
Implementation of Maurer’s method
for prime generation

Bachelor Thesis

Daniel Frey

September 18, 2020

Advisors: Prof. Dr. Kenneth Paterson, Mia Filić

Department of Computer Science, ETH Zürich

Abstract

Prime numbers are used in cryptographic protocols due to their unique
number-theoretic properties.

Given an interval, a Prime Generation Algorithm (PGA) produces a
random prime from the given interval. This bachelor’s thesis focuses
on the PGA presented originally by Ueli Maurer in 1995, which gener-
ates provable primes.

In this thesis, the mathematical background of the algorithm is pre-
sented and the underlying lemmas are proven in detail. We implement
the algorithm with its key functions in the programming language C
and adjust its parameters using experiments. Additionally, we compare
our implementation with the prime generation function implemented
in OpenSSL with respect to their running times.

If we lessen the diversity of reachable primes and modify our imple-
mentation accordingly, we can significantly decrease its expected run-
ning time. However, the unmodified version as well as the modified
one is in expectation slower than the OpenSSL PGA implementation.

i

Contents

Contents iii

1 Introduction 1

2 Number-Theoretic Preliminaries 3
2.1 Notation . 3
2.2 Prerequisites . 3
2.3 Lemmas . 4

3 Algorithm 11
3.1 Description of the Algorithm (RandomPrime) 11

3.1.1 Base Case . 11
3.1.2 Recursion Case . 13

3.2 Function GenerateSizeList . 13
3.2.1 Simplified Version . 15

3.3 Function CheckLemma1 . 16
3.4 Function PrimeTest and Function TrialDivision 16
3.5 Correctness of RandomPrime 17

4 Implementation 19
4.1 Libraries . 19

4.1.1 OpenSSL . 19
4.1.2 GNU Multiple Precision Arithmetic Library 19

4.2 Implementation of GenerateSizeList 20
4.3 Trial Division Bound . 21
4.4 Implementation of RandomPrime 23

5 Running Time Experiments 25
5.1 Prime Number Generator in OpenSSL 25
5.2 Experimental Results . 27
5.3 Runtime Modification . 27

iii

Contents

6 Discussion 31
6.1 Advantages and Disadvantages of RandomPrime 31
6.2 Further Modifications . 33

7 Conclusion 35

A randomprime.c 37
A.1 Installation of OpenSSL 3.0.0 on Euler 37
A.2 Compilation on Euler . 37
A.3 Source Code . 37

Bibliography 45

iv

Chapter 1

Introduction

Nowadays cryptographic tools are used nearly everywhere by everyone,
even if most people are not aware of it. Cryptographic protocols are key
components in communication applications, online banking, electronic vot-
ing and much more. In many of these cryptographic protocols prime num-
bers are crucial. Without primes and their properties, the protocols can be
broken by adversaries who then can decrypt messages, steal money, manip-
ulate elections and do other undesirable things.

RSA (Rivest–Shamir–Adleman) is an example of a widely used public-key
cryptosystem in which primes are essential. RSA provides secure data trans-
mission and utilises two prime numbers of same bit-length to generate the
private key and the public key. The utilised primes are hundreds or even
thousands of digits long and the product of the two primes is a publicly
known value. If an adversary can factorise this product, the protocol can
be broken. Since the computational power of (super-)computers is contin-
uously increasing, brute force attacks are feasible on larger and larger key-
sizes, and therefore primes with a larger bit-length are preferable.

In the Internet of things there are many electronic devices that also participate
in a protocol including primes, for example, because of their work with
sensitive data, which requires secure data transmission. These devices need
to be able to generate primes using their limited computational capacity.

In summary, the generation of primes is an important task in cryptography.
It should be performed efficiently, using frequently limited computational
resources and maintaining the uniform distribution over the set of primes
that fulfil specific given properties, e.g. primes of a specific bit-length.

The goal of this thesis is to understand, implement and analyse the Prime
Generation Algorithm (PGA) presented in [6] by Maurer. His method, as
well as other PGAs, uses a trial-and-error approach.

1

1. Introduction

A PGA that uses the trial-and-error approach works as follows. Firstly, a
random odd number is chosen. Secondly, the number is tested for primality
using a primality test. If the number is found prime, the algorithm outputs
it and stops. Otherwise, other prime candidates are continually chosen and
tested until a candidate passes the test. Since primes are not too seldom1,
with an efficient primality test, the trial-and-error PGA eventually finds a
prime. Utilisation of probabilistic primality tests results in a negligible error
that the outputted number is composite.

The Maurer’s PGA starts by generating a random composite number n0 by
recursively generating its prime factors, and then selecting the odd prime
candidate n = n0 + 1. Candidate n is tested for primality using the knowl-
edge of previously generated prime factors of n0. If the number is found
prime, the algorithm outputs it as proven prime and stops. Otherwise a
new candidate is chosen by regenerating factors of n0.

This thesis is structured as follows. Firstly, in Chapter 2, we present the
number-theoretical background of Maurer’s method and prove in detail the
lemmas on which the algorithm is based. Secondly, in Chapter 3 we present
in detail the description of the algorithm. After the description, in Chapter 4
we outline our implementation. Finally, in Chapter 5 we compare the run-
ning time of our implementation with the PGA implemented in OpenSSL,
and in Chapter 6 we discuss the results and list the advantages and disad-
vantages of the Maurer’s PGA.

1According to the prime number theorem, for large enough N, the probability that a
random integer not greater than N is prime is close to 1/ log(N).

2

Chapter 2

Number-Theoretic Preliminaries

In this chapter we present and prove necessary number-theoretic prelimi-
naries previously presented in [6, pp. 126–129]. They will occur at several
points in the thesis, i.e. when considering the correctness and the runtime
of the RandomPrime algorithm in Chapter 3.

2.1 Notation

In this thesis Z∗n denotes the multiplicative group modulo n and ordn(x)
denotes the order of x in Z∗n, i.e. the smallest positive integer t satisfying
xt ≡ 1 (mod n).

Here we introduce the notion of the colon symbol (:) usage for a description
of a set S with respect to its elements. This notation prevents a confusion
with the symbol ‘|’ used for the divisibility. As an example,

S =
{

x ∈ Z∗p : d | ordp(x)
}

describes the set of all numbers x in Z∗p such that a number d divides
ordp(x).

With ϕ(n) we denote Euler’s totient function, i.e. the number of positive in-
tegers smaller than n and relatively prime to n, with the exception ϕ(1) = 1.

2.2 Prerequisites

This section encompasses several number-theoretic facts that will be used in
the proofs of the subsequent section.

We start with three basic facts about the order in the multiplicative groups.
Let x ∈ Z∗m. Then

n | m ⇒ ordn(x) | ordm(x), (2.1)

3

2. Number-Theoretic Preliminaries

xn ≡ 1 (mod m) ⇒ ordm(x) | n, (2.2)

and
xl ≡ xm (mod n) ⇒ l ≡ m (mod ordn(x)). (2.3)

Proofs of (2.2) and (2.3) can be found in [1].

The following two implications are facts about relatively prime numbers.
Let a, b, c ∈N and let a be relatively prime to b.

a | bc ⇒ a | c, (2.4)

and
a | c ∧ b | c ⇒ ab | c. (2.5)

Expression (2.4) is a generalization of Euclid’s first theorem [3, p. 25]. Next,
we present several basic facts about Euler’s totient function.

Firstly,
ϕ(n)

n
= ∏

p|n

(
1− 1

p

)
≥ 1−∑

p|n

1
p

(2.6)

where the product and summation are over all distinct prime numbers di-
viding n. Secondly,

ϕ(ab) ≥ ϕ(a)ϕ(b) (2.7)

with equality if and only if gcd(a, b) = 1. Thirdly,

∑
d|n

ϕ(d) = n. (2.8)

And lastly, if p is prime, then the group Z∗p is cyclic and∣∣∣{x ∈ Z∗p : ordp(x) = d
}∣∣∣ = ϕ(d) (2.9)

for every divisor d of p− 1.

2.3 Lemmas

In Chapter 3 we will present an algorithm for generating a random prime
number of specific bit-size. The correctness of the algorithm lies upon
Lemma 1, which is based on the Pocklington1 theorem which can be found
in [10, p. 121]. Lemma 1 ensures that a number n = 2RF + 1, generated by
the algorithm, is prime.

1H. C. Pocklington (1870–1952) was an English physicist and mathematician.

4

2.3. Lemmas

Lemma 1 Let n = 2RF + 1 where the prime factorization of F is F =

qβ1
1 qβ2

2 qβ3
3 · · · q

βr
r . If there is an integer a satisfying

an−1 ≡ 1 (mod n) (2.10)

and
gcd(a(n−1)/qi − 1, n) = 1 (2.11)

for i = 1, . . . , r, then each prime factor p of n is of the form p = mF + 1 for
some integer m ≥ 1. Moreover, if F >

√
n, or if F is odd and F > R, then n

is prime.

Example For n = 62791, we find that n = 2R(3 · 5 · 7 · 13) + 1. Hence the
prime factors of F are

q1 = 3, q2 = 5, q3 = 7, q4 = 13.

For these assignments of n and F, a = 3 fulfils the conditions of Lemma 1
and we have that F = 2 · 3 · 5 · 13 >

√
n. Therefore, using Lemma 1 with

a = 3, we prove that n is prime.

Proof Let p be an arbitrary prime dividing n and let a be an integer satisfy-
ing both conditions (2.10) and (2.11) of Lemma 1. From (2.1) it follows that
ordp(a) | ordn(a) and from (2.2) we have that ordn(a) | n− 1. Therefore,

ordp(a) | n− 1. (2.12)

Since p divides n, we derive from condition (2.11) that for all i ∈ {1, 2, . . . , r}

gcd(a(n−1)/qi − 1, p) = 1,

and thus
a(n−1)/qi − 1 6≡ 0 (mod p).

Therefore, for all c ∈N,

a(n−1)/qi 6≡ (aordp(a))c (mod p).

Hence (n− 1)/qi 6= c · ordp(a), which can be also written as

ordp(a) - (n− 1)/qi. (2.13)

From (2.12) and (2.13) it follows that there exists some x ∈ N such that
x · ordp(a) = n− 1 and that for all y ∈ N, y · qi · ordp(a) 6= n− 1. Thus, we
get the following.

5

2. Number-Theoretic Preliminaries

∃x∀y : y · qi · ordp(a) 6= x · ordp(a) ∧ x · ordp(a) = n− 1
⇔ ∃x∀y : y · qi 6= x ∧ x · ordp(a) = n− 1
⇔ ∃x : qi - x ∧ x · ordp(a) = n− 1,

which implies gcd(qi, x) = 1 as qi is prime. Since qβi
i divides n− 1 and qβi

i is
relatively prime to x, we can use (2.4) to conclude that for all i ∈ {1, 2, . . . , r}

qβi
i | ordp(a). (2.14)

Implication (2.5) further implies that F | ordp(a).

Since p is prime, ordp(a) divides p− 1. Therefore F | p− 1, which implies
that each prime factor p of n is of the form p = mF + 1 for some m ∈ N.
This proves the first part of the lemma.

Let now F >
√

n. As shown before, each prime factor p of n is greater or
equal to F + 1. Hence each prime factor of n is larger than

√
n. Since at most

one prime factor of a number can be larger than its square root, it follows
that n has only one prime factor and p = n. This completes the proof of the
second part of the lemma.

