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Abstract

SQIsign is a post-quantum signature scheme based on isogenies and
quaternion algebras. It was recently submitted to the NIST call for ad-
ditional post-quantum signatures. For this, a new implementation in C
was written, which only depends on the multi-precision integer library
GMP. Thus, for the first time, all necessary operations on objects in the
quaternion algebra were implemented in a unified way specifically for
SQIsign, without relying on external computer algebra systems.

Through the work on the basic quaternion algebra functions for this im-
plementation, a collection of algorithms for these operations has been
made. This collection, improved by simpler or more efficient solutions
found since the submission, is presented in this work. None of the
algorithms or formulas are completely new. However, this is the first
unified presentation of solutions for all basic quaternion algebra opera-
tions required by the KLPT and ideal-to-isogeny algorithms of SQIsign.

The operations which are presented include lattice equality, addition,
multiplication, intersection, dual and colon lattice, and operations on
ideals such as the computation of left or right orders and connecting
ideals between maximal orders. Most of these have been implemented,
and sometimes several variants are compared.
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Chapter 1

Introduction

Even if the development of quantum computers has not yet reached a state
where they break current public-key cryptography, there is research on sig-
natures and public key encryption methods called post-quantum schemes.
These are supposed to be executed on classical computers to preserve se-
crecy and authenticity of data even if large quantum computers become
practical.

Current families of public-key schemes are based on the assumed hardness
of the RSA problem or the discrete logarithm problem in the group of points
of an elliptic curve, which are solved efficiently by Shor’s algorithm on quan-
tum computers. As a consequence, new hardness assumptions for different
problems are used in post-quantum cryptography. Schemes are then clas-
sified into families which are based on similar assumptions. Isogeny-based
cryptography is one of these families. Its most famous members include the
key exchanges SIDH and CSIDH and the signature scheme SQIsign.

1.1 SQIsign

This post-quantum signature scheme was invented in 2020 by Luca De Feo,
David Kohel, Antonin Leroux, Christophe Petit and Benjamin Wesolowski
in [14]. SQIsign has extremely small signature and public key sizes, which
is new among post-quantum schemes.

The Deuring correspondence

In order to achieve this, it uses the Deuring correspondence, which links
isogenies between supersingular elliptic curves to ideals in a specific quater-
nion algebra.

Quaternion algebras, which are defined in Section 2.3, are non-commutative
four-dimensional Q-algebras. In a quaternion algebra, ideals are lattices
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1. Introduction

which are closed under multiplication, and orders are lattices which are
subrings. Every ideal in a quaternion algebra is an ideal in the usual sense
for some orders in the algebra. This means that it is an additive subgroup of
these orders and closed under multiplication by order elements at left or at
right, but not necessarily both. More precisely, ideals are sait to "link" two
orders of the algebra, since they are an ideal for multiplication at left for the
first one and at right for the second one.

This is similar to the way in which isogenies (defined in Section 2.2), which
are a special kind of application between elliptic curves, link two curves.
More precisely, supersingular elliptic curves over a fixed field have endo-
morphism rings which are isomorphic to orders in a quaternion algebra.
This algebra depends only on the field. Furthermore, isogenies between two
supersingular elliptic curves correspond to ideals in the algebra which con-
nect orders isomorphic to the endomorphism rings of the curves. These are
just two examples of the surprising links between objects in this algebra and
supersingular elliptic curves described by the Deuring correspondence.

Elliptic curveElliptic curve
Isogeny

Maximal orderMaximal order
Ideal

Supersingular curves
Quaternion algebra Deuring correspondence

Figure 1.1: Illustration of the Deuring correspondence between isogenies of supersingular elliptic
curves and ideals and orders in a quaternion algebra

Another aspect of this correspondence it that it is computable. Given an
ideal, a corresponding isogeny can be computed efficiently, as described in
Section 2.4 of this text, or, in more detail, in articles on this subject [13]. In the
other direction computing the endomorphism ring of a supersingular curve
is assumed to be hard if no additional knowledge is given. This also means
that computing an ideal corresponding to a given isogeny is in general diffi-
cult. Furthermore, the fundamental assumption of isogeny-based cryptogra-
phy, which is that computing an isogeny between two supersingular elliptic
curves is in general hard, depends on the hardness of this computation, be-
cause an ideal connecting two maximal orders in a quaternion algebra is
efficiently computable, as explained in Section 7.4. Another efficient, but
more complex algorithm called KLPT (invented in [21]) even computes an
ideal whose norm is power of a prime `, which is the quaternion algebra
analog of the `-isogeny path problem, since the norm of an ideal equals the
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1.1. SQIsign

degree of the corresponding isogenies. The isogeny path problem and the
endomorphism ring problem where even shown to be equivalent in [12, 36].

Use of the Deuring correspondence in SQIsign

SQIsign exploits this correspondence in two ways: First, connection compu-
tations are done in the quaternion algebra, and the results are converted to
isogenies and elliptic curves. Second, all public keys and signatures are el-
liptic curves and isogenies, which makes key recovery and signature forging
hard, since the given information is conjectured to be insufficient for access-
ing the quaternion algebra world. More details on the scheme are given in
Section 3.2.

Even if isogeny-based cryptography exists since more than fifteen years
(even twenty-five if counting an unpublished note by Couveignes [7]), and
the quaternion algebra algorithm KLPT has been used in cryptography since
more than five years, constructive use of the Deuring correspondence in
cryptography is rather new. Its first use in a signature scheme was the GPS
signature [18] which was not implemented, so that SQIsign is the first prac-
tical scheme which needs an implementation of algorithms for the Deuring
correspondence and thus of quaternion algebras.

NIST candidate and current state

Three years after the first paper on it, SQIsign was recently submitted to the
NIST call for additional post-quantum signature schemes [4].

Its security relies not only on the hardness of computing a non-trivial en-
domorphism of a supersingular elliptic curve, but also on the assumption
that a specialized variant of the KLPT algorithm used for signing does
not leak information on its secret inputs. The very recent SQIsign vari-
ant SQIsignHD [8] uses very different isogeny representations and higher-
dimensional isogenies, in the hope of achieving better security proofs and
performance.

While SQIsign is still very slow, as signing takes about a second and ver-
ification tens of milliseconds, it has extremely short signature and public
key sizes, which are at 177 and 64 bytes respectively (for NIST-1 security,
equivalent to AES-128). These are smaller than modern RSA signatures and
keys (which need at least 256 bytes at similar pre-quantum security), and
impressively small when compared to other post-quantum schemes such as
the signature Falcon [17], which uses signatures of 666 and public keys of
897 bytes for NIST-1 security. The small keys and signatures are the main
advantage of SQIsign over other submitted schemes, while its slowness and
complexity are its main drawback.
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1. Introduction

There are only a handful of implementations of SQIsign. Some of them are
improvements of the original C implementation [14, 9, 23]. Magma [14] and
Sagemath [6] implementations also exist. As far as I know, all implemen-
tations except the one for the NIST submission [4] rely on external algebra
systems.

The NIST submission, to which I contributed, provides an implementation
in C which only relies on the multi-precision integer library GMP, and a
specification which fixes parameter sets. Both are expected to help future
research, the specification by a more precise description of the scheme, and
the implementation by a better understanding of the operations it requires.

1.2 Implementing quaternion algebras for SQIsign

As described more precisely in Chapter 3, at the heart of SQIsign are two
families of algorithms on quaternion algebras: The translations to and from
the isogeny world, and several variants of the KLPT algorithm for finding
equivalent ideals of a certain norm, which are needed to facilitate the trans-
lation. Both of these require many basic operations on quaternion algebra
objects.

While the translation and KLPT algorithms are rather new and studied in
several papers related to the scheme [14, 9, 13], the underlying basic oper-
ations on quaternion algebra elements, lattices, orders and ideals (defined
in 2.3) are mostly classical, well-known formulas which are for a large part
implemented in general algebra libraries such as PARI/GP. So far, SQIsign
has not attracted any particular attention to most of them.

These basic operations include addition, multiplication, norm, trace and
conjugate computations on algebra elements, lattice addition, multiplica-
tion, intersection, equality, membership and colon lattice computations, as
well as the addition, multiplication, creation, norm and generator compu-
tations for ideals of maximal orders in a specific quaternion algebra. Fur-
thermore, right orders of ideals as well as isomorphisms between ideals and
the computation of a connecting ideal between two maximal orders are re-
quired.

NIST submission reference implementation

Within the implementation submitted to NIST, we made the choice to create
a dedicated quaternion algebra module which provides all these basic op-
erations on quaternion algebras to other modules which implement KLPT
and the translation algorithms. The quaternion algebra module, whose im-
plementation was mostly part of this work (for more details see Chapter 9),
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1.2. Implementing quaternion algebras for SQIsign

only relies on a module for integers of arbitrary size, which itself uses the
multi-precion integer library GMP.

On the isogeny side, we have two modules, of which one provides Fp2 arith-
metic, and the other one elliptic curves and isogenies. They are used by the
translation algorithms, but also for the verification, which does not require
quaternion algebra operations, as explained more precisely in Chapter 3.
The dependencies between the modules in this implementation are shown
in Figure 1.2.

Integer Operations

Quaternion Algebra

KLPT

Ideal-Isogeny Translations

Elliptic Curves and Isogenies

Finite field Operations

key generation, signing verification

Figure 1.2: Modules and dependencies for the NIST implementation of SQIsign

The progess this implementation provides compared to its predecessors is
not only in the choice of parameters, which were determined for this sub-
mission, but also that it only depends on a multi-precision integer library.
It is therefore the first SQIsign implementation which does not rely on an
external library for quaternion algebra operations.
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1. Introduction

Comparison to prior implementations

More precisely, all prior C implementations I know of used the algebra li-
brary PARI/GP. While facilitating implementations, its use has several dis-
advantages.

First, PARI is not intended for cryptographic use. Quaternion algebra com-
putations in SQIsign are mostly done on secret inputs, which means that
particularly high standards of security are needed. These cannot be met as
long as this external library is used, and gaining control and knowledge on
the algorithms which were so far borrowed from PARI was one of the major
reasons for developing an independent quaternion algebra module.

Furthermore, PARI is a large and very general library. Its size means that
it is likely to contain bugs, which, if they impact us, are hard to fix. Its
generality (PARI has no quaternion-algebra specific code, but supports cen-
tral simple Q-algebras in general) means that the algorithms were chosen for
their generality, and not for their speed or simplicity in the particular case of
the quaternion algebra used in SQIsign. As a consequence, reimplementing
PARI’s functions in our special case allows for quaternion algebra-specific
optimizations. A few of these are given in this text, for example in the
colon lattice computation in Section 7.4 which replaces PARI’s more gen-
eral and slower approach. Since quaternion algebra operations are not the
slowest operations in SQIsign, these improvements might not give impres-
sive speedups of the entire protocol, but this is obviously not a reason to
use excessively general and slower methods, especially if they are also less
readable.

In addition, PARI is highly optimized, but not always according to our
needs. These optimizations sometimes make its code rather unreadable
and hard to understand, while not necessarily improving performance in
our case (see Section 5.1 for an example). Furthermore, even without these
optimizations, moving from PARI to a custom, C- and GMP-based imple-
mentations improves readability, since PARI uses a very complex internal
memory management system and dynamic typing.

In conclusion, reimplementing the functions which prior implementations
borrowed from PARI allows us to improve readability and performance,
and gives a starting point for future work towards a secure implementation.

1.3 Algorithms for quaternion algebras

This text focuses on the basic quaternion algebra operations as listed in 1.2.
To provide context, their description is preceded by a high-level description
of SQIsign and closed by an outlook on KLPT and a comparison to the
reference implementation.
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1.3. Algorithms for quaternion algebras

Motivation, goals and content

During the implementation of the quaternion algebra module, a first ex-
haustive list of all basic quaternion algebra operations required by SQIsign
was made. In the corresponding specification [4], the section on basic op-
erations briefly lists them. However, that text was not supposed to get into
details on this aspect. Therefore, a more precise description of the required
basic quaternion algebra operations still needed to be done, in order to gain
a better understanding of the problems to solve, the chosen solutions and
possible variants. This text attempts to address this.

In order to do so, we give an introduction to quaternion algebras, which
mostly consists in the definition of the objects and operations we need to
compute. Proofs are mostly omitted, since they can be found in textbooks
on quaternion algebras such as Voight’s book [35]. SQIsign and, in more
detail, the KLPT algorithm, are briefly described, to give an idea of the
requirements. A list of quaternion algebra operations, ordered by the objects
they operate on, is provided. For each operation, at least one, sometimes
several solution methods, which are either formulas or simple algorithms in
pseudocode, are explained. None of them are new, but the lists provided in
Chapters 6 and 7 are, to my knowledge, the first systematic overview of basic
quaternion algebra functions specifically for SQIsign which is more detailed
than the specification [4]. Here again, proofs are generally left to Voight’s
book. All of the given methods only use previously explained operations,
in order to facilitate implementation.

The described solution methods are selected following two criteria: simplic-
ity and efficiency. The most important of them is simplicity. The described
solutions should be simple enough to easily understand, reimplement, ver-
ify or adapt them. This is important, since understanding solutions for im-
plementing these operations is necessary for future work on secure SQIsign
implementations. Efficiency is a secondary goal, but can still be used to
differentiate if several simple solutions exist. Most often in these cases, all
methods we tried out, as well as, in rare cases, methods we did not try, are
described and compared with respect to execution speed.

The representations, algorithms and formulas used are often, but not always,
similar to the ones used in the reference implementation. Sometimes we
found simpler or more efficient expressions after NIST’s June 2023 deadline,
in which case these are explained instead of or in addition to the originally
implemented methods. For a detailed description of the differences, see
Section 9.1.

As a summary, the goal of this text is not to introduce new, particularly
fast or even safe algorithms for quaternion algebra operations. It is rather
supposed to gather the simplest existing solutions which are still reasonably
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1. Introduction

efficient, to present them in a coherent, unified way suitable for implementa-
tion, and to combine this presentation with a few insights gained from our
implementation submitted to NIST and its improvements since. Stronger
optimizations (which might reduce readability) or security considerations
could be built upon this in future, but are not the topic of this text.

Outline

In Chapter 2, we first fix a few notations and give basic notions on isogenies
and quaternion algebras. The isogeny part just covers the necessary for
the high-level description of SQIsign in Chapter 3, while the definitions on
quaternions are more precise and used throughout the rest of the document.
Chapter 4 fixes the representation of quaternion ideals and lattices used in
the following sections. Chapter 5 gives the definition of the Hermite Normal
Form, LLL-reduction and a few considerations on matrix computations for
our representation of objects in our quaternion algebra. Chapters 6 and 7
are the heart of this work and give an exhaustive list of algorithms and
formulas on lattices (Chapter 6) and ideals (Chapter 7) required by the KLPT
and translation algorithms in SQIsign, as described above. Chapter 8 gives
an outlook on a basic version of the KLPT algorithm, and details a few
of its subfunctions which, within the reference implementation for NIST,
were also situated in the quaternion algebra module. Chapter 9 focuses
on this implementation and its differences compared to the description in
this text. It also provides an analysis of benchmarks for a few algorithms
where several variants were implemented. In Appendix A.1, a brief list
states which algorithms for ideals also work when the ideal’s left order is not
maximal, while Appendix A.2 contains the benchmarking tables explained
in Section 9.2.
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Chapter 2

Preliminaries

This chapter introduces the notations and notions needed to understand
the remainder of the text. After a few words on notations, we list some
concepts on elliptic curves and isogenies needed for the introduction to
SQIsign in Chapter 3. The following part contains all necessary definitions
on quaternion algebras and objects within these. Those are also required
by the chapters on computations in a quaternion algebra. The last section
presents the Deuring correspondence which links both of the previously in-
troduced worlds, including some of its computational aspects. This again is
necessary for understanding SQIsign, while most other chapters can be read
without it. However, the parts on isogenies and the Deuring correspondence
explain the choice of the quaternion algebra used in all later chapters.

2.1 Notations

The algebraic closure of a field K is denoted by K. Fq denotes the finite field
with q elements (where q is a power of a prime number).

In the following, gcd(·) applied to lists of integers, matrices of integers,
vectors of integers or a mixture of any of these elements means the greatest
common divisors (gcd) of all integers in these objects. A gcd is always a
positive integer.

For x ∈ R, the absolute value is denoted by |x|, and bxc denotes the unique
integer such that x− 1 < bxc ≤ x.

For a matrix M, MT denotes M transpose. If M is square, det(M) denotes
its determinant and adj(M) its adjugate. If M is invertible, M−1 denotes its
inverse. For a scalar a ∈ Q, a.M means that a is multiplied to all entries of
the matrix M, while for a 6= 0, M

a means that all entries of M are divided
by a. For a vector v, a.v and v

a are used similarly. The concatenation L||M
of two n-row matrices with mL and mM columns respectively means their
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2. Preliminaries

concatenation to a n-row, mL + mM-column matrix. The notation || is also
used for the concatenation of more than two n-row matrices.

For M a matrix with n rows and m columns and i, j such that 1 ≤ i ≤ n and
1 ≤ j ≤ m, Mi,j denotes the coefficient in M at row i in column j, and Mj the
vector which is equal to the jth column of M.

