue. A first observation going in the direction of choos-
ing are implementations found online [4] [28] [1]. We want to simulate the
common management of Counting filters and these implementations imple-
ment this solution. Additionally, this issue is addressed in the original paper
about Counting filters [13]. The authors advise to increment counters which
are < maxValue, and keep the counters which are = maxValue at their max-
imum value. However, they warn that this might lead to a situation allowing
false negatives.

2.2 False positive and false negative probability

False positives

An element a ∈ A is considered to be a false positive when the bits at
positions F(a) = c1, . . . , ck are set to non-zero values and a qry query on a
returns ⊤, while a was never previously inserted in the filter.

This is the result of counters incremented by different insertions and the
union of their set covering the result of non-inserted elements. For example,
we consider a filter of size m = 3 and k = 2. We insert element a ∈ A
such that F(a) = {1, 2}, and element b ∈ A such that F(b) = {2, 3}. For an
element c ∈ A such that F(c) = {1, 3}, it will appear that the element is in
the filter while it was never inserted.

We recall, from the literature, the false positive probability of Counting fil-
ters.

Lemma 2.2 [18]. Let Π be an (m, k, maxValue)-Counting filter using a random
function F : D → ℜ ≡ [m]k. We denote by PrΠ,pp(FP|n) the false positive
probability of a Counting filter after n elements were inserted. Then,

PrΠ,pp(FP|n) := (1− [1− 1
m
]kn)k ≈ (1− e

−kn
m )k. (2.1)

False negatives

An element a ∈ A is considered to be a false negative when there exists at
least one counter at positions F(a) = c1, . . . , ck equal to 0 and a qry query on
a returns ⊥, while a was previously inserted in the filter and never removed.

7



2. Counting filters: syntax, algorithms, applications

False negatives can happen in a Counting filter due to the deletion of false
positive elements. It is straightforward to see that if a false positive element
is deleted, it affects counters previously incremented for inserted elements.
These inserted elements have their counters decremented, and possibly now
equal to 0. Consequently, in this last case, the elements now appears not to
be inside the filter when queried. For example, we consider a filter of size
m = 3 and k = 2. We insert element a ∈ A such that F(a) = {1, 2}, and
element b ∈ A such that F(b) = {2, 3}. Let’s assume there exist an element
c ∈ A such that F(c) = {1, 3} and thus qry(c)= ⊤. If element c is deleted
then qry(b)=⊥ while b was never deleted.

In our work, we will not require the false negative probability, and therefore,
we do not need to define a corresponding expression.

2.2.1 Parameter selection

In order to achieve the optimal false positive probability in a non-adversarial
environment, parameters can be derived from one another. Fixing m and n,
k can be derived as

k = ln 2 (
m
n
) ≈ 0.7 (

m
n
). (2.2)

For this choice of k, the false positive probability is then equal to 2−k. Alter-
natively, given the optimal value for k, n, and p ∈ R, setting

m = − n ln p
(ln 2)2

keeps the false positive probability below p.

Additionally, we assign to maxValue the value 2x− 1, where x is the number
of bits to be assigned to each counter such that the probability that a counter
reaches its maximum is small in an non-adversarial setting. Usually, four
bits are enough when k is chosen optimally [17] [13].

2.3 The non-adversarial setting

2.3.1 F-decomposability

The function-decomposability property states that the input to an AMQ-
PDS is always first transformed using some function F before any further
processing is applied. We recall the definition from [21].

Definition 2.3 [21]. Let Π be an insertion-only AMQ-PDS and let F ←$ Funcs[D,R]
with ℜ ⊂ D be a random function that Π has oracle access to. Let Idℜ be the iden-
tity function over ℜ. We say that Π is F-decomposable if we can write:

insertF(x, σ; r) = insertIdℜ(F(x), σ; r)∀x ∈ D, σ ∈∑, r ∈ R,

8



2.3. The non-adversarial setting

deleteF(x, σ; r) = deleteIdℜ(F(x), σ; r)∀x ∈ D, σ ∈∑, r ∈ R,

qryF(x, σ) = qryIdℜ(F(x), σ)∀x ∈ D, σ ∈∑,

where insertIdℜ , deleteIdℜ , and qryIdℜ cannot internally evaluate F due to not hav-
ing oracle access to it and F being truly random.

Lemma 2.4 Counting filters with oracle access to a random function F are F-
decomposable.

Proof. In Counting filters, F represents the random function which outputs
the indexes of counters in the filter corresponding to the input. F is used
on the inputs to the insert, delete and qry algorithms in Figure 2.1. We set
ℜ = [m]k and ℜ ⊂ D. Since Idℜ(F(x)) = F(x) for any x ∈ D, this concludes
the proof.

2.3.2 The non-adversarially-influenced state

The NAI state represents the Counting filter in honest setting and the n-NAI-
gen algorithms emulates the behavior of an honest user. Since Counting
filters are F-decomposable, the mapping between the inputs and the filter’s
counters does not depend on the distribution of the inputs. Additionally,
as we consider sets and not multisets, the NAI state can be defined by the
insertion of n distinct elements from a uniform distribution.

Below, we give now the definition of a non-adversarially-influenced state.

Definition 2.5 ((n, ϵ)-NAI) [21]. Let ϵ > 0, and let n be a non-negative integer.
Let Π be a Counting filter with public parameters pp and state space ∑, such
that its insert algorithm makes use of oracle access to functions F. Let alg be a
randomised algorithm outputting values in ∑. Let σ and σ(n) be random variables
representing respectively the outputs of alg and of the randomised algorithm n-NAI-
gen described in Figure 2.2. We say that alg outputs an (n, ϵ)- non-adversarially-
influenced state (denoted by (n, ϵ)-NAI) if σ is ϵ-statistically close to σ(n).

n-NAI-genF(pp)

1 : σ(0) ←$ setup(pp)
2 : [x1, ..., xn]←$ U(S ∈ Plists(D)||S| = n)
3 : for j = 1, ..., n

4 : (b, σ(j))←$ insertF(xj, σ(j−1))

5 : return σ(n)

Figure 2.2: Algorithm returning non-adversarially-influenced (NAI) state.

9



2. Counting filters: syntax, algorithms, applications

Then, we give the defintion of the false positive probability for a non-
adversarially-influenced state.

Definition 2.6 (NAI false positive probability) [21]. The NAI false positive
probability captures the probability that an honest user would experience a false
positive membership query result after inserting n elements into Π. Let Π be a
Counting filter with public parameters pp, using function F sampled from distribu-
tion DF to instantiate its functionality. Let n be a non-negative integer. We define
the NAI false positive probability after n insertions as

PrΠ,pp[FP|n] := Pr

 F ←$ DF
σ←$ n−NAI− gen(pp)

x ←$ U(D\V)
: ⊤ ← qryF(x, σ)

 (2.3)

where V is the list [x1, ..., xn] sampled on line 2 of n-NAI-gen(pp).

Finally, we give the probability that any counter reaches a specific value in
a non-adversarially-influenced state.

Definition 2.7 [13]. Let σ represent a non-adversarially-influenced state as in
Definition 2.5. Let l be the number of current elements inside σ, and let m and k
be the public parameters of σ. Then, the probability that any counter is greater or
equal to a value j is equal to:

Pr[max(c) ≥ j] ≤ m · ( e · l · k
j ·m )j. (2.4)

2.4 Adversarial scenarios

We model the adversaries’ access to the Counting filters through oracles.
The adversarial scenario is defined by the oracles the adversaries have access
to.

Oracle Reveal()

1 : return σ

Oracle Qry(x)

1 : b←$ qryF(x, σ)

2 : return b

Oracle Insert(x)

1 : (b, σ)←$ insertF(x, σ)

2 : return b

Oracle Delete(x)

1 : (b, σ)←$ deleteF(x, σ)

2 : return b

Figure 2.3: Oracle access for adversaries.

We give in Figure 2.3 all oracles available to adversaries in the most general
setting.
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2.5. Applications of Counting filters

Reveal reveals the filter’s content to A, Query answers membership queries,
Insert inserts an element provided by A into the filter, and Delete deletes
an element provided by A into the filter. These oracles call the qry, insert
and delete functions defined in the Counting filter’s syntax in Figure 2.1 in
Chapter 2.

We define a Counting filter as public when the adversary has access to the
Reveal oracle. If the adversary is not allowed the access, we define the
Counting filter as private.

2.5 Applications of Counting filters

In this section we present three applications of Counting filters in the real
world.

2.5.1 Cache sharing among Web proxies

Caching allows to temporarily store copies of files in cache or temporary
storage location for re-access, and has been recognized as one of the most
important techniques to reduce bandwidth consumption. To gain the full
benefits of caching, proxy caches behind a common bottleneck link should
cooperate and share their caches, thus further reducing the traffic through
the bottleneck. We call the process “Web cache sharing.”

Fan et. al. [13] introduced for the first time counting filters in order to
reduce Web traffic and alleviate network bottlenecks sharing caches among
Web proxies. Storing summaries of their respective caches as counting filters
allows to reduce memory requirement.

Each proxy represents its own cached documents inserting the list of cor-
responding URLS in a Counting filter. When a document is added into
the cache, its corresponding counters are incremented. When it is deleted
from the cache, the counters are decremented. Each proxy keeps a summary
of the directory of cached documents of each participating proxy. When a
cache miss occurs, a proxy first queries these summaries to see if the request
might be a cache hit in other proxies. If it appears so, it sends a query mes-
sages to those proxies. Otherwise, the proxy sends the request directly to
the Web server.

If a request is not a cache hit when the summary indicates so, this is a false
positive regarding to the Counting filter and the penalty is a wasted query
message. If the request is a cache hit when the summary indicates otherwise,
this is a false negative and the penalty is a higher miss ratio. The summaries
do not need to be up-to-date and accurate at all times. However, the errors
affect the total cache hit ratio or the interproxy traffic, but do not affect the
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2. Counting filters: syntax, algorithms, applications

correctness of the caching scheme. False positives and false negatives are
the trade-off of this proposition.

2.5.2 Longest Prefix Matching

Classless Inter-Domain Routing [15] requires Internet routers to perform In-
ternet Protocol (IP) Lookup. For each packet traversing the router, they need
to retrieve the corresponding forwarding information, by searching variable-
length address prefixes in order to find the longest matching prefix of the IP
destination address. Longest Prefix Matching plays a fundamental role in
the performance of Internet routers, and is a computationally intensive task
which often happens to be the performance bottleneck in high-performance
Internet routers.

Dharmapurikar et.al. [11] proposed an algorithm for Longest Prefix Match-
ing using a Counting Bloom filter paired with a Bloom filter. They showed
that their technique results in a search engine providing better scalability
and performance than current approaches for IP routing lookups using IPv4
BGP tables and for IPv6.

The algorithm works as follows.
The system uses as many Bloom and Counting filters as the length of in-
put addresses, and associates one Bloom and one Counting filter with each
unique prefix length.

Counting filters are initialised with the insertion of the associated set of
prefixes, and Bloom filters are derived from the Counting filters such that
each bit in the Bloom filter is set to 1 if the corresponding counter in the
Counting filter is > 0.

For each prefix length, one hash table is constructed. Each table is initialized
with the set of corresponding prefixes from the forwarding table, where each
hash entry is a [prefix, next hop] pair.

The search for the longest prefix matching probes all the Bloom filters in
parallel. The filter associated with length one prefixes is probed using the
one-bit prefix of the address, the filter associated with length two prefixes
is probed using two-bit prefix of the address, etc. Each filter outputs if the
given prefix is a match or no. Then, hash tables are probed going from
the longest to the shortest associated prefixes. The search continues until
a match is found or the vector is exhausted. If a match is found, routers
retrieve the corresponding next hop value from the hash table. In [11], the
authors do not mention what happens if no match is found. We consider that
in the case that no next hop is found, the packet is forwarded to everyone.

An overall view of the scheme can be found in Figure 2.4.
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Figure 2.4: General scheme for Longest Prefix Matching

[11]

From an architectural point of view, Bloom filters are stored in embedded
memory, and the respective Counting filters are maintained by a separate
control processor responsible for managing route updates. Updates are dis-
tributed to Bloom filters through an update interface.

In terms of scalability, we see that memory resources scale linearly with the
number of prefixes in the forwarding table. Regarding performance, the
authors state that it can be held constant if the performance by the number
of dependent memory accesses per lookup.

2.5.3 Pattern Matching and Anti-Evasion

Intrusion detection systems (IDSs) are devices which analyze all ingoing
traffic and detect potentially malicious data in order to protect a network.
These deep packet inspection uses standard pattern matching techniques.
However, these methods can be evaded by splitting packets into several
ones (e.g. TCP and IP fragmentation) or by changing the malicious strings
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slightly. In order to detect attacks when evasion happens, IDSs need to re-
assemble the overall packet flows before applying standard pattern-matching
algorithms. This process requires a large amount of memory and time to re-
spond to potential threats.

Antichi et. al [2] introduced an efficient system for anti-evasion that can
be implemented in devices. By observing that, due to the continuous cre-
ation of new viruses and attacks, the set of their corresponding signatures
to be detected changes very frequently, they based their system on Counting
filters.

The main idea of the system is to initialize for protocols TCP1, UDP2, and
ICMP3, a substring detector where their corresponding traffic is forwarded
to.

For each substring detector, a Counting filter is created a priori. Each count-
ing filter, called a “substring counting filter” (subCBF), contains the set of
three-byte-long substrings of strings which are parts of valid attacks for a
protocol.

Each substring detector processes all its ingoing traffic, by moving along the
inspection window of three bytes. Precisely, it applies the hash function to
each subgroup of three bytes of the incoming flow, and if all corresponding
counter are > 0 in the subCBF, the substring is considered as detected.