To prove the last part of the lemma, we let F to be odd and F > R. It follows
that F + 1 is even and larger than 2. Furthermore, F + 1 is neither prime
nor a prime factor of n. Therefore the smallest prime factor of n is at least
2F + 1. Now we prove that n is prime by contradiction. Let n be composite.
Then

2RF + 1 = n ≥ (2F + 1)2 = 2(2F + 2)F + 1.

It follows that R ≥ 2F + 2 which contradicts F > R. �

Proving the primality of n using Lemma 1 requires the knowledge of some
prime factors of n − 1, such that F >

√
n, or that F is odd and F > R.

Lemma 2 defined below presents the third sufficient condition and can be
used in speeding up the Maurer’s PGA presented in Chapter 3.

Lemma 2 Let n, R, F, and a be as in Lemma 1 and let x ≥ 0 and y be such
that 2R = xF + y and 0 ≤ y < F. If F ≥ 3

√
n and if y2 − 4x is neither zero

nor a perfect square, then n is prime.

Example Let n = 62791, as in the previous example for Lemma 1. In
Lemma 1, F has to be greater than the square root of n to show that n is
prime, whereas in Lemma 2, F ≥ 3

√
n is enough. Therefore it is sufficient to

find the following prime factors of n− 1,

q1 = 5 and q2 = 13,

6

2.3. Lemmas

since F = 5 · 13 ≥ 3
√

n. For x = 14 and y = 56 such that 2R = xF + y, y2− 4x
is neither zero nor a perfect square. Moreover, for these assignments of n
and F, a = 2 fulfils the conditions of Lemma 1. Therefore n is proven to be
prime using Lemma 1 and Lemma 2.

Proof Let F ≥ 3
√

n. From Lemma 1 we know that the smallest prime factor
of n is greater or equal to F + 1. Therefore n has at most two prime factors
because otherwise (F + 1)3 ≤ n which contradicts F ≥ 3

√
n. We show that if

y2− 4x is neither zero nor a perfect square, then n is prime by contradiction.
Let n be composite. Then,

n = (m1F + 1)(m2F + 1)

= m1m2F2 + m1F + m2F + 1
= (m1m2F + m1 + m2)︸ ︷︷ ︸

=2R

F + 1.
(2.15)

Without the loss of generality, let m1 ≤ m2. It follows that m1m2 < F,
because n ≤ F3. Moreover, m1 + m2 < F, which is proven as follows.

Since 1 ≤ m1 ≤ m2 ≤ F− 1 one of the following holds:

1. 2 ≤ m1 ∧ 2 ≤ m2 ⇒ m1 + m2 ≤ m1m2 < F

2. m1 = 1∧m2 < F− 1 ⇒ m1 + m2 < F

The case m1 = 1 ∧ m2 = F − 1 is not possible. In this case n would
have been equal to F3 + 1 which contradicts n ≤ F3.

Now, from (2.15) we have that 2R = xF + y for x = m1m2 and y = m1 + m2.
Substituting m2 by y−m1 in x = m1m2 gives

m2
1 − ym1 + x = 0. (2.16)

Using the quadratic formula to find a solution m1 ∈N of (2.16), we get that
y2− 4x needs to be either equal to zero or a perfect square. This finishes the
proof. �

The usage of Lemma 1 to prove the primality of an integer n requires an a ∈
Z∗n that fulfils the conditions of Lemma 1. Following lemmas demonstrate
that such an a can be found easily when n is indeed prime and all prime
factors of F are sufficiently large.

Lemma 3 Let p be a prime and let d be a divisor of p− 1. Then∣∣∣{x ∈ Z∗p : d | ordp(x)
}∣∣∣ ≥ ϕ(d)

d
(p− 1)

with equality if and only if gcd(d, (p− 1)/d) = 1.

7

2. Number-Theoretic Preliminaries

Proof From (2.9) and ordp(x) | p− 1 it follows that∣∣∣{x ∈ Z∗p : d | ordp(x)
}∣∣∣ = ∑

d′ : d|d′|(p−1)
ϕ(d′). (2.17)

On the right hand side of equation (2.17), every d′ is of the form d′ = k · d
for some k ∈N. So, the sum can be rewritten as

∑
k : k|((p−1)/d)

ϕ(kd)

and is bounded from below using (2.7) as follows

∑
k : k|((p−1)/d)

ϕ(kd) ≥ ∑
k : k|((p−1)/d)

ϕ(k)ϕ(d). (2.18)

The equality in (2.18) holds if and only if

gcd(k, d) = 1 for all k such that k | (p− 1)/d,

which is equivalent to gcd(d, (p− 1)/d) = 1.

Finally, using (2.8) in (2.18) we obtain

∑
k : k|((p−1)/d)

ϕ(kd) ≥ ∑
k : k|((p−1)/d)

ϕ(k)ϕ(d) = ϕ(d)
p− 1

d

which finishes the proof. �

Lemma 4 Let p = 2RF + 1 be a prime such that F = ∏r
i=1 qβi

i , F > R, and
gcd(2R, F) = 1, where q1, . . . , qr are distinct primes. Then the probability
that a randomly selected base a ∈ Z∗p is successful in proving the primality
of p by Lemma 1 is equal to ϕ(F)/F which is at least 1−∑r

i=1 1/qi.

Example For n = p = 62791 and F = 3 · 5 · 7 · 13 as before, we get∣∣∣{a ∈ Z∗p : a proves the primality of p by Lemma 1
}∣∣∣ = 26496.

Hence, for a uniformly at random chosen a ∈ Z∗p,

Pr[a proves the primality of p by Lemma 1] ≈ 0.42198

which is indeed equal to ϕ(F)/F and greater than 1− 1
3 −

1
5 −

1
7 −

1
13 ≈ 0.247.

This means that we only have to test 2 or 3 candidates for a on average to
prove the primality of p = 62791.

8

2.3. Lemmas

Proof Since p is prime, ap−1 ≡ 1 (mod p) holds for every a ∈ Z∗p. This
implies that every a ∈ Z∗p satisfies condition (2.10) of Lemma 1.

From gcd(2R, F) = 1 it follows that F is odd and that

F | ordp(a) ⇔ ∀i ∈ {1, 2, . . . , r} : a(p−1)/qi 6≡ 1 (mod p), (2.19)

which we prove later on. Since p is a prime, the right-hand side of (2.19) is
equivalent to condition (2.11) on a of Lemma 1. Therefore, for a uniformly
at random chosen a ∈ Z∗p,

Pr[a proves the primality of p in Lemma 1] = Pr[F | ordp(a)].

By setting d = F in Lemma 3 the upper probability is equal to ϕ(F)/F. From
(2.6) it follows that

Pr[a proves the primality of p] ≥ 1−
r

∑
i=1

1
qi

.

We have left out the proof of (2.19) which we now present. The left-handed
implication (⇐) we have already proved in the proof of Lemma 1: From
(2.10) and (2.11) we have derived (2.14) and hence also F | ordp(a).

Next we prove the right-handed implication (⇒) by contradiction. Let
gcd(2R, F) = 1,

F | ordp(a) (2.20)

and
a(p−1)/q ≡ 1 (mod p) (2.21)

for an arbitrary q ∈ {q1, q2, . . . , qr}. From (2.21) and (2.3) it follows that

(p− 1)/q ≡ p− 1 (mod ordp(a)).

Since ordp(a) | p− 1, we obtain

(2RF)/q ≡ 0 (mod ordp(a))

and
∃x : (2RF)/q = x · ordp(a). (2.22)

From (2.20) and (2.22) we get

∃x∃y : (2RF)/q = x · y · F
⇒ ∃x∃y : 2R = x · y · q.

Therefore 2R is a multiple of q and gcd(2R, F) can not be 1, which contra-
dicts our assumption and thus proves the right-handed implication (⇒) of
(2.19) when gcd(2R, F) = 1. �

9

Chapter 3

Algorithm

In this chapter we present the Maurer’s PGA presented originally in [6,
pp. 130–133] which is called RandomPrime algorithm. The first section out-
lines the algorithm in general form, while the subsequent sections detail its
key functions. Lastly, we explain why RandomPrime satisfies the correct-
ness property.

3.1 Description of RandomPrime

RandomPrime is a prime generation algorithm which takes as an input two
numbers: P1 and P2 such that P1 < P2. If the interval [P1, P2] is such that it
contains a prime number, the algorithm outputs a prime n ∈ [P1, P2]. The
pseudocode of RandomPrime is given with the Algorithm 1.

When using prime numbers in cryptographic protocols, we usually need a
random prime n of a specific bit-size k. Therefore [P1, P2] is often of the
form [2k−1, 2k − 1].

3.1.1 Base Case

RandomPrime is a recursive algorithm in P2. If P2 is smaller than a given
constant P0, the algorithm is in the base case of the recursion. In this case,
the algorithm starts by choosing uniformly at random an integer n ∈ [P1, P2]
and then tests n for primality. If n is composite, another integer n ∈ [P1, P2]
is chosen uniformly at random and tested. The algorithm repeats this pro-
cess until a prime n is found.

The primality test used above is captured with a function called PrimeTest.
Since it will be used only on inputs n such that n ≤ P2 < P0, the function
needs to be efficient only on inputs smaller than P0. A possible PrimeTest

outline is given in Section 3.4.

11

3. Algorithm

Algorithm 1: RandomPrime(P1, P2)

Input : two integers P1 and P2
Output: a random chosen prime number n so that P1 ≤ n ≤ P2

1 Initialization of P0 and cint
2 if P2 ≤ P0 then

3 repeat
4 n = RandomInt(P1 , P2)

5 until PrimeTest(n)

6 return n

7 else

8 P = SquareRoot((P1 − 1) · (P2 − 1)) / 2
9 F = 1

10 sizeList = f actorList = []
11 r = GenerateSizeList(sizeList)

12 for i = 0 to r do
13 Q = Exponentiate(P , sizeList[i])
14 f actorList[i] = RandomPrime(Q/cint , Q · cint)

15 F = F · f actorList[i]
16 end

17 I1 = (P1 − 1)/(2 · F)
18 I2 = (P2 − 1)/(2 · F)
19 success = f alse
20 repeat
21 R = RandomInt(I1 , I2)

22 n = 2 · R · F + 1
23 if TrialDivision(n) then
24 a = RandomInt(2 , n− 1)
25 success = CheckLemma1(n , a , f actorList)
26 end
27 until success

28 return n

29 end

12

3.2. Function GenerateSizeList

3.1.2 Recursion Case

If P2 ≥ P0, the algorithm is in the recursion case. In this case, a prime
n = 2RF + 1 is generated by recursively generating prime factors of F as
follows.

Firstly, the geometric midpoint of the interval [(P1 − 1)/2, (P2 − 1)/2], into
which RF will fall, is computed:

P =

√
(P1 − 1) · (P2 − 1)

2
.

Secondly, using GenerateSizeList function, the number of prime factors of
F and its relative sizes s1, s2, . . . , sr are obtained. Thirdly, for each prime fac-
tor of F and its relative size si, the actual approximate size Qi = Psi is com-
puted. Fourthly, for each i ∈ {1, 2, . . . , r}, the algorithm selects a random
prime factor qi by calling recursively RandomPrime on [Qi/cint, Qi · cint]
where cint > 1 is a small constant parameter. Produced prime factors
q1, q2, . . . , qr are stored in f actorList.

After generating all prime factors qi, F = ∏r
i=1 qi is fully defined. Next, the

algorithm chooses R uniformly at random from the interval [I1, I2] where
I1 = (P1 − 1)/ 2F and I2 = (P2 − 1)/ 2F, and computes a prime candidate
n = 2RF + 1 ∈ [P1, P2]. This candidate n is first tested for primality by trial
division and then by checking if the conditions (2.10) and (2.11) of Lemma 1
hold for a number a chosen uniformly at random from [2, n− 1]. If n passes
both tests, the algorithm stops and returns n. Otherwise, the algorithm
repeats this procedure of selecting and testing R, n, a until n = 2RF + 1 is
proven to be prime using Lemma 1.

