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Abstract

Public-key cryptosystems have allowed us to browse the web securely
for many years. These systems often rely on the use of large prime
numbers given their unique number-theoretic properties. With the
growing computational power and the widespread use of public-key
cryptography protocols reliant on prime numbers in practice, larger
and larger primes have to be used such that current systems stay se-
cure. Past research has shown some strengths and weaknesses of sev-
eral Prime Generation Algorithms (PGAs) [2, 16, 8]. However, there
exist no studies that provide an experimental comparison between dif-
ferent PGA implementations outputting primes and safe primes. In
this thesis we therefore described, implemented and analyzed nine dif-
ferent PGAs, two of which are implemented in the widely used cryp-
tographic libraries OpenSSL and NSS. We found that several imple-
mentations for the generation of primes, including the ones from the
OpenSSL and NSS library, are a suitable choice. However, for the spe-
cial case of safe prime generation we found that less implementations
are suitable for practical applications.
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Chapter 1

Introduction

Diffie and Hellman’s groundbreaking paper about ≪New Directions in Cryp-
tography≫ acted as a quintessential steppingstone to public-key cryptogra-
phy. Their work had an undeniable impact on our society by providing a
way to securely communicate over the world wide web. Different public-
key cryptosystems have been proposed since the publication of Diffie and
Hellman’s paper, including RSA in 1977.

The RSA-Algorithm, named after their publishers Rivest, Shamir and Adle-
man, generates public and private keypairs by utilizing the product of two
distinct prime numbers p and q. For RSA to maintain some of its security
properties we need to assume that the factorization of large numbers, specif-
ically the aforementioned product n = pq, is hard. However, with the ever-
growing computational power it becomes more and more feasible to brute
force current public-key cryptosystems that are not using large enough key
sizes.

With the widespread use of public-key cryptosystems that are reliant on
large primes, it is unquestionable that there is still a great demand for ef-
ficient generation of large prime numbers. In practice many different algo-
rithms for prime generation are employed. Although past research has out-
lined the strengths and weaknesses of some of these algorithms [2, 16, 8],
no effort has been made in trying to offer a direct comparison between
said algorithms in an experimental setting. This thesis therefore aims to
describe, implement and analyze three different Primality Generation Al-
gorithms (PGAs) using three sieving procedures. The total nine different
PGAs, constructed from the combination of the three PGAs and three sieves,
are implemented to output primes and safe primes using the Incremental
Search (IS) paradigm. However, due to the added complexity in regard to
safe prime generation our main focus is set on IS PGAs that output primes.

To compare our nine proposed IS PGAs we conduct runtime experiments

1



1. Introduction

for our implementations with internal parameter values that satisfy the re-
quirements imposed by [2]. One such requirement, that is of importance in
cryptographic applications, is almost uniform distribution over a given set
of primes. The set is commonly chosen as all primes of a specific bit-length
whose two most significant bits are 1 whereas the desired bit-length is sup-
plied as an input to the IS PGA. To connect to previous research in regard to
assessing the output distribution of various IS PGAs as seen in [2] and [16],
we carry out a distribution assessment of our implementations in a limited
setting.

This thesis is structured as follows. We start by defining IS PGAs and in-
troduce important concepts of IS PGAs in Chapter 2. Next, in Chapter 3
we present descriptions of the algorithms in detail. In Chapter 4 we present
our implementations, followed by a runtime and distribution assessment in
Chapter 5. The focus will be set on analyzing the runtime of our imple-
mentations whereas the distribution assessment is carried out in a limited
matter. Finally, in Chapter 6 we discuss the results obtained from Chapter 5
and state the most suitable implementations for practical applications.
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Chapter 2

Background

We begin by explaining the IS paradigm for PGAs in further detail. Next,
procedures used by the IS PGAs of our interest are presented and a brief
introduction to the parameters of our studied IS PGAs is given.