When a substring is detected, for each attack this substring belongs to, a
new Counting filter called a ”striCBF” is initialized. StriCBF are built a
priori with insertions of all substrings which are parts of the same attack.

StriCBFs are handled by pattern-matching engines (PMEs) whose goal is to
determine if the detected substring is actually a piece of a string and an
attack, or a false positive. A membership query to all StriCBFs is performed
for each substring from the data flow coming from the substring detector. If
there is a match, the corresponding counter in the StriCBFs are decremented.
If any of the striCBF is completely reset to zero, the attack is detected and
the flow is blocked.

The authors report a detection rate of 99% and false positive rate of 1% or
less.

These Counting filters allow rapid inclusion of new virus definitions, with-
out requiring to rebuild the overall structure. We are able to add or remove
a new set of attack’s signatures by splitting the string into substrings, apply-
ing the hash function to these substrings, and incrementing or decrementing
corresponding counter in the Counting filter.

1https://www.ietf.org/rfc/rfc793.txt
2https://www.ietf.org/rfc/rfc768.txt
3https://www.rfc-editor.org/rfc/rfc792
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Figure 2.5: General scheme for Pattern Matching and Anti-Evasion

[2]

An overall view of the scheme can be found in Figure 2.5.
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Chapter 3

Attacks on Counting filters

In this chapter, we describe the most important attacks on Counting filters.
We consider their goal and how they can be achieved whether the mapping
function is a hash function or a PRF. We define the adversaries’ capabilities
regarding the adversarial scenarios defined in 2.4. We also implement a
pollution attack and discuss the results. Finally, we examine the impact of
the attacks on the various applications of Counting Filter.

3.1 Adversary’s goals

In this section we cover the main attacks on counting filter and their goals.

Pollution attack. A pollution attack aims at maximizing the number of posi-
tions that store a value > 0 in order to maximize the false positive probabil-
ity of the filter. This usually is done by carefully selecting the elements that
are inserted [8].

Reversed pollution attack. A reversed pollution attack aims at minimizing the
number of positions that store a value > 0 in order to minimize the false
positive probability of the filter, and minimize the number of elements con-
sidered inserted inside the filter. This usually is done by carefully selecting
the elements that are deleted, the same way elements are selected for a pol-
lution attack.

Target set coverage attack. In a target-set coverage attack, instead of polluting
the filter, the adversary wants to build a set R such that when inserted, a
non-inserted set T appears to be legitimately inserted in the filter. Specifi-
cally, the attacker searches for a cover set R ∈ {0, 1}∗, such that for a given
small target set T ∈ {0, 1}∗, qry(x) = ⊤ for each x ∈ T. When |T| < |R|,
such a set exists. However, depending on the size of the target set, the size
of the cover set, and the parameters of the filter, finding this set may be
computationally infeasible [8].
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Reversed target set coverage attack. In a reversed target set coverage attack,
the adversary wants to build a set R such that when deleted, a non-deleted
set T appears to be legitimately deleted from the filter, i.e. not in the filter.
Specifically, the attacker searches for a cover set R ∈ {0, 1}∗, such that for
a given small target set T ∈ {0, 1}∗, qry(x) =⊥ for each x ∈ T, where each
x ∈ T was previously inserted.

Correlation attacks. Correlation attacks compare Counting filters in order to
deduce content similarities by looking at the indexes overlaps [27].

Privacy attacks. Filters can leak information such as the approximate total
number of elements inserted. For example, if the filter is public, a user
can sum up all the counters and divide by the number of hash functions to
recover the numbers of inserted elements [27].

We note that in this work, we will only focus on (reversed) pollution attacks
and (reversed) target set coverage attacks.

3.2 Attacks when hash function is used

In this section, we show that as long as the mapping function F of the filter in
Figure 2.1 is a hash function and the adversary has access to the insert oracle
from Figure 2.3, the filter is insecure against (reversed) pollution attacks and
(reversed) target set coverage attacks.

The adversary’s goal is to maximize the number of positions that store
a counter > 0, or target specific counters by carefully selecting the ele-
ments that are inserted. Specifically, the adversary wants to update counters
c1. . . , ck for k outputs of the hash function.

Since hash functions are public and deterministic, the attacker can mount
a brute-force attack offline and find x such that F(x) = c1. . . , ck for targeted
counters ci. This attack can be held offline and the adversary is able to keep
a local representation of the filter.

We showed that Counting filters are always unsafe using hash functions.
When the adversary has access to the insert oracle, targeted counters are
incremented. Therefore, we showed that Counting filters are always unsafe
against pollution attacks and target set coverage attacks when using hash
functions when adversaries are able to at least insert elements. Additionally,
when the adversary is allowed to delete elements in the filter, the filter is also
insecure against reversed pollution attacks and reversed target set coverage
attacks, where targeted counters are decremented.
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3.3 Attacks when PRF is used

In this section, we investigate attacks on Counting filters when the mapping
function F in Figure 2.1 is a PRF.

We show that compared to Bloom filters where using a PDF secures the filter
[8], this solution alone is not enough for Counting filters.

3.3.1 Scenario 1: Insert and Delete oracles

First attack proposition

The first attack shows how an adversary can mount a pollution attack with
access to Insert and Delete oracles in Figure 2.3.

An adversary derives n different sets Si, for i = 1, .., n, of same cardinality
and computes the current false positive probability FP without any new
insertion. Then, for each i, the adversary inserts the set Si, computes the
new false positive probability FPi, and then delete the set Si from the filter.
After computing each FPi, the adversary inserts the set Si such that Si has
the biggest corresponding FPi. By doing this, the adversary chooses the set
which increments the maximum counters. The set corresponds to the set Si
such that it shares the least counters with the elements inside the filter.

Second attack proposition

The second attack allows the adversary to derive information about the filter
and the mapping function when having access to Insert and and Delete
oracles in Figure 2.3.

This attack is possible when an insertion is blocked by the filter because a
corresponding counter is full. We will consider this setting in Chapter 5
when allowing deletions.

The main point of the attack is that the adversary is able to use the output
⊥ of a blocked insertion as an oracle. First, the adversary tries to insert an
element. The element cannot be inserted and the adversary sees that the
function insert returns value ⊥. Then, the adversary deletes elements from
a set S, from the filter. After deletions, the adversary tries to insert x for the
second time. If the insertion succeeds and returns ⊤, the adversary learns
that x shares counters with at least one element from the set S. Using this
information, the adversary is able to derive information about the filter and
the mapping function.

19



3. Attacks on Counting filters

3.3.2 Scenario 2: Insert, Reveal, and Delete oracles

Clayton et. al. proposed attack

Clayton et al.[8] proposed an attack similar to the target-set coverage attack,
even when a PRF is used. This attack is based on the relative power of the
Reveal, Insert and Delete oracles depicted in Figure 2.3.

First, the adversary calls the Reveal query to get an empty representation.
The adversary then inserts an element into the filter and sees exactly what
are the outputs of each of the mapping function by looking at the incre-
mented counters. For each insertion, the adversary can delete the previous
input. By doing this repeatedly, he can determine the outputs of the PRF
for x different inputs using 2x queries. These Reveal and Delete queries
effectively provides an oracle for the secretly-keyed PRF. Using this last, the
adversary can construct the test and target set used for the target-set cover-
age attack. The adversary then inserts each element of the test set into the
filter.

Second attack proposition

We propose a second attack where the adversary has access to the three
oracles shown in Figure 2.3: Reveal, Insert, and Delete.

This attack aims to achieve the same false positive probability than a brute
force attack which continuously inserts random elements and never deletes.
However, this attacks lowers the number of inserted elements using dele-
tions.

First, the adversary performs a Reveal query and learns the current state of
the filter. Then, the adversary inserts an element x and performs a second
Reveal query. This reveal allows the adversary to discover the impact of
its newly inserted element x in the filter; precisely he is able to count how
many new counter where incremented and are now > 0, compared to the
state previous insertion. The adversary decides if he wants to keep the
newly inserted element inside the filter or delete it, regarding if he is happy
of the impact of the inserted element in the filter or not.

We mention that in practice, these attacks may not always be feasible for the
adversary.

3.4 Implementation of pollution attack described in 3.3.2

In this section we implement an attack on a public Counting filter. We show
that this filter is not safe against pollution attacks defined in section 3.1, as
long as an adversary is allowed reveal, insertions, and deletions queries.
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Therefore, in this attack, we consider Scenario 2 from Section 3.3.2 where
the adversary has access to the Reveal, Insert and Delete oracles depicted
in Figure 2.3.

We implement the second attack from Section 3.3.2. In the case of our imple-
mentation, we enforce to have minimum one new counter incremented to
keep the element in the filter after insertions and consider the adversary sat-
isfied. This variable cab easily be changed, we can impose the minimum of
incremented counters desired. The implementation can be found on Gitlab
[19].

Attack parameters

Regarding the technicalities of our implementation, we fix the size of the
filter m (:= 10′000), the maximum value per counter (:= 15 ∼ 4 bits [13]), and
the maximum number of insertions n (from 100 to 10′000). Then, we derive
k, the number of outputs of our PRF, using equation 2.2.

We use a HMAC with SHA256 as a keyed PRF for the mapping function
F : D → ℜ ≡ [m]k where D =

⋃28

l=0{0, 1}l . In order to avoid modulo bias,
we sample the k outputs separately and compute the ith function such as k[i]
= HMACSHA256(i—x).

For each value of n, we compute 26 times the false positive probability in or-
der to obtain an accurate average. The computed false positive probability is
obtained by querying to the filter 215 non-inserted elements, and computing
P(FP) = (#positive queries)/ 215.

Results

As a test case, we run the algorithm with no deletions allowed, and there-
fore, we only insert random elements. In Figure 3.1, we observe that when
only random insertion are performed, the computed false positive probabil-
ity matches almost perfectly the theoretical false positive probability, which
validates our implementation.

We observe some jumps in the false positive probability in Figure 3.1. These
jumps are due to the changes of value of parameter k displayed in Figure 3.2.
Indeed, theoretically k is a rational number, while in practice it becomes an
integer. Thus, k must be rounded in the implementation and this rounding
impacts the false positive probability, which therefore, does not correspond
to the optimal one.

The variance plot in Figure 3.3 shows a variance of 10−5 for our false positive
computation results, which indicates that these computations are accurate.
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Figure 3.1: Non-adversarial false positive probability

Figure 3.2: Number of hash functions
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Figure 3.3: False positive results variance without deletions

We focus now on the attack. We observe in Figure 3.4 that we manage to
generate a higher false positive rate, and the adversarialFP does not match
the theoretical FP anymore. Figure 3.7 plots the accuracy of these results.

We notice that the difference between both false positive probabilities are not
constant. For each fixed k value, the theoretical and computed FP are close at
the start, and then, the adversarial FP increases faster than the theoretical FP
until a new k value is used. Additionally, the gap between both FP increases
with the values of n. Indeed, the larger n is, the larger the gap at the jump
to a new k value. Figure 3.6 shows the ratios between the adversarially
computed FP and the theoretical FP and emphasize that the larger n is, the
more impact the adversary has. Regardless of jumps due to changes of k,
the adversarial advantage keeps growing linearly.

Finally, we also plot in Figure 3.5 the number of tested elements in order
to reach n complete adversarial insertions. We observe that the number of
trials increases exponentially. For example, when n = 100 we only need 100
trials, while when n = 5000 we need 6595 trials, and when n = 9990 we need
46002 trials. These results allow to indicate the time and query complexity
of the attack.

We conclude that an adversary is able to mount attacks by trial and error
when insertions, deletions, and reveals are allowed. By consequence, when
hash functions are used, they must be replaced by PRFs, and the filter must
be kept secret from the adversary (i.e. no reveal query), at least as long as
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Figure 3.4: False positive probability under adversarial power

Figure 3.5: Number of trial insertions with deletions
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Figure 3.6: Ratios [adversarial/theoretical] false positive probability

Figure 3.7: False positive results variance with deletions
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deletions are allowed.

3.5 Impact of attacks on applications

In this section, we discuss the impact of (reversed) pollution attacks and (re-
versed) target set coverage attacks on the described applications of Counting
filters in Section 2.5.

However, we mention that these attacks may not always be possible to be
carried out, depending on scenarios and mapping functions.

3.5.1 Cache sharing among web proxies

In section 2.5.1, we described cache sharing among web proxies using Count-
ing filters. We consider attacks on a Counting filter where its proxy is ma-
licious, or under the control of an attacker. This Counting filter will be sent
to other proxies.

In [13], the authors did not specify how the Counting filters are managed by
their corresponding proxies. We assume that the proxies can only interact
with their own Counting filter through an interface which allows them to
have access to Insert, Delete, Reveal oracles, and with an additional Re-
veal oracle to reveal other proxies filters. This corresponds to Scenario 2
described in Section 3.3.2. Additionally, we assume that each proxy is only
able to send this specific Counting filter to other proxies. Otherwise, trivial
attacks would be allowed, such as sending an empty filter, or sending a filter
where counters were incremented and decremented directly by the proxy.

Pollution attack. If, an attacker in control of a proxy can mount a pollution
attack, he increases the false positive probability rate of his Counting filter.
This filter is sent to proxies to check if their own requests might be a cache
hit in this proxy, and due to the pollution attack, the rate of potential cache
hit increases. If a request is not a cache hit when the summary indicates
so (i.e. a false positive), the penalty is a wasted query message. Proxies’
query messages can overload the network, and reduce the availability of the
systems. This can prevent honest proxies from accessing cached documents.
Additionally, each unnecessary hit between proxies costs bandwidth and
adds latency to the client’s request.