The cardinality of a set is taken using #.

The symbol := is used in formulas to indicate that the function to its left can
be computed using the expression to its right.

In the pseudocode of two algorithms in Section 8.4 a return statement does
not terminate the execution. This is announced in the description of the
enumeration algorithms. In all other cases, a return statement stops the
execution immediately.

2.2 Elliptic curves and isogenies

SQIsign is an isogeny-based scheme, so a few notions on elliptic curves,
isogenies and supersingular elliptic curves are necessary for understanding
it.

The following is a collection of elements used in SQIsign, and as such similar
to the introduction to isogenies in Antonin Leroux’s thesis and the SQIsign
specification [22, 4]. Most of the concepts are explained in more detail in
Silverman’s book [31], or in courses on isogenies [30, 33].

Elliptic curves

An elliptic curve is a smooth projective curve of genus one with a distin-
guished point. However, since defining the terms of this definition is too
long for this text, we describe here only Weierstrass curves on a field of
characteristic different from 2 or 3, and only consider their affine represen-
tation.

Such a curve is given by an equation of the form y2 = x3 + ax + b, where a
and b are elements of a field K such that 4a3 + 27b2 6= 0. This last point is
important, since it otherwise describes a curve with singular points which
an elliptic curve cannot have. An elliptic curve is defined on a field K if the
coefficients a, b of its equation are in K. Therefore, a curve which is defined
on K is also defined over all of its extension fields.

Given an elliptic curve E and a field K on which it is defined, we define
its set of K-rational points E(K). This is the set of solutions in K to its
Weierstrass equation, to which is added a special element called point at
infinity and denoted by ∞. Therefore, all rational points except ∞ can be
written as (x, y) where x ∈ K and y ∈ K. This representation is unique.
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Figure 2.1: Solutions of the equation y2 = x3 − x over R

Elliptic curves are particularly interesting for cryptographers because they
have a group law with explicit formulas which make it easy to compute. It
is commutative and written as +. Its neutral element is ∞, and for a point
P of E its inverse is denoted by −P and defined to be the unique point such
that P + (−P) = ∞.

Definition 2.1 Group law

Given an elliptic curve E of Weierstrass equation y2 = x3 + ax + b which is defined
on a field K, the group law + operates on its points as follows:

(P, Q) 7−→



if P = ∞ : Q
if Q = ∞ : P
if P = Q = (x, y), y 6= 0 : f (P)
if P = (x, y), Q = (r, s), x = r, s = −y : ∞
if P = (x, y), Q = (r, s), r 6= x : g(P, Q)

where f (P) = f ((x, y)) = (λ2 − 2x, −λ3 + 2xλ− −x3+ax+2b
2y ) with λ = 3x2+a

2y

and g(P, Q) = g((x, y), (r, s)) = (µ2 − r − x, −µ3 + (r + x)µ + ry−ry
x−r ) with

µ = y−s
x−r .

The case list is exhaustive, because the curve equation assures that x = r implies
y = ±s.

The formulas of the group law are essentially fractions of polynomials and
only depend on a and b. As a consequence, if the elliptic curve is considered
over an extension field of K, the group law stays essentially the same, and
it still operates in the same way on points which already exist when consid-
ering E over K. Therefore, the group law of E is a property of the curve E,
not only of E(K).
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2. Preliminaries

The iteration of the group law of an elliptic curve is called scalar multiplica-
tion. It depends only on +, and therefore on the curve.

Definition 2.2 Scalar multiplication

Let E an elliptic curve defined over a field K.

The map scalar multiplication by m ∈ Z is written as [m], and for P a point of
E it is given by:

[m]P =


if m = 0 : ∞

if m > 0 :
m
∑

i=1
P

if m < 0 :
−m
∑

i=1
(−P)

For m 6= 0, the scalar multiplication by m is an example of an isogeny, or
even more precisely, an endomorphism. These notions are defined in the
next paragraph.

Isogenies

Isogenies are maps between elliptic curves with specific properties, which
are used in the construction of isogeny-based cryptographic schemes. The
following description of isogenies and their properties mostly follows An-
drew Sutherland’s lecture notes [33].

Rational maps on a field K are maps which have an expression as fractions
of polynomials over K. Isogenies are a special kind of rational maps between
elliptic curves which are also group homomorphisms.

Definition 2.3 Isogeny

Let E, E′ elliptic curves defined on a field K.

Let φ : E −→ E′ be such that:

• φ is a rational map mapping E(K) to E′(K)

• φ is not constant

• φ maps the point at infinity of E to that of E′

then φ is called an isogeny from E to E′ and denoted by φ : E −→ E′. If it is
defined over K as a rational map, it is called a K-rational isogeny.

As two curves defined over a field K are also defined on its algebraic exten-
sions, isogenies between them can be considered for any of these extensions.

Since rational maps on K are maps which have an expression as fractions
of polynomials over K, any isogeny can be written as a pair of fractions
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2.2. Elliptic curves and isogenies

of polynomials of K[X, Y]. To evaluate the isogeny on a K-rational point
(x, y), the two fractions are evaluated on x and y, one of them providing
the first, the other one the second coordinate of the resulting point. There is
even a way to obtain a standard representation of isogenies by fractions of
polynomials over K.

Definition 2.4 Standard representation by polynomials

Let E, E′ elliptic curves defined on a field K, and φ a K-rational isogeny from E to
E′.

Then there are four polynomials P, Q, R, S ∈ K[X] such that P and Q are coprime,
R and S are coprime, and for any K-rational point of E represented as (x, y) with
x, y ∈ K, its image by φ is the point of E′ represented by

(
P(x)
Q(x) , y R(x)

S(x)

)
if Q(x) 6= 0

and S(x) 6= 0 and the point at infinity of E′ otherwise.

These four polynomials are unique up to multiplication by an invertible element of
K.

Isogenies have many interesting properties, for example they are group mor-
phisms for the group law of the elliptic curves they link, and surjective
when the curves are considered over the algebraic closure. The composition
ψ ◦ φ : E −→ E′′ of two isogenies φ : E −→ E′, ψ : E′ −→ E′′ is an isogeny.

Definition 2.5 Degree, kernel, separability

Let φ an isogeny of a curve E over K of standard form (x, y) 7−→
(

P(x)
Q(x) , y R(x)

S(x)

)
for P, Q, R, S ∈ K[X].

Its degree is deg(φ) = max(deg(P), deg(Q)).

Its kernel is ker(φ) = {P ∈ E(K) : φ(P) = ∞}.

If the derivative ( P
Q )′ of the fraction P

Q is not zero, φ is called separable.

The kernel of an isogeny on E is always a finite subgroup of E(K). Its order
divides the degree of the isogeny. The degree of the composition of two
isogenies is the product of their degrees.

Separable isogenies have a few additional properties. The composition of
separable isogenies is separable. The degree of a separable isogeny is equal
to the order of its kernel. On a field of non-zero characteristic p, it is not a
multiple of p. Furthermore, a separable isogeny is entirely determined by its
kernel. That means that given a finite subgroup of the group E(K) for E an
elliptic curve over K, there is (up to composition by an invertible isogeny)
an unique image curve E′ over K and a unique rational map φ such that
φ : E −→ E′ is a separable isogeny over K. This isogeny can be computed,
as explained in Section 3.1. As groups generated by a single element are
called cyclic, an isogeny with cyclic kernel is called cyclic.
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2. Preliminaries

Two curves linked by an isogeny are called isogenous. Even though isogenies
are in general not invertible, every isogeny between two curves has a dual,
which is an isogeny linking the same curves in opposite order.

Definition 2.6 Dual

Let φ : E −→ E′ an isogeny.

There is a unique isogeny φ̂ : E′ −→ E of degree deg(φ) such that φ̂ ◦ φ =
[deg(φ)]. φ̂ then also verifies φ ◦ φ̂ = [deg(φ)].

The dual of a composition of isogenies is the composition of their duals in
inverse order.

Since isogenies are group morphisms between elliptic curves (even if not
every group morphism is an isogeny), some vocabulary from morphisms is
also used for isogenies.

Definition 2.7 Endomorphism, isomorphism

An isomorphism is a bijective isogeny whose inverse is also an isogeny. An endo-
morphism is an isogeny from a curve to itself.

Being isomorphic (that is, linked by an isomorphism) defines an equivalence
relation over the elliptic curves which are defined over the same field (or
extension fields of it). The equivalence classes for being isomorphic over an
algebraic closure are characterized by their j-invariant which is the same for
two elliptic curves over the same field if and only if they are isomorphic.

Definition 2.8 j-invariant

Let E the elliptic curve over K given by the equation y2 = x3 + ax + b, where
a, b ∈ K and 4a3 + 27b2 6= 0.

The j-invariant of E is j(E) = 1728 4a3

4a3+27b2

As we only care about elliptic curves up to isomorphism, most often in the
following the word elliptic curve is used for an isomorphism class of elliptic
curves over an algebraic closure of their base field.

Also, isogenies which are obtained from each other by composition with
an isomorphism are called equivalent. This also defines an equivalence re-
lation. In particular, each equivalence class of isogenies links two isomor-
phism classes of elliptic curves. However, there are sometimes several dis-
tinct equivalence classes of isogenies linking the same isomorphism classes
of elliptic curves. The degrees of two equivalent isogenies are equal.

Definition 2.9 Endomorphism ring

The set of endomorphisms of a curve together with the constant mapping the whole
curve to its point at infinity form a ring for point-wise addition and composition.
This is called the endomorphism ring and denoted by End(E).

14
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Supersingular curves

Given the definition of an endomorphism and the endomorphism ring, we
can finally define supersingular elliptic curves. This is the kind of elliptic
curve we will work with in Chapter 3.

Definition 2.10 Supersingular elliptic curve

A supersingular elliptic curve is an elliptic curve E over a field of non-zero charac-
teristic p such that its endomorphism ring is isomorphic to an order in a quaternion
algebra (defined in Section 2.3). Equivalently, the kernel of [p] on E is {∞}.

Supersingular curves only exist on fields of non-zero characteristic, since the
endomorphism ring is isomorphic to Z or an order in a quadratic imaginary
field (and not a quaternion algebra) otherwise.

Proposition 2.11 Supersingular curves are isogenous

All supersingular elliptic curves over a field K are isogenous over the algebraic
closure K of K.

Furthermore, every supersingular elliptic curve defined over K in charac-
teristic p > 0 is isomorphic to a supersingular elliptic curve defined over
Fp2 . This is very useful in computations which only need to be done up to
isomorphism, and used by SQIsign which only works with supersingular
elliptic curves over Fp2 for a fixed large prime p.

Working with isogenies and endomorphisms of these curves requires some
notions on orders and ideals in a quaternion algebra, which are introduced
in the next paragraph.

2.3 Quaternion algebras

The notions introduced here are presented in more details and generality in
Voight’s book on quaternion algebras [35]. Other useful references on the
quaternion algebra notions used in SQIsign are Antonin Leroux’s thesis [22],
the first paper on SQIsign [14] and the specification [4].

Quaternion algebras

As quaternion algebras behave slightly differently in characteristic two, we
do not treat that case. Therefore all fields in this part are supposed to be of
characteristic different from 2.

Definition 2.12 Quaternion algebra

Let K a field.

A 4-dimensional K-algebra which has a basis (1, i, j, ij) and a, b ∈ K \ {0} such
that:
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2. Preliminaries

• i2 = a

• j2 = b

• ij = −ji

is called a quaternion algebra. Since all quaternion algebras over K with i2 = a and
j2 = b are isomorphic, they are called the quaternion algebra H(a, b) over K.

Since ij = −ji 6= 0, a quaternion algebra is non-commutative.

Every quaternion algebra has a standard involution which defines its re-
duced norm and trace.

Definition 2.13 Standard involution, reduced norm and trace

Let K a field and H(a, b) a quaternion algebra over K of standard basis (1, i, j, ij).

Let x = x1 + xii + xj j + xijij ∈H(a, b) with x1, xi, xj, xij ∈ K.

The standard involution of x is x = x1 − xii− xj j− xijij.

Its reduced norm is N(x) = xx, and its reduced trace is tr(x) = x + x. The
reduced trace is a linear map and the reduced norm is a quadratic form.

For SQIsign, we work within the quaternion algebra H(−1,−p) over the
field Q, where p ≡ 3 mod 4 is the characteristic of the finite field over
which we consider our elliptic curves, and therefore prime. Since −p and
−1 are both negative, H(−1,−p) is a definite quaternion algebra. In this
case, the reduced norm is a positive definite quadratic form and all non-
zero elements x ∈H(−1,−p) have a multiplicative inverse which is 1

N(x)x.

1 i j ij
1 1 i j ij
i i −1 ij −j
j j −ij −p pi
ij ij j −pi −p

Figure 2.2: Multiplication table of the standard basis (1, i, j, ij) of H(−1,−p)

For the remainder of this text, we note A = H(−1,−p) this quaternion
algebra, and all considered objects and operations which are in a quaternion
algebra are in A. Furthermore, the letters i and j will only be used to denote
the elements of the basis (1, i, j, ij) such that i2 = −1 and j2 = −p of A.

Lattices in an algebra

Definition 2.14 Lattice
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2.3. Quaternion algebras

Let V a Q-vector space of finite dimension n.

Let B = (b1, ..., bn) a basis of V.

Then L = {x ∈ V | ∃(a1, ...an) ∈ Z : x =
n
∑

k=1
akbk} is a lattice of V.

This definition of a lattice is very simple, but sufficient for our case, even
though there exists a more general definition for arbitrary dimensions and
other rings than Z. It is important to notice that we require all lattices to
have the same dimension as the vector space.

Since lattices are Z-linear combinations of a basis, they are groups for addi-
tion.

Definition 2.15 Definitions for a lattice

Let L a lattice in a finite-dimensional Q-vector space V.

The dual of L is defined with respect to a symmetric nondegenerate bilinear form s
on V as the set L#

s = {b ∈ V | ∀a ∈ L, s(a, b) ∈ Z}. L#
s is a lattice in V.

The conjugate of L is L = {x | x ∈ L}. L is a lattice.

The volume of L is the absolute value of the determinant of any basis of L.

Elements of L which are not multiples of another element of L by any positive integer
larger than one are called primitive elements of L. For α = n.β with α, β ∈ L,
n ∈N \ {0} and β primitive in L, we call β the primitive part of α.

There are also operations on more than one lattice.

Definition 2.16 Operations on lattices

Let L1 and L2 two lattices in the same Q-vector space V.

The sum of L1 and L2 is {a + b | a ∈ L1, b ∈ L2}, and their intersection is their
intersection as sets. Both of these are again lattices of V.

If L1 ⊂ L2, the index [L2 : L1] of L1 in L2 is the integer #(L2/L1) (the number of
elements of L2 quotiented by L1). This is also the quotient of the volumes of L2 and
L1.

Since we work in a fixed quaternion algebra, all lattices we consider are
lattices of A. Lattices in an algebra are often called fractional ideals in the
literature, because they are obtained by dividing integral ideals (defined
later) by an integer. In order to avoid confusion with integral ideals, the
term fractional ideal is not used in this text. The equivalent term lattice is
used instead. It is understood that from this point all lattices are in A,
except if explicitly stated otherwise.

The multiplication in the algebra allows us to define additional operations
on lattices in A, such as the product and the colon lattice of two lattices.
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Definition 2.17 Lattice product

The product of two lattices L1 and L2 is the lattice L1L2 generated by {ab | a ∈
L1, b ∈ L2}, where the product used is the product of the quaternion algebra A.
Therefore, the lattice product is not commutative.

It is also possible to multiply lattices with algebra elements. The product of a lattice
L by x ∈ A on the left is xL = {xb | b ∈ L}. The right product of L by x
is Lx = {bx | b ∈ L}. The sets resulting from these lattice products are lattices
(except if x = 0).

Definition 2.18 Colon lattice

The right colon lattice from a lattice L1 to a lattice L2 is (L2 : L1)R = {x ∈
A | L1x ⊂ L2}. Similarly, the left colon lattice from L1 to L2 is defined by
(L2 : L1)L = {x ∈ A | xL1 ⊂ L2}.

The colon lattice is frequently called colon ideal in the literature, includ-
ing Voight’s book [35]. As we do not use the term fractional ideal and
reserve the term ideal for the objects defined below, the less confusing term
colon lattice is preferred in this text. Furthermore, the SQIsign specification,
the PARI/GP library and the reference implementation call the same object
transporter. This term is not used here.

Orders and ideals

Definition 2.19 Order

An order is a lattice which is also a subring of A. An order is called maximal if it
is not strictly included in any other order.

Examples of orders are the lattices generated by (1, i, j, ij) and (1, i, i+j
2 , 1+ij

2 ).
The later is a maximal order. Another way of finding orders is to obtain
them from lattices.

Definition 2.20 Left and right order of a lattice

Let L a lattice of A. The sets OL(L) = {x ∈ A | Lx ⊂ L} and OR(L) = {x ∈
A | xL ⊂ L} are orders of A and called the left order and the right order of L.

The right order of a lattice L is the right colon lattice (L : L)R and its left
order is (L : L)L.