3.2 Function GenerateSizeList

GenerateSizeList takes an empty list as an input and fills this list with
the relative sizes s1, s2, . . . , sr of the r largest prime factors q1, q2, . . . , qr of a
random number x ∈ N, so that the unfactorized part of x does not contain
a prime factor greater than qr. We define the relative size of qi with respect
to x as

si =
log(qi)

log(x)
,

which is independent of the base of the logarithm. Additionally, the function
has an output value, the number of generated relative sizes r. The relative
sizes s1, s2, . . . , sr are generated according to the following process.

13

3. Algorithm

First, GenerateSizeList chooses real numbers u1, u2, . . . , uk, . . . uniformly
at random from

[0, 1] , [0, 1− u1] , . . . ,

[
0 , 1−

k−1

∑
i=1

ui

]
, . . .

respectively. It stores numbers u1, u2, . . . in a list in decreasing order. Let sk
denote the kth element of the list. The function stops generating u1, u2, . . . as
soon as the first r numbers in the list are fixed. After choosing uk, the values
s1, s2, . . . , sr are fixed if

sr > 1−
k

∑
i=1

ui. (3.1)

Condition (3.1) (also mentioned in [6, p. 147]) ensures that uk+1, uk+2, . . .
will be inserted into the list after sr.

GenerateSizeList is called within the RandomPrime algorithm to generate
relative sizes of the prime factors q1, q2, . . . , qr of F such that n = 2RF + 1.
Thus, F is of a relative size ∑r

i=1 si and R is of a relative size 1 − ∑r
i=1 si.

Therefore, GenerateSizeList needs to apply the stronger stopping criteria

sr > 1−
r

∑
i=1

si (3.2)

[6, p. 147] to fulfil condition F >
√

n or F > R of Lemma 1 and Lemma 4.
Condition (3.2) ensures that R does not contain a prime factor greater or
equal than qr, which implies that distributions of relative sizes of prime
factors of (n− 1)/2 do not differ from those of a random integer. Moreover,
it ensures that ∑r

i=1 si is greater than 1−∑r
i=1 si.

Thus, we define GenerateSizeList to generate u1, u2, . . . until (3.2) is ful-
filled. Generated relative sizes s1, s2, . . . , sr are then distributed according to
F1, F2, . . . , Fr, where

Fk(x) = 1−
∫ 1

x

(
Fk

(
t

1− t

)
− Fk−1

(
t

1− t

))
dt
t

(3.3)

for k ≥ 1 with F0(x) = 0 for x ∈ [0, 1], and Fk(x) = 1 for x ≥ 1 and k ≥ 1
[6, p. 148]. Knuth1 and Trabb Pardo2 in [4] showed that Fk describes the
distribution of the relative size of the kth largest prime factor of a random
number, i.e. Pr[sk ≤ x] = Fk(x), which proves the correctness of the outlined
GenerateSizeList function.

1Donald E. Knuth (born in 1938) is an American computer scientist and mathematician.
2Luis Trabb Pardo is an Argentinian computer scientist.

14

3.2. Function GenerateSizeList

Algorithm 2: GenerateSizeList()

1 sizeList = []
2 c = 1
3 while True do
4 u = uniformDistribution(0 , c)
5 Append(sizeList , u)

6 c = c− u
7 ReverseSort(sizeList)
8 for i = 0 to Length(sizeList) do
9 if sizeList[i] > 1− Sum(sizeList[0 : i]) then

10 return sizeList[0 : i]
11 end
12 end
13 end

3.2.1 Simplified Version

In [6, pp. 134–136], Maurer also explained a simpler version of the Ran-
domPrime algorithm called FastPrime. In the simpler version, F is always
generated using only one prime factor. Therefore, GenerateSizeList is
modified to return only the relative size s1 of the largest prime factor. The
relative size s1 is distributed according to F1 in (3.3), which can be simplified
for 1/2 ≤ x ≤ 1 as follows3:

F1(x) = 1−
∫ 1

x

dt
t
= 1 + ln(x). (3.4)

Equation (3.4) expresses the probability that the largest prime factor of a
random number is of a relative size smaller than x, given that 1/2 ≤ x ≤ 1.
A value for s1 can be generated using inverse transform sampling as

s1 = F−1
1 (u) = eu−1

where u is chosen uniformly at random from [0, 1], F−1
1 is the inverse func-

tion of F1 and e denote the Euler number. The relative size s1 is resampled
if F−1

1 (u) is smaller than 1/2.

FastPrime has at most one recursive function call and therefore is faster
than the more complex RandomPrime algorithm. On the other hand, it
reduces the diversity of the generated primes by roughly 90 % [6, p. 136].

3We are only interested in x ≥ 1/2 because we need s1 > 1− s1 so that F > R.

15

3. Algorithm

3.3 Function CheckLemma1

CheckLemma1 takes two integers n and a, and a not-empty list of integers
q1, q2, . . . , qr as an input. The list elements q1, q2, . . . , qr are the prime factors
of F such that n = 2RF + 1.

On a given input, the function starts by checking if condition (2.10) of
Lemma 1 holds. According to Fermat’s little theorem, if n is prime, ev-
ery integer a fulfils (2.10). On the other hand, if n is composite, almost all
candidates for a does not fulfil it. Next, CheckLemma1 checks if the second
condition (2.11) of Lemma 1 holds for every i ∈ {1, 2, . . . , r}. Assuming
F >
√

n or F > R (and F is odd), if n is composite, every a that fulfils (2.10)
does not fulfil (2.11) for at least one i ∈ {1, 2, . . . , r}.

When n and a pass all the checks, the function outputs True, indicating that
input n is proven prime according to Lemma 1. As soon as one check fails,
the function stops and outputs False, indicating that Lemma 1 can not be
applied (on n with a) to derive primality of n. Hence, the output False does
not say much about n. According to Lemma 4, for a prime n, the probability
that a uniformly at random selected a ∈ Z∗n is successful in proving the
primality of n is equal to ϕ(F)/F, if F > R and gcd(2R, F) = 1.

Algorithm 3: CheckLemma1(n, a, f actorList)

1 if an−1 6≡ 1 (mod n) then
2 return False
3 end
4 foreach q ∈ f actorList do
5 if Gcd(a(n−1)/q − 1 , n) 6= 1 then
6 return False
7 end
8 end
9 return True

3.4 Function PrimeTest and Function TrialDivision

PrimeTest and TrialDivision take an integer n as an input and check if n
is prime using trial division.

By the construction of the algorithm RandomPrime, an input to PrimeTest

is relatively small. Therefore, to test if n is prime, it is still efficient to just
check if all integers 2 ≤ x ≤

√
n do not divide n. Since a composite number

must have a prime factor smaller or equal than its square root, it is not
necessary to check if an integer x >

√
n divides n. As soon as PrimeTest

16

3.5. Correctness of RandomPrime

finds a factor x | n, the function stops and outputs n as proven composite.
Otherwise, if the function does not find a factor of n, it outputs n as proven
prime.

On the other hand, an input to the TrialDivision function can be arbitrary
large. RandomPrime utilises TrialDivision to detect if a prime candi-
date n is divisible by any prime number greater than 2 and smaller than
(or equal to) the trial division bound g. This avoids unnecessary function
calls of CheckLemma1. TrialDivision is computationally much cheaper than
CheckLemma1, and although it does not detect all composite numbers, it de-
creases the number of calls of CheckLemma1 enough to effect and significantly
reduce the running time of RandomPrime.

We select the trial division bound g so that for a generated prime candidate
n = 2RF + 1 ∈ [P1, P2], the expected runtime of TrialDivision followed
by CheckLemma1 is minimized. The value of g depends on the bit-size of n,
the hardware, and the implementation of several basic arithmetic operations
like multiplication and modular exponentiation. For the implementation of
RandomPrime in Chapter 4, we determine g experimentally for different
inputs (P1, P2) = (2k−1, 2k − 1) where k is the bit-size of the output.

Algorithm 4: TrialDivision(n)

1 i = 0
2 repeat
3 if n mod primes[i] = 0 then . primes = {3, 5, 7, 11, 13 . . . }
4 return False
5 end
6 i = i + 1
7 until primes[i] > g
8 return True

3.5 Correctness of RandomPrime

Since RandomPrime is a recursive algorithm, to prove the correctness of the
algorithm it is sufficient to show that the base case is correct and the loop
invariant holds. On a given input P1 and P2, the algorithm should output a
random prime n ∈ [P1, P2].

In the base case, the algorithm chooses candidates n from [P1, P2] uniformly
at random until PrimeTest declares a number n provable prime. Hence, it
eventually returns a prime number chosen uniformly at random from the
set of all primes in [P1, P2], as required.

17

3. Algorithm

In the recursion case, prime candidates n = 2RF + 1 are generated bottom
up by choosing a random even number n0 = 2RF from [P1− 1, P2− 1]. This
number is generated in two steps:

1. Generate random prime factors of F of certain relative sizes by recur-
sively calling RandomPrime.

2. Choose R randomly from a range such that 2RF + 1 fall into [P1, P2].

The relative sizes of prime factors of F are generated by GenerateSizeList

which ensures that the resulting candidate n = n0 + 1 is a random odd
number from [P1, P2].

After a prime candidate n = 2RF + 1 is generated, it is tested for primal-
ity using firstly TrialDivision and secondly CheckLemma1. When using
CheckLemma1 to test the primality of a number n, at least one of the follow-
ing needs to hold:

F >
√

n (3.5)

or
F is odd and F > R. (3.6)

In the algorithm, this is ensured by defining GenerateSizeList properly, i.e.
as explained in Section 3.2. Condition (3.2) in GenerateSizeList ensures
that R is smaller than the smallest prime factor of F. Thus, if F is odd, (3.6)
is fulfilled. If F is even, the smallest prime factor of F is 2, and therefore R
is approximately equal to 2. It follows that F � 2R, and (3.5) is fulfilled.

Since primality tests used are deterministic, a composite n is always de-
tected. The algorithm generates fresh prime candidates by regenerating R
until a prime is found.

18

Chapter 4

Implementation

In this chapter we present our implementation of the RandomPrime algo-
rithm previously described in Algorithm 1. We meanly focus on the key
functions of the algorithm and present statistical results about their output.

4.1 Libraries

Our implementation is written in the programming language C and utilises
several basic functions of the software libraries OpenSSL (version 3.0.0 Al-
pha 41) and GMP (version 6.1.22).

4.1.1 OpenSSL

OpenSSL is a toolkit for several cryptographic applications. Its main pur-
pose is to provide an open-source implementation of the Transport Layer
Security (TLS) and Secure Sockets Layer (SSL) protocols. Moreover, it is also
a general purpose cryptographic library. OpenSSL is written in C and free
available at [8].

Our implementation of RandomPrime uses the OpenSSL big-number data
type, which allows us to perform arithmetic operations on integers of ar-
bitrary size. Additionally, we use the random generator of the library to
generate cryptographically strong pseudo-random numbers.

4.1.2 GNU Multiple Precision Arithmetic Library

GNU Multiple Precision Arithmetic Library (GMP) is an open-source library
and part of the GNU project. GMP provides arithmetic operations on inte-
gers, rational numbers and floating-point numbers with arbitrary precision.