Target set coverage attack. If the attacker can predict in advance which docu-
ments are going to be requested, the adversary can mount a target set cov-
erage attack in order to ensure that the requested documents become false
positives. However, in the case where it is hard to predict which documents
might be accessed, there is no point for an adversary to forge a target set
coverage attack and a pollution attack might be more efficient.
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We note that these last two attacks could also be carried out in Scenario 1
described in Section 3.3.1, with no Reveal oracle.

Reversed pollution attack. If the adversary is able to mount a reversed pol-
lution attack, the attacker is able to produce false negatives. If the request
is a cache hit when the summary indicates otherwise (i.e. a false negative),
the penalty is a higher miss ratio. This will force the proxy to send a re-
quest directly to the Web server, which is more expensive than contacting a
proxy with the cached document. Additionally, since the false negative rate
is higher due to the attack, more proxies will try to contact the web server.
This will generate more latency and the web server availability might be
compromised.

Reversed target set coverage attack. If the attacker can predict in advance which
documents are going to be requested, the adversary can mount a reversed
target set coverage attack in order to ensure that the requested documents
become false negatives. As in the reversed pollution attack, this will force
the proxy to send a request directly to the Web server, which is more expen-
sive than contacting a proxy with the cached document.

We note that the adversary has a restricted impact as he cannot use a false
positive more than once since after each unsuccessful cache access, the proxy
contacts the web server and the web page is added to the cache. Similarly
with false negatives, after contacting the web server, the proxy adds the web
page to its cache.

We note that the adversary has a restricted impact. Indeed, a false positive
has a one-time effect since after each unsuccessful cache access, the proxy
contacts the web server and the web page is added to the cache. Similarly
with false negatives, after contacting the web server, the proxy adds the web
page to its cache.

3.5.2 Longest Prefix Matching

In section 2.5.2, we described the use of Counting filters for the search of
longest prefix matching in routers. We consider as adversarial, a malicious
router with has access to its Counting filter through an interface with access
to Insert, Delete, Reveal oracles. This corresponds to Scenario 2 described
in Section 3.3.2.

We consider the hash-tables storing the next hops to be non-modifiable as
they are stored off-chip and are not part of our interest. This reduces the
amount of possible attacks as this ensures that no route can be added to
hijack traffic.

Pollution attack. As explained in section 2.5.2, after finding a prefix match in
the Bloom filter derived from the Counting filter, the hash tables are probed
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from the longest to shortest prefix in order to find a match with the next hop
information. A pollution attack increases the false positive probability and
might create longer prefix matches which are false positives. This will cause
more hash tables lookup and potentially more latency. However, since all
hash tables are probed, the next hop corresponding to the shorter legitimate
prefix will still be found.

Target set coverage attack. If the attacker can predict in advance which pre-
fixes are going to be received by the router for matching, the adversary can
mount a target set coverage attack. A target set coverage attack ensures that
longer prefixes than the ones registered in hash tables are false positives,
and therefore, are matches for the specific received prefixes. As for the pol-
lution attack, this will ensure more hash tables lookup and therefore, more
latency.

We note that these last two attacks could also be carried out in Scenario 1
described in Section 3.3.1, with no Reveal oracle.

Reversed pollution attack. If the attacker can mount a reversed pollution attack
where he deletes non-inserted elements from the Counting filter, the false
negative rate increases.

Due to the higher false negative rate, when receiving a packet, all the filters
might return no prefix match. As previously argued in Section 2.5.2, if there
happens to be a match for a prefix in the filter but the prefix is not present
in the table, the packet is forwarded to everyone.

Otherwise, the longest prefix match might become a false negative, but a
shorter prefix might remain a match. In this case, the packet is forwarded
to more people.

In both of these situations, the adversary might be able to overload and
add latency in the network due to the increase in packets distributed in the
network.

Reversed target set coverage attack. An attacker can mount a reversed target
set coverage attack in order to receive a packet intended for a receiver with
whom he shares a common sub-prefix.

The attacker can use this attack to delete elements such that then, the longer
prefix which does not cover the attacker’s address becomes a false negative.
Then, the intended receiver still receives the packet, as well as the attacker
now.

Finally, we note that it is impossible for an attacker to cut access to a re-
source. The attacker is only able to ensure that more receivers than intended
receive the packet. In the worst case, the packet is sent to everyone.
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3.5.3 Pattern Matching and Anti-Evasion

In section 2.5.3, we described a system used for pattern matching and anti-
evasion which uses two levels of counting filters. First, it uses the subCBF
to detect a first potential packet from an adversarial flow, and then it uses
striCBF to ensure that the packet is part of an attack. The first Counting
filter (subCBF) needs one match, while the second one (striCBF) needs to
have all inserted elements matched (i.e. all counters decreased to 0).

We consider an adversary which has access to Counting filters through an
interface with access to Insert, Delete, Reveal oracles. This corresponds to
Scenario 2 described in Section 3.3.2.

Attacks on subCBF.

Pollution attack. If a pollution attack happens on the subCBF, the false pos-
itive rate of the subCBF increases. Therefore, more genuine packets might
be suspected due to the higher rate of false positives. Thus, this increase the
chance of suspecting a legitimate flow.

An attacker can also use this higher false positives rate in order to perform
a denial of service attack. This is possible by identifying and sending a large
number of packets (from different flows) which are false positives in the
subCBF. These packets will trigger the initialization of striCBFs. Then, more
packets will be forwarded to the pattern-matching engines and queried to
striCBF, which might reduce the availability of the systems and degrade
their performance.

Target set coverage attack. If the adversary can predict which packets are
coming, he can mount a target set coverage attack in order to ensure that
these packets are false positives in the filter and therefore, become suspects.
This increases the chance to mark the legitimate flow these packets belong
to, as a detected attack.

We note that these attacks could also be carried out in Scenario 1 described
in Section 3.3.1, with no deletions.

Reversed pollution attack. If an adversary is able to mount a reversed pol-
lution attack, the false negative rate is increased. Therefore, the Intrusion
detection systems might not recognize some attacks, as their correspond-
ing packets will not be matches in the subCBFs, and by consequence never
trigger second level filters.

Reversed target set attack. If an adversary knows which packets belong to
attacks, mounting a reversed target set attack allows him to ensure that
these packets are false negatives in the filter, and therefore the flow these
packets belong to, will remain undetected.

Attacks on striCBF.
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Pollution attack. If the adversary manages to increment new counters, the
packets from the attacker’s flow might never match these and thus the flow
will be undetected.

We note that this attack could also be carried out in Scenario 1 described in
Section 3.3.1, with no deletions.

Reversed pollution attack. If the adversary manages to mount a reversed pol-
lution attack, this might higher the false negative rate. Thus, less packets’
matches will be expected in the striCBF, and the IDS might detect some
flows which are not attacks.

Reversed target set coverage attack. The adversary can achieve the same goal
as in the reversed pollution attack, but with more precision. With a re-
versed target set coverage attack, the adversary can ensure false negatives
for packets he knows are not part of the flow currently under supervision.
Therefore, these packets are not expected anymore in order to mark the flow
as malicious.

Attacks on on subCBF and striCBF together.

The adversary has more power and can combine the attacks mentioned
above.

First, the adversary can perform a pollution attack or a target set cover-
age on subCBFs, the IDS might detect non-adversarial packets and initialize
striCBFs. Then, the attacker can mount a reversed pollution attack or a re-
versed target set coverage attack, in order to delete elements in striCBFs.
This might produce more false negatives and detect flows which are not at-
tacks. Therefore, combining these steps, the adversary has a higher chance
to mark fair flows as malicious while no attack is happening, and by conse-
quence discards trustworthy packets.

On the other hand, the adversary can mount a reverse pollution attack or
a reversed target set coverage attack in the subCBFs in order to delete ele-
ments. Then, the adversary can mount a pollution attack on the striCBFs.
This will increase the probability that adversarial flows remain undetected.

We observe that this application is slightly different from the two previous
ones. In our current example, the filter is only locally used in order to
protect the network, and does not communicate with or impact external
entities. Therefore, if the filters are only accessed by entities which are part
of the network, these entities have no reason to attack their own network.
In order for the aforementioned attacks to make sense, the filters need to be
able to be accessed by external entities.
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Chapter 4

Security analysis of insertion-only
Counting filters

Insertion-only Counting filters are Counting filters where elements can only
be inserted and queried. In this Chapter, we analyse the adversarial correct-
ness of insertion-only Counting filters using a simulation-based approach.
Filić et al. [21] developed a simulation-based approach to derive security
bounds of insertion-only AMQ-PDS. We will apply this existing framework
to our insertion-only Counting filter to demonstrate the limits of any adver-
saries’abilities.

In order to do this, we modify the Counting filter syntax defined in Figure
2.1. We get rid of the deleteF algorithm, and modify the insertF algorithm in
Figure 4.1.

This new insert algorithm enforces that the filter does not change if an ele-
ment is considered already in the filter.

We motivate our modification in the insert algorithm. First, all of our use-
cases for Counting filters described in section 2.5 do not need reinsertion
of the same elements multiple times as they use Counting filter for mem-
bership queries and deletions. In different applications of Counting filters,
they do not appear to be used to count and insert the same elements mul-
tiple times. Furthermore, not changing the filter when reinsertion allows
us to use the framework in [21] in Chapter 4 since the NAI definition 2.3 is
similar. Indeed, because we do not allow reinsertion, the non-adversarially-
influenced (NAI) state which represents the honest setting is simply defined
by the insertion of n different elements from a uniform distribution. Finally,
the false positive probability is always derived regarding the number of el-
ement inserted with uniformly random mappings [18]. The false positive
probability is computed with the assumption that after all n elements are
inserted and all k mapping functions applied to each of those n elements,
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setup(pp)

1 : m, k, maxValue← pp
2 : σ← zeros[m]

3 : return σ

qryF(x, σ)

1 : M← F(x)

2 : for i ∈ M
3 : if σ[i] = 0
4 : return ⊥
5 : return ⊤

insertF(x, σ)

1 : M← F(x)

2 : if σ[i] > 0, ∀i ∈ M
3 : // Element already considered inserted

4 : return ⊤, σ

5 : else
6 : for i ∈ M
7 : if σ[i] < maxValue
8 : σ[i]+ = 1
9 : return ⊤, σ

Figure 4.1: Syntax instantiation for insertion-only Counting filter.

the probability that an arbitrary bit in the Counting filter is 0 is P[ci = 0] =
(1− 1

m )kn.

This new condition does not influence the false positive probability since
this condition affects only counters already > 0. Enforcing this condition
directly in the Counting filter’s insert algorithm, allows us to define a bound
on any adversary against the given Counting filter.

4.1 Consistency rules

In this section we give the consistency rules, defined in [21], for our insertion-
only Counting filter Π.

Element permanence

If for all x ∈ D, σ ∈ ∑ such that ⊤ ← qry(x, σ), and for any sequence of
insertions resulting in a later state σ′,

b← qry(x, σ′)⇒ b = ⊤.
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Reinsertion invariance

If for all x ∈ D, σ ∈ ∑ such that ⊤ ← insert(x,σ),

(b, σ′)← insert(x, σ; r)⇒ σ = σ′ ∀r ∈ R.

Permanent disabling

If given σ ∈ ∑ such that there exists x ∈D, r ∈ Rwhere (b, σ̂)← insert(x,σ;r)
and b = ⊥, then σ̂ =σ and for any x′ ∈ D, r′ ∈ R,

(b′, σ′)← insert(x′, σ; r′)⇒ b′ =⊥ and σ′ = σ.

Non-decreasing membership probability

If for all σ ∈ ∑, x, y ∈ D, r ∈ R,

(b, σ′)← insert(x, σ; r)⇒ Pr[⊤ ← qry(y, σ)] ≤ Pr[⊤ ← qry(y, σ′)].

4.2 Adversarial Correctness of insertion-only Counting
filters

In this section, we introduce the simulation-based framework which we then
use in order to derive bounds on the correctness of insertion-only Counting
filters.

Settings. Our model considers an adversary A interacting with a Counting
filter Π initialised empty. The adversary is given access to three oracles (see
Figure 5.2). Qry takes as input x, an element provided by A, and outputs if
x has been inserted into Π. Insert inserts an element provided by A into Π.
Finally, Reveal returns the current state of Π and reveals the content of the
filter to the user.

The simulation-based framework introduces two worlds, a Real world, and
Ideal world. In the real world, the adversary is given access to an AMQ-PDS
instantiation where he is allowed to insert elements, and make membership
queries, while the in the ideal world, the adversary interacts with a simulator
S. The simulator S provides a non-adversarially-influenced (NAI) view of
the insertion-only AMQ-PDS, as in Figure 2.2. The idea behind the simulator
is that whatever the adversary can learn from interacting with the AMQ-PDS
in the real world can be simulated.

The adversary plays in either the real or ideal world, and is allowed to
make Insert, Query, and Reveal queries. At the end of the execution in
which the adversary plays either in the real or ideal world, the adversary
produces some output. This output is then forwarded to a distinguisher D.
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The distinguisher D then utilizes the adversary’s output in order to compute
which world the adversary was operating in.

First, we define the Real-or-Ideal game in Figure 5.2. We denote the real (d =
0) and ideal (d = 1) versions of Real-or-Ideal as Real and Ideal, respectively.
The distinguisher D generates the game’s output d′ ∈ {0, 1}.