Definition 2.21 Ideal

A lattice I such that I ⊂ OL(I), or equivalently I ⊂ OR(I), or, again equivalently,
I2 = I I ⊂ I is called an integral ideal or simply an ideal.

An integral ideal I only contains elements of integer norm. Its norm is denoted by
N(I) and defined as the greatest common divisor of the norms of its elements.
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The sum and intersection of two ideals with the same left order are their
sum and intersection as lattices. The product of two ideals I, J such that
OR(I) = OL(J) is their product I J as lattices. Intersection, sum and product
of ideals are ideals. The conjugate I of an ideal I is its conjugate as lattice. It
is an ideal of the same norm with OL(I) = OR(I) and OR(I) = OL(I).

An integral ideal is a left ideal of its left order and a right ideal of its right
order in the usual sense of ideals in rings, since it is included in both and
orders are subrings and therefore rings. But it is also a left (respectively
right) ideal for all suborders of OL(I) (respectively OR(I)) in which it is
included. Therefore, given an order O, a left O-ideal is an ideal I such that
I ⊂ O ⊂ OL(I). Right O-ideals are defined analogously.

A left O-ideal I is called cyclic if for all primes q, I 6⊂ qO. With this de-
nomination, we follow Leroux’s thesis [22] and remain coherent with the
denominations for isogenies. What we call cyclic ideals is normally known
as primitive ideals.

A principal left ideal is generated by an element α of its left order, as I =
OL(I)α. α is called its generator.

All ideals I of A are generated as I = OL(I)x +OL(I)n by pairs n, x where n
is their norm and x an element of their left order. Such an element x is called
a generator of I even if the ideal is not principal. An ideal has a primitive
generator if and only if it is cyclic.

Definition 2.22 Equivalences

Two orders O and O′ are equivalent if there is α ∈ A \ {0} (so α is invertible) such
that αO = O′α.

Two left ideals I and J of an order O are isomorphic if there is some β ∈ A \ {0}
such that I = Jβ. Being isomorphic is an equivalence relation (since all non-zero
elements are invertible), and isomorphic ideals are therefore called equivalent.

If two left O-ideals are isomorphic, their right orders are equivalent.

Definition 2.23 Connecting ideals

An ideal I is said to connect OL(I) and OR(I) if these are maximal orders. I is
then called a connecting ideal of OL(I) and OR(I).

All pairs of maximal orders in A have a connecting ideal, and a connecting
ideal is not unique. For example, all its multiples by elements of Q are still
connecting ideals of the same orders.

An ideal I which has OL(I) or OR(I) maximal has both of them maximal.
Ideals of maximal orders have an inverse. For an ideal I, this is the lattice
I−1 = 1

N(I) I. It verifies I I−1 = OL(I) and I−1 I = OR(I).

In the later sections of this text, all ideals are ideals of maximal orders.
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2.4 Linking both: The Deuring Correspondence

We have already seen that the endomorphism ring of a supersingular elliptic
curve over a field of characteristics p = 3 mod 4 is isomorphic to an order
of the quaternion algebra A = H(−1,−p). This is only one point of a much
larger correspondence between equivalence classes of ideals and orders in A
and equivalence classes of isogenies and supersingular elliptic curves over a
field of characteristic p.

SQIsign exploits this correspondence in order to do many computations on
ideals in A, even though all public information consists in elliptic curves
and isogenies. The Table 2.3 summarizes the equivalences on which SQIsign
relies most. It is important to notice that everything in this table is valid only
up to isomorphism.

Supersingular elliptic curves Ideals and orders of A = H(−1,−p)
endomorphism ring maximal order
endomorphism principal ideal of a maximal order
isogenies between two curves ideals between two maximal orders
composition of isogenies ideal product
isogeny degree ideal norm
dual isogeny conjugate ideal

Figure 2.3: The Deuring correspondence for curves over F of characteristic p

Most arguments and examples in the following paragraphs are taken from
the usual texts on SQIsign [22, 14]. Some additional information on compu-
tations and hardness assumptions can be found in articles on the Deuring
correspondence [13, 36].

An example

As explained in the original SQIsign paper and Leroux’s thesis [14, 22], the
maximal order O0 of basis (1, i, i+j

2 , 1+ij
2 ) in A = H(−1 − p) corresponds

exactly to the endomorphism rings of supersingular elliptic curves with j-
invariant 1728 over fields of characteristic p. One such curve, denoted by E0,
is given by the equation y2 = x3 + x.

In order to write an explicit mapping of endomorphisms of E0 to elements
of O0, we first need to identify a generating subset of End(E0). Consider
the identity 1, the Frobenius endomorphism π which maps a Fp-rational
point given by (x, y) to (xp, yp) and the endomorphism ι mapping (x, y) to
(−x,

√
−1y) where

√
−1 denotes a square root of −1 in Fp. As isogenies are

pairs of fractions of polynomials, they can be added, composed and divided
by 2 to obtain (1, ι, π+ι

2 , 1+i◦π
2 ), which is a basis of End(E0).
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The Z-linear application mapping (1, ι, π+ι
2 , 1+i◦π

2 ) element by element to the
basis (1, i, i+j

2 , 1+ij
2 ) of O0 is an isomorphism of rings between End(E0) and

O0.

Since this explicit map is helpful for computations around the Deuring cor-
respondence, the curve E0 and the corresponding order O0 play an impor-
tant role in some later parts of this text. We therefore keep the notations E0
and O0 for them.

Two worlds separated by computation

Even though the world of isogenies and the world of quaternion ideals are
linked by this correspondence, they are computationally very different. One
world requires to work with polynomials, kernels of isogenies and their
evaluation, and the other one mostly relies on integer linear algebra in di-
mension 4. More importantly, there are some problems whose difficulty is
very different in both worlds.

The isogeny path problem for example is the following: Given the Weierstrass
equations of two curves, find an isogeny between them. This problem is
believed to be hard, as no efficient solution is known. Variants, like find-
ing isogenies of a given degree or of a degree which is a power of some
given prime (the latter is called `-isogeny path problem, where ` denotes
the prime) are also considered hard, and various cryptographic schemes are
built on these assumptions.

The equivalent problem in the ideal world, which is finding an ideal linking
two maximal orders in A, is not hard, and algorithms for it are known (as
the one in Section 7.4 for example). It is more complicated, but, if it exists
and with some restrictions, also possible to find an ideal of a given norm
between two orders. This is the main purpose of the algorithm KLPT from
2014 [21] which is explained in Section 8.

Passing from one world to the other

This difference in computational difficulty of the same problem in the quater-
nion world and in the isogeny world makes clear that the translation from
one world to the other is not always easy.

It is in general asumed to be hard to compute the endomorphism ring of an
elliptic curve if only its equation is given. Exceptions such as the curve E0
from the example above exist, but there is no efficient solution for the general
case of this endomorphism ring problem. Benjamin Wesolowski even showed
that it is equivalent to the `-isogeny path problem under the Generalized
Riemann Hypothesis [36]. Therefore, passing from the isogeny to the ideal
world is hard, as long as only curve equations are known.
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However, if an isogeny from a curve with known endomorphism ring to
another curve is known, the endomorphism ring of the image curve can be
obtained using this knowledge, as described in Section 3.1.

In the other direction, given a maximal order O, it is possible to compute an
elliptic curve with endomorphism ring isomorphic to O in polynomial time,
even if it is not always fast, as [13] points out. Since the specification [4] of
SQIsign fixes the prime p to values which simplify this computation, it is
feasible in reasonable time in our case.

The correspondence between ideals and isogenies can be detailed as follows:
Given φ an isomorphism from the endomorphism ring End(E) of a super-
singular elliptic curve E to the corresponding order O in A, any isogeny
of E corresponding to a left O-ideal I has a kernel equal to E[I], which is
the intersection of the kernels of the endomorphisms in the image φ−1(I).
For translating an isogeny into an ideal, it is therefore necessary to know
the endomorphism ring of the domain curve. Algorithms for computing the
translation in both directions are described in detail in [13], and summarized
in Section 3.1 in the next chapter.
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Chapter 3

Introduction to SQIsign

The Deuring correspondence is at the heart of SQIsign, a signature scheme
where most private computations are done in A and all public ones on iso-
genies and elliptic curves. It exploits the easily computable cases identified
in Section 2.4 to translate between both worlds, while relying of the hardness
on the more difficult ones for its security.

In order to give an idea of the functioning of SQIsign, we first introduce
a few important algorithmic building blocks, without going too much into
details. Then, we describe the scheme. This allows us to finally group the
different objects and algorithms used by SQIsign into a handful of modules,
and to understand the role of quaternion algebra operations in its imple-
mentation.

This chapter is a summary of the descriptions of SQIsign in previous docu-
ments such as [14, 22, 4]. It mostly follows the specification [4], but without
going as much into details.

3.1 Building blocks

In this section, we introduce some algorithmic building blocks of SQIsign.
Most of these are needed for the translations between the quaternion and
the isogeny world. We first summarize how isogenies are represented and
evaluated. Then the KLPT algorithm for finding equivalent ideals of given
norm is shortly introduced. Finally, we explain at high level how these two
blocks are used for changing between both worlds. In addition, an idea
of how random ideals and isogenies are constructed is given in the last
paragraph.
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Representing and evaluating isogenies

Since an isogeny is a rational function between two elliptic curves, one sim-
ple way of representing it is to give two fractions of polynomials, a domain
and an image curve. Computations and evaluation using this representation
are fast.

Separable isogenies are also uniquely represented by the domain curve and
a subgroup of it which is the kernel of the isogeny. To evaluate a separable
isogeny given by its kernel, Vélu’s formula [34] and its variants are used.
Since these computations are linear in the degree of the isogeny (or in square
root of the degree for

√
élu [2]), this computation is in general impossible for

isogenies with large degree. However, it is possible to factorize a separable
isogeny φ of composite degree n into a composition of separable isogenies
such that n is the product of their degrees. Then Vélu’s formula can be
applied for each of the prime degree isogenies in the decomposition. If φ is
of smooth degree, this is fast enough. Therefore, separable isogenies can be
computed from their kernel if and only if their degree is smooth.

Isogenies can also be given as ideals in a quaternion algebra. Depending
on the representation of the endomorphism ring, this often means that iso-
genies are represented by Q-linear combinations of endomorphisms as de-
scribed in [13]. As explained in Section 2.4, this corresponds to giving a
kernel of the isogeny, and can therefore only be evaluated if the ideal is of
smooth norm (which corresponds to an isogeny of smooth degree).

We often use cyclic isogenies, because their kernel is generated by one ele-
ment (instead of two).

KLPT for equivalent ideals

The algorithm KLPT was invented in 2014 by Kohel, Lauter, Petit and Tignol
in [21]. It takes as input an ideal I in a quaternion algebra and an integer n,
and computes an ideal J which is isomorphic to I and has norm n, as long
as n is large enough.

More precisely, KLPT uses the special structure of the order O0 of basis
(1, i, i+j

2 , 1+ij
2 ) which contains the suborder Z[i] + jZ[i], in order to find an

element α of I of norm nN(I). The conjugate of α is then multiplied to I
and divided by N(I) in order to obtain an isomorphic ideal of norm n (since
N( 1

N(I) Iα) = 1
N(I)2 N(Iα) = N(I)N(α)

N(I)2 = n). The search for such an element
is described in more detail in Chapter 8. A variant of this method is used
to find an equivalent ideal whose norm is a power of some prime number,
where the exponent is not necessarily specified at the beginning.

The original KLPT algorithm always produces ideals connecting to O0. It
was modified by the inventors of SQIsign in order to not immediately re-
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veal connections from O0 to the left or right order of its input. Details of
this adaptation are not explained here, but can be found in the papers on
SQIsign [14, 9].

Passing between worlds

The algorithms which realize the correspondence from Section 2.4 by trans-
lating isogenies to ideals and ideals to isogenies are central in SQIsign. They
are quite complex and need to be very optimized since they are the slow-
est part of current implementations. Since they are not at the center of this
work, only a few notes are given here in order to explain some parameter
choices and requirements.

Given a left O0-ideal I of norm not divisible by p, the elements of a basis B
of I are elements of O0 and therefore generators of principal ideals. Since
O0 corresponds to E0 and an explicit correspondence of generators of O0 to
endomorphisms of E0 is known, the elements of B are represented using
these generators and then translated into endomorphisms of E0. Then the
intersection E0[I] of their kernels is computed. The separable isogeny of
kernel E0[I] is one of the equivalent isogenies corresponding to I, and it is
computed from its kernel E0[I] using Vélu’s formula. As explained above,
this is efficient if the degree of the isogeny (which equals the norm of I) is
smooth.

Sometimes a left O0-ideal I is given and only the image curve of an isogeny
corresponding to I is needed, but not the isogeny itself. In this case, an
ideal J equivalent to I and with smooth norm is computed in a first step
using KLPT. Then J is translated into an isogeny φJ and its image curve is
computed.

Variants of these algorithms which do not only work on left O0-ideals exist.
There are many possible optimizations, which are described for example in
the papers on SQIsign [14, 9] or on the Deuring correspondence [13].

In the other direction, given a cyclic, separable isogeny of domain E0 rep-
resented by a generator P of its kernel, it is possible to compute the corre-
sponding left O0-ideal by evaluating two orthogonal endomorphism on P.
The right order of the resulting ideal is isomorphic to the endomorphism
ring of the image curve of the isogeny.

Detailed descriptions of these algorithms are given by [13] in a quite general
setting. The papers on SQIsign and the specification [14, 9, 4] add many
optimizations which are sometimes specific to our case.
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Randomly sampled ideals and isogenies

When a random isogeny of a given degree D is needed, there are two ways
of generating it. Either it is created as an isogeny, or as an ideal.

If the ideal world is not accessible, a separable and cyclic isogeny of smooth
degree D is chosen by selecting a point of order dividing D on its domain
curve, which is then used as generator of the kernel of the isogeny. To
randomly select such a point K, it is sufficient to choose a uniformly random
integer h between 1 and D (both included) and to compute K as P + [h]Q
where P, Q is a (deterministically chosen) basis of the subgroup of order D
of the domain curve.

Randomly sampling a cyclic ideal of norm n in a maximal order O of A
is done by selecting a random primitive order element x in O such that
gcd(N(x), n) = n. The ideal generated by x and n is then used as random
ideal. Selecting a random order element of norm a multiple of n is very
similar to some internal steps of the KLPT algorithm. For example, in the
case where O = O0 the algorithm SolveNormEquation from Section 8.1 can be
used. If the norm of the ideal is not fixed in advance, it has to be randomly
chosen among suitable values in order to then use the above method.

The specification [4] explains the random choice of objects required for
SQIsign in more detail.

3.2 Description of SQIsign

SQIsign is a signature scheme obtained from a sigma protocol via a Fiat-
Shamir transformation [14, 4].

A public-coin sigma protocol for identification consists in the exchange of
three messages between two participants. The prover who has the secret key,
tries to convince the verifier that he knows the secret key, without reveal-
ing any other information on it. For this, he first computes a commitment
message using his secret information and public parameters. The verifier
then sends a random value within some protocol-dependent space as chal-
lenge. He does not keep any information secret. The prover finally com-
putes his response message as a function of the parameters, his secret values
and the challenge. Upon reception of the response, the verifier can check
whether the total transcript formed by commitment, challenge and response
convinces him. For the protocol to be correct, he should accept if the prover
behaved as specified. For its security, the verifier should generally not accept
if the prover does not know the secret key, and not gain any information on
the secret key except whether the prover does or does not know it.

The Fiat-Shamir transformation (invented in [15], applied to SQIsign in [14])
replaces the interaction with the verifier by computing the challenge as a
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3.2. Description of SQIsign

hash of the commitment and the message to sign. The signature then con-
tains the commitment and the response.

Setup and keys

Following the specification [4], the public parameters are two large, smooth,
positive and coprime integers Dcom and Dchall , as well as the curve E0 : y2 =
x3 + x over the finite field Fp2 and its endomorphism ring which is isomor-
phic to the order O0 ⊂ A via the explicit isomorphism given as example in
Section 2.4.

The private key is a random left O0-ideal Iκ with randomly chosen norm
Dκ of the same bit length as p1/4, sampled as described in Section 3.1. An
equivalent ideal of smooth norm and the corresponding isogeny κ of domain
E0 as well as its image curve Eκ are computed using KLPT and the ideal-to-
isogeny translation. Eκ is the public key.

Commitment-challenge-response

The specification [4] explains in great detail the computation of commitment,
challenge and response in SQIsign, which are, with slight variations, also
presented in [14, 9]. This presentation summarizes the specification.

E0 Eκ

E1 E2

κ

φ

χ

σ

Prover

Verifier

Figure 3.1: SQIsign in the isogeny world. Dashed arrows are secret

Commitment: The prover chooses a random left O0-ideal Iφ of norm equal to
Dcom. Then he computes the corresponding separable isogeny φ of domain
E0 and the image curve E1. E1 is the commitment, and φ is kept secret.

Challenge: The verifier selects a random cyclic separable isogeny χ of domain
E1 and degree Dchall , which he sends as challenge message.

