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Abstract

Timing side-channels have been a constant issue in implementations
of cryptographic algorithms since their discovery in the mid 90’s by
Paul Kocher. To prevent them a programming paradigm usually called
constant-time programming emerged, where implementors manually
take care that timing behavior of the implementation is independent of
any secrets. In recent years several different tools and approaches have
been developed to aid programmers in this challenging task. Among
these, the approaches using domain specific languages (DSL) and spe-
cialized compilers and toolchains seem the most promising solution.
Existing work has shied away from directly comparing itself to its com-
petition. This thesis aims to create a basic framework for comparing
such tools. Accordingly the FaCT and Jasmin toolchains are juxtaposed
against the libsodium library in metrics of performance and storage.
The algorithmic assortment of curve25519, sha2 and ed25519 has been
chosen to effectively compare FaCT and Jasmin to the libsodium base-
line. By combining the results of our benchmark with our experience in
coding both FaCT and Jasmin, we conclude Jasmin offers a completly
verified constant-time toolchain at the cost of performance and a lim-
ited scope of application. For FaCT we find reasonable performance
and accessibility at the expense of verified constant-time preservation
only upto the LLVM IR.
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Chapter 1

Introduction

Security in a Computer Science perspective is as important as ever. With the
continued digitalization and interconnection through the internet of every
imaginable aspect in our lives security algorithms will only gain in impor-
tance. Establishing secure connections and guarding secrets, private net-
works, and private data should be a high priority for anyone with access
to the modern internet, man or machine. While of course computational-
security is necessary, it has been shown there are real vulnerabilities in
practical implementations of computational-secure ciphers. Timing side-
channels attacks can pose a real security threat as documented by Daniel J.
Bernstein [3]. To prevent such attacks the notion of constant-time program-
ming has emerged, where programmers manually enforce timing indepen-
dence with respect to any secrets. So far this has been achieved with the use
of a set of rules to transform vulnerable code fragments (e.g. i f -statements
depending on secrets, memory access patterns etc.) into code which exe-
cutes the same instructions on assembly level irrespective of input.

Since programmers are only human and even the most proficient expert
on any topic is still susceptible to making errors, there has been a drive
to develop tools for aiding constant-time programming. Dynamic analysis,
static analysis, code verification and domain specific languages (DSL) are
some of the distinctive approaches these tools have taken to help the pro-
grammer. DSLs often incorporate several of the mentioned techniques into
their toolchain. Additionally, since timing behaviour is outside of the spec-
ification for general purpose programming languages, compilers can even
introduce timing-issues in otherwise seemingly constant-time code. There-
fore DSLs with their specialized compilers, which guarantee constant-time
preservation, seem the most promising.
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1. Introduction

1.1 Domain Specific Languages

Two promising tools are FaCT [6] and Jasmin [1]. Both use a DSL accom-
panied by specialized compilers which in turn produce intermediary files
to be used in further compilation steps. FaCT is specifically intended to be
used with the C programming language and produces an object file on com-
pilation. It can further produce a header file on request to efficiently include
exported functions from the FaCT source code in your C code. Jasmin on the
other hand simply compiles to an assembly file capable of being processed
further by any general purpose compiler.

The FaCT language is purposefully designed to be as C-like as possible. A
choice which goes hand in hand with the intended use in conjunction with
C. Further it lowers the hurdle for newcomers already familiar with C and
can benefit from C’s core principles which have withstood the test of time
remarkably well. There are several crucial differences though. Firstly FaCT’s
type system includes a secrecy label. Each declared variable has either the
secret or public label assigned to it by the programmer. This does include
function parameters and return types. Secondly FaCT does not allow the
use of pointers, they are a FaCT internal construct only. Although FaCT
allows one layer of referencing through the re f primitve. To compensate
for the absence of pointers FaCT offers the ability to operate on slices of an
existing array with the view primitive.

Jasmin’s design meanwhile is far closer to an assembly language as it takes
direct inspiration from qhasm. Jasmin does have a layer of high-level prim-
itives such as while- and f or-loops, i f -statements and variables. Variables
are either registers, stack allocated or inlined. Inlined variables are resolved
at compilation. Importantly address offsets for memory accesses have to be
inlined variables or literals. As a consequence address offsets can not be
run-time resolved values. Whereas while-loops are implemented through
jump instructions, f or-loops are unrolled in the compilation process by Jas-
min and therefore only work over inlined variables.

1.2 Libsodium

To compare FaCT and Jasmin in a benchmark several cryptographic algo-
rithms were chosen. We decided to use a cryptographic library which would
source all algorithms. The reasoning behind this decision are as follows:
A popular modern library would provide algorithms which are up-to-date
and used in practice. Further a modern cryptographic library offers a certain
standard of quality across all implementations both in terms of performance
and the absence of bugs.
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1.2. Libsodium

In the end the libsodium library was chosen. Libsodium has a broad offering
of algorithms, is relative popularity for real world applications and has a
research related background in the NaCl library [7].

As for the specific algorithms chosen to benchmark the two tools and the
original libsodium library implementations, we first have the scalar multi-
plication of the elliptical group provided by curve25519 from now on called
simply curve25519. Secondly the sha2-512 hash algorithm from now on ref-
erenced as sha2 and lastly the sign function of the signature scheme ed25519
which is based upon the curve25519 elliptical group from now on mentioned
by ed25519 only.

Curve25519 and ed25519 have found widespread adoption in the current
internet landscape. Both algorithms are in the public domain and offered
improved performance at the time of their introduction by Bernstein and co
[4] [5]. In part because of those two advantages these algorithms have be-
come a standard choice for the Diffie-Hellman key-exchange and signature
ciphers respectively. As such it is an easy and logical choice to use these
algorithms as a baseline in our benchmark.

Hash algorithms are an important part of crypthography and an obvious
addition. While sha2 is not the most modern hash algortihm, it is still widely
used in practice and is specifically used by libsodium in its implementation
of ed25519. As such sha2 is a natural choice for the hash in the baseline.

Originally there was a further desire to include an hmac in the baseline, but
unfortunately, due to time constraints and difficulties with Jasmin, the im-
plementation of libsodium’s sha2-based hmac was only completed in FaCT.
Thus it has been left out in the final benchmark. Similarly at the beginning
an AES implementation was discussed but due to time-constraints and the
absence of a non-intrinsic implementation in libsodium it was scrapped as
well.

Now libsodium has three different implementations of curve25519 and the
underlying fundamental curve25519 functions. Ostensibly relevant for
curve25519 itself but also for ed25519 which is built upon on curve25519
core functions like addition, subtraction, multiplication, toBytes etc. A closer
look reveals there are two versions of the re f 10 implementation and a sin-
gular version of the sandy2x implementation. As sandy2x is built upon
assembly vector instructions it was eliminated from contention early on. A
non-specialized implementation was desired for the baseline as to not create
a situation where a selected tool lacks the expressiveness for a translation.
The two re f 10 variants differ in the use of 128-bit arithmetic operations.
Again to pursue a general-purpose reference implementation the version
without 128-bit operations was chosen. With this we have determined our
final baseline.
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Chapter 2

Translation

When translating these algorithms to both FaCT and Jasmin, we were faced
by a respectively unique set of challenges. This chapter will explore these
challenges and the solutions we found. Take note these solutions might
not be optimal but merely our best effort. We will highlight some of the
encountered quandaries on a few examples.