Real-or-Ideal(A,S ,D, pp)

1 : d←$ {0, 1}
2 : if d = 0 // Real

3 : K←$ K; F ←$ RK

4 : σ← setup(pp)

5 : out←$ AInsert,Qry,Reveal

6 : else // Ideal

7 : out←$ S(A, pp)
8 : d′ ←$ D(out)
9 : return d′

Oracle Insert(x)

1 : (b, σ)←$ insertF(x, σ)

2 : return b

Oracle Qry(x)

1 : return qryF(x, σ)

Oracle Reveal()

1 : return σ

Figure 4.2: Correctness game for the insertion-only Counting filter Π using the simulation
paradigm.

We want to assess the advantage of an adversary in the real world com-
pared to the ideal world. As Filić et. al. [21], we use the advantage of a
distinguisher in the Real-or-Ideal game to define adversarial correctness.

Definition 4.1 (Adversarial correctness) [21]. Let Π be an insertion-only Count-
ing filter, with public parameters pp, and let RK be a keyed function family from
D to ℜ. We say Π is (qin, qqry, qrvl , ta, ts, td, ϵ)- adversarially correct if, for all
adversaries A running in time at most ta and making at most qin, qqry, qrvl queries
to oracles Insert, Qry, Reveal respectively in the Real-or-Ideal game (Figure 5.2)
with a simulator S that provides an NAI view of Π to A and runs in time at most
ts, and for all distinguishers D running in time at most td, we have:

Advℜoℑ
Π,A,S (D) := |Pr[Real(A,D) = 1]− Pr[Ideal(A,D,S) = 1]| ≤ ϵ

Relying on the consistency rules (Section 4.1) and the F-decomposability
(Definition 2.3.1), we are able to use the simulator from the existing frame-
work.

We give in Figure 4.3 a simulator S that replicates the behaviour of an
insertion-only Counting filter and satisfies the consistency rules (Section 4.1)
and is by definition function-decomposable (section 2.3.1).
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We observe that our simulator is equivalent to the simulator described in
[21]. Indeed, the Up algorithm is simply renamed Insert, and we discard
the Rep algorithm.

Next, we state Theorem 1 from [21], which we show can be applied to Count-
ing filters.

Theorem 4.2 [21]. Let qin, qqry, qrvl be non-negative integers, and let ta, td > 0.
Let F : D → ℜ ≡ [m]k. Let Π be an insertion-only Counting filter with public
parameters pp and oracle access to F, such that Π satisfies the consistency rules
from section 4.1 and F-decomposability (Definition 2.3.1). Let α (resp. β) be the
number of calls to F required to insert (resp. query) an element in Π using its
insert (resp. qry) algorithm.
If Rk : D → ℜ is an (αqin + βqqry, ta + td, ϵ)-secure pseudorandom function with
key K ←$ K, then Π is (qin, qqry, qrvl , ta, ts, td, ϵ′)-adversarially correct with respect
to the simulator in Figure 4.3, where ϵ′ = ϵ + 2qqry · PrΠ,pp(FP|qin) and ts ≈ ta.

We show that we can apply this Theorem to our insertion-only Counting
filters defined in Figure 4.1.

Lemma 4.3 Insertion-only Counting filters with public parameters pp and oracle
access to F satisfy the consistency rules from Section 4.1 and F-decomposability
from Definition 2.3.1.

Proof. We showed in Chapter 2 section 2.3.1 that Counting filters satisfy F-
decomposability. We prove now that Counting filters satisfy the consistency
rules in Definition 4.1.

Element permanence. As we consider insertion-only Counting filter, deletions
are not allowed and once an element is inserted inside the filter, the element
remains there indefinitely. Additionally, if an element is a false positive,
since deletions are not allowed, no counters are decremented, and the ele-
ment also remains a false positive indefinitely.

Reinsertion invariance. The syntax in Figure 4.1 shows that by definition the
filter will not be affected by reinsertion and therefore, this rule is satisfied.

Permanent disabling. In our Counting filter syntax, we observe that the filter
is never disabled. Consequently, this property is trivially satisfied.

Non-decreasing membership probability. The more insert queries we perform,
the higher the chance that the element was inserted. Additionally, looking
at the false positive probability in equation 2.1, it is clear that the more
elements in the filter, the bigger or equal the false positive probability.
□

We proved that our insertion-only Counting filters satisfy the consistency
rules and F-decomposability. Therefore we can apply Theorem 4.2.
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Simulator S(A, pp)

1 : F ←$ Funcs[D,R]

2 : σ← setup(pp)
3 : inserted, FPlist, CALQ← {}, {}, {}
4 : i← 0 // Qry counter

5 : ctr ← 0 // Insertions counter

6 : return out←$ AInsertSim, QrySim, RevealSim

Oracle QrySim(V)

1 : i← i + 1
2 : // Element was inserted or determined a false positive

3 : if inserted[x] = ⊤or FPlist[x] = ⊤
4 : return ⊤
5 : // Element was not inserted and not false positive

6 : if CALQ[x]← ctr
7 : // If no changes/insertions since last query x

8 : return ⊥
9 : // Response needs to be (re)computed

10 : CALQ[x]← ctr

11 : aideali ←$ qryIdℜ(Y ←$ ℜ, σ)

12 : aG∗i ←$ qryF(x, σ)

13 : a← aIdeali a← aG∗i // Ideal G∗

14 : if a = ⊤
15 : FPlist[x] = ⊤
16 : return a
Oracle InsertSim(x)

1 : if inserted[x] =⊥
2 : (b, σ)← insertF(x, σ)

3 : if b = ⊤
4 : inserted[x]← ⊤
5 : ctr+ = 1

6 : return b
7 : else
8 : return ⊤

Oracle RevealSim()

1 : return σ

Figure 4.3: Simulator used in Theorem 1.
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Corollary 4.4 Let Π be our Counting filter from Lemma 4.3. Let qin, qqry, qrvl
be queries to oracles Insert, Qry, Reveal respectively, and let ta, td > 0. Let F :
D→ ℜ ≡ [m]k.

If Rk : D→ ℜ is an (qin + qqry, ta + td, ϵ)-secure pseudorandom function with key
K ←$ K and F = RK, then Π is (qin, qqry, qrvl , ta, ts, td, ϵ′)-adversarially correct,
where ϵ′ = ϵ + 2qqry · PrΠ,pp(FP|qin) and ts ≈ ta:

Advℜoℑ
Π,A,S (D) := |Pr[Real(A,D) = 1]−Pr[Ideal(A,D,S) = 1]| ≤ ϵ+ 2qqry · PrΠ,pp(FP|n+ qin).

Proof. From the instantiation of Counting filters given in Figure 4.1, we ob-
serve that each insert and qry call contains one call to the function F. Then,
using Lemma 4.3, Theorem 4.2 holds with α = β = 1. □

We note that our bound is equal to the bound derived in [21] for Bloom fil-
ters. This is coherent as Bloom filters correspond to insertion-only Counting
filters with the counter’s maxValue set to 1.
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Chapter 5

Security analysis of Counting filters
with deletions

In this Chapter, we analyse the adversarial correctness of Counting filters
with deletions, using a simulation-based approach. We extend the simulation-
based framework from Chapter 4.

To begin with, we modify the Counting filter syntax defined in Figure 2.1.
We redefine the insert algorithm in Figure 5.1.

We restrict now the insert algorithm such that when a counter reaches its
maximum value, the filter does not allow insertion of an element which
needs this counter. In the general syntax for Counting filters given in Chap-
ter 2 and for insertion-only Counting filter in Chapter 4, we increment the
counters which have not reached yet maxValue. However, this method has
an important drawback when deletions are allowed: false negatives can
arise with just deletions of inserted elements. Indeed, some counters are
shared between different inserted elements, and some counters are equal to
value maxValue while being actually used by maxValue + j elements with
j ∈ N. Afterward, with deletions of those inserted elements, we decrement
the counters until possibly reaching value 0, while still j elements need this
counter to be > 0 to be considered in the filter. By consequence, we opt
for a solution where the element is not inserted at all in the filter and all its
corresponding counters are not incremented. The drawback of this solution
is that the filter allows the insertion of less elements. However, the probabil-
ity that a counter reaches its maximum value, under random insertions, is
small, and consequently the number of insertions rejected is small too [13].

Compared to insertion-only Counting filters where the restriction on rein-
sertion is part of the syntax, for Counting filters with deletions, we put the
restriction on the adversary and assume that he never performs reinsertion
of inserted elements. Additionally, in order to be the closest possible to the
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setup(pp)

1 : m, k, maxValue← pp
2 : σ← zeros[m]

3 : return σ

qryF(x, σ)

1 : M← F(x)

2 : for i ∈ M
3 : if σ[i] = 0
4 : return ⊥
5 : return ⊤

insertF(x, σ)

1 : M← F(x)

2 : // No corresponding counter must be full

3 : if σ[i] < maxValue, ∀i∈M
4 : for i∈M
5 : σ[i]+ = 1
6 : return ⊤, σ

7 : // At least one corresponding counter is full

8 : else
9 : return ⊥, σ

deleteF(x, σ)

1 : M← F(x)

2 : // Element needs to be inserted or false positive

3 : if σ[i] > 0, ∀i∈M
4 : for i∈M
5 : if σ[i] > 0
6 : σ[i]− = 1
7 : return ⊤, σ

8 : else
9 : // Element not previously inserted

10 : return ⊥, σ

Figure 5.1: Syntax instantiation for Counting filter with deletions.

real world uses cases, we allow reinsertion of deleted elements. We call this
adversary, a no-reinsertion adversary.

If reinsertions are allowed, it becomes trivial for an adversary to disable the
filter by inserting the same element maxCounterValue + 1 times. Addition-
ally, if reinsertion is not allowed after deletion, this might lead to blocking
scenarios in real life. For example, in the use case of routing (2.5.2), we
might want to remove a route temporarily (e.g. during DDoS attacks), but
add it later again.

5.1 Consistency rules

In this section we extend the consistency rules defined in [21], for our Count-
ing filter with deletions Π.

Non-decreasing membership probability for insertions

If for all σ ∈ ∑, x, y ∈ D, r ∈ R,

(b, σ′)← insert(x, σ; r)⇒ Pr[⊤ ← qry(y, σ)] ≤ Pr[⊤ ← qry(y, σ′)].
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Similar to Chapter 4, the more Insert queries we perform, the higher or
equal is the probability that a query on a random element returns ⊤.

We note that the statement is equivalent to:

”If for all σ, σ’ ∈ ∑, y ∈ D,

σ ⊆ σ′ ⇒ Pr[⊤ ← qry(y, σ)] ≤ Pr[⊤ ← qry(y, σ′)].”

Where σ ⊆ σ′ denotes that σ is a subset of σ′.

Non-increasing membership probability for deletions

If for all σ ∈ ∑, x, y ∈ D,

(b, σ′)← delete(x, σ)⇒ Pr[⊤ ← qry(y, σ)] ≥ Pr[⊤ ← qry(y, σ′)].

The more Delete queries we perform, the smaller or equal is the probability
that a query on a random element returns ⊤.

Non-decreasing disabling probability for insertions

If for all σ ∈ ∑, x, y ∈ D, r, r′ ∈ R,

(b, σ′)← insert(x, σ; r)⇒ Pr[(b, σ′′)← insert(y, σ; r′) : b =⊥] ≤ Pr[(b, σ′′)← insert(y, σ′; r′) : b =⊥].

In this Chapter, we block an insertion when a counter needed for the inser-
tion has reached its maximum. Since (b, σ′) ← insert(x, σ; r), σ ⊆ σ′ and all
counters in σ′ are higher or equal than in σ. Therefore, the probability that
a counter reached its maximum is σ′ is higher than in σ.

Compared to insertion-only Counting filters, we do not have a permanent
disabling rule. We choose not to block the filter to be the closest to real
scenarios.

5.2 Adversarial Correctness of Counting filters with dele-
tions

As discussed previously in section 3.3, Counting filters with deletions are
insecure in public settings. Clayton et. al.[8] proved that using a keyed
PRF is not enough when deletions are allowed, and from a practical side,
we mounted an attack against Counting filters with deletions in the public
setting. By consequence, we only consider private Counting Filters with
deletions in our proofs.

We consider the following scenario. The Counting filter is initialised empty.
Then, the adversary has access to three oracles. Qry takes as input x an
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element provided by A, and outputs if x has been inserted into Π. Insert
inserts an element provided by A into Π, and Delete deletes an element
provided by A from Π.

Real-or-Ideal(A,S ,D, pp)

1 : d←$ {0, 1}
2 : if d = 0 // Real

3 : K←$ K; F ←$ Rk

4 : σ← setup(pp)

5 : out←$ AInsert, Delete,Qry

6 : else // Ideal

7 : out←$ S(A, pp)
8 : d′ ←$ D(out)
9 : return d′

Oracle Insert(x)

1 : (b, σ)←$ insertF(x, σ)

2 : return b

Oracle Delete(x)

1 : (b, σ)←$ deleteF(x, σ)

2 : return b

Oracle Qry(x)

1 : return qryF(x, σ)

Figure 5.2: Correctness game for the PDS Π using the simulation paradigm.

We define two games. First, we define the Real-or-Ideal game in Figure 5.2.
We denote the real (d = 0) and ideal (d = 1) versions of Real-or-Ideal as Real
and Ideal, respectively. The distinguisher D generates the game’s output
d′ ∈ {0, 1}.
We construct a simulator S in Figure 5.7, and used in Theorem 5.2. We
explain our construction of the simulator below.

Deletions. We ensure in lines 1-2 of DeleteSim algorithm in Figure 5.3 that
only inserted elements can be deleted.

We notice that, combined with the rule on counters reaching their maxi-
mum value described at the beginning of this chapter, this leads to no false
negatives happening in the Ideal world.