Response: The prover computes the composition of the challenge isogeny χ
and its secret φ. This gives a separable cyclic isogeny χ ◦ φ : E0 −→ E2
of smooth degree Dchall Dcom. He converts it into a left O0-ideal I, which
he multiplies with the conjugate of his secret key Iκ, which is a right O0-
ideal. He obtains Iκ I. Then he uses a specialized version of KLPT to get an
equivalent ideal J with a power of 2 as norm D. For this computation, Iκ is
needed in order to provide a link to O0. J is conjectured by [14, 9] to not
reveal any information on φ or Iκ. Since the response isogeny σ should be
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3. Introduction to SQIsign

such that χ̂ ◦ σ is cyclic, J is replaced by another equivalent ideal if it does
not fulfill this condition (this is tested by checking if there is a primitive
generator of the non-principal ideal J Iχ). The final J is converted to a cyclic
separable isogeny σ which is used as response.

Verification: The verifier checks whether the response σ is a cyclic separa-
ble isogeny from the public key Eκ to the image curve E2 of the challenge
isogeny.

Signature and verification

In order to obtain SQIsign, the above identification protocol is transformed
into a signature scheme by the Fiat-Shamir transformation [4, 14].

When signing, there is no interaction with the verifier. As a consequence,
instead of randomly choosing the challenge isogeny, a hash of the commit-
ment curve and the message is computed. This results in an integer between
1 and Dchall , which is then used to deterministically compute a cyclic sepa-
rable isogeny χ of degree Dchall in the same way than random isogenies are
obtained from random integers in Section 3.1.

As fixed in the specification [4], the signature then consists in generators of
the kernels of the response isogeny σ and the dual of the challenge isogeny
χ̂. The later one is used instead of E1 because a generator of the kernel of χ̂
is a short representation of E1 given the other available information.

During signature verification, it is necessary to check whether the signature
encodes two separable isogenies σ and χ̂ of domains Eκ and the image curve
of σ respectively and with the expected degrees. Since χ̂ ◦ σ has E1 as image
curve and the public key Eκ as domain, the commitment E1 is obtained as
image curve of χ̂ ◦ σ. Then the challenge isogeny χ is computed as hash of
E1 and the message. This is used to verify that χ̂ and χ are duals of each
other.

Security of SQIsign

A prerequisite for the security of SQIsign, as for any scheme, is that is cor-
rectly used. For example, the prover or signer must keep secret the ideals
and isogenies from E0 to the public key Eκ and to the curves E1 and E2
involved in a signature. If he gave out for example the commitment ideal
or isogeny, an attacker could compose it with the public challenge and re-
sponse isogenies to obtain a connection from E0 to the public key curve Eκ.
This allows them to efficiently compute the corresponding ideal as described
in Sections 2.4 and 3.1 in order to use it as secret key. Almost the same key
recovery attack is possible given a connection from E0 to E2 or Eκ.
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3.2. Description of SQIsign

Similarly, revealing the endomorphism ring of any of the three curves Eκ,
E1 and E2 involved in a signature gives an attacker access to the quaternion
algebra world which allows them to efficiently compute an equivalent secret
key.

O0 Oκ

O1 O2

Iκ

Iφ I(χ◦φ) Iκ I(χ◦φ)

Figure 3.2: Quaternion ideals and orders used in SQIsign’s signing procedure. All of them are
secret except O0

If used correctly, the security of SQIsign relies on two assumptions.

The first one is the assumed hardness of the computation of a non-trivial
endomorphism of smooth degree of a supersingular elliptic curve [4]. So far,
the most efficient algorithms for solving this problem have a complexity at
least quasi-linear in

√
p for classical computers (Delfs-Galbraith [10] ) and in

p
1
4 for quantum computers (Biasse-Jao-Sankar [3]). Quasi-linear complexity

in x means that their asymptotic complexity C(x) towards large values of
an integer parameter x is bounded above and below by terms of the form
λx log(x)k where some k > 1 and λ > 0. Even if it is not proven that finding
a single non-trivial endomorphism is as hard as finding all of them, these
algorithms are the same as those used for computing the full endomorphism
ring. They therefore also solve the isogeny path problem, since these two
problems where shown to be equivalent by [12, 36].

The second one is that the response isogenies obtained from the output of
the KLPT variant used for the response computation (often called Signing-
KLPT as in [14, 9, 4]) have a distribution which is computationally indistin-
guishable from random cyclic isogenies of same degree and domain, if the
secret key is unknown. For the original Signing-KLPT from [14], this as-
sumption was shown to be false by [9] and a corrected version is used today.
However, no attack exploiting a distinguisher for this weakness is known so
far.

As this work focuses on the quaternion algebra algorithms of the scheme
and not on its security, the above presentation is very short and not very
detailed. A more precise wording of the involved assumptions, more details
on security notions and justified parameter choices (which guarantee that
all known attacks on SQIsign have a complexity not better than quasi-linear
in
√

p for classical computers and in p
1
4 for quantum computers) are given

in the specification [4] submitted to NIST. Explanations of the security of
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SQIsignare given in the articles [14, 9].

3.3 Modules and dependencies in SQIsign

Since we have seen above how SQIsign’s key generation, signing and veri-
fication procedures work, we can now list the objects and basic operations
this scheme requires and classify them into modules as needed for practical
implementations.

The quaternion algebra operations used for key generation and signing are
mostly the generation of a random ideal of fixed norm, product, conjugation,
computation of equivalent ideals and ideal-to-isogeny and isogeny-to-ideal
translations.

Since the computation of an equivalent ideal using KLPT requires many
basic operations on quaternion algebra elements, orders and ideals, and both
translations require the computation of equivalent ideals on the quaternion
algebra side, these three main parts can be seen (and implemented) as three
different modules. Then KLPT depends on the basic quaternion module
and the ideal-isogeny translations depend on both of them. Furthermore,
all of these require operations on large integer numbers and fractions, and
are used by the signing and key generation algorithms of the signature.

Obviously, the ideal-to-isogeny translation also depends on some isogeny
and elliptic curve computation module. The same module is used for the
verification. The elliptic curve and isogeny computations require arithmetic
in Fp2 provided by another module.

This results in the module dependency graph in Figure 1.2 on page 5,
which corresponds closely to the implementation made for the NIST sub-
mission [4].

The rest of this work focuses on objects and algorithms for the quaternion
algebra module. This module contains mostly general-purpose quaternion
algebra operations, which might also be useful outside of SQIsign, if oper-
ations in a definite quaternion algebra over Q are needed. However, since
this description is intended for SQIsign, we explain them for the quaternion
algebra A = H(−1,−p). Furthermore, since KLPT is also an algorithm op-
erating exclusively on quaternion algebra elements, a basic variant of it is
described in Section 8, to give an idea of what the KLPT module requires
from the quaternion algebra module it relies on.
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Chapter 4

Representing algebra, ideals and
orders

For describing the computation of most of the operations on elements, lat-
tices, orders and ideals from Section 2.3, a representation of these objects is
necessary. This section fixes and explains one which is used in the remain-
der of the text. It is similar, but not identical to the representation chosen in
the implementation from [4]. The differences are detailed in Section 9.1.

4.1 The algebra and its elements

As stated above, all objects and computations within a quaternion algebra
we use are relative to A = H(−1,−p) for a fixed prime p ≡ 3 mod 4.
This algebra and the prime p which defines it are supposed to be univer-
sally known. All algorithms presented in this work receive p as an implicit
parameter.

Algebra elements

Quaternion algebra elements are represented as vectors of four rationals.
For this to be meaningful, it is necessary to define the basis in which they
are represented. The standard basis (1, i, j, ij) of the algebra is a natural
choice and is used in the remainder of this text. This choice allows to easily
compute most operations on algebra elements as follows:

The sum of two algebra elements is computed by vector addition in Q4.

Their product is done using the multiplication Table 2.2.

The conjugate α of α ∈ A is computed by negating its 3 last coordinates.

The reduced norm of α ∈ A is the product of α with its conjugate.

The reduced trace of α ∈ A is the sum of α and its conjugate.
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Vectors of four rationals can be represented as vectors of four integers on
a common denominator (using five integers in total), or as vectors of four
rationals with each of them having its own denominator (using therefore
eight integers). For our SQIsign reference implementation we chose the first
possibility. However, the choice of any of these representations is compatible
with the rest of this text.

4.2 Lattices, ideals, orders

Ideals and orders are lattices, so a representation for lattices of A is needed
in order to represent them.

Lattice representation

Lattice are represented by a basis. Since all lattices we consider are of full
rank and in dimension 4, we represent them by a rational invertible 4× 4 ma-
trix whose columns correspond to quaternion algebra elements in the basis
(1, i, j, ij) which form a basis of the lattice. This rational matrix is represented
as a 4× 4 integer matrix with a single integer as common denominator.

Furthermore, in order to efficiently obtain a basis from any finite set of
generators, the Hermite Normal Form (HNF, described in Section 5.1) of the
integer matrix is used. This form defines a unique representation of a lattice,
if the fraction of the matrix on the common denominator is reduced, which
means that the smallest possible positive denominator is used.

As an example, the representation of the lattice generated by (1, i, i+j
2 , 1+ij

2 )
as HNF on the lowest positive denominator is




2 0 0 1
0 2 1 0
0 0 1 0
0 0 0 1

 /2


In the remainder of the text, we assume that all lattices are in this normal
form. A lattice in this form is written as M/d for M the integer square
matrix in HNF and d the denominator.

Orders

An order is a lattice which is also a subring of our algebra. Therefore, it is
represented as a lattice.
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Ideals

As stated above, ideals are lattices which are ideals of an order of A. We
make the choice of representing them as left ideals. This is coherent with
isogenies and endomorphisms, which usually are noted together with their
domain.

An ideal is represented by a pair (L, O) where L is the ideal seen as a lattice
and O its left order. This notation (L, O) is kept during the rest of this text.

All considered ideals are ideals of maximal orders. The left orders of all
ideals in this text are therefore maximal. Appendix A.1 precises which of
the presented algorithms and formulas remain valid for ideals in A whose
left order is not necessarily maximal.
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Chapter 5

Matrix algorithms

Since lattices are represented as matrices of integers as explained in Sec-
tion 4.2, some algorithms for these are needed.

We first introduce the Hermite Normal Form used in our lattice represen-
tation. Then we make a few considerations on inversion and determinant
computation on integer matrices. Finally, we present the LLL-reduction of a
rational matrix and the guarantees it gives.

5.1 Hermite Normal Form

The Hermite Normal Form (HNF) has many slighly different definitions.
There are variants on rows and on columns, and some resulting in lower
or upper triangular matrices. Since we only consider matrices of maximal
rank, the corresponding case of the definition used in Cohen’s book [5] is
given here.

Definition 5.1 Hermite Normal Form

A matrix M in HNF which has n rows, m ≥ n columns, rank n and integer
coefficients respects the following conditions:

• The first m− n columns of M are zero, and the n last form an upper trian-
gular matrix: ∀i ≤ n, ∀j < m− n + i, Mi,j = 0

• The diagonal elements are positive: ∀i ≤ n, Mi,m−n+i > 0

• The diagonal elements are the largest of their row, and all coefficients are
positive or zero: ∀i ≤ n, ∀j > m− n + i, 0 ≤ Mi,j < Mi,i

Every integer matrix M has a unique matrix in HNF whose columns have the
same Z-span as M. This matrix in HNF can be obtained using algorithms
described for example in Section 2.4.2 of Cohen’s book [5]. The computation
is efficient, except that the large size of intermediary coefficients (which
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grow during the execution) slows it down. In our 4-dimensional case, this
problem has however less impact than the solution Cohen suggests for it, as
explained in Section 9.2.

In the rest of this work, we denote HNF a function which takes a 4-row
integer matrix of rank 4 and returns its Hermite Normal Form as an upper
triangular 4× 4 integer matrix (therefore omitting any initial zero columns).
Furthermore, when mentioning a matrix in HNF, we generally assume it to
be square.

5.2 Inverse

Matrix inverse computation is a very well-studied topic. However, many al-
gorithms (such as Gaussian elimination) do involve rationals and output ra-
tional matrices. Since we mostly operate on integer matrices with a common
denominator, it is preferable to have an algorithm computing the inverse of
an integer matrix in this form.

Inverse and determinant of integer matrices

An expression of the inverse of a matrix M is M−1 = 1
det(M)

.adj(M). The
adjugate of an integer matrix has integer coefficients and it is computed
without any operations on rationals. When implemented naively, it is not
very efficient. In dimension 4, about 12× 16 = 192 integer multiplications
are used for the computation of the adjugate (by computing all sixteen 3× 3
minors of the matrix), and a few more for the determinant. This is usable,
but it can be slightly improved.

Using some optimizations described in [11] to avoid recomputations of some
2 × 2 minors, only about 78 integer multiplications per inversion are re-
quired. In addition, the denominator of the output is still guaranteed to be
the determinant of the input matrix, which is helpful if inverse and deter-
minant are needed.

When considering only multiplications, other algorithms might be even
more efficient. A candidate is for example Banachiewicz’s method [1], which
also uses only integer coefficients if the determinants stay as denominators
outside of the 2× 2 block matrices it operates on. We have not studied this
yet, nor tried it out.

Specialized methods for triangular matrices

Since most of our matrices are in HNF and therefore triangular, it is often
not necessary to use general matrix inversion.
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5.3. LLL reduction

On triangular matrices, the determinant is the product of the diagonal el-
ements. Also, all except three of the 3 × 3 minors are triangular or zero,
which accelerates the computation of the adjugate. Taking advantage of this
and avoiding recomputations of products which appear several times, the
adjugate and determinant of a 4× 4 integer triangular matrix are computed
with only 21 multiplications of integers. Similarly, specialized algorithms
for product and sum of triangular matrices are helpful for optimizing lattice
operations.

5.3 LLL reduction

Another useful form of a matrix representing a lattice is the LLL-reduced
form, due to Lenstra, Lenstra and Lovász [20]. This form has the advan-
tage of containing vectors of small norm which are not too far from being
orthogonal to each other.

For its definition, we need to introduce Gram-Schmidt orthogonalization
(without normalization) first.

Definition 5.2 Gram-Schmidt orthogonalization

Let M a invertible matrix in dimension n with rational coefficients.

The Gram-Schmidt orthogonalization of M for a positive definite symmetric bilinear

form s is M∗ defined by induction over 0 ≤ k ≤ n as M∗k = Mk −
k
∑

l=1

s(Mk ,M∗l )
s(M∗l ,M∗l )

M∗l
where the empty sum is read as the zero column.

Since this only performs orthogonalization, a matrix with integer or rational
coefficients has a Gram-Schmidt orthogonalization with rational coefficients
(assuming that s takes values in Q).

Definition 5.3 LLL-reduced matrix

For a invertible matrix M in dimension n with rational coefficients, being LLL-
reduced with respect to a parameter γ ∈] 1

4 , 1[ and a symmetric positive definite
bilinear form b of associated quadratic form Nb (such that ∀x ∈ Qn, Nb(x) =
b(x, x)) means that:

• ∀k ≤ n and ∀l < k,
∣∣∣ b(Mk ,M∗l )

b(M∗l ,M∗l )

∣∣∣ ≤ 1
2

• ∀k such that 1 < k ≤ n, Nb(M∗k −
b(Mk ,M∗k−1)

b(M∗k−1,M∗k−1)
M∗k−1) ≥ γNb(M∗k−1)

Where M∗ denotes the Gram-Schmidt orthogonalization of M with respect to b.

It is possible to compute a LLL-reduced matrix (for some γ in ] 1
4 , 1[ and

bilinear form b) of same Z-span for any invertible square rational matrix
by using the Lenstra-Lenstra-Lovász algorithm (LLL) with parameter γ and
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bilinear form b (denoted by LLLγ,b). Since γ only has a small impact on
performance and quality of the result, we may not always specify it. In this
case any value in ] 1

4 , 1[ can be used. This algorithm is given in many variants
in Section 2.6 of Cohen’s book [5]. If performance is not an issue, the integer
version is sufficient for our purpose.

Even if both output a basis for a given lattice which has a special form, LLL-
reduction is in many aspects very different from HNF computation. For
example, even for an input matrix with integer coefficients, the output of
LLL is likely to contain fractions. Furthermore, there are possibly several
LLL-reduced matrices which have the same Z-span, so there is no unicity of
an LLL-reduced form. Therefore LLL is not used for normalization, but for
obtaining a basis containing short vectors.

Proposition 5.4 The vector M1 of an n× n matrix M which is LLL-reduced for
a quadratic form Nb and γ = 3

4 is such that for v a shortest vector in the lattice
generated by M, Nb(M1) ≤ 2n−1Nb(v).

Exactly computing a shortest vector is usually done by applying LLL or
similar reductions and then enumerating vectors shorter than its output [25].
Since enumeration is slow and LLL often gives a shortest vector directly, we
sometimes use LLL to efficiently obtain a short vector in a lattice, for example
in the isomorphism computation in Section 7.4.