2.1 Fundamental Translations

FaCT’s C-like character made translation in many aspects straightforward.
Operators, casts, arrays and assignment operators are in essence identical.
Further many aspects of C have a similar equivalent in FaCT i.e. uint64 t vs
uint64, constant vs mut, structs, function definitions etc.

int32_t q;
int32_t carry0, carry1, carry2, carry3, carry4,

carry5, carry6, carry7, carry8, carry9;

q = (19 * h9 + ((uint32_t) 1L << 24)) >> 25;
q = (h0 + q) >> 26;
q = (h1 + q) >> 25;
q = (h2 + q) >> 26;
q = (h3 + q) >> 25;
q = (h4 + q) >> 26;
q = (h5 + q) >> 25;
q = (h6 + q) >> 26;
q = (h7 + q) >> 25;
q = (h8 + q) >> 26;
q = (h9 + q) >> 25;

Figure 2.1: C source code

secret mut int32 q = int32(
(19 * uint32(h9) + (uint32(1) << 24))
>> 25

);

q = (h0 + q) >> 26;
q = (h1 + q) >> 25;
q = (h2 + q) >> 26;
q = (h3 + q) >> 25;
q = (h4 + q) >> 26;
q = (h5 + q) >> 25;
q = (h6 + q) >> 26;
q = (h7 + q) >> 25;
q = (h8 + q) >> 26;
q = (h9 + q) >> 25;

Figure 2.2: Translated FaCT code

Unlike C in FaCT a variable has to be initialized on declaration. Libsodium’s
implementation features several local variables which are only declared but
not initialized. Thus in our FaCT translation all these variables are initialized
to either a value assigned later in the source code or, if not possible, to zero.
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2. Translation

We can see an outcome of this kind of transformation in figure 2.1 and 2.2.
As an immediate example contrast the first initialization of the variable q.
Notice moreover FaCT does not support implicit casting. However on the
whole the translation is quite straight forward here.

tmp32 = h9;

tmp32 *= 19;

tmp32 += shift24;

tmp32 >>s= 25;

tmp32 += h0;

tmp32 >>s= 26;

tmp32 += h1;

tmp32 >>s= 25;

tmp32 += h2;

tmp32 >>s= 26;

tmp32 += h3;

tmp32 >>s= 25;

tmp32 += h4;

tmp32 >>s= 26;

tmp32 += h5;

tmp32 >>s= 25;

tmp32 += h6;

tmp32 >>s= 26;

tmp32 += h7;

tmp32 >>s= 25;

tmp32 += h8;

tmp32 >>s= 26;

tmp32 += h9;

tmp32 >>s= 25;

Figure 2.3: Translated Jasmin code of figure 2.1 without the variable declarations

Compare and contrast this to the Jasmin code in figure 2.3 seemingly a
whole different animal. Apparent is the closeness to assembly since ”com-
plex” mathematical expressions such as the first assignment of the tmp32
variable, the Jasmin equivalent to the q variable in the C code, needs to be
partitioned into their basic instructions line by line. Further the programmer
does need to handle the explicit loading and storing of stack and memory
storage in and out of registers. While both C and FaCT do not need to
return any variables for their void type functions, Jasmin functions of the
same functionality need to explicitly return changed variables even if they
are input parameters.

stack u32 h0;

stack u32 h1;

stack u32 h2;

stack u32 h3;

stack u32 h4;

stack u32 h5;

stack u32 h6;

stack u32 h7;

stack u32 h8;

stack u32 h9;

stack u32 q;

reg u32 tmp32;

reg u32 tmp2_32;

inline u32 shift24;

inline u32 shift25;

inline u32 shift26;

shift24 = 1 << 24;

shift25 = 1 << 25;

shift26 = 1 << 26;

Figure 2.4: Jasmin variable declarations for the function seen in figure 2.1

Jasmin takes a distinctive approach to variable declarations compared to
both C and FaCT. Inline with the assembly-like nature of Jasmin all local
variables need to be declared and only declared at the beginning of a func-
tion. In figure 2.4 we have the complete variable declarations of the same
function all the other figures in this section are taken from.
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2.2. FaCT Specific Challenges

Two register variables, tmp32 and tmp2 32, are declared to actually execute
arithmetic instructions as seen in figure 2.4. It lies in the programmer’s
responsibility to avoid overloading register variables, therefore we tried to
use minimal register variables without introducing unnecessary load and
store operations.

2.2 FaCT Specific Challenges

2.2.1 One Dimensional Arrays of a Base Type Only

Multidimensional arrays are not available out of the box in FaCT. Fortu-
nately multidimensional arrays in C are only logical. Assuming we have
an array arr declared as follows int arr[N][M]; with N, M ∈ N, then C
does nothing more than create an array of length N ∗ M. Likewise C sim-
ply translates arr[i][j] to arr[i*N+j] when accessing array elements. By
using the same technique in FaCT, one is able to express multidimensional
arrays.

Unfortunately there is a further problem because arrays of structs and structs
with fields of struct type are simply not supported by FaCT. The latter case
only appeared in the hmac implentation and was easily bypassed by just dis-
assembling the struct. Meaning, instead of passing the struct to the function
as a parameter, each field was passed as its own function parameter.

typedef struct {

fe25519 YplusX;

fe25519 YminusX;

fe25519 Z;

fe25519 T2d;

} ge25519_cached;

typedef int32_t fe25519[10];

Figure 2.5: Defintion of ge25519 cached in C

In libsodium’s ed25519 implementation there are structs which consist of
three or four identical fields. The fields of these structs are all arrays of
type int32 t and have length 10. For example we look at ge25519 cached in
Figure 2.5.
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2. Translation

static void

ge25519_cmov8_cached(

ge25519_cached *t,

const ge25519_cached cached[8],

const signed char b

)

(a) C code

void

ge25519A_cmov8_cached(

mut ge25519_cached t,

secret int32[320] cached,

secret int8 b

)

(b) FaCT code

Figure 2.6: Defintion of ge25519 cmov8 cached

As seen in figure 2.6 (a) ge25519 cmov8 cached has an array of length eight
with type ge25519 cached as an input parameter. To circumvent the lack
of arrays of structs in FaCT we decompose the whole framework down to
the base type. Such an array basically consists of 4 ∗ 10 ∗ 8 = 320 entries
with type int32 t. Now in FaCT we instead have an array of type int32 with
length 320, as seen in figure 2.6 (b). If we access the array logically we just
read out the 40 relevant entries into a placeholder of the right struct type.

2.2.2 64-bit Literals and Static Arrays

On more than one occasion the C source code features static arrays. Some
of which are initialized with 64-bit literals. This presents a problem on two
fronts. On one hand FaCT only recognizes literals of size up to 32 bits.
On the other hand FaCT does not have anything similar to static or global
variables in C.

krnd[0] = uint64(0xd728ae22);

krnd[0] |= uint64(0x428a2f98) << 32;

Figure 2.7: Loading 64-bit Literals in FaCT

The literals are relatively easy to solve. First the lower 32 bits of the lit-
eral get initialized into the desired 64-bit variable and the upper 32 bits get
initialized into a temporary variable which then gets left-shifted by 32. Fi-
nally we perform a bitwise XOR-operation with the temporary variable and
the lower 32 bits of the original value. The resulting value of this opera-
tion is now equal to the full 64-bit literal. In Figure 2.7 the 64-bit literal
0x428a2 f 98d728ae22, given in hexadecimal, gets loaded into array krnd at
position 0 using the aforementioned method.
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2.2. FaCT Specific Challenges

static const ge25519_precomp base[32][8] = { /* base[i][j] = (j+1)*256^i*B */

#ifdef HAVE_TI_MODE

# include "fe_51/base.h"

#else

# include "fe_25_5/base.h"

#endif

};

Figure 2.8: Declaration of the base array in libsodium

A simple solution to static variables is to just use an equivalent function-
local variable. Of course this solution incurs performance penalties as well
as expanded memory usage. A finer solution would be to define and ini-
tialize these static variables in the header file and then pass them to the
necessary functions as an input parameter. This way we outsource the prob-
lem and in turn the 64-bit literals no longer pose a problem.
As a poignant example we have the base array in the C code. In figure
2.8 the declaration of the base array can be seen. As ge25519 precomp
consists of 3 identical fields of type int32_t[10] we get an array of size
32 ∗ 8 ∗ 3 ∗ 10 = 7680 with type int32 t. An array of this size would ob-
viously create heavy performance penalties if loaded new as local variable
on every call. Therefore this array was declared in the FaCT header file as
static const uint32_t baseH[7680] = { /* content of array */ }; and then
passed to the top-level exported FaCT function as seen in figure 2.9.