Insertions. We define insertions in Ideal in line 2 of InsertSim algorithm in
Figure 5.3. Insertions are defined such that the input element is not directly
inserted, but instead, a uniformly random element is derived and then in-
serted instead of the input. Consequently, for each reinsertion of an element
(i.e. same input) inside the filter, we do not reinsert the same element and
we do not increment the same counters. It allows each insertion inside the
filter to be independent from any previous insertions and deletions.

Queries. First, since in Ideal we take into consideration only deletions of
inserted elements, we do not have false negatives and an inserted element
must be inside the filter (lines 3-4 of QrySim algorithm in Figure 5.3). Then,
if not inserted, an element is possibly a false positive. If the element was pre-
viously set as a false positive and no deletions happened since, the element
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Simulator S(A, pp)

1 : F ←$ Funcs[D,R]

2 : σ← setup(pp)
3 : σ′ ← setup(pp)
4 : insertedbool ← {}
5 : // Value inserted for the corresponding element

6 : insertedvalue ← {}
7 : // False positive elements set to true

8 : FPlist← {}
9 : // insertions count at last query

10 : CALQ IN← {}
11 : // deletions count at last query

12 : CALQ DEL← {}
13 : // Insertions and deletions counter

14 : ctrin ← 0
15 : ctrdel ← 0

16 : return out←$ AInsertSim, DeleteSim, QrySim

Oracle QrySim(x)

1 : cideal ←$ qryIdℜ(Y ←$ ℜ, σ)

2 : cG∗ ← qryF(x, σ′)

3 : if insertedbool [x] = ⊤
4 : c← ⊤// If x was a false a positive and no deletion happened since

5 : else if FPlist[x] = ⊤∩CALQ DEL[x] = ctrdel

6 : c← ⊤
7 : // If x was not a false a positive and no insertion happened since

8 : else if FPlist[x] = ⊥∩CALQ IN[x] = ctrin

9 : c←⊥
10 : else

11 : c← cIdeal

12 : FPlist[x] = c
13 : CALQ IN[x]← ctrin

14 : CALQ DEL[x]← ctrdel

15 : return c

Oracle InsertSim(x)

1 : if insertedbool [x] =⊥
2 : (aIdeal , σ)← insertIdℜ(y←$ ℜ, σ)

3 : (aG∗, σ′)← insertF(x,σ′)

4 : a← aIdeal

5 : if a = ⊤
6 : ctrin+ = 1

7 : insertedbool [x]← ⊤
8 : insertedvalue[x] = y
9 : else

10 : a← ⊤
11 : return a

Oracle DeleteSim(x)

1 : (bG∗, σ′)← deleteF(x, σ′)

2 : if insertedbool [x] = ⊤
3 : (bIdeal , σ)← deleteIdℜ(insertedvalue[x], σ)

4 : else

5 : bIdeal ←⊥
6 : b← bIdeal

7 : if b = ⊤
8 : ctrdel+ = 1
9 : insertedbool [x] =⊥

10 : return b

Figure 5.3: Simulator.

must remain a false positive (lines 5-6). Indeed, since no deletions happened,
no counters were decremented and consequently all counters > 0 allowing
the element to be a false positive must remain > 0. In the opposite, if the el-
ement was previously not a false positive and no insertions happened since,
the element must remain not a false positive (lines 8-9). Indeed, if the ele-
ment was not a false positive, at least one of its corresponding counters was
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equal to 0. Since no insertions happened, no counters were incremented and
consequently the counter(s) equal to 0 could not become > 0. Finally, if we
are not in the three previous cases, we need to recompute if the element is
a false positive and derive a random element which is then queried to the
filter (lines 10-11). Querying a random element instead of the input allows
to generate a query response independently from the inserted elements.

5.2.1 Security bound derivation

We use the advantage of a Distinguisher in the Real-or-Ideal game described
in Figure 5.2 in order to define adversarially correctness.

Definition 5.1 [21]. Let Π be a Counting filter with deletions, with public parame-
ters pp, and let RK be a keyed function family. We say Π is (qin, qdel , qqry, ta, ts, td, ϵ)-
adversarially correct under no reinsertion if, for all no-reinsertion adversaries A
running in time at most ta and making qin, qdel , and qqry queries to oracles Insert,
Delete, Qry respectively in the Real-or-Ideal game (Figure 5.2) with the simulator
S in Figure 5.3 that runs in time at most ts, and for all distinguishers D running
in time at most td, we have:

Advℜoℑ
Π,A,S (D) := |Pr[Real(A,D) = 1]− Pr[Ideal(A,D,S) = 1]| ≤ ϵ.

We derive now a bound on the correctness of Counting filters when adver-
saries are able to insert, delete, and query elements.

Theorem 5.2 Let qin, qdel , and qqry and maxValue be non-negative integers, and
let ta, td > 0. Let F : D → ℜ ≡ [m]k. Let Π be a Counting filter with public
parameters pp and oracle access to F, such that Π satisfies the consistency rules
from Definition 5.1 and F-decomposability (Definition 2.3.1).
If RK : D → ℜ is an (qin + qdel + qqry, ta + td, ϵ)-secure pseudorandom function
with key K ←$ K, then Π is (qin, qdel , qqry, ta, ts, td, ϵ′)-adversarially correct under
no reinsertion, where

ϵ′ = ϵ+ 2 · qin ·m · (
e · (qin − 1) · k
maxValue ·m )maxValue +(2 · qqry + qdel) · PrNAIΠ,pp(FP|qin).

Proof. We define the intermediate game G in Figure 5.4. We define d = 0
(resp. d = 1) as the Real (resp. G) version of Real-or-G. We also define d = 0
(resp. d = 1) as the G (resp. Ideal) version of G-or-Ideal.

Now that we defined the intermediate games, we proceed with the proof.
First, we start by defining an intermediate game G that replaces the PRF
in Real with a random function. We bound the closeness of Real and G in
Lemma 5.3 in terms of the PRF advantage. Then, we construct a game G∗
(Figure 5.7) that looks identical to G, and show that G∗ and Ideal are equal
up until some “bad” events E, E’ and E”. It allows us to bound the closeness
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Real-or-G(A,D, pp)

1 : d←$ {0, 1}
2 : if d = 0 // Real

3 : K←$ K; F ←$ Rk

4 : else // G

5 : F ←$ Funcs[D,R]

6 : σ←$ setup(pp)

7 : out←$ AInsert, Delete,Qry

8 : d′ ←$ D(out)
9 : return d′

G-or-Ideal(A,S ,D, pp)

1 : d←$ {0, 1}
2 : if d = 0 // Real

3 : ←$ Funcs[D,R]

4 : σ← setup(pp)

5 : out←$ AInsert, Delete,Qry

6 : else // G

7 : out←$ S(A, pp)
8 : d′ ←$ D(out)
9 : return d′

Figure 5.4: Intermediate game G for the proof of Theorem 5.2

of G and Ideal in Lemma 5.4 in terms of the probability of events E, E’ and
E”. Finally, the probabilities of these bad events are computed in Lemmas
5.6, 5.7 and 5.8 respectively.

Real ϵ−→ G ≡ G∗ Pr[E], Pr[E’], Pr[E”]−−−−−−−−−−→ Ideal

Figure 5.5: Sketch Theorem 5.2 proof.

Lemma 5.3 [21]. The difference in probability of an arbitrary td-distinguisher D
outputting 1 in experiments of game Real-or-G (Figure 5.4) with a no-reinsertion
(qin, qdel , qqry, ta)-Counting filter adversary A, is bounded by the maximal PRF
advantage ϵ of an (qin + qdel + qqry, ta + td, ϵ)-PRF adversary attacking RK:

AdvReal−or−G
Π,A,S (D) := |Pr[Real(A,D) = 1]− Pr[G(A,D) = 1]| ≤ ϵ.

Proof. Consider the PRF adversary B in Figure 5.6, who instantiates the
Counting filter that A queries using its RoR oracle, in relation to the Real-
or-G game from Figure 5.4.

When b = 0, B is running Real for A, where the PRF RK is used to handle
A’s oracle queries to Π. When b = 1, B is instead running G for A, where
the truly random function F is used to handle A’s oracle queries to Π. By
inspection, the advantage of B is

Adv
prf
R (B) = AdvReal−or−G

Π,A,S (D).

By assumption in Theorem 5.2, RK is an (qin + qdel + qqry, ta + td, ϵ)-secure
PRF, hence no adversary B making at most qin + qdel + qqry queries and run-
ning in time at most ta + td can have advantage greater than ϵ. Therefore,

AdvReal−or−G
Π,A,S (D) ≤ ϵ.
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□

PRF Adversary BRoR

1 : F ←$ RoR
2 : σ←$ setup(pp)

3 : return d′ ←$ D(AInsert,Delete,Qry)

Figure 5.6: PRF adversary B for Lemma 5.3

Let us denote by G* a modified version of Ideal that runs S, but with modi-
fications marked in blue in Figure 5.7.

Lemma 5.4 For i ∈ [qqry], let cIdeal
i be the response to A’s ith Qry query in the

Ideal game, and let cG∗
i be the response in the G* game. Let E be the event that the

response to A’s ith Qry query differ in line 12 of QrySim algorithm in Figure 5.7
for some i:

E := [The first mismatch in query responses is due to cIdeal
i ̸= cG∗

i f or some i ∈ [qqry]].
(5.1)

For i ∈ [qdel ], let bIdeal
i be the response to A’s ith Delete query in the Ideal game,

let bG∗
i be the response in the G* game. Let E’ be the event that A’s ith Delete query

differ in line 6 of DeleteSim algorithm in Figure 5.7 for some i:

E’ := [The first mismatch in query responses is due to bIdeal
i ̸= bG∗

i f or some i ∈ [qdel ]].
(5.2)

For i ∈ [qin], let aIdeal
i be the response to A’s ith Insert query in the Ideal game, let

aG∗
i be the response in the G* game. Let E” be the event that A’s ith Insert query

differ in line 4 of InsertSim algorithm in Figure 5.7 for some i:

E” := [The first mismatch in query responses is due to aIdeal
i ̸= aG∗

i f or some i ∈ [qin]].
(5.3)

The difference in probability of an arbitrary distinguisher D outputting 1 in exper-
iments of game G-or-Ideal with a no-reinsertion (qin, qdel , qqry, ta)-Counting filter
adversary A is bounded by Pr[E], Pr[E’] and Pr[E”]. In other words,

AdvG−or−Ideal
Π,A,S (D) := |Pr[G(A,D) = 1]−Pr[Ideal(A,D,S) = 1]| ≤ Pr[E]+Pr[E’]+Pr[E”].

Proof. G and G* use the same function F in all algorithms. The main dif-
ference between G and G* is that in the latter, A interacts with a simulator
that intercepts some of the queries to the simulated Counting filter, and does
some input-output bookkeeping absent in G. We show that these extra op-
erations run by S do not affect the return values of Π and therefore, G and
G* look the same from A’s point of view.
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Simulator S(A, pp)

1 : F ←$ Funcs[D,R]

2 : σ← setup(pp)
3 : σ′ ← setup(pp)
4 : insertedbool ← {}
5 : // Value inserted for the corresponding element

6 : insertedvalue ← {}
7 : // False positive elements set to true

8 : FPlist← {}
9 : // insertions count at last query

10 : CALQ IN← {}
11 : // deletions count at last query

12 : CALQ DEL← {}
13 : // Insertions and deletions counter

14 : ctrin ← 0
15 : ctrdel ← 0

16 : return out←$ AInsertSim, DeleteSim, QrySim

Oracle QrySim(x) - Ideal, G*

1 : cideal ←$ qryIdℜ(Y ←$ ℜ, σ)

2 : cG∗ ← qryF(x, σ′)

3 : if insertedbool [x] = ⊤
4 : c← ⊤, cG∗

5 : // If x was a false a positive and no deletion happened since

6 : else if FPlist[x] = ⊤∩CALQ DEL[x] = ctrdel

7 : c← ⊤
8 : // If x was not a false a positive and no insertion happened since

9 : else if FPlist[x] = ⊥∩CALQ IN[x] = ctrin

10 : c←⊥
11 : else

12 : c← cIdeal , cG∗

13 : FPlist[x] = c
14 : CALQ IN[x]← ctrin

15 : CALQ DEL[x]← ctrdel

16 : return c

Oracle InsertSim(x) - Ideal, G*

1 : if insertedbool [x] =⊥
2 : (aIdeal , σ)← insertIdℜ(y←$ ℜ, σ)

3 : (aG∗, σ′)← insertF(x,σ′)

4 : a← aIdeal , aG∗

5 : if a = ⊤
6 : ctrin+ = 1

7 : insertedbool [x]← ⊤
8 : insertedvalue[x] = y
9 : else

10 : a← ⊤
11 : return a

Oracle DeleteSim(x) - Ideal, G*

1 : (bG∗, σ′)← deleteF(x, σ′)

2 : if insertedbool [x] = ⊤
3 : (bIdeal , σ)← deleteIdℜ(insertedvalue[x], σ)

4 : else

5 : bIdeal ←⊥
6 : b← bIdeal , bG∗

7 : if b = ⊤
8 : ctrdel+ = 1
9 : insertedbool [x] =⊥

10 : return b

Figure 5.7: Simulator with G*.

By inspection of algorithm InsertSim, we see that it always returns the re-
turn value of the insert algorithm when the element is not already inserted
in the filter. Since we derive a correctness bound for a no-reinsertion ad-
versary, InsertSim always returns the return value of the insert algorithm
for every insertion. Consequently, answers obtained from InsertSim in G*
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always agree with what would A obtain using the insert algorithm in G.