1released on June 25, 2020
2released in December, 2016

19

4. Implementation

Figure 4.1: Distribution function estimates for Pr[s1 ≤ x], Pr[s2 ≤ x] and Pr[s3 ≤ x] derived
from the output of 222 calls of GenerateSizeList (solid lines), and values computed by Knuth
and Trabb Pardo for F1, F2 and F3 (black squares).

It is written in C, and suitable for use within several other programming
languages utilising appropriate wrappers. Besides OpenSSL’s integer type,
in our implementation we also use GMP’s integer type.

GNU Multiple Precision Floating-Point Reliable Library (GNU MPFR) is
based on GMP and implements broader range of operations on floating-
point numbers than GMP library. Our implementation of RandomPrime

uses the GNU MPFR floating point number data type and its exponentiation
function to calculate Psi in line 13 of Algorithm 1 (RandomPrime).

4.2 Implementation of GenerateSizeList

Function GenerateSizeList is implemented as explained in Section 3.2. It
determines the number of prime factors of F such that 2RF + 1 and their rel-
ative sizes s1, s2, . . . , sr to RF. Figure 4.1 comprises the distribution function
estimates for Pr[sk ≤ x] for k ∈ {1, 2, 3} derived from the output of our im-
plementation of GenerateSizeList and the values for F1, F2 and F3 derived
by Knuth and Trabb Pardo [4, p. 341]. They coincide with one another which
suggests Pr[sk ≤ x] = Fk(x) and the correctness of our implementation.

The length of the generated list s1, s2, . . . , sr sets the number of prime factors
of F and the number of recursive calls of RandomPrime. In most cases F
consists of only a few prime factors. After running the function 230 times,
we obtain an outputted list of size smaller than 3 in 82.70 % of the runs
(Table 4.1). Therefore, only in 17.30 % of the cases, more than 2 recursive
calls of RandomPrime were needed to obtain a value for F.

20

4.3. Trial Division Bound

length r 1 2 3 4 5 6 7 > 7
probability in % 69.31 13.39 6.64 3.87 2.39 1.49 0.84 2.07

Table 4.1: The length r of the list generated by GenerateSizeList in probabilities derived from
the output of 230 function calls.

bit-size of n trial division bound g

256 1913 (292th prime)
512 4481 (607th prime)
1024 12743 (1521th prime)
2048 37607 (3984th prime)

Table 4.2: Optimal trial division bounds in respect to the bit-size k of n. (n ∈ [2k−1, 2k − 1])

4.3 Trial Division Bound

Function TrialDivision requires the determination of the trial division
bound g. On the one hand, the trial division bound should be sufficiently
large to detect as many composite candidates n in RandomPrime as possi-
ble (without utilising CheckLemma1). On the other hand, it should be small
enough so that TrialDivision itself does not consume too much computa-
tional resources. For a fixed interval [P1, P2] we follow the recommendations
in [7, p. 146] and derive g experimentally by utilising Algorithm 5.

Algorithm 5 works as follows. Firstly, it generates a prime candidate n in
the same way as RandomPrime in Algorithm 1. Secondly, n is tested with
TrialDivision, and if needed, also with CheckLemma1 for a uniformly at
random selected integer a ∈ [2, n− 1]. The running time of this test phase is
measured and returned at the end.

We run Algorithm 5 for different g. In the first run of Algorithm 5, g is set to
a small initial value g0. We set g0 = 3 and thus TrialDivision only tests if
n is divisible by 3. In the next run, g is increased by a small number so that
some more trial divisors are used within TrialDivision. We continuously
increase g so that every time three, six or seven additional trial divisors are
used (Figure 4.2). For each g, we run Algorithm 5 220 times and derive
the approximation of the expected running time of the primality testing
phase. We continue the procedure until a strictly increasing tendency in the
expected running time approximation is observed.

We set the trial division bound to the value for which the approximation of
the expected running time is minimum. Table 4.2 lists the obtained optimal
trial division bounds for [2k−1, 2k − 1] for k ∈ {256, 512, 1024, 2048}. There-
fore, we implement TrialDivision so that g is chosen depending on the
input bit-size according to Table 4.2.

21

4. Implementation

Figure 4.2: Expected running time of TrialDivision and CheckLemma1 (in ms) in respect to
the trial division bound for [P1, P2] = [2255, 2256 − 1] (the uppermost graph, step size = 3),
[P1, P2] = [2511, 2512 − 1] (the middle graph, step size = 6) and [P1, P2] = [21023, 21024 − 1]
(the graph at the bottom, step size = 7).

22

4.4. Implementation of RandomPrime

Algorithm 5: TrialDivisionRunningTime(P1, P2, g)

1 P = SquareRoot((P1 − 1) · (P2 − 1)) / 2
2 F = 1
3 sizeList = f actorList = []

4 r = GenerateSizeList(sizeList)
5 for i = 0 to r do
6 Q = Exponentiate(P , sizeList[i])
7 f actorList[i] = RandomPrime(Q/cint , Q · cint)

8 F = F · f actorList[i]
9 end

10 I1 = (P1 − 1)/(2 · F)
11 I2 = (P2 − 1)/(2 · F)
12 n = 2 · RandomInt(I1 , I2) · F + 1

13 start = Clock()

14 if TrialDivision(n) then . TrialDivision with bound g
15 a = RandomInt(2 , n− 1)
16 success = CheckLemma1(n , a , f actorList)
17 end
18 end = Clock()

19 return end− start

4.4 Implementation of RandomPrime

Our implementation follows the pseudocode of Algorithm 1 with following
modifications.

1. If the relative size 1− ∑r
i=1 si is small, it is possible that the interval

[I1, I2] is too small to contain an R for which 2RF+ 1 is prime. This can
cause an infinite loop (lines 20–27 of Algorithm 1), which we prevent
by bounding the loop iterations. When the bound is crossed, the prime
factors of F are regenerated. If the bound is crossed two times for the
same relative sizes s1, s2, . . . , sr, GenerateSizeList is also recalled.

We let the loop iteration bound depend on the size of the interval
[I1, I2]. The bound is crossed as soon as

counter/(128 + log2(I2 − I1 + 1)) > I2 − I1 + 1

holds where counter denotes the current number of loop iterations. In
this way, we ensure that all possible integers R ∈ [I1, I2] are selected at
least once with probability at least 1− 2−128 (Coupon Collector Prob-
lem [11]). However, we also use 65536 = 216 loop iterations as an
absolute bound.

23

4. Implementation

2. If the relative size 1− ∑r
i=1 si is small, it is possible that the interval

[I1, I2] is too small to contain an integer and thus we can not select an
R from the range.

Our implementation calculates I′1 = dI1e and I′2 = bI2c and checks
if I′1 ≤ I′2. If this is not fulfilled, the smallest prime factor of F is
regenerated and the condition is checked again. If then I′1 > I′2 still
holds all factors of F are regenerated. When all factors of F have to
be regenerated a second time, GenerateSizeList is recalled as well.
As soon as I′1 ≤ I′2 , the implementation selects R uniformly at random
from the interval [I′1, I′2].

3. The relative size si of the prime factor qi of F, outputted by
GenerateSizeList, can be arbitrary small. This can cause that there is
no prime in the interval [Qi/cint , Qi · cint] = [Psi /cint , Psi · cint] where
cint is a parameter of the algorithm. Therefore, we abort the generation
of prime factors of F as soon as Qi · cint is smaller than 2. Since si ≥ sk
for all k > i, for all subsequent sizes Qk, k > i, we have Qk · cint < 2 as
well.

4. Our implementation of GenerateSizeList bounds the length of the re-
turned list to 10 elements. Since the probability of GenerateSizeList
to output a list of size greater than 10 elements is approximately only
0.5 %, this does not effect the output distribution significantly.

5. Since all prime factors qi of F are randomly selected from the range
[Psi /cint , Psi · cint], it is possible that neither F >

√
n nor F > R (and

F is odd) holds. Hence, the implementation always checks if one of
these two conditions is fulfilled to correctly apply Lemma 1.

In [6, p. 131], it is suggested to set P0 = 10 000 000 and cint = 1.2. In our
implementation, we use the same cint and set P0 to the smallest power of
2 greater than 10 000 000, P0 = 224, so that the decision between base case
and recursion case is bit-size dependent. The trial division bounds are set
as explained in Section 4.3.

PrimeTest function and TrialDivision function need a fixed list of small
primes. We store these small primes in form of a list of prime gaps starting
with the difference 2 between 3 and 5.

primeGaps = {2, 2, 4, 2, 4, . . . , pi − pi−1}

The largest reachable prime pi is chosen so that p2
i ≥ P0 and pi is greater

than the largest needed trial division bound from Table 4.2. In this way, the
primality of all numbers in the base case can be checked and all primes used
in TrialDivision can be reached.

The source-code of the implementation can be found in Appendix A.

24

Chapter 5

Running Time Experiments

In this chapter we assess the computational running time of the Random-
Prime algorithm implementation, as presented in Chapter 4. We compare
the running time of the implementation with the PGA implementation in the
OpenSSL library to evaluate the usability of the RandomPrime algorithm in
practice. Moreover, we address a modification of the RandomPrime im-
plementation, aimed at reducing the number of regenerations of F. All
experiments are performed on Euler [2], a central high-performance cluster
of ETH.

5.1 Prime Number Generator in OpenSSL

In OpenSSL version 1.0.2 and version 3.0.0 the function call of the prime
generator has the following form:

int BN generate prime ex(BIGNUM *ret, int bits, int safe,

const BIGNUM *add, const BIGNUM *rem, BN GENCB *cb).

In OpenSSL 3.0.0 there is also another function BN generate prime ex2,
which is the same as BN generate prime ex, apart from an additional ctx
parameter which is passed for storing intermediate calculations.

BN generate prime ex generates a probable prime p and stores it in ret.
The outputted p is composite with only negligible error probability. The
parameter bits denotes the bit length of the generated prime p and the flag
safe indicates if p needs to be a safe prime, i.e. such that (p− 1)/2 is also
prime. If add is set to NULL, the two most significant bits of the generated
prime are set1. With add and rem, further conditions on the outputted p can

1The product of two k-bit numbers, in which the two most significant bits are set, is
exactly 2k bits long. This is a useful property when we need to multiply two primes in a
protocol, for example in RSA.

25

5. Running Time Experiments

k v 1.0.2 v 3.0.0 Overhead

256 2.50 1.54 63 %
512 10.63 5.77 84 %

1024 51.14 41.27 24 %

Table 5.1: Expected running time (in ms) of BN generate prime ex(p, k, 0, add=2, NULL,

NULL) when generating a k-bit prime p in OpenSSL 1.0.2k-fips and OpenSSL 3.0.0 Alpha 4,
derived by averaging the running time of 220 function calls.

k v 1.0.2 v 3.0.0 Overhead

256 0.025 0.019 32 %
512 0.050 0.034 47 %

1024 0.123 0.112 10 %

Table 5.2: Expected running time (in ms) of BN is prime fasttest ex(n, BN prime checks,

ctx, 1, NULL) and BN check prime(n, ctx, NULL) when n is a k-bit random odd integer, in
OpenSSL 1.0.2k-fips and OpenSSL 3.0.0 Alpha 4, respectively, derived by averaging the running
time of 220 function calls.

be specified. Additionally, with cb a user defined function can be passed to
BN generate prime ex to obtain a feedback during the process of prime gen-
eration. In our tests we call BN generate prime ex to obtain a k-bit prime.
We use add = 2 so that the second most significant bit is not always set2.