Other reduction algorithms for obtaining short bases of lattices exist. Some
of them even guarantee a shortest basis in dimension 4, as shown in [28].
We did not implement these nor study them in detail so far.
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Chapter 6

Lattice operations

The functions computing addition, multiplication, intersection, equality, mem-
bership, dual, index and colon lattice of lattices are introduced in this sec-
tion. Most of them are stated as formulas, which rely on algorithms and
formulas explained before them, including those on matrices described in
Section 5.

As described in Section 4.2, lattices are represented by a basis. More pre-
cisely, the representation of a lattice is an integer matrix and a denominator,
which is the common denominator of all elements in the matrix. Further-
more, all lattices input to or output by the functions below are in a nor-
malized form, which is the reduced fraction of the Hermite Normal Form
(HNF) of the integer matrix and a positive denominator. A lattice in this
form is often written M/d where M is the integer matrix under HNF and d
the positive denominator.

The main references for this section are the algorithms from Cohen’s book [5]
and Micciancio’s course notes [25].

6.1 Normalization, equality, membership, coordinates
and primitive part

Checking for containment of an algebra element in a lattice and equality
between two lattices are problems which benefit from our normalized lattice
representation. For lattice elements, the computation of the primitive part
and of coordinates in the lattice basis are also simplified by it.

Normalization

As described in Section 4.2 we use the reduced fraction of an integer matrix
in HNF on a common positive denominator as normal representation of a

39



6. Lattice operations

lattice. So given an integer 4× n matrix M, which, together with a denom-
inator d, represents n ≥ 4 algebra elements generating a lattice, the normal
form of the lattice is obtained as

normalize(M, d) :=
(

HNF(M)

(gcd(HNF(M), d)
/

|d|
gcd(HNF(M), d)

)

In the following, normalization takes as input any kind of representation of
a generating set of a lattice, and the decomposition into an integer matrix
and a common denominator is sometimes left to the reader.

Equality

Two lattices are equal if and only if their normal forms are equal.

(M1/d1 =Lat M2/d2) := ((M1 = M2) and (d1 = d2))

Membership and coordinates

An algebra element is contained in a lattice if and only if its coordinates in
any basis of this lattice are integers.

The coordinates of a ∈ A in a lattice M/d are given by a solution x of the
linear system Mx = d.a. Since our input lattice M/d has a basis M which
is in HNF and therefore a triangular matrix, the computation is simple.
Pseudocode for it is given in Algorithm 1. The computation is stopped
immediately if a non-integer coordinate is found.

By its success or failure to provide integer coordinates, this algorithm also
reveals whether an element is in the lattice.

memberOfLattice(a, M/d) :=

{
if coordinatesInLattice(a, M/d) fails: False
else : True

Primitive elements and parts

An element α of a lattice L is primitive if ∀n ∈ Z, 1
n α 6∈ L. This is equivalent

to its coordinates in a lattice basis having a greatest common divisor (gcd)
of 1, which gives a primitivity test.

isPrimitive(α, M/d) := (gcd(coordinatesInLattice(α, M/d)) = 1)
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Algorithm 1 coordinatesInLattice(a, M/d)
Require: M/d lattice (so M is an upper triangular integer matrix), a algebra

element
Ensure: output x such that Mx = d.a or FAIL

1: y = d.a
2: if y 6∈ Z4 then
3: FAIL
4: else
5: for k from 4 to 1 do

6: zk = yk
4
∑

l=k+1
Mk,lxl

7: if Mk,k divides zk then
8: xk =

zk
Mk,k

9: else
10: FAIL
11: end if
12: end for
13: end if
14: return(x)

Any lattice element α can be written as nβ for a unique n ∈ N \ {0} and β
primitive. This β is called the primitive part of α, and computed by using
that gcd(B−1α)β = α for B a basis of the lattice.

primitivePart(α, (M/d)) :=
1
d

.M
coordinatesInLattice(α, (M/d))

gcd(coordinatesInLattice(α, (M/d)))

6.2 Addition and multiplication

Representations of the sum and product of lattices are obtained by reducing
larger sets of generators to a basis via the normal form computation.

Addition

The sum of two lattices L1, L2 is the set {a + b | a ∈ L1, b ∈ L2}. Since all
lattices contain zero, it is equal to the lattice generated by the union L1 ∪ L2,
and sometimes called the union of L1 and L2. As a consequence, taking the
concatenation of bases of both input lattices directly gives a set of generators
of the resulting lattice, which only has to be normalized in order to obtain a
lattice representation.

(M1/d1) +Lat (M2/d2) := normalize((d2.M1)||(d1.M2), d1d2)
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Multiplication with an algebra element

The right multiplication of a lattice L by an algebra element a is defined
as the lattice generated by {ba | b ∈ L}. By bilinearity of the product, this
is equal to the lattice generated by {ba | b ∈ B} where B is a basis of L.
Normalization is then applied to the resulting lattice basis in order to obtain
a representation.

In the formula below, Mk is the algebra element given by the kth column
of M. The algebra elements resulting from products Mka are then read as
matrices with four rows and one column. The input to normalization is
therefore a 4× 4 matrix with rational coefficients.

(M/d)a := normalize(
1
d

.(M1a||M2a||M3Va||M4a))

The left multiplication of a lattice L by an element a is defined as {ab | b ∈ L}
and computed similarly.

Multiplication of two lattices

The product of two lattices L1 and L2 is the lattice generated by the set
{ab | a ∈ L1, b ∈ L2}. Since the product is bilinear, it is sufficient to compute
{ab | a ∈ B1, b ∈ B2} for B1 and B2 bases of L1 and L2 respectively. There are
essentially two ways to compute and normalize this union.

If the concatenation of two lattices L1 and L2 (including the adjustment of de-
nominators, as explicitly described in the addition formula) is written L1||L2,
and l1, l2, l3, l4 denote the algebra elements given by the representation of L2,
the product is equal to the lattice generated by L1l1||L1l2||L1l3||L1l4.

L1L2 := normalize(L1l1||L1l2||L1l3||L1l4)

Since the set of generators defining the lattice product of L1 and L2 is iden-
tical to the union of the sets {ab | a ∈ L1} for all algebra elements b in L2,
successive additions of two lattices can be used instead of the concatenation
above.

L1L2 = L1(l1, l2, l3, l4) := (L1l1 +Lat L1l2) +Lat (L1l3 +Lat L1l4)

The first variant computes only one normalization on a family of 16 ele-
ments, while the second one computes three normalizations on 8 elements.
Experimental comparison as described in 9.2 shows that the first version
is more efficient. The lattice multiplication operation by any of the above
methods is also denoted by ×Lat.
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6.3 Sublattice and index

When working with orders and left ideals of these orders, lattices are often
included in one another. Therefore, inclusion tests and index computations
are useful.

Sublattice

Given two lattices L1 and L2, inclusion of L1 in L2 is tested by verifying that
their union is equal to L2.

sublattice(L1, L2) := (L2 =Lat (L1 +Lat L2))

Index

Given a lattice L2 and a sublattice L1 of L2, the index [L2 : L1] of L1 in L2
is the ratio of their volumes, which are absolute values of the determinants
of their bases. This is independent of the choice of the basis elements for
both lattices. Under HNF the determinant is always positive, which makes
taking absolute values useless.

index((M1/d1), (M2/d2)) :=
d4

2 det(M1)

d4
1 det(M2)

The determinants are simply the product of diagonal elements, since the
matrices in our lattice representations are in HNF and therefore triangular.

6.4 Dual, intersection and colon lattice

The computation of dual lattices allows us to obtain the intersection of two
lattices and their colon lattices by simple formulas.

Dual

The dual of a lattice L is defined with respect to a symmetric nondegenerate
bilinear form s as the set L#

s = {x ∈ A | ∀y ∈ L, s(x, y) ∈ Z}. This set is a
lattice.

The gram matrix of a bilinear form s in a basis (b1, b2, b3, b4) is the matrix
G such that Gl,k = s(bl , bk). Following Micciancio’s course notes [25], the
gram matrix Gs of the bilinear form s in the standard basis (1, i, j, ij) of A
allows us to compute the dual of a lattice with respect to s using the formula
L#

s = (BTGs)−1 where B is a basis of the lattice L.
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6. Lattice operations

duals(M/d) := normalize(d.adj(MTGs), det(MTGs))

There are two symmetric nondegenerate bilinear forms which are particu-
larly interesting. The first one is the usual dot product of Q4 whose gram
matrix is the identity. We denote the dual for it dualId. It is used for all
dual computations where the bilinear form does not matter, and could be
replaced by any other symmetric nondegenerate bilinear form.

The second one is defined as the reduced trace of the product of the elements
in the algebra. Its gram matrix in the basis (1, i, j, ij) of A is the diagonal
matrix given by (2,−2,−2p,−2p) for p the prime defining the algebra. The
dual computation for this bilinear form is denoted by dualtr.

Intersection

The intersection of two lattices is their intersection as sets, which also is a
lattice. It is computed using dual lattices, as explained by Micciancio [25].

L1 ∩Lat L2 := dualId(dualId(L1) +Lat dualId(L2))

The intersection does not depend on the algebra, so that the dual for any
symmetric nondegenerate bilinear form can be used. The most efficient
choice is therefore the usual scalar product of Q4 whose Gram matrix is the
identity, since this removes a matrix multiplication in the dual computation.
It is also possible, but less efficient, to use any other dual.

Colon lattice

The right colon lattice (L2 : L1)R from a lattice L1 to a lattice L2 is defined
as (L2 : L1)R = {x ∈ A | L1x ⊂ L2}. As proven in the chapter on duality
in Voight’s book on quaternion algebras [35] it is equal to the dual of the
product of the dual of L2 by L1, where the dual must be taken with respect
to the symmetric nondegenerate bilinear form given by 〈a | b〉 = tr(ab) for a
and b in A.

colonR(L1, L2) := dualtr((dualtr(L2)L1))

colonR(L1, L2) computes the right colon lattice from L1 to L2 which is de-
noted by (L2 : L1)R. If needed, the left colon lattice defined by (L2 : L1)L =
{x ∈ A | xL1 ⊂ L2} is computed similarly.

This method for computing colon lattices is different from the one described
in SQIsign’s specification [4]. It is more readable and takes less time accord-
ing to our benchmarks. An even faster method specifically for lattices which
are ideals of the same maximal order is presented in Section 7.4.
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Chapter 7

Ideal operations

This Chapter covers the creation of ideals from algebra elements, the ob-
tention of their norm and an additional generator, and the computation of
addition, multiplication and intersection of ideals. Algorithms for getting
right orders of ideals, ideal isomorphisms and connecting ideals between
maximal orders are also explained.

As mentioned in Section 4.2, all ideals in this text are ideals of maximal
orders and represented by two lattices. The first one describes the ideal as
a lattice L. The second one is its left order O. This representation is written
(L, O).

Since ideals and orders are lattices, most algorithms on ideals rely on those
on lattices from Chapter 6. The ideas and formulas used in this chapter are
mostly taken from the code of the original C implementation of SQIsign [14]
or from formulas in Voight’s book [35].

7.1 Ideal creation

For a fixed order, only few lattices are ideals. Therefore, a first problem is
to find left ideals of a given order containing some specific order element or
having a certain norm.

Principal ideal

A principal ideal I of left order O and generator α ∈ O is defined as I = Oα.
Once it is verified that α ∈ O, the principal ideal of O generated by α is
obtained by multiplying the lattice O with the algebra element α.

principalIdeal(O, α) :=

{
if memberOfLattice(α, O): (Oα, O)

else : FAIL
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7. Ideal operations

Ideal from order element and integer

The ideal I of left order O generated by n ∈ Z and an element α ∈ O
is I = On + Oα. It is the sum of the principal ideals generated by n and
α. Using the ideal addition described in Section 7.3, the resulting ideal is
computed as a sum. To create a cyclic ideal, a primitive element α of O must
be used.

createIdeal(O, n, α) := principalIdeal(n, O) +Id principalIdeal(α, O)

A more efficient method for obtaining the principal ideal On from O and n
is to multiply the matrix of O by |n| and divide denominator and matrix by
their greatest common divisor to recover a standard form.

If α is primitive, the norm of the resulting cyclic ideal is the greatest common
divisor of n and N(β), where β is the primitive part of α.

7.2 Get norm and generator

In the preceding paragraph, a left O-ideal was created as I = On + Oα
for an integer n and a element α ∈ O. All ideals in A can be written as
I = ON(I) + Oα for an element α of their left order O. Therefore, the
computation of N(I) and a generator α is useful.

Norm

The norm of an ideal of a maximal order is the greatest common divisor of
the norms of its elements. It is computed as the square root of its index as a
sublattice of its left order.

normId((L, O)) :=
√

index(L, O)

Generator

Given I a cyclic left O-ideal, we search a primitive α ∈ O such that I =
ON(I) + Oα.

There are two methods for finding such an element. The first is to randomly
draw elements of I until finding a primitive generator and the second and
deterministic one replaces the random selection in the first method by an
enumeration. In both cases, the test gcd(N(I)2, N(α)) = N(I) is used to
verify that α is a generator of I.

The deterministic method is described in Algorithm 2, where Enumerate(L)
means to enumerate elements of the lattice L. In practice, enumeration or-
dered by norm `1 works well.
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Algorithm 2 generator((L, O))

Require: (L, O) cyclic ideal
Ensure: FAIL or output α such that α is primitive in O and I = N(I)O +Oα

1: for α = Enumerate(L) do
2: if isPrimitive(α, O) then
3: if N(α) ∈ Z then
4: if gcd(N((L, O))2, N(α)) = N((L, O)) then
5: return(α)
6: end if
7: end if
8: end if
9: end for

10: FAIL

For non-cyclic ideals, a generator is also searched by enumerating until find-
ing one. However, a primitive generator does not exist in this case.

7.3 Equals, add, multiply, intersect

The equality, addition, multiplication and intersection operations for ideals
are exactly the same as their lattice equivalents, except that most of them
require an additional check for compatibility or equality of the left orders. If
the inputs are not compatible, no result is given and the computation fails.

Equality of two ideals

Two ideals are equal if and only if they are equal as lattices. This implies
that they have the same left order.

((L1, O1) =Id (L2, O2)) := (L1 =Lat L2)

Addition

Addition of ideals is exactly lattice addition if the two ideals have the same
left order. The left order of the sum is then the left order of both of the input
ideals. Otherwise, the sum is not defined.

(L1, O1) +Id (L2, O2) :=

{
if (O1 =Lat O2): ((L1 +Lat L2), O1)

else : FAIL
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7. Ideal operations

Multiplication with an algebra element

Right multiplication of an ideal I with an algebra element α can always be
computed, but its output is not always an integral ideal. This is tested by
verifying if the product of the norms of I and α is an integer.

(L, O)α :=

{
if N(α)normId((L, O)) ∈ Z: (Lα, O)

else : FAIL

Multiplication of two ideals

The multiplication I J of two ideals I and J (in this order) is defined if and
only if the left ideal of J equals the right ideal of I. This is analogous to
isogeny composition, which is only possible if the domain and image curves
are compatible. The right and left order computations are explained in Sec-
tion 7.4.

(L1, O1)(L2, O2) :=

{
if orderR((L1, O1)) =Lat orderL((L2, O2)): (L1L2, O1)

else : FAIL

Intersection of two ideals

The intersection of two ideals with the same left order is their intersection
as lattices. The intersection then has as left order their common left order.
The intersection of ideals of different left orders is not defined.

(L1, O1) ∩Id (L2, O2) :=

{
if (O1 =Lat O2): ((L1 ∩Lat L2), O1)

else : FAIL

7.4 Isomorphism, right order, connecting ideal

Besides the preceding operations, a few functions which link ideals and
orders are needed. These are the computation of the right order for an
ideal, of an isomorphism between two ideals and of a connecting ideal for
two given maximal orders. In order to obtain some of these more efficiently,
a specialized version of the colon lattice computation for two left ideals of
the same maximal order is given first.

Colon lattice for ideals

Since ideals of maximal orders have an easily computable inverse, the right
colon lattice (I : J)R = {b ∈ A | Jb ⊂ I} of two left ideals I and J of the
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7.4. Isomorphism, right order, connecting ideal

same maximal order O can be obtained as J−1 I. This is more efficient than
the general colon lattice computation from Section 6.4, because it avoids
the dual computation and uses less normalizations. More precisely, the in-
verse computation requires to compute the conjugate of a lattice. We denote
by M1, M2, M3, M4 the quaternion algebra elements corresponding to the
columns of the integer matrix M of the lattice representation.

conj((M/d)) := normalize((M1, M2, M3, M4)/d)

The colon lattice is then computed using the formula (I : J)R = J−1 I, which
is given in Chapter 17.3 of Voight’s book [35] and used in the Sagemath
implementation of SQIsign [6] for the computation of ideal isomorphisms.

colonR((L1, O1), (M2/d2, O2)) :=

{
if (O1 =Lat O2): ( 1

normId((L1,O1))
conj(L1)L2)

else : FAIL

The computation of the left colon lattice is simplified similarly under the
same conditions.

Isomorphism

An isomorphism from an ideal I to an ideal J is represented by an invert-
ible algebra element α ∈ A such that Iα = J. We present here a function
to determine such an α (if it exists) which is efficient but not proven to al-
ways succeed. Therefore, it can fail to find an isomorphism even between
isomorphic ideals.