/*public*/ int32_t _cryptoA_sign_ed25519_detached(

/*secret*/ uint8_t sig[],

/*public*/ uint64_t sig_len,

/*secret*/ uint64_t * siglen_p,

const /*secret*/ uint8_t m[],

/*public*/ uint64_t m_len,

/*public*/ uint64_t mlen,

const /*secret*/ uint8_t sk[],

/*public*/ uint64_t sk_len,

/*public*/ int32_t prehashed) {

return _cryptoC_sign_ed25519_detached(sig, sig_len, siglen_p,

m, m_len, mlen, sk,

sk_len, prehashed, baseH);

}

Figure 2.9: Using the FaCT header file to pass baseH

Consequently both techniques were used when deemed appropriate. Local
variables where used for small and infrequently used static variables when
performance overhead would remain miniscule and adding an additional
input parameter to all dependant functions seemed superfluous.
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2. Translation

To the contrary if the static variable was sizeable or used frequently then
ostensively a local variable translation would incur significant performance
penalties. Therefore in such a situation the variable was declared in the
FaCT header file and passed to the FaCT source code as an input parameter
to all dependant functions.

2.2.3 Array Accesses with Run-Time Values

For FaCT to compile successfully, its public safety checker must proof the
impossibility of illegal accesses to secret variables. The public safety checker
can resolve most of the accesses in the code automatically except for non-
trivial array accesses inside a loop or input parameter dependent memory
accesses. Hence FaCT provides the assume primitive which allows the pro-
grammer to pass loop invariants to the safety checker. With these loop
invariants the public safety checker should be able to successfully complete
the necessary safety proofs. The programmer has to ensure these invariants
are valid as to not compromise public safety in their program.

assume( 240 <= len base - uint64(240*pos));

assume( uint64(240*pos) <= len base);

if((240 <= 7680 - 240 *pos) && (240*pos < 7680)) {

ge25519A_cmov8(t,view(base, 240*pos,240) ,b);

}

Figure 2.10: Excerpt from ge25519 cmov8 base

In Figure 2.10 we have an example of a situation where the public safety
checker has no chance of establishing a safety proof without the help of the
programmer. The base array seen in figure 2.10 has already been mentioned
in section 2.2.2. We know it has length 7680 and for FaCT to compile the
public safety checker must proof that the view primitive does not introduce
out-of-bounds accesses.

First we recall the use of the view primitive to get slices of an array. view
takes three inputs, the first a reference to the array, the second the offset
from the beginning of the array to the start of the slice and the third being
slice length. We see view is dependent on the pos variable. Since pos is
an input parameter FaCT cannot construct a valid proof on its own. As
the programmer we know the ge25519 cmov8 base function is an internal
function exclusively and receives only values from 0 to 7 for the pos variable
from its caller.

10



2.3. Jasmin Specific Challenges

To pass on this information to FaCT two calls of the assume primitive are
used. The first assume expression guarantees the end of the slice is in
range [239, 7679] and the second one guarantees the beginning of the slice
is in range [0, 7439]. Combined they ensure the slice is completely inside
the bounds of the base array. With this new information the public safety
checker is capable of completing the necessitated proofs for FaCT to com-
pile.

2.3 Jasmin Specific Challenges

2.3.1 Compile-Time Values Only

Jasmin restricts offset values in memory accesses and f or-loop bounds to
inlined variables only. In other words such values must be known at com-
pilation. This created problems in multiple ways. Because of the modular
nature of libsodium, memory accesses and especially f or-loop bounds are
implemented sporadically as run-time resolved variables in the source code.

Most frequently sha2 featured dependencies on run-time resolved values in
loop bounds. A significant margin of these appear because sha2 is designed
to handle inputs of variable length. Thus resolving this problem with f or-
loops was inherently impossible. Jasmin does provide a while-loop primitive
which operates over run-time variables and hence is an obvious substitute.

if (inlen < 128 - r) {

for (i = 0; i < inlen; i++) {

state->buf[r + i] = in[i];

}

return 0;

}

for (i = 0; i < 128 - r; i++) {

state->buf[r + i] = in[i];

}

/* code continues */

(a) C code

tmp = 128;

tmp -= r;

if(inlen < tmp) {

for i = 0 to 128 {

if(inlen > i) {

tmp8 = (u8) [in+i];

tmp = r;

tmp += i;

sBuf[(int) tmp] = tmp8;

}

}

} else {

for i = 0 to 128 {

if(tmp > i) {

tmp8 = (u8) [in+i];

tmp2_64 = r;

tmp2_64 += i;

sBuf[(int) tmp2_64] = tmp8;

}

}

/* code continues */

(b) Jasmin code

Figure 2.11: For-loops inside function sha512 update
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2. Translation

In the end a slightly different solution was implemented. If there was a
logical upper bound on the run-time resolved loop bounds then in Jasmin
the f or-loop would have the aforementioned logical upper bound as its loop
bound. i f -statements were then used to simulate the original function in the
source code.

A visualization of such a transformation can be seen in figure 2.11. Before
the start of the code excerpt there was a modulo operation on the variable r
with divisor 128. Therefore we know 128 is an upper bound on the number
of iterations for both loops. The i f -statements ensure their contents are only
executed when the loop index is in the range of the original loop iteration
values. Naturally the i f -bodies contain corresponding code to the original
loop body. The upper bounds on loop bounds for the affected f or-loops
were negligible, ergo a transformation of this kind would not incur sig-
nificant performance penalties. While not used in this particular instance,
while-loop transformations were used for a problem discussed in the follow-
ing section 2.3.2.

On certain occasions the whole issue could be circumvented. In Jasmin not
all functions are compiled down to assembly code, only exported functions
are. Non-exported functions are inlined when called in other functions.
For internal functions with problematic loop bounds a solution could be
found if the critical f or-loop bounds were dependant on an input parameter
and the callee always assigned a literal to that parameter. Then these input
parameters are transformed to an inlined variable and the internal function
would also be defined as inlined. The only remaining hurdle was functional
testing of the inlined functions which was done with hard coded values on
the inlined parameters in auxiliary exported functions.

2.3.2 For-Loops Are Unrolled

As a result of compile-time resolved loop-bounds Jasmin is able to unroll
f or-loops in the compilation process. While this technique does ease the
constant-time verification of programs it did create problems for us during
the translation process. In particular in situations where loops featured calls
to non-trivial functions.