BN generate prime ex generates a prime following the procedure similar to
the one explained in [5, pp. 9–10]. Firstly, a pseudo-random initial candidate
n0 of the desired bit-size k is generated. Secondly, using trial division up to
a k-dependent bound r [9], the function checks if n0 is composite. During
this process, a table of remainders for the trial division of n0 is generated.
If a divisor of n0 is found, a new subsequent candidate n1 = n0 + 2 is cho-
sen and again tested using the same trial division bound. Maintaining the
table of remainders, trial division on the subsequent candidate can be done
efficiently by avoiding fresh divisions. The table is updated for each subse-
quent candidate by adding 2 to all remainders in the table. This technique
is called sieving.

Thirdly, if a candidate ni passes trial division, the function runs ` rounds
of the Miller-Rabin test on the candidate ni. The value for ` is determined
according to the bit-size k of ni : if k > 2048, ` = 128, and ` = 64 otherwise
[9]. In OpenSSL version 1.0.2, less Miller-Rabin test are applied [5, p. 9].
OpenSSL 1.0.2 calls the function BN is prime fasttest ex for this step and
version 3.0.0 uses BN check prime. As soon as one round of Miller-Rabin test
fails, i.e. the primality test function reveals n as a composite, the algorithm

2If add is not NULL and rem = NULL, the generated prime p will fulfil p ≡ 1 (mod add).

26

5.2. Experimental Results

k RandomPrime OpenSSL Overhead

256 9.71 1.54 531 %
512 22.02 5.77 282 %

1024 74.20 41.27 80 %
2048 469.55 329.84 42 %

Table 5.3: Expected running time (in ms) of our implementation of RandomPrime and
BN generate prime ex(p, k, 0, add=2, NULL, NULL) in OpenSSL 3.0.0 Alpha 4 when gen-
erating a k-bit prime p, derived by averaging the running time of 220 function calls.

restarts from scratch and chooses a new random initial candidate n0. If ni
passes all the tests, ni is retuned as probable prime and the prime generator
function ends.

The prime generating function, as well as the primality testing function, is
faster in OpenSSL 3.0.0 than in OpenSSL 1.0.2 (Table 5.1 and Table 5.2).

5.2 Experimental Results

We compare the running time of our implementation described in Chapter 4
with the running time of the PGA implementation BN generate prime ex

in OpenSSL as follows. For k ∈ {256, 512, 1024, 2048}, we generate k-bit
prime numbers utilizing each implementation separately and measure the
associated running time.

Our implementation of RandomPrime is slower than the OpenSSL prime
generation function BN generate prime ex. The overhead depends on k and
is presented in Table 5.3.

5.3 Runtime Modification

In RandomPrime (Algorithm 1), after generating F the value for R is chosen
uniformly at random from [I1, I2] = [(P1 − 1)/ 2F, (P2 − 1)/ 2F] so that
n = 2RF + 1 falls into [P1, P2]. As mentioned in Section 4.4, it is possible
that the interval [I1, I2] is too small to contain an R for which n = 2RF + 1
is prime or the interval is even too small to contain an integer.

Example If P1 = 7100, P2 = 9900, s1 = 0.94 and r = 1, we get 2F ≈ 5082 and
thus (I1, I2) ≈ (1.40, 1.95). Hence, we can not select an integer R ∈ [I1, I2].

In such a case, our implementation chooses a new F by regenerating one or
all prime factors of F. Regeneration of F can happen at every recursion level
and causes additional recursive calls of RandomPrime, which lead to an
increased running time of the PGA implementation. However, it maintains
the failure probability equal to 0.

27

5. Running Time Experiments

k RandomPrime OpenSSL Overhead

256 2.78 1.54 81 %
512 7.39 5.77 28 %

1024 41.37 41.27 0 %
2048 375.98 329.84 14 %

Table 5.4: Expected running time (in ms) of our implementation of modified RandomPrime
and BN generate prime ex(p, k, 0, add=2, NULL, NULL) in OpenSSL 3.0.0 Alpha 4 when
generating a k-bit prime p, derived by averaging the running time of 220 function calls.

When generating 256, 512 and 1024 bit long primes with RandomPrime,
4–6 %, 2–4 % and 1–3 % of all function calls contain a regeneration of F (at
the first level of recursion), respectively. Here we did not count the regener-
ations in the recursive RandomPrime function calls.

At the cost of reducing the diversity of reachable primes, the number of such
additional recursive function calls can be reduced as follows. We introduce a
rejection criteria on the list of relative sizes obtained from GenerateSizeList

as suggested in [6, p. 134]. If

r

∑
i=1

si ≥ 1− C1

log2(P) + C2
(5.1)

for C1 = 10, C2 = 50 and P as in Algorithm 1, we reject the relative sizes
s1, s2, . . . , sr and call GenerateSizeList again. Inequality (5.1) ensures that
the relative size of F is not too large and therefore [I1, I2] has a wider range.
The smaller P is, the smaller is the right-hand side of (5.1), and thus, the
more likely is it that the list of relative sizes is rejected.

Example For P1 = 7100, P2 = 9900, s1 = 0.94 and r = 1 as in the example
above, (5.1) is fulfilled and therefore we regenerate the relative sizes even
before generating F.

Alongside the implementation of Algorithm 1 from Chapter 4, we also im-
plement a modified version. In our modified implementation we use a re-
jection criteria slightly different to (5.1) so that no logarithm calculations are
necessary. We reject the relative sizes s1, s2, . . . , sr if

r

∑
i=1

si ≥ 1− C1

bitSize(P) + C2
(5.2)

where bitSize(P) denotes the bit-size of P, C1 = 10 and C2 = 50. Since
bitSize(P) ≥ log2(P), (5.2) implies (5.1). The modified RandomPrime im-
plementation is significantly faster than the unmodified one and comparable
to the OpenSSL BN generate prime ex function for k = 1024 (Table 5.4).

28

5.3. Runtime Modification

We use the same trial division bounds from Section 4.3 for both of our imple-
mentations. Rejection criteria (5.2) ensures that the number of regeneration
of F is significantly reduced at the cost of reducing the diversity of reach-
able primes. Primes p for which (p− 1)/2 is the product of a small R and a
prime or the product of a small R and two primes of similar size, can not be
reached [6, p. 134]. The unreachable primes include safe primes.

29

Chapter 6

Discussion

6.1 Advantages and Disadvantages of RandomPrime

In the following, we discuss advantages and disadvantages of the Maurer’s
PGA captured with RandomPrime (Algorithm 1). We focus on the instan-
tiation of the Maurer’s PGA that we presented in Chapter 4. We compare
our implementation with the PGA that is implemented in OpenSSL and
presented in Section 5.1.

In situations where (proven) primes of bit-length 1024 are needed and a
slight deviation from the uniform distribution can be tolerated, Random-
Prime with certain modifications is a suitable choice for a PGA. However,
for other bit-lengths, our implementation of RandomPrime is too slow.

Some of the introduced modifications restrict the output of the algorithm,
i.e. the number of primes that can be reached. The more we restrict the
output with these modifications, the faster in expectation is the obtained
algorithm. For example, we observe that if we use a lower loop iteration
bound in Modification 1 (Section 4.4), we can decrease the running time of
our implementation even more.

An advantage of RandomPrime over the OpenSSL probabilistic PGA is that
it always generates provable primes. However, in a probabilistic PGA we can
break down the error probability to a negligible value to avoid any practical
problems.

In comparison to the OpenSSL PGA, a disadvantage of the RandomPrime

algorithm is that RandomPrime is significantly harder to understand, as it
involves:

• Application of Lemma 1. Several conditions required in Lemma 1
need to be checked so that the primality of a prime n is correctly
proven.

31

6. Discussion

• Generation of a random number RF. It needs to be ensured that RF
is a random number from [(P1 − 1)/2 , (P2 − 1)/2] and therefore that
R and the prime factors of F are generated accordingly. To generate
the prime factors of F we first generate its relative sizes utilising the
appropriately implemented function GenerateSizeList.

• Trial division. The application of trial division with appropriately set
trial division bound g should lead to a fast detection of a composite
candidate n to prevent unnecessary costly CheckLemma1 calls. There-
fore, usage of trial division needs to reduce the PGA running time.

• Potential infinite loops. We need to carefully bound the number of
loop iterations, to prevent crucial infinite loops.

• Distribution of generated primes. The generated primes should be
close to uniformly distributed over the set of primes in the given inter-
val [P1 , P2]. Several parameters of the algorithm have an influence on
this property.

Without a good understanding of the algorithm and of its building blocks,
transformation of the algorithm into the code might be complex and results
in an incorrect or incomplete implementation. This leads to a reduced capa-
bility of the implementation, e.g. to a reduced diversity of generated primes,
and therefore to security vulnerabilities in the system that uses it.

We also highlight the following disadvantages of RandomPrime.

• The amount of allocations and deallocations of variables and the re-
cursive nature of the algorithm leads to a higher memory utilization.
Hence, other PGAs are preferable for devices with bounded memory
resources.

• Regenerations of F can occur at multiple levels of the recursion and
therefore cause a significant increase in the running time.

• FastPrime presented in Section 3.2.1 only reaches 10 % of all primes.

• The modified RandomPrime algorithm (Section 5.3) can not be used
directly to generate safe primes.

Moreover, to implement RandomPrime, one has to tune significantly more
parameters than to implement the OpenSSL PGA: P0, cint, trial division
bound g and the loop iteration bound. When implementing the modified
version of RandomPrime, parameters C1 and C2 also need to be set. How-
ever, once properly set, they do not require many further adjustments.

32

6.2. Further Modifications

6.2 Further Modifications

With the usage of Lemma 2, RandomPrime can be modified even further.
When utilising Lemma 2, only the factorisation of 3

√
n is needed to prove

the primality of n. Hence, fewer recursive function calls are needed which
can reduce the running time. For this modification the GenerateSizeList

function and the checks of Modification 5 in Section 4.4 need to be adopted
accordingly. Then, it can be examined if both or already one of those two
changes has an impact on the running time.

Another modification is the customization of the exponentiation-function in
line 13 of Algorithm 1 (RandomPrime). For the purposes within the algo-
rithm, a limited functionality of the function can be tolerated, i.e. there is no
need for floating-point results or integers closest to exact resulting values,
approximations are sufficient. Hence, the power function of GNU MPFR
can be replaced with an exponentiation-function with limited functionality
that calculates an approximation of Ps in line 13 of Algorithm 1. Such a
customized function could be implemented to run faster and to need less
memory than the floating-point function of GNU MPFR.

33

Chapter 7

Conclusion

For several cryptographic purposes, e.g. when using Diffie-Hellman key
exchange or RSA, primes are of considerable importance. Incorrect imple-
mentations of PGAs can have serious consequences, e.g. revealing RSA se-
cret keys. There are different indicators that assess the quality of a PGA,
such as its time complexity or its running time, its success probability (the
probability that the generated numbers are indeed prime) and its statistical
properties like the uniformity of the output distribution.

Here we presented the RandomPrime PGA proposed by Maurer in 1995 and
its practical implementation. The algorithm takes an interval as an input and
outputs a random prime from the interval. The primality of the generated
primes is proven by Lemma 1, and so the error probability is equal to zero.
Additionally, Maurer argues that the output of RandomPrime is close to
uniformly distributed over the set of primes in the specified interval.