Algorithm 3 isomId((L1, O1), (L2, O2))

Require: (L1, O1) and (L2, O2) ideals
Ensure: algebra element α is such that (L1, O1)α = (L2, O2) or FAIL other-

wise
1: ((M/d) = colonR((L1, O1), (L2, O2))
2: R = M

d
3: L = LLLN(R)
4: α = L1
5: if N((L1, O1)α) = N((L2, O2)) then
6: return(α)
7: else
8: FAIL
9: end if

49



7. Ideal operations

For this we compute the right colon lattice from I to J and LLL-reduce it
with respect to the reduced norm N, in order to find a short vector α in the
colon lattice. We then hope that α is so short that Iα is not just included in
J (this is the case for all colon lattice elements), but equal to J. The result is
Algorithm 3.

If efficiency is not important, the lattice version of colonR can be used instead
of the one specialized on ideals of maximal orders. Furthermore, other lat-
tice reduction algorithms could be used instead of LLL.

Right order

The right order of an ideal I is the set {α ∈ A | Iα ⊂ I} which is an order of
A and therefore a lattice. Given that the definition of the right colon lattice
(L2 : L1)R from a lattices L1 to a lattice L2 is {α ∈ A | L1α ⊂ L2}, the right
order of (L, O) is exactly the right colon lattice of L and L.

orderR((L, O)) := colonR((L, O), (L, O))

The left order of a given ideal is computed similarly using the left colon
lattice, and we denote the corresponding function by orderL.

The general lattice version of the colon lattice computation can be used in-
stead of the ideal specific one, even though this is slower according to our
experiments presented in Section 9.2.

orderR((L, O)) := colonR(L, L)

Connecting ideal

An ideal connecting two maximal orders OL and OR is an integral ideal I
such that O1 = OL(I) and O2 = OR(I). This is not unique.

Since for all n ∈ Q, O1nO1O2 ⊂ nO1O2 and nO1O2O2 ⊂ nO1O2, nO1O2 is a
connecting ideal of O1 and O2 as soon as it is a (non-zero) integral ideal.

connecting(O1, O2) := (getScalar(O1, O2), O1O2, O1)

An example of a scalar achieving this is the integer [O1 : O1 ∩O2]. It has the
additional advantage of making the resulting ideal cyclic (as explained by
Antonin Leroux in a message exchange) and is used in the implementation
of [9].

getScalar(O1, O2) := index(O1 ∩Lat O2, O1)
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7.4. Isomorphism, right order, connecting ideal

Another one, without this property and which is possibly larger, but easier
to compute, is (d1d2)4 where d1 and d2 are the denominators of O1 and O2
respectively. The denominator d of the lattice (M/d) = O1O2 works also
and directly given by our normalized lattice representation.

getScalar((M1/d1), (M2/d2)) := d4
1d4

2

getScalar(O1, O2) := denominator(O1O2)

For efficiency, it is better to multiply the the matrix of O1O2 by the positive
scalar and to simplify the fraction of the resulting matrix and the denomi-
nator of O1O2. This gives directly a normalized lattice representation, and is
faster than using the scalar as an algebra element in a lattice-element multi-
plication. If the scalar is computed as denominator of O1O2, simply setting
the denominator to 1 is even more efficient.
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Chapter 8

KLPT and its subfunctions

Even though the KLPT algorithms in SQIsign are slightly outside of the
scope of this work, some of their subfunctions, presented in Sections 8.2,
8.3 and 8.4, are located within the quaternion algebra module in the NIST
implementation. Furthermore, since KLPT is one of the two modules relying
on the quaternion algebra operations presented in the previous chapters, a
basic understanding of it gives an idea of their possible applications.

Therefore, a simplified version of KLPT is described in Section 8.1. This is
followed by a more detailed presentation of the subfuctions which were left
in the quaternion algera module even if they are very specific to KLPT or
not strictly speaking operations on objects in A. Descriptions of the KLPT
variants used in SQIsign are given in its specification [4] and in papers on
the scheme [14, 9].

KLPT and its variants

The KLPT algorithm was originally invented in 2014 by Kohel, Lauter, Pe-
tit and Tignol [21]. It operates on left ideals of the maximal order O0 of
basis (1, i, i+j

2 , 1+ij
2 ) which contains the suborder Z[i] + jZ[i]. In its original

version, it takes as input a left O0-ideal and outputs an equivalent left O0-
ideal whose norm is power of a fixed small prime `. The algorithm solves
in probabilistic polynomial time the `-ideal path problem, whose isogeny
equivalent through the Deuring correspondence is assumed to be unsolv-
able in polynomial time.

This original algorithm has several variants, many of which were devel-
oped specifically for SQIsign [14, 9]. One element that distinguishes them is
whether the norm of the resulting equivalent ideal is required to be a precise
number, a divisor of a given number or a power of a given prime. Another
source of diversity is whether the algorithm is supposed to work with left
O0-ideals or with left ideals of any maximal order. Finally, there is a version
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8. KLPT and its subfunctions

specifically built for the requirements of the SQIsign signing algorithm. The
specification [4] the original SQIsign paper [14] and Leroux’s thesis [22] list
and explain some of these versions and variants. Since we only give an intro-
duction to this subject, we present only the case of left O0-ideals and norms
which are expected to be an exact number (even if solutions for this do not
always exist). To do so, we follow the description in Leroux’s thesis [22] in
a special case.

8.1 The inner workings of KLPT

KLPT uses the structure of the order O0 already presented in Section 2.4.
This is an order of basis (1, i, i+j

2 , 1+ij
2 ) and therefore contains the suborder

of basis (1, i, j, ij) which is equal to Z[i] + jZ[i].

We start by an overview on the different steps of KLPT, to get an idea why
it works. Later subalgorithms for the first three steps will be explained.

Overview

Let I be a left O0-ideal. The goal is to find an ideal J which is equivalent to
I whose norm equals the target norm n. We assume that I is of prime norm
(as explained below, this can always be reached), and n such that nN(I) is
divisible by d, d2 such that d > p and d2 > pN(I)4 and dd2 = nN(I).

KLPT then proceeds as follows:

1. Compute γ ∈ O0 of norm d dividing N(I)n

(SolveNormEquation)

2. Find C, D ∈ Z not both zero such that µ0 = j(C + iD) verifies γµ0 ∈ I

(LinearCombinations)

3. Find µ1 ∈ O0 and λ ∈ Z such that µ = λµ0 + N(I)µ1 has norm
d2 = nN(I)

d

(StrongApproximation)

4. Set α = γµ (this gives α ∈ I and N(α) = nN(I))

5. Output J = 1
N(I) Iα

First verify that α is in I. We have α = γµ = λγµ0 + γµ1N(I) through step
4. and 3. (by using the commutativity of scalars with algebra elements). In
this expression, γµ1N(I) is in I since N(I) is in I and γ and µ1 are in the
order O0 of which I is a left ideal. Also, γµ0 is in I thanks to step 2. So their
integer linear combination α = λγµ0 + γN(I)µ1 is also in I.
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8.1. The inner workings of KLPT

Furthermore, α = γµ has norm nN(I), since γ has norm d (step 1) and µ

has norm N(I)n
d (step 3.), and the algebra norm is multiplicative.

Since Iα ⊂ I I and I I = N(I)O0 the resulting J verifies J = 1
N(I) Iα ⊂ O0 and

is therefore a left O0-ideal. Its norm is N(J) = N( Iα
N(I) ) =

N(Iα)
N(I)2 = N(I)N(α)

N(I)2 =
N(Iα)
N(I)2 = N(I)nN(I)

N(I)2 = n. Therefore the right multiplication by 1
N(I)α is an

isomorphism of ideals and J is a left O0-ideal equivalent to I.

A small complication not shown in the above description is that d2
p(C2+D2)

must be a square modulo N(I) in order to solve step 3. If this is not the case,
the algorithm can be restarted at step 1., which is randomized and might
allow to overcome the issue. However, it is not guaranteed the algorithm as
described here will find a solution. For some other variants and restrictions
of inputs it is possible to justify that KLPT succeeds often enough.

Ideal with prime norm

Many steps of KLPT use the norm of the input ideal I and are simpler if it
is prime. Otherwise, an equivalent ideal of prime norm can be obtained by
choosing random elements in I until finding some α ∈ I such that N(α)

N(I) is

prime, and then using J = 1
N(I) Iα instead of I in the KLPT algorithm. Since

I and J are equivalent, any resulting ideal which is equivalent to J is also
equivalent to I, so this substitution does not cause any problems, as long as
the norm of the J is small enough to still run KLPT for n (which requires
that n has a factorization d, d2 such that d2 > pN(J)4 and d > p). In the
description of the following steps, we therefore assume that N(I) is prime.

Solving norm equations

Any integer solution of the equation x2
1 + x2

i + px2
j + px2

ij = d of unknowns
x1, xi, xj, xij yields an element of O0 with norm d > p. Sadly, solving multi-
variate quadratic equations over the integers is in general a hard problem.

However, for the special form x2 + y2 = a (of unknowns x, y) an efficient
algorithm due to Cornacchia finds in some cases a solution. The existence
of a solution and the efficiency of its computation depend on the value of
the parameter a. This algorithm is explained in Section 8.2.

The key idea of the algorithm used to find an element of O0 of norm n is
therefore to randomly sample two of the coefficients and then use Cornac-
chia’s algorithm to obtain the remaining ones, and to repeat such attempts
until succeeding.

More precisely, xj is randomly chosen between the two square roots of d
p and

xij between the square roots of
d−x2

j
p . Then d′ = d− p(x2

j + x2
ij) is computed,
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and since xj and xij were chosen in appropriate intervals, if d > p, d′ ≥ 0.
Then Cornacchia’s algorithm is used to solve x2

1 + x2
i = d′. If this succeeds,

the problem is solved, and otherwise the algorithm restarts at the choice
of xj and xij. This algorithm is not guaranteed to find a solution for every
d > p, so it might fail, in which case another large enough d can be tried.
Pseudocode for this algorithms is given in Algorithm 4.

Algorithm 4 SolveNormEquation(d)
Require: d integer larger than p
Ensure: x ∈ O0 such that N(x) = d

1: m = 4d
2: while not found do
3: bj =

√
m
p

4: xj randomly sampled integer in [−bj, bj]

5: bij =

√
m−x2

1
p

6: xij randomly sampled integer in [−bij, bij]
7: m′ = m− p(x2

j + x2
ij)

8: if CornacchiaExtended(m′) does not fail then
9: x1, x2 = CornacchiaExtended(m′)

10: x = x1 + xii + xj j + xijij
11: return(x)
12: end if
13: end while

Linear combinations

Now that we have γ ∈ O0 and a left O0-ideal I, the next step is to find
C, D ∈ Z such that γj(C + iD) ∈ I.

This means to find a linear combination of γj,γij and a basis of I which
equals zero. If a basis of I which contains N(I) is used, it is enough to find
a linear combination of the three other basis vectors, γj and γ which is zero
modulo N(I). In addition, it is required that at least one of the coefficients
C and D of γj and γij in the linear combination is invertible modulo N(I),
which excludes trivial solutions.

Solving modular systems can be done with the algorithms from section 8.3.
Computing modulo N(I) has the advantage of giving rather small values
for C and D.
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8.1. The inner workings of KLPT

Strong approximation

Finally, given C, D output by the linear combination step above and µ0 =
j(C + Di) their combination, we search for λ ∈ Z and µ1 ∈ O0 such that
µ = λµ0 + N(I)µ1 has norm equal to d2 = nN(I)

d . As announced above, we
assume N(I) to be prime. Furthermore d2 must be such that d2 > pN(I)3

and d2
p(C2+D2)

is a square modulo N(I).

Again, we search for µ1 with integer coefficients in order to guarantee that it
is included in O0. This means, we search for integer coefficients x1, xi, xj, xij
of µ1 and λ ∈ Z such that N(µ) = d2.

Therefore, we need to solve the following equation, for integer unknowns
λ, x1, xi, xj, xij:

N(I)2x2
1 + N(I)2x2

i + p((λC + N(I)xj)
2 + (λD + N(I)xij)

2) = d2 (8.1)

By considering Equation 8.1 modulo N(I), Equation 8.2 is obtained.

λ2 p(C2 + D2) ≡ d2 mod N(I) (8.2)

This gives λ modulo N(I), since all other elements of this equation are
known. Choose one (small) such value for λ.

As next step, consider the Equation 8.1 modulo N(I)2 given in Equation 8.3.

pλ2(C2 + D2) + 2pλN(I)(Cxj + Dxij) ≡ d2 mod N(I)2 (8.3)

This is linear in xj and xij. Given any solution xj, xij, the remaining un-
knowns x1, xi of Equation 8.1 verify Equation 8.4.

x2
1 + x2

i =
d2 − p((λC + N(I)xj)

2 + (λD + N(I)xij)
2)

N(I)2 (8.4)

This equation is of the form to which Cornacchia’s algorithm (as described
in Section 8.2, more specifically the extension described in Algorithm 7)
finds solutions if there are any. Therefore, we can try to apply Cornacchia
to the equation resulting of a choice of xj, xij solving Equation 8.1 modulo
N(I)2, until finding one where Cornacchia manages to find corresponding
x1, xi.

The remaining question is how to choose the solutions modulo N(I)2. In
the initial version of the algorithm, random solutions were used [21], but
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since the first paper, SQIsign used an improved version from an unpub-
lished paper presented in [29]. The main idea of this improvement is that
the solutions xj, xij to the linear equation modulo N(I) form a 2-dimensional
lattice (translated by some vector s). Therefore, in order to get small solu-
tions, vectors close to s in this lattice are enumerated. This gives smaller
solutions and therefore lets us use KLPT for smaller target norms than in
the initial version. The details of this enumerations are described in 8.4.

Algorithm 5 StrongApproximation(N, C, D, d2, m)

Require: N norm of the let O0 ideal I to which we search an equivalent,
C, D as output by LinearCombinations, d2 the desired norm of the output
element, m maximal number of tries

Ensure: µ ∈ A where µγ ∈ I (for γ from SolveNormEquation) and N(µ) = d2

1: if sqrtMod(d2(p(C2 + D2))−1, N) does not FAIL then
2: λ = sqrtMod(d2(p(C2 + D2))−1, N)
3: else
4: FAIL
5: end if
6: v a solution of 8.1 modulo N2

7: L matrix whose columns are a basis of the 2-dimensional lattice of the
solutions of Equation 8.1 modulo N2, shifted by v

8: f = False
9: Set bound B for enumeration to a reasonable value

10: run EnumerateCloseVectors(L, 1, v, m, B) until the call
CornacchiaExtended( d2−p((λC+Nx)2+(λD+Ny)2)

N2 ) does not fail for an
enumerated vector x, y

11: if previous step fails then
12: FAIL
13: end if
14: xj, xij the values returned by the enumeration

15: x1, xi = CornacchiaExtended( d2−p((λC+Nxj)
2+(λD+N(I)xij)

2)

N2 )
16: µ = x1 + xii + xj j + xijij + j(C + Di)
17: return(µ)

8.2 Cornacchia’s algorithm

Cornacchia’s algorithm solves equations of integer unknowns x and y of the
form x2 + ny2 = m, with n and m coprime integers. These equations do not
always have a solution, but if solutions exist, the algorithm finds one, and if
it fails, there certainly is no solution.
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Cornacchia for primes

In order to compute a solution efficiently, the algorithm requires a square
root modulo m of −n. This is in general hard to compute (it is assumed to
be equivalent to factoring m), except if m is prime. An efficient algorithm
for computing a square root modulo a prime is explained for example in
Cohen’s book [5]. In practice, Cornacchia’s algorithm is therefore only used
on equations of the form x2 + ny2 = p with p prime and n not multiple of p.
Pseudocode for Cornacchia’s algorithm (following the description from [27])
is given in Algorithm 6, using a function sqrtMod(x, d) which computes a
square root of an integer x modulo another integer d and fails if this does
not exist.

Algorithm 6 Cornacchia(n, m)

Require: m, n coprime integers
Ensure: x, y integers such that x2 + ny2 = m if this exists, FAIL otherwise

1: d = sqrtMod(−n, m)
2: if d = FAIL then
3: FAIL
4: end if
5: r1, r2 = m, d
6: while r2

2 > m do
7: r1, r2 = r2, r1 mod r2
8: end while
9: x, y = r2,

√
m−r2

n
10: if y 6∈ Z then
11: FAIL
12: end if
13: return(x, y)

Extended Cornacchia

In cases where m is not prime but a factorization of it is known, it is still
possible to use Cornacchia’s algorithm for each of the prime factors of m,
and if solutions for all resulting equations were found, they can be combined
to a solution for a composite m. This sometimes allows to find a solution
for composite m without computing modular square roots for non-prime
integers.