The f or-loop unrolling alone does no present a problem. However Jasmin
only has stack or registers variables at run-time. Moreover the programmer
is responsible for register allocation in Jasmin and therefore needs to ensure
the prevention of overlapping register allocations. Since the amount of lo-
cal variables needed far exceeded the number of available registers, stack
variables had to be used frequently as local storage. Now combining the
loop unrolling with numerous local stack variables inside the called func-
tions lead to an stack overflow error when trying to compile higher level
functions.
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2.3. Jasmin Specific Challenges

for (i = 1; i < 64; i += 2) {

ge25519_cmov8_base(&t, i / 2, e[i]);

ge25519_madd(&r, h, &t);

ge25519_p1p1_to_p3(h, &r);

}

Figure 2.12: For-loop found in ge25519 scalarmult base

In Figure 2.12 a f or-loop found in the ed25519 source code can be seen. All
called functions, especially ge25519 cmov8 base, are non-trivial and feature
plenty of local stack variables. Hence unrolling this loop creates 32 times
as many stack variables. As a result, when translating this exact loop as a
f or-loop to Jasmin, stack overflow errors are encountered when compiling.

j = 1;
while(j < 64) {

tmp8 = e[(int) j];
tmp8_stack = tmp8;
tmp64 = j;
tmp64 >>= 1;
t_yplusx, t_yminusx, t_xy2d

= ge25519A_cmov8_base(t_yplusx, t_yminusx, t_xy2d, tmp64 ,tmp8_stack , srcBase);
r_X, r_Y, r_Z, r_T

= ge25519A_madd(r_X, r_Y, r_Z, r_T, h_X, h_Y, h_Z, h_T, t_yplusx, t_yminusx, t_xy2d);
h_X, h_Y, h_Z, h_T

= ge25519A_p1p1_to_p3(h_X, h_Y, h_Z, h_T, r_X, r_Y, r_Z, r_T);
j += 2;

}

Figure 2.13: For-loop of Fig. 2.12 translated to Jasmin

A solution can be found in replacing the f or-loops with equivalent while-
loops. Since while-loops are not unrolled a function call is compiled only
once instead of 32 times as seen in the example. In figure 2.13 such a trans-
lation to a while-loop can be seen for the code of figure 2.12. Transformations
of this type had to be done a couple of times to successfully compile ed25519
without stack overflow errors.

2.3.3 Limit on Input Parameters and Static Variables

Jasmin only allows registers as input parameters for exported functions. As
we know there are at most 6 registers to be used as parameters on function
calls in x86-64. Thus as a consequence Jasmin only allows for 6 input param-
eters in exported functions. Similar to FaCT large and/or frequently used
static arrays are allocated in C an the passed to Jasmin’s exported functions.
The same is done for some local storage space. Unfortunately this did lead
to more than six theoretical function parameters in some cases.
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uint8_t storage[31594];

memcpy(storage + 234, KrndA, 840);

memcpy(storage + 874 , baseA, 30720);

memcpy(storage + 192, DOM2PREFIX, 34);

Figure 2.14: Allocation of local storage and static arrays in C to be passed to Jasmin

To solve this issue all static arrays and the mentioned local storage spaces are
combined into one large array in C and then passed to the Jasmin function.
This reduced the needed input parameters to 6. To read out the desired
”fields” of this combined array its address, which is stored on the stack, can
be used in combination with the known offsets to set a register variable with
the address to the desired variable.

tmp2_64 = (u64) [srcLocalStorage + 226];

tmp64 = srcLocalStorage;

tmp64 += 192;

tmp3_64 = srcLocalStorage;

tmp3_64 += 234;

sState, sCount, sBuf =

_cryptoB_sign_ed25519_ref10_hinit(sState, sCount, sBuf, tmp64, tmp2_64, tmp3_64);

Figure 2.15: Access to C allocated local storage and static arrays through offsets in Jasmin

A practical application of this process can be seen in figure 2.14 where the
storage array is allocated and partly initialized with static arrays in C. In
figure 2.15 we showcase the procedure to access static arrays and local stor-
age inside storage through known offsets. Note in this Jasmin code the
address to the aforementioned storage array has been previously stored in
the srcLocalStorage variable.

2.4 Usability Report

Usability is not on top of priority charts for researchers and developers of
these tools, for obvious and understandable reasons. Nonetheless for the
adoption of FaCT and Jasmin in practice, by developers of cryptographic
libraries, factors like usability, project integration and platform availability
are relevant.

This report is written from the perspective of a complete newcomer to both
FaCT and Jasmin. Further the bulk of the work was in porting C code to
the respective languages. While this task provides a useful insight it can
not be compared one-to-one with the experience of writing complete new
cryptographic algorithms.
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2.4. Usability Report

2.4.1 FaCT

The creators of FaCT included a usability study in their paper [6]. Although
a rather small study it found FaCT to be approximately as intuitive to un-
derstand as C. Likewise coding correct constant-time code in FaCT was
achieved by a slightly higher margin of participants compared to coding
in C. In general we would echo the findings of the report. After a period of
acclimatization programing in FaCT is very similar to C. Especially once one
understands how to use slices with the view and assume primitives instead
of pointers when needed.

FaCT’s integration with C is nearly seamless with the exception of structs.
The structs inside the FaCT generated header filer are declared without any
fields. To utilize these structs in the C code (e.g. for passing input pa-
rameters to the FaCT functions) one has to manually complete the struct
definition in the header.

There are some drawbacks. Resources for learning FaCT are scarce which
is expected. The paper itself does a relative poor job of bringing across the
language to a programmer. While Jasmin’s paper likewise did not divulge to
much information on utilization, Jasmin does provide some supplementary
material unlike FaCT. Starting to learn FaCT is very much a trial and error
affair even in comparison to Jasmin.

Moreover there are some restrictions which hinder ease-of-use. As discussed
it is not possible to have struct fields of struct type or an array of structs.
While this does not technically restrict expressiveness it does create the need
for time-consuming work-arounds to achieve the modularity of C code.

Overall FaCT is quite useable after getting over the introductory hurdle. The
compilation error messages are basic but workable, compilation times re-
main low with increasing code size, modularity is achievable and language
primitives are on the whole intuitive.

2.4.2 Jasmin

Jasmin’s design is somewhere between an assembly- and high-level pro-
gramming language. As a consequence of having far less experience in
programming assembler(e.g. x86-64, MIPS) than high-level languages (e.g.
C, C++, Java, Haskell etc.) learning Jasmin proved to be a bit harder. On the
other hand Jasmin does have more resources to learn. The github repository
has a documentation which has several short chapters explaining different
topics (e.g. Arrays, Global Variables etc.). In addition Jasmin provides small
programs meant to showcase the functionality of Jasmin in different ways.
Jasmin’s integration into C is good but not as seamless as FaCT since head-
ers with function declarations need to be written manually for effective use
of the compiled code.
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2. Translation

Unsurprisingly as a result of Jasmin’s closeness to assembly it is more cum-
bersome to implement high-level language algorithms in Jasmin compared
to a high-level language like FaCT. A significant problem arose however.
Jasmin’s compilation time is glacial compared to FaCT and even became a
significant problem when trying to implement ed25519 and the hmac. Both
algorithms rely heavily on sha2 and its subfunction init, update, final. On
top of that ed25519 utilizes the curve25519/ed25519 subfunctions reduce,
mul, scalarmult base etc. All these functions in of itself had compilation
times of 5 to 25 minutes. When combining them for the sign function of
ed25519 compilation times were in the range of 4-6 hours if not longer.