2.1 Incremental search PGAs

In practice we mostly differentiate between two different types of PGAs,
specifically trial and error PGAs and IS PGAs. A trial and error PGA uni-
formly selects a number n from a given set using a cryptographically strong
Random Number Generator (RNG). The set is commonly chosen as the set
of all odd k-bit numbers whose two most significant bits are set to 1 whereas
k is an input to the PGA. The trial and error PGA then tests for primality.
If the test fails, the algorithm chooses another number from the set until a
prime has been found. An IS PGA on the other hand, randomly starts at a
trial n0, i.e. the starting candidate, chosen from a given set, usually the set
of all odd k-bit numbers whose two most significant bits are set to 1, and
tests if n0 is prime. If n0 is not found to be prime, n0 is incremented by
some number, usually by 2. This procedure is repeated until a prime has
been found or a threshold on the maximal number of tested candidates is
reached. It is important to note that primality tests used in PGAs are most
often probabilistic, i.e. the output number is not guaranteed to be prime. In
that case we refer to the output number as a probable prime.

2.1.1 Requirements of IS PGAs

As explained in [2], IS PGAs must meet two requirements:

• Output is prime with some certainty.

As most primality tests used in PGAs are probabilistic, IS PGAs must give
some certainty that the output is indeed prime. Fortunately, if a primality
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2. Background

test like the Miller-Rabin primality test is used upper bounds for the proba-
bility of an IS PGA generating an incorrect output, i.e. output is not prime,
can be calculated. As these upper bounds are dependent on the input and
internal parameters’ values of an IS PGA, we can derive the internal param-
eters’ values from the input parameter, i.e. the output prime bit-size k, to
achieve the wanted level of certainty for the output.

• Almost uniform distribution of the prime output

In cryptographic applications prime numbers must remain unpredictable to
the user generating them. It is therefore important that primes are generated
almost uniformly from some specified set, e.g. the set of all k-bit primes.

2.2 Primality testing algorithms

Primality Testing Algorithms (PTAs) are used to determine whether a num-
ber n is prime. PTAs can be divided into zero false positive or probabilistic
primality tests. Zero false positive primality tests return with absolute cer-
tainty whether n is prime. On the contrary, probabilistic tests declare the
input as definitely composite or probably prime.

The Miller-Rabin (MR) primality test is a probabilistic primality test that
is widely employed due to its simplicity and efficiency. As many crypto-
graphic libraries offer efficient implementations of the MR primality test,
we focus on IS PGAs utilizing the MR test as their primality test. The con-
cept of the MR primality test is checking whether n is a strong probable
prime to a given base a, i.e. test whether one of the following congruence
relations hold

1. ad ≡ 1 (mod n);

2. a2r ·d ≡ −1 (mod n) for some 0 ≤ r ≤ s.

Hence, if a witness a is found for which both congruence relations do not
hold we can conclude by contraposition that n is definitely composite. How-
ever, no simple way of finding a witness is known. It can be shown that by
picking base a at random and running t iterations of the MR test, n is mis-
takenly declared as a probable prime with a probability at most 4−t [6]. Due
to the structure of IS PGAs, we can distinguish between two different types
of probabilities that are of importance.

2.3 Error probability

We define the error probability of an IS PGA as the probability that an IS
PGA outputs a composite. It can be decreased by increasing the number
of Miller-Rabin rounds as long as other parameter values for the IS PGA
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2.4. Failure probability

remain the same. As explained in Section 2.1.1, one of the requirements
of IS PGAs is that the output is prime with some certainty. To fulfil this
requirement it is necessary to derive upper bounds on the error probability
of the IS PGA in question and set its parameters’ values such that we satisfy
the wanted level of certainty.

One important thing to note is that the Miller-Rabin test never rejects a
prime. Concretely, this means that if n is a prime the Miller-Rabin test will
always declare n as prime.