By inspection of algorithm DeleteSim in Figure 5.7, we see that for every
deletion it returns the return value of the delete function. Consequently,
answers obtained from DeleteSim in G* always agree with what A would
obtain using the delete algorithm in G.

Then, inspecting QrySim, we show that lines 6-7 in Figure 5.7 do not cause
discrepancies. Lines 6-7 are executed if the current element was a false pos-
itive at the time of the last call to QrySim on this element, and no deletions
were made since. As shown in the previous paragraph, since no elements
were deleted in G* since the last call to QrySim on this element, no elements
were deleted in G either. Therefore, no counters were decremented in both
games, including the counters allowing the element to be a false positive.
Since qryF is a deterministic algorithm, qry in G would return ⊤, and re-
garding QrySim, the element has to remain a false positive and it needs to
return ⊤ again.
Similarly, lines 9-10 ( 5.7) do not cause discrepancies. Lines 9-10 are executed
if the element was not previously a false positive and no insertions were
made since the last call to QrySim on the current element. As shown previ-
ously, since no elements were inserted in G* since the last call to QrySim on
this element, no elements were inserted in G either. Therefore, no counters
were incremented in both games, including the counters needed for the ele-
ment to become a false positive. Since qryF is a deterministic algorithm, qry
in G would return ⊥, and regarding QrySim, the element has to remain not
a false positive and it needs to return ⊥ again.
Since no other operations in QrySim affect its return value, the game G* is
identical to G (Figure 5.4) from the point of view of (A,D).

We now look at where G* and Ideal can diverge for the first time.

First, answers to InsertSim queries might differ. As we explained previ-
ously, if a counter reaches its maximum value in the filter and is needed
during the insertion of a new element, the element is not inserted. If the
element cannot be inserted, InsertSim return ⊥, while if the insertion suc-
ceeds, the algorithm returns ⊤. Therefore, since elements inserted in G* and
Ideal are different, their corresponding counters are different, and the first
mismatch in query responses can happen in InsertSim and corresponds to
event E” defined in Equation 5.3.

Otherwise, answers to DeleteSim queries might differ. In G*, not only in-
serted elements but also false positives can be deleted, while in Ideal only
previously inserted elements can be deleted. By consequence, depending on
insertions, deletions can succeeds in only one game and the first mismatch
in query responses can happen in DeleteSim and corresponds to event E’
defined in Equation 5.2.
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Finally, otherwise answers to QrySim queries might differ. We observe in
Figure 5.7 that when answers to the QrySim algorithm are not fixed, we do
not check the same counters in G* and in Ideal. Therefore, these queries
might output different answers and the first mismatch in query responses
can happen in QrySim, and corresponds to event E from Equation 5.1

By consequence, the games Ideal and G* (and hence G) are equal from the
perspective of (A,D) at least up until the events from Equations 5.1, 5.2 or
5.3 for some i ∈ [qin], [qdel ] or [qqry]. We denote these events by E, E’, E”, and
we have

|Pr[Ideal(A,D,S) = 1]− Pr[G(A,D) = 1]| ≤ Pr[E] + Pr[E’] + Pr[E”].

□

Definition 5.5 Let insertF
partial(x, σ) be the insert algorithm from Figure 2.1. There-

fore, the non-adversarially-influenced state Definition 2.5, and the false positive
probability in Equation 2.3 hold for the insertF

partial(x, σ) algorithm.
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Lemma 5.6 QrySim difference. Let the event E be defined as in Lemma 5.4. Then,

Pr[E] ≤ 2qqry · PrNAIΠ,pp(FP|qin).

Proof. We need to compute Pr[E].

Let σ(i) denote the state σ and let σ(i)′ denote the state σ′ before A’s i-th Qry
query. We calculate Pr[E] in game Ideal, with outputs cIdeal

i and cG∗
i defined

as in lines 4, 7, 10 and 12 of algorithm QrySim in Figure 5.7 at the ith query.

We observe that event E can occur during each query of an element xi.
Therefore, we consider all queries i ∈ [qqry] when upper bounding Pr[E].

First, we note that we do not have to consider the case where a query on
an inserted element returns different values in both games in lines 3-4 in
Figure 5.7. Indeed, in this case, the element must be a false negative in
game G*, while still be positive in Ideal, or could have been inserted in
Ideal but not G*. In order for the first scenario to happen, deletion(s) of
a false positive(s) must have occurred previously and by consequence the
difference would have appeared first in DeleteSim and do not need to be
considered in QrySim. For the second scenario, the first difference happens
in InsertSim .Therefore, we focus on the event for elements xi that have not
been inserted into Π at the time they are queried to QrySim (and hence could
return a false positive result).

Additionally, since we are looking for the first time outputs mismatch, we
do not take special care of the case where the outputs are necessarily equal
before the first mismatch, i.e. return value is defined in lines 7-10 in Figure
5.7. Thus, we focus on output values defined in via line 12.

We see that event E can be written as

E = ”The first mismatch in query responses is due to cIdeal
i ̸= cG∗

i for some i ∈ [qqry]

and the queried element was not inserted”.

We compute

Pr[E] = Pr[The first mismatch in query responses is due to cIdeal
i ̸= cG∗

i for some i ∈ [qqry]

and the queried element was not inserted]

≤
qqry

∑
i=1

Pr[The first mismatch in query responses is due to Qry(yi)

where yi was not inserted and cIdeal
i ̸= cG∗

i ].
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We define the event Emismatch
qryi

as

Emismatch
qryi

= ”The first mismatch in query responses is due to Qry(yi)”.

Pr[E] ≤
qqry

∑
i=1

Pr[Emismatch
qryi

where yi was not inserted and cIdeal
i = ⊤∩ cG∗

i =⊥]

+ Pr[Emismatch
qryi

where yi was not inserted and cIdeal
i =⊥ ∩ cG∗

i = ⊤]

≤
qqry

∑
i=1

Pr[Emismatch
qryi

where yi was not inserted and cIdeal
i = ⊤]

+ Pr[Emismatch
qryi

where yi was not inserted and cG∗
i = ⊤]

=
qqry

∑
i=1

Pr[EIdeal
qryi

] + Pr[EG∗
qryi

], (5.4)

where we define the event EIdeal
qryi

as

EIdeal
qryi

= [Emismatch
qryi

where yi was not inserted and cIdeal
i = ⊤]

and the event EG∗
qryi

as

EG∗
qryi

= [Emismatch
qryi

where yi was not inserted and cG∗
i = ⊤].

We focus now on Pr[EIdeal
qryi

]. From the simulator and the previous explana-
tions, we have:

Pr[EIdeal
qryi

] = Pr
Ideal′s coins

r←$R
A′s coins

[Emismatch
qryi

∩ (c← qryIdℜ(Y r←− ℜ, σ(i)) : c = ⊤)].

A’s coins represents all the adversary’s reactions to the responses they may
observe during the game. Ideal’s coins represent the randomness generated
in Ideal. Therefore, fixing A’s and Ideal’s coins determines the adversary’s
exact behaviour. It uniquely determines each state σ(i) and the elements
inserted.
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Pr[EIdeal
qryi

] = ∑
A′s coins

Pr
Ideal′s coins

r←$R

[
Emismatch

qryi

∩ (c← qryIdℜ(Y r←− ℜ, σ(i)) : c = ⊤)
| A′s coins

]
· Pr[A′s coins]

= ∑
A′s coins

∑
Ideal′s coins

Pr
r←$R

[
Emismatch

qryi

∩ (c← qryIdℜ(Y r←− ℜ, σ(i)) : c = ⊤)
| A

′s coins
Ideal′s coins

]
· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins].

Let ∆max represent the state σ after all qin insertions, where each element
was inserted using the insertIdℜ

partial function in Definition 5.5. Since ∆max

contains all inserted elements, σ(i) ⊆ ∆max, and using the non-decreasing
membership for insertion consistency rule:

Pr[EIdeal
qryi

] ≤ ∑
A′s coins

∑
Ideal′s coins

Pr
r←$R

[
Emismatch

qryi

∩ (c← qryIdℜ(Y r←− ℜ, ∆max) : c = ⊤)
| A

′s coins
Ideal′s coins

]
· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins].

Since in ∆max all elements are inserted and mapped using counters selected
uniformly and independently at random, the adversary has no power and
the probability does not depend on A’s coins anymore:

Pr[EIdeal
qryi

] ≤ ∑
A′s coins

∑
Ideal′s coins

Pr
r←$R

[
Emismatch

qryi

∩ (c← qryIdℜ(Y r←− ℜ, ∆max) : c = ⊤)
| Ideal′s coins

]
· Pr[Ideal′s coins] · Pr[A′s coins]

≤ ∑
A′s coins

∑
Ideal′s coins

Pr
r←$R

[
(c← qryIdℜ(Y r←− ℜ, ∆max) : c = ⊤) | Ideal′s coins

]
· Pr[Ideal′s coins] · Pr[A′s coins].
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Reversing the conditional probability rule we get:

Pr[EIdeal
qryi

] ≤ ∑
A′s coins

Pr
Ideal′s coins

r←$R

[c← qryIdℜ(Y r←− ℜ, ∆max) : c = ⊤] · Pr[A′s coins]

= Pr
Ideal′s coins

r←$R

[c← qryIdℜ(Y r←− ℜ, ∆max) : c = ⊤] · ∑
A′s coins

Pr[A′s coins]

= Pr
Ideal′s coins

r←$R

[c← qryIdℜ(Y r←− ℜ, ∆max) : c = ⊤]

= Pr



Y1, .., Yqin ←$ ℜ,

∆←$ setup(pp),

(⊤, ∆) = insertIdℜ
partial(Yi, ∆) f or i ∈ [1, .., qin]

: ⊤ = qryIdℜ(Y ←$ ℜ, ∆)


Since ∆ contains all qin elements randomly and independently inserted in
the filter, we see that ∆ corresponds to the non-adversarially-influenced state
defined in Definition 2.5 with qin elements:

Pr[EIdeal
qryi

] ≤ Pr



F ←$ Funcs[D,R],

[x1, ..., xqin ]←$ U(S ∈ Plists(D)||S| = qin)

∆←$ setup(pp)

(b, ∆)←$ insertF
partial(xk, ∆) f or k = 1, ..., qin

: ⊤ = qryF(x ←$ U(D\[x1, ..., xqin ]), ∆)


Finally, we see that this probability corresponds to the NAI false positive
probability in Equation 2.3 for qin elements:

Pr[EIdeal
qryi

] ≤ PrNAIΠ,pp [FP|qin]. (5.5)
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We focus now on Pr[EG∗
qryi

].

We introduce G∗’s coins. G* coins represents the random function F sam-
pled independently from A’s and Ideal’s coins.

Pr[EG∗
qryi

] = Pr
G∗′s coins

Ideal′s coins
A′s coins

[Emismatch
qryi

∩ (c← qryF(yi, σ(i)′) : c = ⊤) ∩ (yi not inserted)]

= ∑
A′s coins

Pr
G∗′s coins

Ideal′s coins

 Emismatch
qryi

∩ (c← qryF(yi, σ(i)′) : c = ⊤)
∩ (yi not inserted)

|A′s coins


· Pr[A′s coins]

= ∑
A′s coins

∑
Ideal′s coins

Pr
G∗′s coins

 Emismatch
qryi

∩ (c← qryF(yi, σ(i)′) : c = ⊤) : c = ⊤)
∩ (yi not inserted)

| A
′s coins

Ideal′s coins


· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins]

≤ ∑
A′s coins

∑
Ideal′s coins

Pr
G∗′s coins

[
(c← qryF(yi, σ(i)′) : c = ⊤) : c = ⊤)

∩ (yi not inserted)
| A

′s coins
Ideal′s coins

]
· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins] (5.6)

Let Ωmax,i represent the state σ′ containing all inserted elements {x1, ..., xqin}\{yi}
where each element was inserted using the insertIdℜ

partial function. Since Ωmax,i

contains all inserted elements except the currently queried yi, σ(i)′ ⊆ Ωmax,i,
and using the non-decreasing membership probability for insertion con-
sistency rule:
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Pr[EG∗
qryi

] ≤ ∑
A′s coins

∑
Ideal′s coins

Pr
G∗′s coins

[
(c← qryF(yi, Ωmax,i) : c = ⊤) : c = ⊤)

∩ (yi not inserted)
| A

′s coins
Ideal′s coins

]
· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins]

= ∑
A′s coins

∑
Ideal′s coins

·Pr



F ←$ Funcs[D,R],

Ω←$ setup(pp),

for each xk ∈ {x1, .., xqin}\{yi},

(⊤, Ω) = insertF
partial(xk, Ω)

: ⊤ = qryF(yi, Ω)


· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins]

Since Counting filters are function-decomposable (Section 2.3.1), we rewrite:

Pr[EG∗
qryi

] ≤ ∑
A′s coins

∑
Ideal′s coins

·Pr



F ←$ Funcs[D,R],

Ω←$ setup(pp),

for each xk ∈ {x1, .., xqin}\{yi},

(⊤, Ω) = insertIdℜ
partial(F(xk), Ω)

: ⊤ = qryIdℜ(F(yi), Ω)


· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins]
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The set {x1, .., xqin}\{yi} is fixed due to A’s and Ideal’s coins. As we con-
sider all qin insertions except the queried element yi, the state contains
|{x1, .., xqin}\{yi}| elements. Since F is a random function and using the
non-decreasing membership probability for insertions consistency rule:

Pr[EG∗
qryi

] ≤ ∑
A′s coins

∑
Ideal′s coins

· Pr



Y1, .., Y|{x1,..,xqin}\{yi}| ←$ ℜ,

Ω←$ setup(pp),

(⊤, Ω) = insertIdℜ
partial(Yk, Ω) f or k ∈ [1, .., q|{x1,..,xqin}\{yi}|]

: ⊤ = qryIdℜ(Y ←$ ℜ, Ω)


· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins]

≤ ∑
A′s coins

∑
Ideal′s coins

·Pr



Y1, .., Yqin ←$ ℜ,

Ω←$ setup(pp),

(⊤, Ω) = insertIdℜ
partial(Yk, Ω) f or k ∈ [1, .., qin]

: ⊤ = qryIdℜ(Y ←$ ℜ, Ω)


· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins]

Since all qin elements are randomly and independently inserted in the fil-
ter, we observe that the last constructed state Ω corresponds to the non-
adversarially-influenced state defined in Definition 2.5 with qin elements:
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Pr[EG∗
qryi

] ≤ ∑
A′s coins

∑
Ideal′s coins

· Pr



F ←$ Funcs[D,R],

[x1, ..., xqin ]←$ U(S ∈ Plists(D)||S| = qin)

Ω←$ setup(pp)

(b, Ω)←$ insertF
partial(xk, Ω) f or k = 1, ..., qin

: ⊤ = qryF(x ←$ U(D\[x1, ..., xqin ]), Ω)


· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins].