Now this is after the fact unsurprising as Jasmin seems to be designed to be
used only to compile either smaller subfunctions of high-level cryptographic
algorithms or specifically lightweight algorithms. Regardless this makes Jas-
min suboptimal for coding complete sophisticated and modular algorithms.
Even coding parts of the libsodium library seem unimaginable. The uncom-
pleted hmac threw further a wrench into benchmarking plans. And more
importantly it raises a question. If Jasmin verified code only represents a
portion of a cryptographic suite, how significant is the resulting verification
gap for constant-time guarantees? Assuming good constant-time practice in
surrounding code this might not be substantial problem. However the goal
of these new tools is to abandon reliance on good practice and instead to
depend on constant-time verification.
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Chapter 3

Benchmarking

The Goal of this thesis is to compare performance of different DSLs ergo the
focus of this benchmark is on performance but it is not the only aspect.

The benchmark is written in C. Two contributing factors for this decision
are FaCT’s intended use in conjuction with C, plus the fact that libsodium is
implemented in C. For Jasmin C-compilers are more than adept in linking
assembler files. Altogether C is a logical choice.

3.1 Platform

An important aspect of every benchmark is to know the underlying hard-
ware and software upon which the benchmark is run. We used a desktop
computer with the following specifications:

CPU Intel Xeon CPU E3-1231 v3 @ 3.40GHz × 4

GPU NVIDIA GeForce GTX 1080 Ti

RAM 15.6 GiB @ Corsair Vengeance 4GB DDR3-1600 x 4

Main Storage OCZ Vertex 460 SATA-III SSD 120 GB

OS Ubuntu 20.04.4 LTS 64-bit
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3. Benchmarking

3.2 Performance

Performance can be measured in several ways but this paper focuses on the
number of CPU clock cycles. While absolute time is an important metric,
it is obviously not comparable across different platforms. The number of
CPU clock cycles should have less variance across systems of the same ar-
chitecture. In this case the architecture is x86-64 which of course in 2022 is
as widespread as ever. Specifically a measure of cycles passed between the
moment precisely before the function call and the moment just after the end
of its execution is taken.

Inputs are randomly generated by an implementation of the Mersenne
Twister [8]. Then we perform a cache warm up by invoking the function
for ∼2000 iterations on the to-be-tested variables. Finally to benchmark the
function we use a method described by the intel paper ”How to Benchmark
Code Execution on Intel IA-32 and IA-64 Instruction Set Architectures” [10].
This method makes use of the RDTSC and RDTSCP instructions to read the
timestamp register before and after the execution of the function. RDTSC
and RDTSCP both read the clock cycle register. RDTSCP furthermore guar-
antees the complete termination of all code before its reading of the clock
cycle register. move instructions are used to store timestamps into the appro-
priate registers. Additionally CPUID is used to create a barrier between the
function call and the rest of the program. This barrier prevents out-of-order
execution of instructions associated with high-level code before and after
the two CPUID instructions. Due to the barrier all instructions executed by
the program between the RDTSC and RDTSCP instruction correspond to
the call of the benchmarked function.

This procedure is repeated for 16000 iterations. For each repetition the abso-
lute difference of both measured timestamps is stored to ultimately compute
the average and variance over all iterations. Both ed25519 and sha2 have
variable input length, therefore their benchmarks have the option of passing
the desired length in Bytes as an execution argument. If this option is not
utilized the length is set to a standard value of 1024 Bytes. We decided to
run the benchmarks for ed25519 and sha2 for a power of two selection of
arguments. The selection contains all power of twos between 64 and 8192
i.e. the set {64, 128, 256, 512, 1024, 2048, 4096, 8192}.

For curve25519 we will simply output all measured clock cycles on a new
line. On the other hand for both sha2 and ed25519 we will compute mean
and variance, for the given input length, inside the benchmark. As output
we then have mean and variance on the same line separated by a comma.
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3.3 Storage

Storage space is another facet of benchmarking. Less relevant than perfor-
mance for this thesis. Storage can be divided in storage used while running
the program and the file size of the final binary. File size of binaries is
straightforward. The bash shell is used in combination with the command
ls -l to read out file sizes in Bytes.

The analysis of run-time storage requires more sophisticated tools. There are
several bash commands such as top, ps and pmap which provide function-
ality to monitor processes including their memory usage. However these
tools only capture snapshots when run in the bash shell. Luckily there are
several tools available to profile memory usage of a program. Probably the
most known tool is valgrind and its memory profiler massif [9]. Although
massif standard functionality is to profile heap memory specifically, massif
can also be used to monitor all memory used by the program. One has to
pass appropriate flags to extend functionality. In this case concretely the
flags –stacks=yes and –time-unit=i are supplied to enable the profiling of
stack memory as well.

For this benchmark a slightly different code is used to run with valgrind.
First compared to the performance benchmark inlined instructions and com-
putation of mean and variance have been removed. The cache warm-up loop
has been removed as well and the loop bound has been reduced to 500 iter-
ations. In essence only the generation of the random input, the function call
itself and the loop structure are left.

3.4 Top-Level Functions

For curve25519 the benchmark runs scalar multiplication on two random in-
puts which is implemented by the crypto scalarmult curve25519 ref10 func-
tion. For sha2 the benchmark tests the top-level function crypto hash sha512
which receives an input of random value and given size. For these al-
gorithms this selection is straightforward since both have a clear top-level
function which execute their intended singular task.

On the contrary ed25519 is a non-trivial suite of top-level functions which
serve to fulfil several distinctive tasks i.e. verifying signatures, creating sig-
natures and generating keypairs. The chosen task to benchmark is creating
signatures. To start with verifying signature does not handle secrets when
implemented correctly. Secondly generating keypairs is an interesting issue
but not a unique problem to ed25519 and was not the intended rationale
behind choosing ed25519 as a baseline. Moreover creating signatures is the
heart of a signature algorithm and therefore for this thesis the most interest-
ing part.
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3. Benchmarking

The libsodium implementation of ed25519 has four top-level signing func-
tions, three of which are intended to be called by users of libsodium. The
three user-accessible functions are crypto sign ed25519 detached, crypto
sign ed25519 and crypto sign ed25519ph final create.
crypto sign ed25519 detached is the internal top-level function which all

three of the previous mentioned functions are based upon on. To avoid
needlessly complicating the translation crypto sign ed25519 detached is
benchmarked.

3.5 Libsodium Compilation

As discussed before libsodium provides three different implementations
of curve25519 and its core functions. The computer this benchmark is
run on does support 128-bit architecture and vectorized assembly instruc-
tions needed for the unsought implementations. When building the lib-
sodium library through the standard process presented by the documenta-
tion the availability of these instructions are recognized and thus compiles
cruve25519 and ed25519 using undesired implementations. Additionally
libsodium uses pthreads on default settings.

Two of these problems can be dealt with through passing the –without-
pthreads and –disable-asm flags when running configure. –without-pthreads
is self-explanatory and –disable-asm prevents libsodium of using vectorized
assembly instructions and consequently the sandy2x implementation. Now
the remaining problem of 128-bit operators must be handled manually. To
this end we modified the configure and configure.ac files, from the lib-
sodium source code, by hand and in such a way that the Makefiles created
by running ./configure indicate the unavailability of 128-bit instructions.