We only explain the recombination in the case where n = 1. In this case, it is
easy to verify if solutions exist: A solution exists if and only if all odd prime
factors of m are 1 mod 4. If this is verified, we denote the prime factors of m
by pk with exponents ek and an integer solution of the equation x2 + y2 = pk
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by xk, yk. i denotes a square root of −1 in C or in A, and for a, b ∈ Q,
Re(a + ib) = a and Im(a + ib) = b. Then the product P = ∏

k
(xk + iyk)

ek is

such that Re(P)2 + Im(P)2 = m and Re(P) and Im(P)2 are integers. It does
not matter whether the product is seen as a product in C or in A, since the
elements of C with rational real and imaginary part form a sub-algebra ofA.
Pseudocode is given in Algorithm 7, where factor(x) outputs a list of pairs
(q, e) of prime factors of x with their exponents. This decomposition is either
computed using trial division or any other efficient factorization algorithm
(details are given by Cohen [5] for example). If available, an already known
list of prime factors is used instead.

Algorithm 7 CornacchiaExtended(m)

Require: m integer
Ensure: x, y integers such that x2 + y2 = m if this exists, FAIL otherwise

1: l = factor(m)
2: for (q, e) in l do
3: if q = 3 mod 4 then
4: FAIL
5: end if
6: end for
7: for (q, e) in l do
8: a, b = Cornacchia(1, q)
9: π = π × (a + ib)e

10: end for
11: x, y = Re(π), Im(π)
12: return(x, y)

8.3 Modular matrix kernel computations

As part of KLPT, it is necessary to find a quaternion algebra element µ0
of the form j(C + Di) for C, D integers with at least one of them invertible
modulo N(I) and such that γµ0 is in the ideal I for a given γ ∈ O0. The
equation γ(Cj + Dji) = α for some α ∈ I only needs to be solved modulo
N(I), since N(I) ∈ I.

There are two different approaches to this: Either C and D such that Cγj +
Dγij is a linear combination of a basis of I are searched by linear algebra
modulo N(I), or they are searched over the integers, by adding columns
with coefficients which are multiples of N(I) to the system in order to take
into account that solutions modulo N(I) are sufficient. In both cases, C and
D are obtained from a vector in the kernel of a rectangular matrix formed
by γi, γji and a basis of I. Furthermore, all elements in the matrix must
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8.3. Modular matrix kernel computations

be put on a common denominator, since the modular linear operations are
done on integers.

We present first the approach using kernel computation modulo N(I) as
in the reference implementation [4], then the variant using integer linear
algebra, as it is used by [6]. We did not investigate which of the two is more
efficient, as we have not implemented the approch from [6] yet.

Modular kernel computation

Computing the kernel of a matrix modulo a prime is simply the computation
of the kernel of a matrix over a field. Algorithms for it can be found for
example in Section 2.3 of Cohen’s book [5].

For a non-prime modulus the situation is slightly more complex, since there
might be non-invertible coefficients. The standard method for computing a
kernel in this case is the Howell Normal Form computation, as described
in [32].

Let M be a matrix with more columns than rows considered modulo n ∈N.
Denote by r its number of non-zero columns and if the kth column is non-
zero, denote by lk the index of its first non-zero element. M is in Howell
Normal Form if and only if

• Its first r columns are non-zero

• l1 < l2 < ... < lr

• Mlk ,k divides n for all 1 ≤ k ≤ r

• For 1 ≤ h < k ≤ r, =≤ Mlk ,h < Mlk ,k

• For any vector in the span of M having zeros at its lk − 1 first coeffi-
cients for some 1 ≤ k ≤ r, it is linear combination of the m− k + 1 last
columns of M (Howell property)

This is very similar to the definition of a HNF for matrices of not necessarily
full rank, except for the condition that diagonal elements must divide n, and
the last condition. The Howell Normal Form is the analogue of the Hermite
Normal Form for matrices modulo an integer. Each matrix A modulo n has
a unique matrix M in Howell Normal Form modulo n whose columns have
the same span than A. This matrix can be computed using an algorithm
described in [32].

In order to compute the kernel modulo n of a matrix M, the equivalent
matrix in Howell Normal Form H is computed first. It is lower triangular
and respects the Howell property, so its kernel can be computed iteratively
row by row.
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The kernel of M can be obtained from the kernel of H by applying the
inverse of a transformation matrix U such that H = MU at left to the kernel
of H. Then it is sufficient to take a vector from the resulting kernel where at
least one of the coefficients corresponding to γj and γji is invertible modulo
n to get C and D.

Using kernel computation over the integers

As done in the Sagemath implementation [6], an alternative to the modular
kernel computation is to compute the kernel of a slightly larger matrix over
the rationals.

In order to allow for solutions modulo N(I) despite computing the kernel
without modular operations, it is useful to add columns representing N(I)γ
and N(I)γi to the matrix before putting it on the same denominator and
starting the kernel computation.

The kernel then is computed over the rationals, using again the algorithms
from Section 2.3 of Cohen’s book [5]. A vector in the resulting lattice which
has integer, small (below N(I)) coordinates for the columns corresponding
to γj and γji, of which at least one invertible modulo N(I), is computed
(using integer linear combinations of columns having non-zero coefficients
on the rows corresponding to γj and γji). These two coefficients are used as
values for C and D respectively.

8.4 Close vector enumeration in dimension 2

The improved variant of the StrongApproximation algorithm presented in Sec-
tion 8.1 needs to enumerate vectors in a specific lattice in dimension 2 close
to a given target vector. In StrongApproximation, the enumerated vectors are
tested for a condition (if an equation depending on them can be solved), and
enumeration is stopped as soon as an output verifies this condition. In the
following we describe how to enumerate lattice vectors for this task using a
short vector enumeration algorithm due to Fincke and Pohst.

Close vector enumeration in a lattice is a classical problem, even if it is less
well-studied than the closely related short vector enumeration according to a
survey from 2017 [24], and less frequently implemented. Algorithms solving
it are mostly used for determining a closest vector, and optimized algorithms
specifically adapted to higher dimensions exist, as listed in [26]. Since our
lattice is in dimension two, these variants are however not expected to be
particularly efficient. We therefore use a very simple algorithm due to Fincke
and Pohst [16] and described in Cohen’s book [5] as Algorithm 2.7.5. This is
fundamentally a short vector enumeration algorithm, so that it needs some
adaptation for the close vector problem in our case.
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In the next steps, we describe first the exact problem we need to solve and
the simple short vector enumeration algorithm from Fincke and Pohst we
use for it. Then a first approach which enumerates close vectors as sums of
one fixed close vector and enumerated short vectors is presented, followed
by a different version which describes our close vector problem as a short
vector problem in another lattice. Both of these approaches were imple-
mented. However, their comparison is difficult, as detailed in Section 9.2.

There might be other approaches for transforming close vector problems
into short vector problems using embedding techniques, but we did not
find enough explanations on their use in enumeration, so we implemented
the rather straightforward ideas described in the following.

Precise problem and inputs

Close vector enumeration takes as arguments a lattice basis L and the target
vector t. In our case, both of them have only integer coefficients.

We did not go into this detail before, but it is technically possible to run
KLPT for orders different of O0 as long as they have a suborder of the form
Z[ω] + jZ[ω] where ω2 is a small negative rational −q. In the case of O0,
the suborder has basis (1, i, j, ij) and ω = i, so q = 1. Changing the suborder
has slightly affects all subalgorithms of KLPT, most often it only means that
an additional factor q appears. In order to give an idea of the impact of this
change on the enumeration algorithms, we will explicit q in the following.
They therefore take an additional parameter q, whose value is 1 if KLPT is
run using O0.

The norm used for measuring closeness of lattice elements to the target vec-
tor t is the quadratic form Nq(v) = x2 + qy2 where x, y are the coordinates of
a vector v. Furthermore, the Fincke-Pohst algorithm we use for enumeration
needs a bound b as input. Vectors are only enumerated until the norm of
their difference to t reaches B.

Short vector enumeration

Using these inputs except the target vector t, we now present the short vector
enumeration algorithm due to Fincke and Pohst which we use in both of our
strategies for close vector enumeration. This algorithm allows to enumerate
elements of a lattice whose image by a positive quadratic form is below a
bound B.

The quadratic form, which corresponds to the norm on the lattice for which
short vectors should be enumerated must first be put into a special form,
which is an intermediary step in the computation of a Cholesky Decomposi-
tion as described by algorithm 2.7.6 in Cohen’s book [5]. The goal is to write
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a quadratic form Q(x1, ..., xn) in dimension n as a list of fk,l for 1 ≤ k ≤ l ≤ n

such that Q(x1, ...xn) =
n
∑

k=1
fk,k(xk +

n
∑

l=k+1
fk,lxl)

2 for all (x1, ..., xn). Cohen

only describes this algorithm for positive definite quadratic forms. For
quadratic forms which are only positive (as our distance when doing close
vector enumeration later), a test for zeros on the diagonal has to be added.
For the details, see the Algorithm 8 below.

Algorithm 8 PrepareQuadraticForm(Q)

Require: Q symmetric matrix of dimension n representing a positive
quadratic form

Ensure: A matrix f in dimension n with entries fk,l such that such that

Q(x1, ...xn) =
n
∑

k=1
qk,k(xk +

n
∑

l=k+1
fk,lxl)

2 for all (x1, ..., xn) ∈ Q

1: for (k, l) such that 1 ≤ k ≤ l ≤ n do
2: fk,l := Qk,l
3: end for
4: for k such that 1 ≤ k ≤ n do
5: if fl,k 6= 0 then
6: for l such that k < l ≤ n do
7: fl,k := fk,l

8: fk,l := fk,l
fk,k

9: end for
10: for (g, h) such that k < g ≤ h ≤ n do
11: fg,h := fg,h − fg,k fk,h
12: end for
13: else
14: for l such that k < l ≤ n do
15: fk,l := 0
16: fl,k := 0
17: end for
18: end if
19: end for
20: return f

Once this special form f is computed, the short vector enumeration by
Fincke and Pohst [16] as described by algorithm 2.7.5 from Cohen’s book [5]
consists in the computation of lower bounds (used as initialization) and
upper bounds on possible values for each variable, between which enumer-
ation is done by incrementing the variables, which represent coordinates in
the lattice. For each coordinate xi, the bounds depend on the current values
of all coordinates xj with j > i. Since we only need short vector enumeration

64



8.4. Close vector enumeration in dimension 2

in dimension two and for a quadratic form given as Nq(v) = x2 + qy2 for
x, y coordinates of v, Algorithm 9 is simplified specifically for this case. In
its pseudocode, the algorithm is assumed to continue execution after return
statements.

Algorithm 9 EnumerateShortVectors(L, q, m, B)
Require: q positive integer defining Nq and the associated bilinear form Bq,

L = (b0, b1) a lattice, m maximal number of tries, B positive integer
Ensure: A list of vectors v ∈ L such that Nq(v) ≤ B

1: Q :=
(

Nq(b0) Bq(b0, b1)
Bq(b0, b1) Nq(b1)

)
2: f := PrepareQuadraticForm(Q)

3: By := b
√

B
f2,2
c

4: y := −By − 1
5: while (y < By) and (i < m) do
6: i = i + 1
7: y := y + 1

8: Bx := b
√

B− f2,2y2

f1,1
− f1,2yc

9: x := −b(
√

B− f2,2y2

f1,1
+ f1,2yc − 1

10: while (x < Bx) and (i < m) do
11: i := i + 1
12: x := x + 1

13: return L
(

x
y

)
14: end while
15: end while

Adding short vectors to a very close vector

The first way to apply a short vector enumeration algorithm to our problem
consists in computing one vector in the lattice which is very close to the
target (using for example Babai’s nearest plane algorithm) and then enu-
merating short vectors in the lattice and adding them to the close vector, in
order to obtain other close vectors. In order to make enumeration more ef-
ficient, the reduced lattice basis computed for finding the inital close vector
is also used for the enumeration.

However, this approach has the disadvantage that even if lattice element s
and the difference d of the initial close element and the target are both below
the bound for Nq, their sum s + d which is the difference of the new close
vector to the target, is not necessarily of small enough norm Nq. Therefore,
it is necessary to test for each s whether Nq(s + d) respects the bound B
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before outputting s.

If short vector enumeration below a given bound is done using the Fincke-
Pohst algorithm as it is described in Cohen’s book [5] and given in pseu-
docode in Algorithm 9, the first vectors encountered during the enumeration
have comparatively large size, since the coordinates are initially set to values
which are as small as possible to still have an image by the quadratic form
Nq which is below the bound, and then incremented. Therefore, it is possi-
ble that many short vectors s computed in the beginning of the enumeration
are such that Nq(s + d) is too large.

To reduce this risk, it is possible to perform short vector enumeration on a
bound which is lower that the bound for closeness. However, if this enu-
meration bound is too low, it is possible that no short enough vector is
found, even though several close enough vectors exist. As a consequence,
the bound for short vector enumeration allows to trade success probability
against efficiency.

Direct close vector enumeration

In order to not need this decision, it is also possible to implement close
vector enumeration directly and exactly, so that only vectors v in the lattice
which do respect Nq(t− v) < B (for some bound B) are enumerated. As I
did not find any explicit description of how to adapt Fincke-Pohst for close
vector enumeration even though the existence of such an adaptation seems
to be assumed by [26], I suggest the following.

The function f (x, y) = Nq(t − Lv) is a positive quadratic polynomial in
the coordinates x and y of v, where L a basis of the lattice, v the vector
searched for and t the target. Applying preparation step PrepareQuadratic-

Form in dimension 4 to the positive quadratic form Nq(

(
c
d

)
− L

(
a
b

)
)

of four variables a, b, c, d results in a matrix f whose lower half is zero, since
this quadratic form is not positive definite.

Getting inspiration from Fincke-Pohst in dimension 4, the fixed values of
the coordinates of the target are substituted for c and d in the obtained ex-
pression of the quadratic form, and bounds are computed as when running
the inner two loops of a 4-dimensional Fincke-Pohst version. A slight differ-
ence to that is that the fi,i are zero for the last two coordinates, so that their
fixed value only impact the bounds through the values of f1,i and f2,i. The
pseudocode given in Algorithm 10 below assumes that a return statement
does not interrupt its execution.

This algorithm also benefits from a reduced basis, since that reduces the
number of enumerated y for which no x forming a close enough vector of
coordinates (x, y) exists. Given the large numbers involved in the scheme
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8.4. Close vector enumeration in dimension 2

Algorithm 10 EnumerateCloseVectors(L, q, t, m, B)
Require: q positive integer defining Nq and the associated bilinear form

Bq, L = (b0, b1) a lattice, t target vector, m maximal number of tries, B
positive integer

Ensure: A list of vectors v ∈ L such that Nq(t− v) ≤ B
1: Q := Symmetric matrix representing the quadratic form

Nq(

(
c
d

)
− L

(
a
b

)
) of variables a, b, c, d in this order

2: f := PrepareQuadraticForm(Q)
3: r, s := coordinates of t
4: By := b

√
B

f2,2
− f2,3r− f2,4sc

5: y := −b
√

B
f2,2

+ f2,3r + f2,4sc − 1
6: while (y < By) and (i < m) do
7: i = i + 1
8: y := y + 1

9: Bx := b
√

B− f2,2(y+ f2,3r+ f2,4s)2

f1,1
− f1,2y− f1,3r− f1,4sc

10: x := −b
√

B− f2,2(y+ f2,3r+ f2,4s)2

f1,1
+ f1,2y + f1,3r + f1,4sc − 1

11: while (x < Bx) and (i < m) do
12: i := i + 1
13: x := x + 1

14: return L
(

x
y

)
15: end while
16: end while

and the small dimension of the lattice, reducing the basis L before applying
the computation of the coefficients of f and enumerating strongly improves
performance in sufficiently many cases to make this optimization relevant,
if not even necessary, for use in SQIsign.
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Chapter 9

Implementation and experiments

The algorithms described in this text except in Section 8.1 almost exactly
match the functions in the quaternion algebra module of the reference im-
plementation of SQIsign submitted to NIST in June 2023. This module is
situated in the dependency graph of the implementation as depicted in Fig-
ure 1.2, and its conception and implementation were part of this work. More
precisely, I wrote most of the interface and the implementation of the quater-
nion algebra module except the Howell Normal Form and its usage for ker-
nel computations modulo powers of two (implemented by Luca De Feo)
and LLL reduction in dimension 4 (made by Basil Hess), on which I never
worked. In addition, Antonin Leroux helped with precise specifications for
the implementation of the KLPT subfunctions from Section 8, and added a
third variant of Cornacchia’s algorithm to the module. Furthermore, several
algorithms on ideals and the right colon lattice were implemented by Luca
De Feo following the implementation from [9] or PARI/GP.

Since the submission, I improved some of these algorithms, such as the
colon lattice, connecting ideal and lattice multiplication computations. I
also implemented a second version of the close vector enumeration in di-
mension two. Some experiments with specialized functions for triangular
matrices and HNF computation modulo the determinant of the result were
also made.

In the following, the differences between the methods described in Chap-
ters 4 and 7 and the implementation in the quaternion algebra module of
the SQIsign implementation submitted to NIST are described. Finally, the
different improvements made since the submission are explained and bench-
marks for them are given.
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9.1 Comparison to the reference implementation of
SQIsign

The quaternion algebra module provides almost all functionalities described
in Chapters 5 to 7 as well as Cornacchia’s algorithm, close vector enumer-
ation in dimension two and modular kernel computations for KLPT, while
KLPT itself was implemented in all needed versions in a separate module.
Therefore, the quaternion algebra module implements solutions to most of
the problems for which formulas or algorithms are given in this text.