Finally, we see that this probability corresponds to the NAI false positive
probability given in Equation 2.3 for qin elements:

Pr[EG∗
qryi

] ≤ ∑
A′s coins

∑
Ideal′s coins

PrNAIΠ,pp [FP|qin] · Pr[Ideal′s coins|A′s coins] · Pr[A′s coins]

= PrNAIΠ,pp [FP|qin] · ∑
A′s coins

∑
Ideal′s coins

Pr[Ideal′s coins ∩A′s coins]

= PrNAIΠ,pp [FP|qin]. (5.7)

Finally, combining Equations 5.4, 5.5 and 5.7, we get

Pr[E] ≤
qqry

∑
i=1

Pr[EIdeal
qryi

] + Pr[EG∗
qryi

]

≤
qqry

∑
i=1

(PrNAIΠ,pp [FP|qin]) + (PrNAIΠ,pp [FP|qin])

= 2 · qqry · PrNAIΠ,pp [FP|qin].

□
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Lemma 5.7 DeleteSim difference. Let the event E’ be defined as in Lemma 5.4.
Then,

Pr[E’] ≤ qdel · PrNAIΠ,pp [FP|qin].

Proof. Let σ(i)′ denote the state of σ′ before A’s i-th deletion. We calculate
Pr[E’] in game Ideal, with output bIdeal

i and bG∗
i defined as in line 1, 3, and 5

of algorithm DeleteSim in Figure 5.7 at ith deletion. Let yi be the ith deleted
element.

Since we are interested in the first output mismatch between games and
looking at the Counting filter’s syntax for the delete algorithm in Figure 5.1,
we see that event E’ can be stated as

E’ = ”The first mismatch in query responses is due to bIdeal
i ̸= bG∗

i for some i ∈ [qdel ]”.

Event E’ can occur during each deletion of an element xi. Therefore, we
consider all deletions i ∈ [qdel ] when upper bounding Pr[E’].

Pr[E’] = Pr[The first mismatch in query responses is due to bIdeal
i ̸= bG∗

i for some i ∈ [qdel ]]

≤
qdel

∑
i=1

Pr[The first mismatch in query responses is due to Delete(yi) and bIdeal
i ̸= bG∗

i ].

We define the event Emismatch
i as

Emismatch
deletei

= ”The first mismatch in query responses is due to Delete(yi)”.

Pr[E’] ≤
qdel

∑
i=1

Pr[Emismatch
deletei

∩ bIdeal
i = ⊤∩ bG∗

i =⊥] + Pr[Emismatch
deletei

∩ bIdeal
i =⊥ ∩ bG∗

i = ⊤].

The return values differ when we are able to delete an element only in one
of the games.

We show that Pr[Emismatch
deletei

∩ bIdeal
i = ⊤ ∩ bG∗

i =⊥] = 0. In this case, the
element is present inside the filter in the Ideal game, which means that the
element was inserted and not deleted, but not in game G*. This situation is
only possible if the element has become a false negative in game G* or was
not inserted in σ′ but was in σ. However, since we consider the first time
outputs differ, this situation is impossible as the first difference would have
happened in a previous Delete query, when deleting an element which is a
false positive, or within some previous Insert query.
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By consequence, we only consider

Pr[E’] ≤
qdel

∑
i=1

Pr[Emismatch
deletei

∩ bIdeal
i =⊥ ∩ bG∗

i = ⊤].

We focus now on Pr[E’i] = Pr[Emismatch
deletei

∩ (bIdeal
i =⊥ ∩ bG∗

i = ⊤)].

From the Simulator and the previous explanations, we have:

Pr[E’i] = Pr
G∗′s coins

Ideal′s coins
A′s coins

[Emismatch
i ∩ ((b, σ′)← deleteF(yi, σ(i)′) : b = ⊤) ∩ (bIdeal

i =⊥)]

= ∑
A′s coins

Pr
G∗′s coins

Ideal′s coins

[
Emismatch

i ∩ ((b, σ′)← deleteF(yi, σ(i)′) : b = ⊤)
∩ (bIdeal

i =⊥) |A′s coins
]

· Pr[A′s coins]

= ∑
A′s coins

∑
Ideal′s coins

Pr
G∗′s coins

 Emismatch
i

∩ ((b, σ′)← deleteF(yi, σ(i)′) : b = ⊤)
∩ (bIdeal

i =⊥)
| A

′s coins
Ideal′s coins


· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins].

From line 1 of the DeleteSim algorithm in Figure 5.7 and its corresponding
line 3 of delete algorithm in Figure 5.1, we see that ((b, σ′)← deleteF(yi, σ(i)′) :
b = ⊤) if and only if (c ← queryF(yi, σ(i)′) : c = ⊤). Additionally, we see
in lines 2-5 of the DeleteSim algorithm in Figure 5.7 that (bIdeal

i =⊥) if and
only if yi was not previously inserted. Therefore:

Pr[E’i] ≤ ∑
A′s coins

∑
Ideal′s coins

Pr
G∗′s coins

[
(c← qryF(yi, σ(i)′) : c = ⊤)
∩ (yi was not inserted)

| A
′s coins

Ideal′s coins

]
· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins].

We observe that this last probability can be calculated following the deriva-
tion of Equation 5.6 of Lemma 5.6 and we omit the details. Then,

Pr[E’i] ≤ PrNAIΠ,pp [FP|qin].
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Finally, we compute

Pr[E’] ≤
qdel

∑
i=1

Pr[E’i]

≤ qdel · PrNAIΠ,pp [FP|qin].

□
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Lemma 5.8 InsertSim difference. Let the event E” be defined as in Lemma 5.4.
Then,

Pr[E”] ≤ 2 · qin ·m · (
e · (qin − 1) · k
maxValue ·m )maxValue).

Proof.

Let σ(i) denote σ and let σ(i)′ denote σ′ before A’s i-th insertion. We calculate
Pr[E”] in game Ideal, with outputs aIdeal

i and aG∗
i defined as in lines 2 and 3

of algorithm InsertSim in Figure 5.7 at the ith insertion.

Since we are interested in the first output mismatch between games and
looking at the Counting filter’s syntax for the insert algorithm in Figure 5.1,
we see that event E” can be stated as

E” = ”The first mismatch in query responses is due to aIdeal
i ̸= aG∗

i for some i ∈ [qin]”.

Event E” can occur during each insertion of an element xi. Therefore, we
consider all insertions i ∈ [qin] when upper bounding Pr[E”].

Pr[E”] = Pr[The first mismatch in query responses is due to aIdeal
i ̸= aG∗

i for some i ∈ [qin]]

≤
qin

∑
i=1

Pr[The first mismatch in query responses is due to Insert(xi) and aIdeal
i ̸= aG∗

i ].

We define the event Emismatch
inserti

as

Emismatch
inserti

= ”The first mismatch in query responses is due to Insert(xi)”.

We have

Pr[E”] ≤
qin

∑
i=1

Pr[Emismatch
inserti

and aIdeal
i = ⊤∩ aG∗

i =⊥] + Pr[Emismatch
inserti

and aIdeal
i =⊥ ∩ aG∗

i = ⊤]

≤
qin

∑
i=1

Pr[Emismatch
inserti

and aIdeal
i =⊥] + Pr[Emismatch

inserti
and aG∗

i =⊥]

=
qin

∑
i=1

Pr[EIdeal
inserti

] + Pr[EG∗
inserti

], (5.8)

where we define the event EIdeal
inserti

as

EIdeal
inserti

= [Emismatch
inserti

and aIdeal
i =⊥]
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and the event EG∗
inserti

as

EG∗
inserti

= [Emismatch
inserti

and aG∗
i =⊥].

We focus now on EIdeal
inserti

. First, by definition and using the conditional prob-
ability over all A′s and Ideal′s coins , we have

Pr[EIdeal
inserti

] = Pr
Ideal′s coins

r←$R
A′s coins

[Emismatch
inserti

∩ ((a, σ)← InsertIdℜ(Y r←− ℜ, σ(i)) : a =⊥)]

= ∑
A′s coins

Pr
Ideal′s coins

r←$R

[
Emismatch

inserti

∩ ((a, σ)← InsertIdℜ(Y r←− ℜ, σ(i)) : a =⊥)
| A′s coins

]
· Pr[A′s coins]

= ∑
A′s coins

∑
Ideal′s coins

Pr
r←$R

[
Emismatch

inserti

∩ ((a, σ)← InsertIdℜ(Y r←− ℜ, σ(i)) : a =⊥)
| A

′s coins
Ideal′scoins

]
· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins] (5.9)

Now from the previous line, we need to compute

Pr
r←$R

[Emismatch
inserti

∩ ((a, σ)← InsertIdℜ(Y r←− ℜ, σ(i)) : a =⊥)|A′s and Ideal′s coins].

Let ∆max,i represent the state σ after all qin insertions but without the ith

insertion. Each element was inserted using the insertIdℜ
partial function. Since

∆max,i contains all insertions except the ith one, σ(i) ⊆ ∆max,i and we use the
non-decreasing disabling probability for insertion:

Pr
r←$R

[Emismatch
inserti

∩ ((a, σ)← InsertIdℜ(Y r←− ℜ, σ(i)) : a =⊥)|A′s and Ideal′s coins]

≤ Pr
r←$R

[Emismatch
inserti

∩ ((a, σ)← InsertIdℜ(Y r←− ℜ, ∆max,i) : a =⊥)|A′s and Ideal′s coins]
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Since in ∆max,i all elements are inserted and mapped to counters selected
uniformly and independently at random, the adversary has no power and
the probability does not depend on A′s coins anymore:

Pr
r←$R

[Emismatch
inserti

∩ ((a, σ)← InsertIdℜ(Y r←− ℜ, ∆max,i) : a =⊥)|A′s and Ideal′s coins]

= Pr
r←$R

[Emismatch
inserti

∩ ((a, σ)← InsertIdℜ(Y r←− ℜ, ∆max,i) : a =⊥)|Ideal′s coins]

≤ Pr
r←$R

[((a, σ)← InsertIdℜ(Y r←− ℜ, ∆max,i) : a =⊥)|Ideal′s coins] (5.10)

We combine now Equations 5.9 and 5.10:

Pr[EIdeal
inserti

] ≤ ∑
A′s coins

∑
Ideal′s coins

Pr
r←$R

[(a, σ)← InsertIdℜ(Y r←− ℜ, ∆max,i) : a =⊥ |Ideal′s coins]

· Pr[Ideal′s coins] · Pr[A′s coins]

Reversing the conditional probability rule we get:

Pr[EIdeal
inserti

] ≤ ∑
A′s coins

Pr
Ideal′s coins

r←$R

[(a, σ)← InsertIdℜ(Y r←− ℜ, ∆max,i) : a =⊥] · Pr[A′s coins]

= Pr
Ideal′s coins

r←$R

[(a, σ)← InsertIdℜ(Y r←− ℜ, ∆max,i) : a =⊥] · ∑
A′s coins

·Pr[A′s coins]

= Pr
Ideal′s coins

r←$R

[(a, σ)← InsertIdℜ(Y r←− ℜ, ∆max,i) : a =⊥]

≤ Pr



Y1, .., Yqin−1 ←$ ℜ,

∆←$ setup(pp),

(⊤, ∆)← insertIdℜ
partial(Yi, ∆) f or i ∈ [1, .., qin − 1]

(a, ∆′)← insertIdℜ(Y ←$ ℜ, ∆)

: a =⊥
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= Pr



Y1, .., Yqin−1 ←$ ℜ,

∆←$ setup(pp),

(⊤, ∆)← insertIdℜ
partial(Yi, ∆) f or i ∈ [1, .., qin − 1]

(a, ∆′)← insertIdℜ(Y ←$ ℜ, ∆)

: at least one counter needed for insertion is ≥ maxValue



≤ Pr



Y1, .., Yqin−1 ←$ ℜ,

∆←$ setup(pp),

(⊤, ∆)← insertIdℜ
partial(Yi, ∆) f or i ∈ [1, .., qin − 1]

(a, ∆′)← insertIdℜ(Y ←$ ℜ, ∆)

: any counter in ∆ is ≥ maxValue



= Pr



Y1, .., Yqin−1 ←$ ℜ,

∆←$ setup(pp),

(⊤, ∆)← insertIdℜ
partial(Yi, ∆) f or i ∈ [1, .., qin − 1]