3.6 Code Examples

In this section we provide three figures to visualize the benchmark. Partic-
ularly we showcase code segments responsible for implementing the previ-
ously discussed processes.
First we look at the use of the Mersenne-Twister (MT) in figure 3.1. We
generate a random 32-bit number through the MT supplied function. Sub-
sequently we use the left shift operator to discard the later 24 bits and store
the leading 8 bits into the message array mO. As described variations of this
exact technique are used to generate all needed random inputs.
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3.6. Code Examples

for(uint32_t j = 0; j < mlenO; ++j) {

mO[j] = genrand_int32() >> 24;

}

Figure 3.1: Use of the Mersenne -Twister for generating random messages in the ed25519
benchmark

In figure 3.2 on the other hand the method for extracting the desired CPU
clock cycles is pictured. The call to the sha2 top-level function is sandwiched
between the assembly instructions. This technique as mentioned is copied
one-to-one, except for the sha2 function call, from the Intel paper [10]. The
result is then stored inside the store array. This store array is then used to
calculate the mean and variance in the case of ed25519 or sha2. Conversely
for curve25519 the store array is simply used to print out all measured CPU
clock cycles. What is more the Krnd variable in the sha2 function call is a
further example of an externally declared static array passed on to Jasmin
for internal use.

asm volatile ("CPUID\n\t"

"RDTSC\n\t"

"mov %%edx, %0\n\t"

"mov %%eax, %1\n\t": "=r" (cycles_high), "=r" (cycles_low)::

"%rax", "%rbx", "%rcx", "%rdx");

cryptoB_hash_sha512(outO,inO,length,Krnd);

asm volatile("RDTSCP\n\t"

"mov %%edx, %0\n\t"

"mov %%eax, %1\n\t"

"CPUID\n\t": "=r" (cycles_high1), "=r" (cycles_low1)::

"%rax", "%rbx", "%rcx", "%rdx");

start = ( ((uint64_t)cycles_high << 32) | cycles_low );

end = ( ((uint64_t)cycles_high1 << 32) | cycles_low1 );

store[i] = end - start;

Figure 3.2: Intel-based use of instructions for measuring cycles

Finally in figure 3.3 we have the complete code in charge of the cache warm-
up. As one can discern the sha2 function is simply called 2000 times for
randomly generated input. Importantly the same variables are used as input
parameters in the warm-up procedure and during the definite measurement.
The whole C file responsible for benchmarking the sha2 implementation in
Jasmin has been provided in the appendix under section A.2. All three
snippets seen in this section originate from said C file.
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3. Benchmarking

for(uint32_t i=0; i<2000; ++i) {

uint64_t length = lengthIn;

uint64_t lengthb = lengthIn;

for(uint64_t j=0; j<length; ++j) {

unsigned char t = genrand_int32() >>24;

inO[j] = t;

inA[j] = t;

}

cryptoB_hash_sha512(outA,inA,lengthb,Krnd);

}

Figure 3.3: Example of the whole cache warm-up process for Jasmin’s sha2 implementation
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Chapter 4

Results

Like the name of this chapter implies we will have a look at the results of
our benchmark described in chapter 3. We will go over them in chapter 3’s
described order of importance i.e. performance, run-time storage and lastly
binary size.

4.1 Performance

Since curve25519 produce a slightly different benchmark in comparison to
ed25519 and sha2 we will have different visualization in its subsection. For
the sections on ed25519 and sha2 both contain analogous charts. First to
simply display the data gathered by the benchmark we have a lin-log plot
with the input sizes on the logarithmic x-axis and mean clock cycles on the
linear y-axis. Figures of this type are 4.1 and 4.4.

Next to show relative performance in comparison to the baseline, we have
two identical lin-log plots, one for FaCT and Jasmin respectively. The two
plots are combined into one figure. Identical to before input sizes are on the
logarithmic x-axis and on the linear y-axis we have mean clock cycles given
as a percentage of libsodium’s mean clock cycles. Figures 4.2 and 4.5 are of
this nature.

Lastly to visualize performance evolution with increasing input size, we
have a further lin-log plot. On the linear y-axis the difference in mean clock
cycles between current and preceding input length is given as a percentage.
The usual first entry of the x-axis, 64, has been removed because it does not
have a preceding input length. Apart from this change the x-axis is identical
to the ones in prior plots. Figures 4.3 and 4.6 fall into the aforementioned
category.
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4. Results

As indicated beforehand the section on curve25519 has distinct plots. Since
the benchmark for curve25519 gives us all measured clock cycles we can dis-
play boxplots for these data sets. The boxplots indicate both mean and me-
dian and the box itself spans from the 25th percentile to the 75th percentile
(denoted as Q1 and Q3 respectively). The whiskers are set to Q1 − 1.5 · IQR
and Q3 + 1.5 · IQR for the lower and upper whisker respectively. IQR de-
notes the interquartile range defined as IQR = Q3−Q1. To correspondingly
compare relative performance against the libsodium baseline a table is used.
Inside the table mean and median clock cycles are given as percentage of lib-
sodiums counterpart for both FaCT and Jasmin.

4.1.1 Ed25519
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Figure 4.1: Mean clock cycles of all implementations for selected input lengths

First we’ll have a look at ed25519. When studying figure 4.1, even on a sim-
ple glance, one observes that independent of input length there is a clear
hierarchy of performance. With the original libsodium implementation hav-
ing the lowest mean clock cycles executed and Jasmin having the highest
while FaCT is situated between the two. However the distance between
FaCT and libsodium is significantly smaller than the gap between Jasmin
and libsodium.
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Figure 4.2: Mean clock cycles given as a percentage of the baselines mean clock cycles

Overall these results are somewhat in line with expectations before run-
ning the benchmark. As Jasmin does not and can not perform assembly
code optimizations when compiling its code. Unlike FaCT and standard
C compilers, such as Clang and GCC, optimization through the passing of
optimization flags is not supported. Jasmin as a language requires the pro-
grammer to implement code optimization by hand. Furthermore for FaCT
Cauligi et al.’s performance studies [6] indicate a slight performance loss
when porting code to FaCT from C.

For clearer measure of relative performance to the libsodium library we
have figure 4.2. In Jasmin’s plot one observes its comparative performance
increases with growing input length. This is unlike FaCT where we see
the comparative performance gets closer to the baseline as input length in-
creases. Jasmin’s declining performance with increased input length can
even be seen in figure 4.1 as the green line seems to start ”curving” earlier
and steeper than both the blue and orange line of FaCT and the source code
respectively. On the contrary in the same figure FaCT’s improvement of
comparative performance can not be seen by the naked eye.

A deeper look in the performance evolution of all implementations can be
seen in figure 4.3. Quite apparent is the similarity in performance evolution
between FaCT and libsodium, though FaCT seems to have slightly lower
increases. Jasmin however seems to handle the increase in Bytes compara-
tively poor as from 1024 onwards its percentage increase is the largest by a
noticeable margin. Nonetheless the pattern is very similar across the board.
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Figure 4.3: Change of mean clock cycles to the preceding input length as a percentage

4.1.2 Sha2

For sha2 we have a similar situation to ed25519. We see in figure 4.4 FaCT
and the baseline are fairly close and then Jasmin has a significant gap to
both of them. The reasons for this gap are identical to ed25519 as Jasmin
does not perform assembly level optimizations unlike the other two. Albeit
FaCT is seemingly even closer to the baseline in comparison to ed25519. All
in all nothing to surprising in this figure.