We did not find any public cryptographic library that provides an imple-
mentation of the RandomPrime algorithm. Therefore, we designed and
deployed its practical implementation by ourselves. After the deployment,
we compared the expected running time1 of our implementation with that
of the PGA function of the widely used cryptographic library OpenSSL. Be-
cause of the required high loop iteration bound (Section 4.4, Modification 1)
and the numerous recursive function calls in RandomPrime, our imple-
mentation is significantly slower than the OpenSSL BN generate prime ex

function. If we reduce the number of recursive function calls, we can signif-
icantly decrease its expected running time. However, the modified version
is in expectation slower than BN generate prime ex as well. The proposed
modification improves the running time at the cost of reduced diversity of
reachable primes.

1A theoretical running time analysis can be found in [6, pp. 136–141].

35

7. Conclusion

One subject for the further research is to examine more closely the param-
eters of the modified RandomPrime algorithm and derive a conclusion if
they can be fine-tuned even further. Another subject is to examine the de-
viation of the output distribution of the modified RandomPrime algorithm
from uniform distribution and draw a conclusion about its impact on ap-
plications of PGA. Moreover, comparisons to PGAs of a broader range of
cryptographic libraries can be informative.

36

Appendix A

randomprime.c

A.1 Installation of OpenSSL 3.0.0 on Euler

After downloading openssl-3.0.0-alpha4.tar.gz from [8] , uploading it on Euler
and creating a new folder (here we use ./openssl) , we run the following
commands.

1. tar -xf openssl-3.0.0-alpha4.tar.gz

2. cd openssl-3.0.0-alpha4

3. ./config --prefix = ../openssl --openssldir = ../openssl

shared zlib

(here you have to use the absolute path instead of ../openssl)

4. make

5. make test

6. make install

A.2 Compilation on Euler

With the following commands we compile randomprime.c on Euler.

env2lmod; module load gmp/6.1.2 mpfr/4.0.1;

gcc -std=gnu99 -o program -I ./openssl/include -L ./openssl/lib

-Wl,-rpath=./openssl/lib randomprime.c -lcrypto -lmpfr -lgmp

A.3 Source Code

include <s t d i o . h>
include <time . h>
include <openssl/bn . h>

37

A. randomprime.c

include <gmp. h>
include <mpfr . h>

define NUMBER OF PRIMES 1000
define BIT LENGTH 1024

s t a t i c const unsigned char primegap [] =
{

2 , 2 , 4 , 2 , 4 , 2 , 4 , 6 , 2 , 6 , 4 , 2 , 4 , 6 , 6 , 2 , 6 , 4 , 2 , 6 , 4 , 6 , 8 , 4 , 2 ,
4 , 2 , 4 ,14 , 4 , 6 , 2 ,10 , 2 , 6 , 6 , 4 , 6 , 6 , 2 ,10 , 2 , 4 , 2 , 1 2 , 1 2 , 4 , 2 , 4 , 6 ,
2 ,10 , 6 , 6 , 6 , 2 , 6 , 4 , 2 , 1 0 , 1 4 , 4 , 2 , 4 ,14 , 6 ,10 , 2 , 4 , 6 , 8 , 6 , 6 , 4 , 6 ,
8 , 4 , 8 ,10 , 2 ,10 , 2 , 6 , 4 , 6 , 8 , 4 , 2 , 4 ,12 , 8 , 4 , 8 , 4 , 6 ,12 , 2 ,18 , 6 ,10 ,
6 , 6 , 2 , 6 ,10 , 6 , 6 , 2 , 6 , 6 , 4 , 2 , 1 2 , 1 0 , 2 , 4 , 6 , 6 , 2 ,12 , 4 , 6 , 8 ,10 , 8 ,

10 , 8 , 6 , 6 , 4 , 8 , 6 , 4 , 8 , 4 , 1 4 , 1 0 , 1 2 , 2 ,10 , 2 , 4 , 2 , 1 0 , 1 4 , 4 , 2 , 4 ,14 , 4 ,
2 , 4 , 20 , 4 , 8 ,10 , 8 , 4 , 6 , 6 ,14 , 4 , 6 , 6 , 8 , 6 ,12 , 4 , 6 , 2 ,10 , 2 , 6 ,10 , 2 ,

10 , 2 , 6 ,18 , 4 , 2 , 4 , 6 , 6 , 8 , 6 , 6 ,22 , 2 ,10 , 8 ,10 , 6 , 6 , 8 ,12 , 4 , 6 , 6 , 2 ,
6 , 1 2 , 1 0 , 1 8 , 2 , 4 , 6 , 2 , 6 , 4 , 2 , 4 ,12 , 2 , 6 ,34 , 6 , 6 , 8 , 1 8 , 1 0 , 1 4 , 4 , 2 , 4 ,
6 , 8 , 4 , 2 , 6 , 1 2 , 1 0 , 2 , 4 , 2 , 4 , 6 , 1 2 , 1 2 , 8 ,12 , 6 , 4 , 6 , 8 , 4 , 8 , 4 ,14 , 4 ,
6 , 2 , 4 , 6 , 2 , 6 , 1 0 , 2 0 , 6 , 4 , 2 ,24 , 4 , 2 , 1 0 , 1 2 , 2 ,10 , 8 , 6 , 6 , 6 ,18 , 6 , 4 ,
2 , 1 2 , 1 0 , 1 2 , 8 , 1 6 , 1 4 , 6 , 4 , 2 , 4 , 2 , 1 0 , 1 2 , 6 , 6 ,18 , 2 ,16 , 2 ,22 , 6 , 8 , 6 , 4 ,
2 , 4 , 8 , 6 ,10 , 2 , 1 0 , 1 4 , 1 0 , 6 ,12 , 2 , 4 , 2 , 1 0 , 1 2 , 2 ,16 , 2 , 6 , 4 , 2 ,10 , 8 ,18 ,

24 , 4 , 6 , 8 ,16 , 2 , 4 , 8 ,16 , 2 , 4 , 8 , 6 , 6 , 4 ,12 , 2 ,22 , 6 , 2 , 6 , 4 , 6 ,14 , 6 ,
4 , 2 , 6 , 4 , 6 ,12 , 6 , 6 ,14 , 4 , 6 ,12 , 8 , 6 , 4 , 2 6 , 1 8 , 1 0 , 8 , 4 , 6 , 2 , 6 , 2 2 , 1 2 ,
2 ,16 , 8 , 4 , 1 2 , 1 4 , 1 0 , 2 , 4 , 8 , 6 , 6 , 4 , 2 , 4 , 6 , 8 , 4 , 2 , 6 ,10 , 2 ,10 , 8 , 4 ,

1 4 , 1 0 , 1 2 , 2 , 6 , 4 , 2 , 1 6 , 1 4 , 4 , 6 , 8 , 6 , 4 ,18 , 8 ,10 , 6 , 6 , 8 , 1 0 , 1 2 , 1 4 , 4 , 6 ,
6 , 2 , 28 , 2 ,10 , 8 , 4 ,14 , 4 , 8 ,12 , 6 ,12 , 4 , 6 , 2 0 , 1 0 , 2 , 1 6 , 2 6 , 4 , 2 ,12 , 6 , 4 ,

12 , 6 , 8 , 4 , 8 ,22 , 2 , 4 , 2 , 1 2 , 2 8 , 2 , 6 , 6 , 6 , 4 , 6 , 2 ,12 , 4 ,12 , 2 ,10 , 2 ,16 ,
2 ,16 , 6 , 2 0 , 1 6 , 8 , 4 , 2 , 4 , 2 ,22 , 8 ,12 , 6 ,10 , 2 , 4 , 6 , 2 , 6 ,10 , 2 , 1 2 , 1 0 , 2 ,

10 ,14 , 6 , 4 , 6 , 8 , 6 , 6 , 1 6 , 1 2 , 2 , 4 ,14 , 6 , 4 , 8 ,10 , 8 , 6 , 6 ,22 , 6 , 2 , 1 0 , 1 4 ,
4 , 6 , 18 , 2 , 1 0 , 1 4 , 4 , 2 , 1 0 , 1 4 , 4 , 8 ,18 , 4 , 6 , 2 , 4 , 6 , 2 ,12 , 4 , 2 0 , 2 2 , 1 2 , 2 ,
4 , 6 , 6 , 2 , 6 ,22 , 2 , 6 ,16 , 6 ,12 , 2 , 6 , 1 2 , 1 6 , 2 , 4 , 6 ,14 , 4 , 2 , 1 8 , 2 4 , 1 0 , 6 ,
2 ,10 , 2 ,10 , 2 ,10 , 6 , 2 ,10 , 2 ,10 , 6 , 8 , 3 0 , 1 0 , 2 ,10 , 8 , 6 , 1 0 , 1 8 , 6 , 1 2 , 1 2 , 2 ,

18 , 6 , 4 , 6 , 6 ,18 , 2 , 1 0 , 1 4 , 6 , 4 , 2 , 4 ,24 , 2 ,12 , 6 ,16 , 8 , 6 , 6 , 1 8 , 1 6 , 2 , 4 ,
6 , 2 , 6 , 6 ,10 , 6 , 1 2 , 1 2 , 1 8 , 2 , 6 , 4 ,18 , 8 ,24 , 4 , 2 , 4 , 6 , 2 ,12 , 4 , 1 4 , 3 0 , 1 0 ,
6 , 1 2 , 1 4 , 6 , 1 0 , 1 2 , 2 , 4 , 6 , 8 , 6 ,10 , 2 , 4 ,14 , 6 , 6 , 4 , 6 , 2 ,10 , 2 , 1 6 , 1 2 , 8 ,

18 , 4 , 6 ,12 , 2 , 6 , 6 , 6 ,28 , 6 ,14 , 4 , 8 ,10 , 8 , 1 2 , 1 8 , 4 , 2 , 4 , 2 4 , 1 2 , 6 , 2 ,16 ,
6 , 6 , 1 4 , 1 0 , 1 4 , 4 ,30 , 6 , 6 , 6 , 8 , 6 , 4 , 2 ,12 , 6 , 4 , 2 , 6 ,22 , 6 , 2 , 4 ,18 , 2 ,
4 ,12 , 2 , 6 , 4 ,26 , 6 , 6 , 4 , 8 , 1 0 , 3 2 , 1 6 , 2 , 6 , 4 , 2 , 4 , 2 , 1 0 , 1 4 , 6 , 4 , 8 ,10 ,
6 ,20 , 4 , 2 , 6 ,30 , 4 , 8 ,10 , 6 , 6 , 8 , 6 ,12 , 4 , 6 , 2 , 6 , 4 , 6 , 2 ,10 , 2 ,16 , 6 ,

20 , 4 , 1 2 , 1 4 , 2 8 , 6 ,20 , 4 ,18 , 8 , 6 , 4 , 6 ,14 , 6 , 6 ,10 , 2 , 1 0 , 1 2 , 8 ,10 , 2 ,10 , 8 ,
1 2 , 1 0 , 2 4 , 2 , 4 , 8 , 6 , 4 , 8 , 1 8 , 1 0 , 6 , 6 , 2 , 6 , 1 0 , 1 2 , 2 ,10 , 6 , 6 , 6 , 8 , 6 ,10 ,

6 , 2 , 6 , 6 , 6 ,10 , 8 ,24 , 6 ,22 , 2 ,18 , 4 , 8 , 1 0 , 3 0 , 8 ,18 , 4 , 2 ,10 , 6 , 2 , 6 , 4 ,
18 , 8 , 1 2 , 1 8 , 1 6 , 6 , 2 ,12 , 6 ,10 , 2 ,10 , 2 , 6 , 1 0 , 1 4 , 4 ,24 , 2 ,16 , 2 ,10 , 2 , 1 0 , 2 0 ,