: any counter in ∆ is ≥ maxValue


In this last step, instead of considering only counters needed for insertion,
we consider all counters in the filter.
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Since we consider all qin insertions but the ith one, we observe that ∆ cor-
responds to the non-adversarially-influenced state defined in Definition 2.5
with qin − 1 elements:

Pr[EIdeal
qryi

] ≤ Pr



F ←$ Funcs[D,R],

[x1, ..., xqin−1]←$ U(S ∈ Plists(D)||S| = qin − 1)

∆←$ setup(pp)

(b, ∆)←$ insertF
partial(xk, ∆) f or k = 1, ..., qin − 1

: any counter in ∆ is ≥ maxValue


Applying Definition 2.7 which gives the probability that any counter is
greater than or equal to maxValue in an NAI state, we get:

Pr[EIdeal
inserti

] ≤ m · ( e · (qin − 1) · k
maxValue ·m )maxValue. (5.11)

We focus now on EG∗
inserti

at the time of the insertion of element xi. Since
the majority of the steps are similar to the computation for EIdeal

inserti
, we give

explanations only when they differ. First, we have

Pr[EG∗
inserti

] = Pr
G∗′s coins

Ideal′s coins
A′s coins

[Emismatch
i ∩ ((a, σ′)← InsertF(xi, σ(i)′) : a =⊥)]

= ∑
A′s coins

Pr
G∗′s coins

Ideal′s coins

[
Emismatch

inserti

∩ ((a, σ′)← InsertF(xi, σ(i)′) : a =⊥)
| A′s coins

]
· Pr[A′s coins]

= ∑
A′s coins

∑
Ideal′s coins

Pr
G∗′s coins

[
Emismatch

inserti

∩ ((a, σ′)← InsertF(xi, σ(i)′) : a =⊥)
| A

′s coins
Ideal′scoins

]
· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins].
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Let Ωmax,i represent the state σ′ containing all distinct inserted elements
{x1, ..., xqin}\{xi} where each element was inserted using the insertIdℜ

partial
function. Since Ωmax,i contains all inserted elements except the current xi,
σ(i)′ ⊆ Ωmax,i and we use the non-decreasing disabling probability for in-
sertion consistency rule:

Pr[EG∗
inserti

] ≤ ∑
A′s coins

∑
Ideal′s coins

Pr
G∗′s coins

[
Emismatch

inserti

∩ ((a, σ′)← InsertF(xi, Ωmax,i) : a =⊥) |
A′s coins

Ideal′scoins

]
· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins]

≤ ∑
A′s coins

∑
Ideal′s coins

Pr
G∗′s coins

[
((a, σ′)← InsertF(xi, Ωmax,i) : a =⊥) | A

′s coins
Ideal′scoins

]
· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins]

= ∑
A′s coins

∑
Ideal′s coins

·Pr



F ←$ Funcs[D,R],

Ω←$ setup(pp),

for each xk ∈ {x1, .., xqin}\{xi},

(⊤, Ω)← insertF
partial(xk, Ω)

(a, Ω)← insertF(xi, Ω)

: a =⊥


· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins]
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Since Counting filters are function-decomposable (section 2.3.1), we can
rewrite:

Pr[EG∗
inserti

] ≤ ∑
A′s coins

∑
Ideal′s coins

·Pr



F ←$ Funcs[D,R],

Ω←$ setup(pp),

for each xk ∈ {x1, .., xqin}\{xi},

(⊤, Ω)← insertIdℜ
partial(F(xk), Ω)

(a, Ω)← insertIdℜ(F(xi), Ω)

: a =⊥


· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins]

As we consider all qin insertions except the current element xi, the state
contains |{x1, .., xqin}\{xi}| elements. Since F is a random function and using
the non-decreasing disabling probability for insertion consistency rule:

Pr[EG∗
inserti

] ≤ ∑
A′s coins

∑
Ideal′s coins

Pr



Y1, .., Y|{x1,..,xqin}\{xi}| ←$ ℜ,

Ω←$ setup(pp),

(⊤, Ω)← insertIdℜ
partial(Yk, Ω) f or k ∈ [1, .., q|{x1,..,xqin}\{xi}|]

(a, Ω′)← insertIdℜ(Y ←$ ℜ, Ω)

: a =⊥


· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins]
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≤ ∑
A′s coins

∑
Ideal′s coins

·Pr



Y1, .., Yqin−1 ←$ ℜ,

Ω←$ setup(pp),

(⊤, Ω)← insertIdℜ
partial(Yk, Ω) f or k ∈ [1, .., qin − 1]

(a, Ω′)← insertIdℜ(Y ←$ ℜ, Ω)

: a =⊥


· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins]

= ∑
A′s coins

∑
Ideal′s coins

·Pr



Y1, .., Yqin−1 ←$ ℜ,

Ω←$ setup(pp),

(⊤, Ω)← insertIdℜ
partial(Yk, Ω) f or k ∈ [1, .., qin − 1]

(a, Ω′)← insertIdℜ(Y ←$ ℜ, Ω)

: at least one counters needed for insertion
is ≥ maxValue


· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins]

≤ ∑
A′s coins

∑
Ideal′s coins

·Pr



Y1, .., Yqin−1 ←$ ℜ,

Ω←$ setup(pp),

(⊤, Ω)← insertIdℜ
partial(Yk, Ω) f or k ∈ [1, .., qin − 1]

(a, Ω′)← insertIdℜ(Y ←$ ℜ, Ω)

: any counter in Ω is ≥ maxValue


· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins]
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Since we consider all qin insertions but the ith one, we observe that Ω cor-
responds to the non-adversarially-influenced state as in Definition 2.5 with
qin − 1 elements:

Pr[EG∗
inserti

] ≤ ∑
A′s coins

∑
Ideal′s coins

· Pr



F ←$ Funcs[D,R],

[x1, ..., xqin−1]←$ U(S ∈ Plists(D)||S| = qin − 1)

Ω←$ setup(pp)

(b, Ω)←$ insertF
partial(xk, Ω) f or k = 1, ..., qin − 1

: any counter in Ω is ≥ maxValue


· Pr[Ideal′s coins|A′s coins] · Pr[A′s coins].

We apply Equation 2.4 from Definition 2.7 which gives the probability that
any counter is greater than or equal to maxValue in an NAI state:

Pr[EG∗
inserti

] ≤ ∑
A′s coins

∑
Ideal′s coins

m · ( e · (qin − 1) · k
maxValue ·m )maxValue · Pr[Ideal′s coins ∩ A′s coins]

= m · ( e · (qin − 1) · k
maxValue ·m )maxValue · ∑

A′s coins
∑

Ideal′s coins
Pr[Ideal′s coins ∩ A′s coins]

= m · ( e · (qin − 1) · k
maxValue ·m )maxValue. (5.12)
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Finally, we combine Equations 5.8, 5.11 and 5.12, and we have:

Pr[E”] ≤
qin

∑
i=1

Pr[EIdeal
inserti

] + Pr[EG∗
inserti

]

≤ qin · [m · (
e · (qin − 1) · k
maxValue ·m )maxValue + m · ( e · (qin − 1) · k

maxValue ·m )maxValue]

= 2 · qin ·m · (
e · (qin − 1) · k
maxValue ·m )maxValue.

□

We finish the proof of Theorem 5.2. Combining Lemmas 5.3 - 5.8,

Advℜoℑ
Π,A,S (D) = |Pr[Real(A,D) = 1]− Pr[Ideal(A,D,S) = 1]|

≤ |Pr[Real(A,D) = 1]− Pr[G(A,D) = 1]|+

|Pr[G(A,D) = 1]− Pr[Ideal(A,D,S) = 1]|

= AdvReal−or−G
Π,A,S (D) + AdvG−or−Ideal

Π,A,S (D)

≤ ϵ + Pr[E] + Pr[E’] + Pr[E”]

≤ ϵ + 2 · qin ·m · (
e · (qin − 1) · k
maxValue ·m )maxValue + (2 · qqry + qdel) · PrNAIΠ,pp(FP|qin).

□
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Chapter 6

Conclusion

In this work, we analysed Counting filters in adversarial environments. We
investigated attacks with different adversarial goals on Counting filters. We
defined how to achieve them, regarding the different oracles the adversary
has access to. We used an existing simulation-based framework to anal-
yse the adversarial correctness of insertion-only Counting filters, and we
extended it for Counting filters with deletions. These frameworks use a
simulation-based approach with the construction of a simulator enforcing
constraints on the filter. We derived bounds on the correctness of insertion-
only Counting filters and Counting filters with deletions in order to demon-
strate the limits of the adversaries’ abilities. These bound show the limits of
any adversary’s capability to perform pollution attacks and target-set cover-
age attacks on Counting filters.

We propose possible extensions of our work.

• Provide an analysis of the attacks described in Section 3.3.

• Provide an analysis of the tightness of bounds derived in Chapters 4
and 5, and investigate if they could be made tighter.

• Compare our bounds derived in the simulation-based framework with
the bounds derived in the game-based setting used by Clayton et. al.
[8].

• Extend our analysis to allow reinsertion in Counting filters with dele-
tions. This requires extension of the syntax and modification of the
consistency rules.

• Extend our framework to AMQ-PDS such as Cuckoo filters.

• Extend our framework to PDS such as Count-Min Sketches analyzed
by Clayton et. al. in [8]. This would also require modification of the
syntax and consistency rules.
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Appendix A

Appendix

A.1 Showing that Ideal is not NAI

In this section we propose a manipulation that the adversary can operate on
the filter in the ideal world. This shows that Ideal is not NAI.

First, the adversary computes the false positive of the current state of the
filter FP. Then, the adversary inserts a random element x. Due to the def-
inition of insertions in Ideal (line 4 of InsertSim algorithm in Figure 5.3), a
random element x′ ←$ ℜ is mapped into the filter. After insertion, and if the
insertion succeeds, the adversary computes the new false positive probabil-
ity FP’. By comparing both false positive values FP and FP’, the adversary
is able decide if he is satisfied, and if not he deletes the inserted element.
For example, the adversary is able to mount an attack enforcing that each
insertion satisfies FP’ − FP > ϵ.
We note that the adversary cannot decide later after deletion since any rein-
sertion of x is going to insert a new random element x′′ ←$ ℜ.

The distribution of the filter differs from the uniformly random distrbution.
Indeed, enforcing FP’ − FP > ϵ corresponds to enforcing that a minimum ϵ′

of counters are incremented to 1 during the insertion, which is not the case
when using uniformly random insertions. Indeed, when using uniformly
random distribution each counter is chosen with probability 1

m , indepen-
dently of if its current value.

We showed that the filter in Ideal is not equivalent to a filter generated with
uniformly random mapping. Therefore it does no corresponds to an NAI
state defined in section 2.3.
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A.2 Remark on attack in Section 3.4

We note that the attack performed in Section 3.4 can be simulated having
access to a Query query instead of having access to a Delete query.

Indeed, before insertion the attacker can query an element. If the query
returns ”not in the f ilter”, the adversary inserts the element in the filter and
new counters are set > 0. Otherwise, he does not insert the element as it
means that the element is already considered in the filter and and all its
corresponding counters are already > 0. However, this method allows less
freedom. Using the Query query, we are not able to know how many new
counters are set and thus this variable cannot be controlled as in our attack.

It is trivial to see that if this attack is run using the Query query, this at-
tack is feasible in both public and private setting, and without deletions.
This differs from our implemented attack which needs a public setting with
deletions.

This last point is taken in account in the security bound derived in Chapter
4 insertion-only public Counting filters, and in Chapter 5 private Counting
filters with deletions.

A.3 Side-channel attacks on private Counting filters

Recently, some side-channel attacks were performed on private filters using
PRF. Eventhough side-channel attacks are not considered in cryptographic
security bounds, we mention them for awareness.

Reviriego and Rottenstreich [26] proposed two pollution attacks that do not
require any knowledge of the counting filter implementation details, and
where the attacker is allowed access to the insert, delete, and reveal oracles
in Figure 2.3.

The first attack is called ”lookup time attack”. This attacks utilizes the time
to complete a lookup in a sequential implementation, to identify elements
that pollute the filter.

Indeed, in an implementation where counters are accessed sequentially, the
lookup time depends on the number of elements accessed in the filter. If
an element is in the filer, all counter’s positions are accessed in the filter
during the lookup. If an element is not part of the filter, the number of posi-
tions accessed during the lookup depends on when the first corresponding
counter with value equal to zero is found. In order to increase the number
of non-zero counters in the filter inserting only one element, an attacker can
first do a lookup for a set of elements, and then give as input to the filter the
one element with the lowest lookup time.
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However, for this attack to be achievable, the lookup time has to depend
on the number of accessed counters in the filter, such that a query with
more accesses takes more time than a query with less accesses. The differ-
ent counters must be accessed sequentially, which is not always the case.
For example, if the filter is implemented on a system that uses a memory
hierarchy, some counters might be in the cache while others are not. Simi-
larly, if the filter is implemented in parallel where each counter is mapped
to a different memory, all memories are accessed at the same time and by
consequence lookup operations are always completed in a constant time.

The second attack is called ”delta on false positive probability attack”. The
insertion of an element in the filter increases the false positive probability
by an amount that depends on the number of bits set to one by the insertion
(i.e. new non zero counters). By consequence, an attacker might be able to
infer the number of counters set to one after the insertion of an element by
observing the fpp and behave accordingly.

This scheme achieves a good pollution on the filter, with a deterministic
execution time and number of operations on the filter.

The different evaluations of these attacks show that the ”delta fpp attack” is
more effective than the ”lookup time based attack”.

These two attacks can be considered as side-channel attack and therefore,
do not need to be considered in security bounds.
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