In figure 4.5 however we have a deviation from ed25519. This time we have a
matching tendency with a gradual increase in relative performance for both
in the comparison to libsodium. For both FaCT and Jasmin their compara-
tive performance worsens with increased input length. FaCT’s percentages
operate in a notably smaller range compared Jasmin and, in contrast to Jas-
min, FaCT’s later increase is much flatter when compared.
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Figure 4.4: Mean clock cycles of all implementations for selected input lengths

An interesting observation is the fact that for both FaCT and Jasmin their
relative best performance points are at the lower end of input sizes. Which
indicates the source code seems to handle increased input size better than
both FaCT and Jasmin. The same phenomenon can also be seen in figure 4.6
as the baseline suffers consistently the lowest cycle increases from 512 Bytes
onward.
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Figure 4.5: Mean clock cycles given as a percentage of the baselines mean clock cycles

27



4. Results

Figure 4.6 furthermore showcases an intriguing pattern for all three lines.
All of them exhibit a ”bounce” around 256 Bytes. This is not outside of
our expectations as the structure of this algorithm has a crucial if statement
depending on input length.
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Figure 4.6: Change of mean clock cycles to the preceding input length as a percentage

When the input length is greater equal than 128 Bytes the algorithm, thanks
to the mentioned if-statement, enters a part of the code which executes far
more clock cycles than for the smaller input sizes. So when going from 64 to
128 Bytes we incur this penalty but afterwards the underlying executed code
stays the same. Thus we are left with linear growth, attributed to number of
loop iterations depend on input length, from 256 Bytes onward.
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4.1.3 Curve25519

As discussed before in this section we will analyse the boxplots foreach
implementation. These boxplots can be found in figures 4.7, 4.9 and 4.8 for
libsodium, FaCT and Jasmin respectively.
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Figure 4.7: Boxplot of libsodium’s data

Once again we have the familiar ordering of Jasmin, FaCT and libsodium
from highest to lowest in both median and mean clock cycles. Although
there is a noteworthy difference. For both ed25519 and sha2 FaCT’s code
ran significantly closer to the original than to Jasmin. Here however as we
can deduce from the boxplots, all three are nearly equidistant in terms of
both median and mean. Both the spacing between FaCT and the baseline
and between FaCT and Jasmin is around 150000 cycles. We can see this
detail demonstrated by means of percentages in table 4.1.

This is thanks to Jasmin’s improvement and Fact’s decline in relative perfor-
mance compared to the previously discussed algorithms. The cause behind
Jasmin’s improved performance might have to do with curve25519’s design
as seemingly less of the code lends itself to compiler optimization. As to
why FaCT’s performance worsened is hard to say. Our translation might
have unknowingly introduced an unintended overhead or FaCT just simply
might not handle the optimization as well.
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Figure 4.8: Boxplot of Jasmin’s data

Another peculiarity can be seen in figure 4.8. Jasmin’s boxplot is the only
of the three were the mean falls decidedly outside of the whiskers. Fur-
thermore notice the interquartile range (IQR) for Jasmin is the smallest just
below libsodium’s while FaCT has the largest IQR by a margin. The afore-
mentioned fact is probably the reason why the mean is an outlier for Jasmin.
The narrow interquartile range in combination with the outlying mean indi-
cates Jasmin’s data points are comparatively bunched up with large outliers.

DSL
Percentage of libsodium’s

Mean Median

FaCT 145.32% 145.52%
Jasmin 193.56% 193.689%

Table 4.1: Mean and median clock cycles in relation to libsodium

Inline with the observations from above the span of boxes behave similarly
to the whiskers. A further observation reveals that the mean is always higher
than the median. As we run the benchmark the OS will interfere with the
running process and therefore add unrelated clock cycles to the measure-
ments. When the OS interrupts the benchmark for a comparatively long
time heavy outliers are created which skew the mean upwards.
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Figure 4.9: Boxplot of FaCT’s data

4.1.4 Synopsis

As seen and discussed plentiful in the preceding sections the original lib-
sodium implementation is always the best performer while Jasmin is always
the worst. FaCT slots itself consistently between the two but how compet-
itive it is in relation to libsodium is algorithm dependent. For example for
sha2 FaCT is highly competetive nearly matching the baseline. On the con-
trary for curve25519 it virtually incurs a 50% penalty.

Jasmin’s poor performance is a consequence of its own design. Jasmin com-
piles its code to assembler as unchanged as possible to give the programmer
greater influence over the compiled code. As a consequence any type of
optimization needs to be done by the programmer explicitly and the qual-
ity of such optimizations therefore depend on the programmer’s expertise.
Since we attempted to translate the source code with the least amount of
alterations possible, no special augmentations of the code for performance
optimization were done. Expectedly Jasmin’s performance suffered as a re-
sult. On the other side FaCT’s optimization options appear to be reasonably
competitive with their equivalent on modern C compilers.

31



4. Results

Quite obvious is the difference between the design philosophies behind both
of these DSLs. FaCT is built analogous to a modern high-level programming
language which outsources much of its performance optimization to the
compiler instead of the programmer. Jasmin meanwhile is designed more
closely to an assembler language which emphasizes the ability of program-
mer to greatly influence the inner workings of the end product and therefore
leaves performance optimizations to the programmer. Moreover through
direct translation to assembly code Jasmin guarantees the compilation step
preserves constant-time [2]. FaCT meanwhile guarantees the conservation
of constant-time for the full transformation to LLVM intermediate represen-
tation (LLVM IR) but does not guarantee constant-time preservation from
LLVM IR to the final assembly code [6].

Scaling with input length had no clear leading performer. As FaCT seemed
to scale better than the source code for ed25519. On the contrary for sha2
the inverse was true. Since the underlying curve25519 core functions used
in ed25519 are independent of input length, this curiously would imply
that FaCT’s sha2 function calls inside ed25519 scaled better than libsodi-
ums. This seems contradictory and could warrant a further investigation
but is outside the scope of this paper. None of the results were outside the
expected.

4.2 Storage

As outlined in chapter 3 valgrind’s massif tool was utilized to profile heap
and stack memory. The visualized results of this procedure can be found
in the appendix under section A.1 in the corresponding segments for each
algorithm. To alleviate tables have been provided in each section where
both peak and floor stack sizes have been given as a percentage of the base-
line’s. Important to note is that anomalous values at the begging and end
of the plot have been ignored in determining and discussing the relevant
data points. Plots which are discussed in the following sections will be ref-
erenced explicitly from the appendix. For the segment on binaries a simple
table is given in the section itself.
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Ed25519

DSL
Percentage of libsodium’s stack size

peak floor

FaCT 100.92% 100.00%
Jasmin 122.68% 122.68%

Table 4.2: Stack size peak and floor during the execution of ed25519 compared to the baseline
in percentage

When comparing all three plots there are two key observations. To start
with Jasmin’s recorded data, in figure A.2, hovers around 160kB while both
FaCT’s and libsodium’s data, in figure A.1 and figure A.3 respectively, ranges
inbetween 130kB to 135kB. Plainly said Jasmin uses around 30kB more stor-
age. The same information can be seen in percentages in table 4.2. Secondly
Jasmin’s stack size stays constant. On the other hand both FaCT’s and Jas-
min’s stack size oscillates over the whole execution. Seemingly FaCT and
the source code constantly allocate and deallocate storage while Jasmin al-
locates only at the beginning.

Sha2

DSL
Percentage of libsodium’s stack size

peak floor

FaCT 101.72% 100.00%
Jasmin 100.57% 100.00%

Table 4.3: Stack size peak and floor during the execution of sha2 compared to the baseline in
percentage

On the whole three plots in figures A.4, A.5) and A.6, for FaCT, Jasmin and
libsodium respectively, might as well be as similar as possible. This is very
much reflected in table 4.3 since the maximal observed difference is only
1.72%. There is neither a clear stand-out performer nor does any implemen-
tation show any deviation in the general plot pattern. In this regard the
only noteworthy point is there being nothing to meaningfully differentiate
between them.
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Curve25519

DSL
Percentage of libsodium’s stack size

peak floor

FaCT 145.95% 168.33%
Jasmin 122.30% 57.33%

Table 4.4: Stack size peak and floor during the execution of curve2551 compared to the baseline
in percentage

This time there is a clear pecking order as libsodium, seen in figure A.9,
clearly uses the least amount stack space. Then comes Jasmin, seen in figure
A.8, which is closely followed by the last placed FaCT implementation, seen
in figure A.7. Interestingly both FaCT and libsodium oscillate with a high
frequency and low amplitude while Jasmin oscillates with a low frequency
and a high amplitude. Indeed as seen in table 4.4 Jasmin’s floor is by far the
lowest, but Jasmin’s peak is still higher than libsodium’s peak.