Since the submission, I improved and rewrote some ideal and lattice op-
erations, for example the colon lattice and connecting ideal computations.
These therefore differ largely between this text, which explains the improved
variants, and the submitted code. Smaller modifications, refactoring and
elimination of redundant steps have touched almost all ideal functions since
the submission. Since this text mostly uses the simplest methods I found,
it deviates slightly from the code at the submission date for some of them.
A more precise description of these changes including their performance
impact can be found in Section 9.2.

Other differences to the implementation appear when this text deliberately
describes algorithms in a slightly less specialized form than the one used in
the reference implementation. As an example, the implementation searches
for a generator of an ideal which has a norm coprime to some given integer,
while the generator search algorithm in Chapter 7 does not have this copri-
mality condition. The close vector enumeration algorithms are also touched
by this, since their implementation takes the accepting condition from the
StrongApproximation as a parameter and terminates as soon as it is satisfied
on an enumerated vector.

In addition to these changes at the level of individual functions, there are
more fundamental differences in the representation of lattices and ideals
which are detailed below.

Lattice representation and normalization

In the reference implementation, lattices are also quadratic integer matrices
with a common denominator, as in described in Section 4.2. Furthermore,
the matrices most often are in HNF. However, there are some exceptions,
since lattices are often not renormalized within a function. For example, the
dual computations in the intersection formula or the lattice variant of the
right colon lattice computation are made by an internal dual function which
outputs a matrix which is not necessarily in HNF. The functions using this
dual only put its output in HNF if it is a result they return, and even this
normalization is done only by functions which are not internal to the mod-
ule. Since most lattice operations except the dual naturally return results
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in HNF, this optimization is only used on dual and conjugate or inverse
computations.

Furthermore, normalization in the reference implementation means only
that the integer matrix is in HNF, while in this text we also assumed that the
denominator takes the smallest possible positive value, in order to obtain
unicity. This has little impact, except that lattice equality test of the imple-
mentation has to reduce the denominator before comparing two lattices.

Ideal representation and norm computations

In this text, the simplest possible representation of left ideals is used, which
consists in a lattice for the ideal and a lattice representing its left order. The
implementation differs from it, because its ideal representation also contains
the norm, which is precomputed whenever an ideal is created or returned
as result of an operation. This obviously influences the efficiency of all
algorithms operating on ideals, since norms of output ideals have to be
computed every time, and norms of input ideals are directly available when
needed (for example in the ideal variant of the colon lattice computation).

In order to compute the norm of ideals output by the algorithms in Chap-
ter 7, a few tricks can be used. For example, the norm of a principal ideal
is the norm of its generator, the norm of the sum of two principal ideals is
the greatest common divisor of their norms and the norm of a product of an
ideal by an algebra element is the product of their norms. Therefore, only
in very few functions the computation described in the normId formula in
Section 7.2 is needed for obtaining the norm of the resulting ideal.

9.2 Benchmarks of implementation variants

Since the large majority of SQIsign’s signing and key generation runtime
is spent on the isogeny operations of the translation between ideals and
isogenies, it is difficult to get a realistic estimation of the performance of the
functions in the quaternion algebra module during the execution of SQIsign.
Each of them has a runtime close to negligible and is therefore not correctly
measured by profilers when running key generation or signing.

In order to compare the efficiency of different variants of these functions,
we therefore run them in isolation and on randomly generated inputs. For
the benchmarks in Figures A.3, A.4 and A.5, the size of these inputs was
chosen to be similar to the maximal integer size observed outside of HNF
computations when running SQIsign for a given security level. The quater-
nion algebra was fixed using one of the primes chosen as parameters in
the specification [4]. This parameter choices might not be perfect. In par-
ticular, fixing the size of input integers close to the maximum of observed
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inputs in the signature is not necessarily realistic, and smaller inputs should
be considered also. In order to allow this kind of comparison, Figures A.1
and A.2 use smaller integer sizes within the same algebra than Figure A.3.
The integer sizes have been chosen arbitrarily with no other purpose than
to cover smaller integers. Furthermore, when generating inputs which are
required to be in HNF, the input size only refers to coordinates of a basis
before applying normalization.

Another issue with the given benchmarks is that the implementation of some
optimizations required changes in other parts of the code. Additionally,
while implementing them, sometimes small but completely unrelated parts
of the code were also modified in order to fix mistakes or to make them
more readable. These changes were rare and minor; however, this means
that between two modifications even functions not impacted by the main
modification might have slightly changed.

Finally, the SQIsign reference implementation and therefore also the code
used for benchmarks does not use exactly the same representation of ide-
als and lattices as defined in Section 4.2. The detail of the differences is
described in Section 9.1. These choices are likely to influence the relative
performances of the tested algorithms and variants.

Despite all shortcomings, the numbers given in Figures A.1 to A.5 help to
understand the efficiency comparisons in Sections 6 and 7.

All benchmarks were run on an Intel i7-10510U CPU at 1.80GHz, on a re-
lease build of the SQIsign reference implementation from [4], modified with
implementations of the given functions. The tables show iterative improve-
ments, so every line in a table also contains the modifications made in pre-
vious lines.

Below we explain the changes between the lines in the benchmarking tables
given in the Appendix A.2 and a few possible reasons of the observed speed
differences.

Clean multiplication

The clean multiplication step is mainly an attempt to make the code more
readable by defining a function for lattice-element multiplication and mak-
ing use of all existing multiplication functions where appropriate. It has
no real impact on performance, and is listed here mostly as a more realis-
tic baseline, since all improvements were built on top of that version rather
than the older and less readable NIST version.
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New colon lattice

The modification of the colon lattice computation from the rather complex
and more generic variant of the reference implementation described in the
specification [4] to the formula from Chapter 6 gives huge performance gains
in the colon lattice computation and the right order depending on it.

New connecting ideal

An optimization of the connecting ideal computation, which from comput-
ing and using the scalar factor [O1 : O1∩O2] to just clearing the denominator
of the result, unsurprisingly accelerates the connecting ideal computation.
However, this might come at some expense, since the returned ideal has
larger norm. Since the KLPT module has no benchmarking code so far, the
impact of this has not been measured yet.

Specialized functions for triangular matrices

The use of specialized functions for computations on triangular matrices
impacts almost all lattice functions since lattices in normal form are repre-
sented by triangular matrices. The improvements are between small and not
noticeable.

Larger HNF and new lattice multiplication

The HNF computation is modified to allow for arbitrary-sized inputs (in-
stead of 4× 8 matrices as in the reference implementation), and this is im-
mediately applied to all HNF computations. As a consequence, lattice mul-
tiplication is now done with one HNF on sixteen generators instead of three
lattice additions. Multiplication gains speed due to this change, while other
lattice functions are almost not impacted, and if so, then rather negatively.

Colon lattice specifically for ideals

The specialized ideal variant of the colon lattice computation which is pre-
sented in 7.4 makes the right order computation even faster. The direct
benchmark of a colon lattice computation is still done on the variant for
general lattices in A presented in 6, in order to keep the same benchmark-
ing function so that measures comparable to the previous lines in the tables
in Appendix A.2.

HNF modulo the determinant

Using computations modulo the determinant of the output lattice (as de-
scribed in Algorithm 2.4.8 of Cohen’s book [5]) for HNF computations,
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which is a measure against the extreme growth of the intermediary coef-
ficients in the naive implementation used previously, induces a slowdown
in most lattice functions. This is most visible in the intersection, which
uses two HNF computations. The only measures where it appears to have
no negative effects are on colon lattice computations for very large inputs
(above NIST-1 parameters), while the negative impact is largest for small
input sizes.

The slowdown is surprising, since the new HNF computation is expected to
be much faster than the naive one according to Cohen [5]. Its inefficiency
could be due to two causes:

First, our modular operations are rather slow, since the use of the GMP
library means that we have to do a separate call to a modular reduction
function after every operation, and then we need some more computations
on its output in order to obtain a result in the interval ] − d/2, d/2], as
required by the algorithm from Cohen’s book.

Second, our algebra has very small dimension. This might limit the coef-
ficient growth of the naive implementation, and therefore also the possible
advantage of the modular version. Experimentally, we observed a factor 26
at most between the size in bits of the largest integer coefficient of the input
matrix and the largest intermediary coefficient during executions of SQIsign
key generation and signing, for all three NIST levels. Since the determinant
of a triangular matrix of dimension 4 is also about four times larger than its
coefficients, the gain in coefficient size obtained by computing modulo the
determinant is small. In our experiments, the largest integers observed us-
ing the HNF modulo determinant still were about 10 times larger the largest
coefficients of the input matrix. In conclusion, the additional execution time
due to modulo operations appears in our experiments to be more impor-
tant than the speed gain due to smaller intermediary coefficients, except at
extremely large integer sizes.

Close vector enumeration

This change does not appear in the benchmark tables in Appendix A.2, since
it impacts none of the benchmarked lattice and ideal algorithms.

The two variants of close vector enumeration described in Section 8.4 were
both implemented, even though the direct method was only completed after
the submission. The implementation is different from the pseudocode given
here, since it takes the acceptance condition as an argument and calls it
whenever a result is found. This makes realistic benchmarks hard, since
the condition takes some time to evaluate, which masks the possible speed
differences in enumeration.
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9.2. Benchmarks of implementation variants

In both cases, the lattice reduction before any other operation is absolutely
necessary for realistic integer sizes of a few hundreds or thousands of bits.
We observed reasonable inputs where first applying a reduction allowed the
direct enumeration to find a result for the test condition x + y ≡ 2 mod 3
condition within 3 incrementation steps, while without the reduction over
a million of y values were enumerated before a single x value could be
computed.
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Chapter 10

Conclusion

With the chapters on matrices, lattices, ideals and the short outlook on KLPT
we covered all concepts, normal forms, formulas and algorithms needed for
the quaternion algebra module of SQIsign. The precise formulations might
not always match the reference implementation we submitted to NIST, but
all its algorithms have at least an alternative or variant listed and explained,
and a comparison to the implementation is given. When several reasonable
strategies for the same problem were found, they are listed, and if more than
one was implemented, also compared in terms of efficiency.

Given that only a small fraction of the key generation and signing time of
SQIsign is actually spent within the quaternion algebra module, optimiz-
ing its functions does not yield great speedups, and might not be necessary.
However, the rather simple and well-understood formulas and algorithms
in this work provide a basis for future research on constant-time imple-
mentations of SQIsign, either via constant-time adaptations of these and the
higher-level KLPT and translation algorithms, or via masking techniques.
Today, no such implementation exists, even though there is research on tim-
ing attacks against the scheme [19].

Furthermore, the content of this work might also be helpful for implemen-
tations, optimizations and constant-time considerations on SQIsign vari-
ants such as SQIsignHD [8] or other cryptographic schemes using ideals
in quaternion algebras.
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Appendix A

Appendix

A.1 Algorithms from Section 7 and ideals of non-
maximal orders

Since Section 4.2 we only considered ideals of maximal orders. These have
some properties (such as invertibility) which do not always hold for ideals
of non-maximal orders. Therefore, some algorithms from Section 7 do not
generalize to the general case of left ideals of orders in A, while other do.
We give here a list for clarification.

For finding out which formulas or algorithms work in which other cases,
it is helpful to consult Voight’s book [35] and Antonin Leroux’s thesis [22].
The information compiled below was also found there.

Ideal creation, norm and generator

The generation of principal ideals is the same for ideals of non-maximal
orders. The algorithm primitiveToIdeal outputs a left O-ideal I when a non-
maximal order O (and a generator contained in O) is used as input. The
only point which is different is that an ideal I generated by principalIdeal
for a non-maximal order O might also be a principal ideal for an order O′

containing O. Therefore, OL(I) is not necessarily equal to O.

Ideals of non-maximal orders can also be written as I = N(I)O+Oα. There-
fore, all of their ideals can be generated by the algorithm in createIdeal. Here
again, the obtained ideals might be left ideals not only of the input order O,
but of some larger order in which O is included.

The formula we use in normId which states that the norm of a left O-ideal is√
[O : I], does not necessarily hold if O is not maximal.

Enumeration for finding a generator as in generator can also be used for
ideals of non-maximal orders.
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Ideal addition, multiplication and intersection

The given formulas for ideal addition and intersection work for left O-ideals
even if O is not maximal. For them to be applied, it is sufficient that the two
ideals are left ideals of the same order O, but O is not required to be their
left order. The resulting ideal will be a left ideal of this order O, but again
might have a larger left order.

Multiplication at right by any quaternion algebra element is still possible,
as long as the resulting lattice has integer norm, which might be harder to
verify than in the case of maximal orders.

Multiplying two ideals I and J where OR(I) = OL(J) using lattice multipli-
cation remains possible, and the result will be a left ideal of any order of
which I is a left ideal.

Algorithms on ideals and orders

The colon lattice algorithm given in Section 7.4 does not generalize to ideals
of non-maximal orders. However, if it is replaced by the colon lattice algo-
rithm for lattices applied to the lattice representation of the involved ideals,
the isomorphism and right and left order computations still work.

The connecting ideal computation in connecting does not generalize to non-
maximal orders.

A.2 Benchmark tables

Modification +Lat ×Lat ∩Lat colonR orderR connecting
NIST submission 0,61 7,9 10 30 6,1 4,5
Clean multiplication 0,70 7,9 11 30 6,0 3,5
New colon lattice 0,63 8,5 10 13 3,6 3,5
New connecting ideal 0,69 8,4 10 13 3,5 3,5
Triangular matrix 0,64 8,6 11 14 3,5 1,7
Large HNF 0,69 7,4 10 14 2,9 1,5
Ideal colon lattice 0,61 7,3 11 14 1,5 1,3
HNF with modulo 0,93 9,9 19 18 2,7 2,6

Figure A.1: Benchmarks of incremental modifications. Input integer size 300 bit, prime pI
1223

from [4]. Median of 1000 iterations, with time in millions of cycles, rounded to the second
non-zero decimal cipher or the same decimal cipher after the comma as the smallest value in the
column
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A.2. Benchmark tables

Modification +Lat ×Lat ∩Lat colonR orderR connecting
NIST submission 2,1 40 56 170 18,3 10,1
Clean multiplication 2,3 40 56 170 17,1 9,1
New colon lattice 2,1 39 66 84 9,0 12,5
New connecting ideal 2,1 40 65 67 9,4 8,9
Triangular matrix 2,2 40 57 65 9,1 3,8
Large HNF 2,1 34 57 72 6,8 3,4
Ideal colon lattice 2,2 35 56 71 3,5 3,5
HNF with modulo 2,5 41 98 75 5,9 4,7

Figure A.2: Benchmarks of incremental modifications. Input integer size 1000 bit, prime pI
1223

from [4]. Median of 1000 iterations, with time in millions of cycles, rounded to the second
non-zero decimal cipher or the same decimal cipher after the comma as the smallest value in the
column

Modification +Lat ×Lat ∩Lat colonR orderR connecting
NIST submission 9,2 190 290 900 90 37
Clean multiplication 9,1 190 280 880 79 38
New colon lattice 8,9 190 290 310 36 37
New connecting ideal 9,4 190 280 320 35 37
Triangular matrix 9,2 190 280 330 39 13
Large HNF 9,1 160 280 360 27 18
Ideal colon lattice 9,2 160 270 350 14 13
HNF with modulo 10,1 190 460 360 18 14

Figure A.3: Benchmarks of incremental modifications. Input integer size 3000 bit, prime pI
1223

from [4]. Median of 1000 iterations, with time in millions of cycles, rounded to the second
non-zero decimal cipher or the same decimal cipher after the comma as the smallest value in the
column

Modification +Lat ×Lat ∩Lat colonR orderR connecting
NIST submission 19 400 600 2100 190 82
Clean multiplication 19 400 590 1900 150 74
New colon lattice 19 390 580 730 79 79
New connecting ideal 19 390 580 690 72 73
Triangular matrix 20 400 590 690 78 24
Large HNF 20 350 590 740 55 26
Ideal colon lattice 20 350 610 750 27 23
HNF with modulo 21 380 930 740 36 37

Figure A.4: Benchmarks of incremental modifications. Input integer size 5000 bit, prime pI I I
5563

from [4]. Median of 1000 iterations, with time in millions of cycles, rounded to the second
non-zero decimal cipher or the same decimal cipher after the comma as the smallest value in the
column
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Modification +Lat ×Lat ∩Lat colonR orderR connecting
NIST submission 32 610 940 3300 230 130
Clean multiplication 32 660 990 3500 290 120
New colon lattice 32 650 990 1100 120 130
New connecting ideal 31 630 940 1100 120 120
Triangular matrix 32 630 950 1100 130 43
Large HNF 31 540 940 1200 89 49
Ideal colon lattice 32 520 950 1200 45 45
HNF with modulo 35 600 1500 1200 55 57

Figure A.5: Benchmarks of incremental modifications. Input integer size 7000 bit, prime pV
40609

from [4]. Median of 1000 iterations, with time in millions of cycles, rounded to the second
non-zero decimal cipher or the same decimal cipher after the comma as the smallest value in the
column
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