2.4 Failure probability

In this thesis we define the failure probability of an IS PGA as the probabil-
ity that an IS PGA fails to return an output number due to failing to find a
probable prime. This can be the case if the algorithm has reached its thresh-
old on the maximal number of tested candidates. In practice this treshold is
often expressed as a search interval, i.e. the interval from trial n0 to n0 + L
where L is the length of the search interval. If a candidate goes over the
search interval, the IS PGA returns a failure. By choosing an interval con-
sisting of at least one prime we can guarantee a failure probability of 0. A
simple upper bound for prime gaps is Bertrand’s postulate which states that
for every n > 1 a prime in [n, 2n] exists [9].

2.5 Sieving

Sieving in the context of IS PGAs is a procedure that aims to reduce IS
PGAs’ computational cost. The underlying principle of sieving is to generate
candidates that will not waste computational resources on the MR test by for
example ruling out obvious composites. One way a sieving procedure can
find obvious composites is by testing candidates for divisibility with small
known primes. If the sieving procedure finds candidates that are divisible
by some prime, it can eliminate these composites from the candidate pool.
By finding optimized internal parameters’ values where the cost of sieving
does not outweigh the cost of applying the MR test instead, we can save
computational resources with sieving. By possibly precomputing a list of
candidates that pass the sieving procedure the cost of sieving is amortized
over all candidates and even more computational resources are saved.

In IS PGAs one can see sieving as a subroutine to retrieve the next candidate
n to be tested with the MR test. Sieving therefore changes the way in how we
search and determine the next candidate in comparison to IS PGAs without
sieving.
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2. Background

2.6 Parameters

Here we introduce the basic parameters that IS PGAs of our interest use. It
should be noted that in practice users only have to specify the prime output
bit-size k. Other parameter values are initialized such that the implemen-
tation yields optimal runtimes or are derived from the input parameter k
and other internal parameters to meet the desired error and failure proba-
bility bounds. As we want to provide a direct comparison between different
IS PGAs, we must create an environment that makes finding the optimal
parameter values for minimal runtimes bearable. We therefore include all
relevant parameters of an IS PGA as inputs to make the search for the opti-
mal parameter values as simple as possible.

For many cryptographic applications it is important that primes have a guar-
anteed bit-size. We will denote the prime output bit-size k whereas the out-
put prime will be referred to as n.

Some sieving procedures test candidates for divisibility with known primes
to rule out obvious composites. In practice these known primes are usually
a large list consisting of the first odd primes. We denote the amount of first
odd primes to be used in the sieving procedures as r.

As previously mentioned in Section 2.4, search intervals are used in some
IS PGAs to limit the amount of candidates that will be tested. Concretely, if
the difference between the current candidate and the trial n0 is larger than
the size of the search interval a failure is returned by the IS PGA. The size
of the search interval will be referred to as L.

To fulfil the first requirement of IS PGAs from Section 2.1.1, i.e. output is
prime with some certainty, we must, among other things, maintain the error
probability q of an IS PGA below the wanted level of certainty.

As explained in Section 2.2, we focus on the MR primality test for our IS
PGAs. To denote the number of iterations used in the MR primality test we
use t.

A glossary with all common parameters can be found in Table 2.1.

k output bit-size
n0 trial, starting candidate picked by RNG
r amount of first odd primes used in sieving
L size of search interval
q error probability
t number of the MR rounds

Table 2.1: Parameters and their notations for IS PGAs of our interest

6



Chapter 3

Algorithms and Sieves

This chapter presents the three IS PGAs and the three sieves on which we
execute our comparative analysis on in detail. Additionally, we describe the
parameter value derivation for each IS PGA.

3.1 Generic probability bounds for IS PGAs

Before going into the details of each IS PGA, we derive and explain upper
bounds on error and failure probabilities for our IS PGAs. As a starting
point, we use the ones found in [2] when analyzing Algorithm 1, denoted
as PrimeInc in [2]. PrimeInc is a simple IS PGA that uses parameters t, L
and input k to generate probable primes. The subroutine is prime(n, t)

in Algorithm 1 uses the MR primality test to test whether n is prime with t
MR rounds.