Binaries

DSL
Algorithm

Curve25519 Sha2 Ed25519
(Bytes) (Bytes) (Bytes)

FaCT 16’512 9’240 46’064
Jasmin 162’200 206’728 1’521’816

Table 4.5: Size of the produced binaries in Bytes

Jasmin evidently produces binaries of larger size by quite a margin. Jasmin’s
files are larger by a factor of 10, 20 and 30 respectively for curve25519, sha2
and ed25519. Jasmin was assumed to perform worse in this metric. The pro-
grammer has by design a much greater influence on the produced assembly
code in Jasmin and Jasmin does not perform any optimization in general.
Consequently code which is not optimized for small size, like Jasmin’s in
this case, does not fare well against compiler optimized code, like FaCT’s
implementation. Further a significant factor will be the loop unrolling Jas-
min does on compilation. Since there appear several for loops in all Jasmin
translations it is factor responsible for exacerbating the situation. Having
said that factors of 10, 20 and 30 times are fairly significant.
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Synopsis

Overall it is fair to say in terms of stack size during execution libsodium
performs the best since it is either the best outright or at worst function-
ally equivalent to the other two. For the comparison between FaCT and
Jasmin there is no clear winner in terms of size minimization but there is
a clear difference in the patterns of size variations over the execution. Jas-
min’s oscillations have an observable lower frequency than both FaCT and
libsodium. As for binaries FaCT clearly creates far smaller files than Jasmin.
Again we come back to the difference in design philosophies between FaCT
and Jasmin as discussed in section 4.1.4. FaCT’s compiler induced code
optimizations lead to shorter binaries. To get similar results in Jasmin a pro-
grammer has to have extensive knowledge on manual code optimizations
and further to correctly apply it.
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Chapter 5

Conclusion

FaCT and Jasmin are two DSLs with very differing core design principles.
Jasmin sacrifices ease-of-use and easily attainable performance for greater
control over the resulting program and verified constant-time preservation.
While this seems to be a reasonable sacrifice it has created potential prob-
lems in usage. Thanks to the weighty challenges faced when trying to im-
plement modular and interconnected code suites it is not reasonable to write
a whole library such as libsodium inside Jasmin. Thus only parts of said li-
brary could be written in Jasmin with a high-level language, like C, used as
connecting glue thereby introducing a verification gap at the top in such a
practical application.

Conversely FaCT attains the ease-of-use and automatic optimizations of a
modern compiler. As a result it is very much possible to implement ex-
tensive, interconnected and modular code suites without any crucial chal-
lenges. This comes however at the cost of only ensuring the preservation of
constant-time up to the conversion to LLVM IR, leaving a verification gap at
the lower end of the tool.

Because of these design philosophies it is apparent Jasmin is made to be
used by experienced and knowledgable cryptographic programmers only.
FaCT meanwhile is, after getting over the introductory hurdle, quite natu-
ral to use for programmers with intermediate experience. Although some
cryptographic expertise is probably required to write cryptographic sound
code.
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A.1. Valgrind Massif Plots

A.1 Valgrind Massif Plots
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Figure A.1: Stack profiling of FaCT: X-axis: time in instructions, Y-axis: stack size
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Figure A.2: Stack profiling of Jasmin: X-axis: time in instructions, Y-axis: stack size
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Figure A.3: Stack profiling of libsodium: X-axis: time in instructions, Y-axis: stack size
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A.1.2 Sha2
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Figure A.4: Stack profiling of FaCT: X-axis: time in instructions, Y-axis: stack size
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Figure A.5: Stack profiling of Jasmin: X-axis: time in instructions, Y-axis: stack size
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Libsodium
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Figure A.6: Stack profiling of libsodium: X-axis: time in instructions, Y-axis: stack size
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Figure A.7: Stack profiling of FaCT: X-axis: time in instructions, Y-axis: stack size
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Figure A.8: Stack profiling of Jasmin: X-axis: time in instructions, Y-axis: stack size
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Figure A.9: Stack profiling of libsodium: X-axis: time in instructions, Y-axis: stack size
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A.2 Benchmark of Jasmin’s Sha2

#include <stdio.h>
#include <math.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "../ed25519/plain_C_source/mt19937ar.c"

static const uint64_t Krnd[80] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL,
0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL,
0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL,
0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL,
0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL,
0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL,
0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL,
0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL,
0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL,
0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL,
0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL,
0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL,
0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL,
0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL

};

void cryptoB_hash_sha512(uint8_t *out, uint8_t *in, uint64_t inlen, uint64_t *srcKrnd);

int main(int argc, char **argv) {

init_genrand(19876168137);

static uint64_t sampleSize = 32000;

uint64_t store[sampleSize];

double mean = 0.0;
double hold = 0.0;

unsigned char outO[64];
unsigned char outA[64];

memset(outO,0,64);
memset(outA,0,64);

uint64_t lengthIn = 1024;

if(argc > 1) {
lengthIn = strtoul(argv[1],NULL,10);

}

unsigned char inO[lengthIn];
unsigned char inA[lengthIn];

memset(inO,0,lengthIn);
memset(inA,0,lengthIn);
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for(uint32_t i=0; i<2000; ++i) {

uint64_t length = lengthIn;
uint64_t lengthb = lengthIn;

for(uint64_t j=0; j<length; ++j) {
unsigned char t = genrand_int32() >>24;
inO[j] = t;
inA[j] = t;

}

cryptoB_hash_sha512(outA,inA,lengthb,Krnd);

}

for(uint32_t i=0; i<sampleSize; ++i) {
unsigned cycles_low, cycles_high, cycles_low1, cycles_high1;
uint64_t start, end;

uint64_t length = lengthIn;
uint64_t lengthb = lengthIn;

for(uint64_t j=0; j<length; ++j) {
unsigned char t = genrand_int32() >>24;
inO[j] = t;
inA[j] = t;

}

asm volatile ("CPUID\n\t"
"RDTSC\n\t"
"mov %%edx, %0\n\t"
"mov %%eax, %1\n\t": "=r" (cycles_high), "=r" (cycles_low)::

"%rax", "%rbx", "%rcx", "%rdx");

cryptoB_hash_sha512(outO,inO,length,Krnd);

asm volatile("RDTSCP\n\t"
"mov %%edx, %0\n\t"
"mov %%eax, %1\n\t"
"CPUID\n\t": "=r" (cycles_high1), "=r" (cycles_low1)::
"%rax", "%rbx", "%rcx", "%rdx");

start = ( ((uint64_t)cycles_high << 32) | cycles_low );
end = ( ((uint64_t)cycles_high1 << 32) | cycles_low1 );
store[i] = end - start;

hold = store[i];
hold /= sampleSize;
mean += hold;

}

double var = 0.0;
for(uint32_t i = 0; i < sampleSize; ++i) {

hold = pow((store[i] - mean),2);
hold /= sampleSize-1;

var += hold;
}
var = sqrt(var);

printf("%lu,%f,%f\n", lengthIn, mean, var);

return 0;
}
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