4 , 2 , 4 , 8 ,16 , 6 , 6 , 2 , 1 2 , 1 6 , 8 , 4 , 6 ,30 , 2 ,10 , 2 , 6 , 4 , 6 , 6 , 8 , 6 , 4 ,12 ,
6 , 8 , 12 , 4 , 1 4 , 1 2 , 1 0 , 2 4 , 6 ,12 , 6 , 2 ,22 , 8 , 1 8 , 1 0 , 6 ,14 , 4 , 2 , 6 ,10 , 8 , 6 , 4 ,
6 , 3 0 , 1 4 , 1 0 , 2 , 1 2 , 1 0 , 2 ,16 , 2 , 1 8 , 2 4 , 1 8 , 6 , 1 6 , 1 8 , 6 , 2 ,18 , 4 , 6 , 2 ,10 , 8 ,10 ,
6 , 6 , 8 , 4 , 6 , 2 ,10 , 2 ,12 , 4 , 6 , 6 , 2 ,12 , 4 , 1 4 , 1 8 , 4 , 6 ,20 , 4 , 8 , 6 , 4 , 8 ,
4 ,14 , 6 , 4 , 1 4 , 1 2 , 4 , 2 ,30 , 4 ,24 , 6 , 6 , 1 2 , 1 2 , 1 4 , 6 , 4 , 2 , 4 ,18 , 6 ,12 , 8 , 6 ,
4 ,12 , 2 , 1 2 , 3 0 , 1 6 , 2 , 6 , 2 2 , 1 4 , 6 , 1 0 , 1 2 , 6 , 2 , 4 , 8 ,10 , 6 , 6 , 2 4 , 1 4 , 6 , 4 , 8 ,

1 2 , 1 8 , 1 0 , 2 ,10 , 2 , 4 , 6 ,20 , 6 , 4 ,14 , 4 , 2 , 4 ,14 , 6 , 1 2 , 2 4 , 1 0 , 6 , 8 ,10 , 2 ,30 ,
4 , 6 , 2 ,12 , 4 ,14 , 6 , 3 4 , 1 2 , 8 , 6 ,10 , 2 , 4 , 2 0 , 1 0 , 8 ,16 , 2 , 1 0 , 1 4 , 4 , 2 ,12 , 6 ,

16 , 6 , 8 , 4 , 8 , 4 , 6 , 8 , 6 , 6 ,12 , 6 , 4 , 6 , 6 , 8 ,18 , 4 ,20 , 4 ,12 , 2 ,10 , 6 , 2 ,
10 ,12 , 2 , 4 ,20 , 6 ,30 , 6 , 4 , 8 , 1 0 , 1 2 , 6 , 2 ,28 , 2 , 6 , 4 , 2 , 1 6 , 1 2 , 2 , 6 ,10 , 8 ,
24 ,12 , 6 ,18 , 6 , 4 ,14 , 6 , 4 ,12 , 8 , 6 ,12 , 4 , 6 ,12 , 6 ,12 , 2 , 1 6 , 2 0 , 4 , 2 , 1 0 , 1 8 ,

8 , 4 , 14 , 4 , 2 , 6 ,22 , 6 ,14 , 6 , 6 ,10 , 6 , 2 ,10 , 2 , 4 , 2 ,22 , 2 , 4 , 6 , 6 ,12 , 6 ,
1 4 , 1 0 , 1 2 , 6 , 8 , 4 , 3 6 , 1 4 , 1 2 , 6 , 4 , 6 , 2 ,12 , 6 , 1 2 , 1 6 , 2 ,10 , 8 ,22 , 2 ,12 , 6 , 4 ,

6 ,18 , 2 ,12 , 6 , 4 ,12 , 8 , 6 ,12 , 4 , 6 ,12 , 6 , 2 , 1 2 , 1 2 , 4 ,14 , 6 ,16 , 6 , 2 ,10 , 8 ,
18 , 6 ,34 , 2 ,28 , 2 ,22 , 6 , 2 , 1 0 , 1 2 , 2 , 6 , 4 , 8 ,22 , 6 , 2 ,10 , 8 , 4 , 6 , 8 , 4 ,12 ,
1 8 , 1 2 , 2 0 , 4 , 6 , 6 , 8 , 4 , 2 , 1 6 , 1 2 , 2 ,10 , 8 ,10 , 2 , 4 , 6 , 1 4 , 1 2 , 2 2 , 8 ,28 , 2 , 4 ,
20 , 4 , 2 , 4 , 1 4 , 1 0 , 1 2 , 2 , 1 2 , 1 6 , 2 ,28 , 8 ,22 , 8 , 4 , 6 , 6 ,14 , 4 , 8 ,12 , 6 , 6 , 4 ,
20 , 4 ,18 , 2 ,12 , 6 , 4 , 6 , 1 4 , 1 8 , 1 0 , 8 , 1 0 , 3 2 , 6 ,10 , 6 , 6 , 2 , 6 ,16 , 6 , 2 ,12 , 6 ,
28 , 2 ,10 , 8 ,16 , 6 , 8 , 6 , 1 0 , 2 4 , 2 0 , 1 0 , 2 ,10 , 2 ,12 , 4 , 6 ,20 , 4 , 2 , 1 2 , 1 8 , 1 0 , 2 ,

38

A.3. Source Code

10 , 2 , 4 , 2 0 , 1 6 , 2 6 , 4 , 8 , 6 , 4 ,12 , 6 , 8 , 1 2 , 1 2 , 6 , 4 , 8 ,22 , 2 , 1 6 , 1 4 , 1 0 , 6 ,12 ,
12 ,14 , 6 , 4 ,20 , 4 ,12 , 6 , 2 , 6 , 6 ,16 , 8 ,22 , 2 ,28 , 8 , 6 , 4 ,20 , 4 , 1 2 , 2 4 , 2 0 , 4 ,

8 ,10 , 2 ,16 , 2 , 1 2 , 1 2 , 3 4 , 2 , 4 , 6 ,12 , 6 , 6 , 8 , 6 , 4 , 2 , 6 ,24 , 4 , 2 0 , 1 0 , 6 , 6 ,
14 , 4 , 6 , 6 , 2 ,12 , 6 ,10 , 2 ,10 , 6 ,20 , 4 ,26 , 4 , 2 , 6 ,22 , 2 ,24 , 4 , 6 , 2 , 4 , 6 ,
24 , 6 , 8 , 4 , 2 ,34 , 6 , 8 , 1 6 , 1 2 , 2 ,10 , 2 ,10 , 6 , 8 , 4 , 8 , 1 2 , 2 2 , 6 ,14 , 4 ,26 , 4 ,

2 , 1 2 , 1 0 , 8 , 4 , 8 ,12 , 4 ,14 , 6 ,16 , 6 , 8 , 4 , 6 , 6 , 8 , 6 , 1 0 , 1 2 , 2 , 6 , 6 ,16 , 8 ,
6 , 6 , 1 2 , 1 0 , 2 , 6 ,18 , 4 , 6 , 6 , 6 , 1 2 , 1 8 , 8 , 6 ,10 , 8 ,18 , 4 ,14 , 6 , 1 8 , 1 0 , 8 ,10 ,

12 , 2 , 6 , 1 2 , 1 2 , 3 6 , 4 , 6 , 8 , 4 , 6 , 2 , 4 , 1 8 , 1 2 , 6 , 8 , 6 , 6 , 4 ,18 , 2 , 4 , 2 ,24 ,
4 , 6 , 6 , 1 4 , 3 0 , 6 , 4 , 6 ,12 , 6 ,20 , 4 , 8 , 4 , 8 , 6 , 6 , 4 ,30 , 2 , 1 0 , 1 2 , 8 ,10 , 8 ,

24 , 6 ,12 , 4 ,14 , 4 , 6 , 2 , 2 8 , 1 4 , 1 6 , 2 ,12 , 6 , 4 , 2 0 , 1 0 , 6 , 6 , 6 , 8 , 1 0 , 1 2 , 1 4 , 1 0
} ;

BIGNUM * bn temp1 ;
BIGNUM * bn temp2 ;
mpz t mpz temp1 ;
mpz t mpz temp2 ;
mpfr t mpfr temp ;

void i n s e r t (unsigned i n t * l i s t , unsigned i n t l , unsigned i n t v)
{

i n t i ;
for (i = l −1; (i >= 0 && l i s t [i] < v) ; i −−) {

l i s t [i +1] = l i s t [i] ;
}
l i s t [i +1] = v ;
return ;

}

i n t g e n e r a t e s i z e l i s t (unsigned i n t * l i s t)
{

BN set word (bn temp1 , 1 6 3 8 5) ;

for (unsigned i n t i = 0 ; i < 1 0 ; i ++) {
BN rand range (bn temp2 , bn temp1) ;
BN sub (bn temp1 , bn temp1 , bn temp2) ;

i n s e r t (l i s t , i , BN get word (bn temp2)) ;

unsigned i n t sum = 16384 ;
for (unsigned i n t j = 0 ; j <= i ; j ++) {

sum −= l i s t [j] ;
i f (l i s t [j] > sum) {

return (j + 1) ;
}

}
}
return 1 0 ;

}

i n t check lemma 1 (mpz t n , mpz t a , mpz t l i s t [] , unsigned i n t length)
{

mpz sub ui (mpz temp1 , n , 1) ;
mpz powm(mpz temp2 , a , mpz temp1 , n) ;
i f (mpz cmp ui (mpz temp2 , 1) != 0) {

return 0 ;
}

for (unsigned i n t i = 0 ; i < length ; i ++) {
mpz divexact (mpz temp2 , mpz temp1 , l i s t [i]) ;
mpz powm(mpz temp2 , a , mpz temp2 , n) ;
mpz sub ui (mpz temp2 , mpz temp2 , 1) ;
mpz gcd (mpz temp2 , mpz temp2 , n) ;

39

A. randomprime.c

i f (mpz cmp ui (mpz temp2 , 1) != 0) {
return 0 ;

}
}
return 1 ;

}

i n t s i m p l e p r i m e t e s t (unsigned i n t p)
{

i f (p % 2 == 0) {
i f (p == 2) {

return 1 ;
}
return 0 ;

}

unsigned i n t i = 3 ;
unsigned i n t j = 0 ;
while (i * i <= p) {

i f (p % i == 0) {
return 0 ;

}
i += primegap [j ++] ;

}
return 1 ;

}

i n t t r i a l d i v i s i o n (mpz t n)
{

unsigned long i = 3 ;
unsigned i n t g ;
switch (mpz sizeinbase (n , 2)) {

case 0 . . . 3 8 3 : g =292; break ;
case 384 . . . 7 6 7 : g =607; break ;
case 768 . . . 1535 : g =1520; break ;
default : g =3983; break ;

}
for (unsigned i n t j = 0 ; j < g ; j ++) {

i f (m p z d i v i s i b l e u i p (n , i) != 0) {
return 0 ;

}
i += primegap [j] ;

}
return 1 ;

}

void random number (mpz t input , mpz t output)
{

char * s1 = mpz get s t r (NULL, 16 , input) ;
BN hex2bn(&bn temp1 , s1) ;
f r e e (s1) ;

while (! BN rand range (bn temp2 , bn temp1)) {}

char * s2 = BN bn2hex (bn temp2) ;
m p z s e t s t r (output , s2 , 1 6) ;
OPENSSL free (s2) ;

}

void random prime (mpz t n , mpz t p1 , mpz t p2)
{

i f (mpz sizeinbase (p2 , 2) < 25) {

40

A.3. Source Code

i f (mpz cmp ui (p2 , 2) == 0) {
mpz set ui (n , 2) ;

}
e lse {

unsigned long p3 = mpz get ui (p1) ;
unsigned long p4 = mpz get ui (p2) ;
BN set word (bn temp1 , (p4 − p3 + 1)) ;
do {

while (! BN rand range (bn temp2 , bn temp1)) {}
p4 = BN get word (bn temp2) + p3 ;

} while (! s i m p l e p r i m e t e s t (p4)) ;
mpz set ui (n , p4) ;

}
}
e lse {

mpz sub ui (p1 , p1 , 1) ;
mpz sub ui (p2 , p2 , 1) ;
mpz mul (n , p1 , p2) ;
mpz tdiv q 2exp (n , n , 2) ;
mpz sqrt (n , n) ;
mpz t p f l [1 0] ;
mpz t f ;
m p z i n i t s e t u i (f , 1) ;

mpz t i 1 ;
mpz init (i 1) ;
mpz t i 2 ;
mpz init (i 2) ;
unsigned i n t s i z e l i s t [1 0] ;
unsigned i n t length = g e n e r a t e s i z e l i s t (s i z e l i s t) ;
mpfr t p ;
m p f r i n i t s e t z (p , n , MPFR RNDN) ;

for (unsigned i n t i = 0 ; i < length ; i ++) {
mpfr set d (mpfr temp , (s i z e l i s t [i] / 1 6 3 8 4 . 0) , MPFR RNDN) ;
mpfr pow (mpfr temp , p , mpfr temp , MPFR RNDN) ;
mpfr get z (mpz temp1 , mpfr temp , MPFR RNDN) ;

i f (mpz cmp ui (mpz temp1 , 1) == 0) {
length = i ;
break ;

}
mpz mul ui (i1 , mpz temp1 , 1 0) ;
mpz mul ui (i2 , mpz temp1 , 1 2) ;
mpz tdiv q ui (i1 , i1 , 1 2) ;
mpz tdiv q ui (i2 , i2 , 1 0) ;
mpz init (p f l [i]) ;
random prime (p f l [i] , i1 , i 2) ;
mpz mul (f , f , p f l [i]) ;

}
unsigned i n t max length = length ;
unsigned i n t counter = 0 ;

mpz mul 2exp (n , f , 1) ;
mpz cdiv q (mpz temp1 , p1 , n) ;
mpz tdiv q (mpz temp2 , p2 , n) ;

while (mpz cmp(mpz temp2 , mpz temp1) < 0) {
mpz divexact (f , f , p f l [length − 1]) ;
random prime (p f l [length −1] , i1 , i 2) ;
mpz mul (f , f , p f l [length − 1]) ;
mpz mul 2exp (n , f , 1) ;

41

A. randomprime.c

mpz cdiv q (mpz temp1 , p1 , n) ;
mpz tdiv q (mpz temp2 , p2 , n) ;
i f (mpz cmp(mpz temp2 , mpz temp1) >= 0) {

break ;
}

mpz set ui (f , 1) ;
counter ++;
i f (counter > 1) {

counter = 0 ;
length = g e n e r a t e s i z e l i s t (s i z e l i s t) ;

}

for (unsigned i n t i = 0 ; i < length ; i ++) {
mpfr set d (mpfr temp , (s i z e l i s t [i] / 1 6 3 8 4 . 0) , MPFR RNDN) ;
mpfr pow (mpfr temp , p , mpfr temp , MPFR RNDN) ;
mpfr get z (mpz temp1 , mpfr temp , MPFR RNDN) ;

i f (mpz cmp ui (mpz temp1 , 1) == 0) {
length = i ;
break ;

}
mpz mul ui (i1 , mpz temp1 , 1 0) ;
mpz mul ui (i2 , mpz temp1 , 1 2) ;
mpz tdiv q ui (i1 , i1 , 1 2) ;
mpz tdiv q ui (i2 , i2 , 1 0) ;

i f (i >= max length) {
mpz init (p f l [i]) ;
max length ++;

}
random prime (p f l [i] , i1 , i 2) ;
mpz mul (f , f , p f l [i]) ;

}
mpz mul 2exp (n , f , 1) ;
mpz cdiv q (mpz temp1 , p1 , n) ;
mpz tdiv q (mpz temp2 , p2 , n) ;

}

mpz set (i1 , mpz temp1) ;
mpz sub (i2 , mpz temp2 , i 1) ;
mpz add ui (i2 , i2 , 1) ;

unsigned i n t success = 0 ;
unsigned i n t counter2 = 0 ;
counter = 0 ;
mpz t a ;
mpz init (a) ;

while (! success) {
i f (counter > 65536 | |

mpz cmp ui (i2 , counter /(128+ mpz sizeinbase (i2 , 2))) < 0) {
counter2 ++;
i f (counter2 > 1) {

counter2 = 0 ;
length = g e n e r a t e s i z e l i s t (s i z e l i s t) ;

}
counter = 0 ;
do {

mpz set ui (f , 1) ;
counter ++;
i f (counter > 1) {

42

A.3. Source Code

counter = 0 ;
counter2 = 0 ;
length = g e n e r a t e s i z e l i s t (s i z e l i s t) ;

}
for (unsigned i n t i = 0 ; i < length ; i ++) {

mpfr set d (mpfr temp , (s i z e l i s t [i] / 1 6 3 8 4 . 0) , MPFR RNDN) ;
mpfr pow (mpfr temp , p , mpfr temp , MPFR RNDN) ;
mpfr get z (i1 , mpfr temp , MPFR RNDN) ;

i f (mpz cmp ui (i1 , 1) == 0) {
length = i ;
break ;

}
mpz set (i2 , i 1) ;
mpz mul ui (i1 , i1 , 1 0) ;
mpz tdiv q ui (i1 , i1 , 1 2) ;
mpz mul ui (i2 , i2 , 1 2) ;
mpz tdiv q ui (i2 , i2 , 1 0) ;

i f (i >= max length) {
mpz init (p f l [i]) ;
max length ++;

}
random prime (p f l [i] , i1 , i 2) ;
mpz mul (f , f , p f l [i]) ;

}
mpz mul 2exp (n , f , 1) ;
mpz cdiv q (i1 , p1 , n) ;
mpz tdiv q (i2 , p2 , n) ;

} while (mpz cmp(i2 , i 1) < 0) ;
mpz sub (i2 , i2 , i 1) ;
mpz add ui (i2 , i2 , 1) ;
counter = 0 ;

}
random number (i2 , mpz temp2) ;
mpz add (mpz temp2 , mpz temp2 , i 1) ;
mpz mul (n , mpz temp2 , f) ;
mpz mul 2exp (n , n , 1) ;
mpz add ui (n , n , 1) ;

i f (t r i a l d i v i s i o n (n)) {
mpz mul (mpz temp1 , f , f) ;
i f (mpz cmp(mpz temp1 , n) > 0 | |

(m p z t s t b i t (f , 0) == 1 && mpz cmp(f , mpz temp2) > 0)) {
mpz sub ui (a , n , 2) ;
random number (a , a) ;
mpz add ui (a , a , 2) ;
success = check lemma 1 (n , a , pf l , length) ;

}
}
counter ++;

}

mpz add ui (p1 , p1 , 1) ;
mpz add ui (p2 , p2 , 1) ;
for (unsigned i n t i = 0 ; i < max length ; i ++) {

mpz clear (p f l [i]) ;
}
mpz clear (i 1) ;
mpz clear (i 2) ;
mpz clear (f) ;
mpz clear (a) ;

43

A. randomprime.c

mpfr c lear (p) ;
}
return ;

}

i n t main (i n t argc , char * argv [])
{

m p f r s e t d e f a u l t p r e c (BIT LENGTH) ;
mpz t p1 ;
mpz t p2 ;
m p z i n i t s e t u i (p1 , 1) ;
m p z i n i t s e t u i (p2 , 1) ;
mpz t n ;
mpz init (n) ;
mpz mul 2exp (p1 , p1 , BIT LENGTH − 1) ;
mpz mul 2exp (p2 , p2 , BIT LENGTH) ;
mpz sub ui (p2 , p2 , 1) ;

for (unsigned i n t i = 0 ; i < NUMBER OF PRIMES ; i ++) {
bn temp1 = BN new () ;
bn temp2 = BN new () ;
mpz init (mpz temp1) ;
mpz init (mpz temp2) ;
m p f r i n i t (mpfr temp) ;

random prime (n , p1 , p2) ;

BN free (bn temp1) ;
BN free (bn temp2) ;
mpz clear (mpz temp1) ;
mpz clear (mpz temp2) ;
mpfr c lear (mpfr temp) ;

char * s = mpz get s t r (NULL, 16 , n) ;
p r i n t f (”prime p = %s\n” , s) ;
f r e e (s) ;

}

mpz clear (p1) ;
mpz clear (p2) ;
mpz clear (n) ;
return 1 ;

}

44

Bibliography

[1] P. Corn et al. Order of an element. https://brilliant.org/wiki/

order-of-an-element/. Accessed September 18, 2020.

[2] Euler. https://scicomp.ethz.ch/wiki/Euler. Accessed September
18, 2020.

[3] D. Joyner, R. Kreminski, and J. Turisco. Applied Abstract Algebra. Johns
Hopkins University Press, 2004.

[4] D. E. Knuth and L. Trabb Prado. Analysis of a simple factorization
algorithm. Theoretical Computer Science, 3:321–348, 1976.

[5] J. Massimo and K. G. Paterson. A performant, misuse-resistant api for
primality testing, 2020. Accessed September 18, 2020.

[6] U. M. Maurer. Fast generation of prime numbers and secure public-key
cryptographic parameters. Journal of Cryptology, 8:123–155, 1995.

[7] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

[8] OpenSSL. https://www.openssl.org/source/. Accessed September
2, 2020.

[9] OpenSSL prime testing and prime generation function. https://

github.com/openssl/openssl/blob/master/crypto/bn/bn_prime.c.
Accessed September 2, 2020.

[10] H. Riesel. Prime Numbers and Computer Methods for Factorization.
Birkhäuser, 2nd edition, 1994.

[11] Wikipedia. Coupon collector’s problem. https://en.wikipedia.org/
wiki/Coupon_collector’s_problem. Accessed September 18, 2020.

45

https://brilliant.org/wiki/order-of-an-element/
https://brilliant.org/wiki/order-of-an-element/
https://scicomp.ethz.ch/wiki/Euler
https://www.openssl.org/source/
https://github.com/openssl/openssl/blob/master/crypto/bn/bn_prime.c
https://github.com/openssl/openssl/blob/master/crypto/bn/bn_prime.c
https://en.wikipedia.org/wiki/Coupon_collector's_problem
https://en.wikipedia.org/wiki/Coupon_collector's_problem

	Contents
	Introduction
	Number-Theoretic Preliminaries
	Notation
	Prerequisites
	Lemmas

	Algorithm
	Description of the Algorithm (RandomPrime)
	Base Case
	Recursion Case

	Function GenerateSizeList
	Simplified Version

	Function CheckLemma1
	Function PrimeTest and Function TrialDivision
	Correctness of RandomPrime

	Implementation
	Libraries
	OpenSSL
	GNU Multiple Precision Arithmetic Library

	Implementation of GenerateSizeList
	Trial Division Bound
	Implementation of RandomPrime

	Running Time Experiments
	Prime Number Generator in OpenSSL
	Experimental Results
	Runtime Modification

	Discussion
	Advantages and Disadvantages of RandomPrime
	Further Modifications

	Conclusion
	randomprime.c
	Installation of OpenSSL 3.0.0 on Euler
	Compilation on Euler
	Source Code

	Bibliography