Let Mk denote the set of odd numbers in the interval [2k−1, 2k − 1], i.e. the
set of odd numbers of bit length k. Let E denote the event that PrimeInc
outputs a composite and let qk,t, L

2

1 = Prob[E] denote the error probability

of the PrimeInc Algorithm with input k and parameters t and L where L
2 =

c · k · ln(2) for some constant c. qk,t, L
2

can then be estimated by using the
findings of [2]:

qk,t, L
2
≤ L

2 · ln(2)

(
0.5

L
2 · ln(2)

M

∑
m=3

Pk(Cm)2−t(m−1) + 0.7 · 2−tM

)
, (3.1)

where M ≥ 3 and Cm ⊂ Mk is the set of composites for which the probability
of passing the MR test is larger than 2−m. For m ≤ 2

√
k− 1− 1 it holds that

1We use qk,t, L
2

instead of qk,t,s which is used in the paper to be in line with our parameter
notation.
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3. Algorithms and Sieves

Pk(Cm) ≤ 8
3

(π2 − 6)
m

∑
j=2

2m−j−(k−1)/j. (3.2)

To get the best bounds on the error probability, c should be chosen as small
as possible. However, choosing smaller c increases the failure probability
as we narrow down the size of the search interval. For large k, the failure
probability of PrimeInc can be estimated with e−2c [2].

Due to the first IS PGA requirement, found in Section 2.1.1, we aim to satisfy
the condition that the error and failure probability are smaller than some
upper bound, i.e. ≤ 2−γ, γ ∈ R+. As seen in this section, the error and
failure probability are dependent, inter alia, on parameters t, L and input k.
Now, to find parameter values for which the error and failure probability
are ≤ 2−γ, we select parameters L and, in some cases, r to our liking and
use input k to derive t using the upper bound formulae on the error and
failure probability of the IS PGA. However, to optimize runtimes of an IS
PGA it is necessary to run a benchmark with varying r and L to determine
which parameter pair (L, r) gives the best runtime results.

Algorithm 1: PrimeInc
Input: k
Parameter: t, L

1 n0 ∈R Mk // draw trial uniformly

2 n← n0
3 Loop
4 if is prime(n,t) then
5 return n
6 else
7 n← n + 2
8 if n ≥ n0 + L then
9 return failure

10 end
11 end

3.2 Algorithms

3.2.1 NSS PGA

The first IS PGA that we analyze is the one implemented in the Network
Security Services (NSS) library. The NSS is a cryptographic open-source
project maintainted by, inter alia, Google, Red Hat and AOL [10]. We will
refer to this IS PGA as the NSS PGA from now on.
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3.2. Algorithms

The NSS PGA, described in Algorithm 2, is a round based IS PGA that
makes use of an additional parameter U, the maximal number of rounds.
One round in the NSS PGA, denoted as NSS iter whose pseudocode can
be found in Algorithm 3, is similar to the PrimeInc algorithm but utilizes
sieving to retrieve the next candidate. If a round does not find a probable
prime within distance L between trial n0 and current candidate n, it returns
a failure and another round is started. If all U rounds have passed without
finding a probable prime n, a failure is returned. Otherwise, the probable
prime n is returned as soon as one rounds succeeds.

The main peculiarity of the NSS PGA is the introduction of parameter U. U
allows for smaller choices for L while still maintaining the failure probability
below the desired level.

Several subroutines are called in a round. rand num(k) generates a trial n0
of k-bit length using a cryptographically strong RNG. In the libraries that we
have observed the RNG fixes the first two bits of n0 to 1. As our three stud-
ied IS PGAs are compatible with all of our sieves of interest as is, we use the
subroutines init sieve(...) and sieving algorithm(...) to denote the
sieving procedures. init sieve(...) initializes the sieving data structure,
an array usually needed for the purposes of sieving, which is then passed
to its corresponding sieving algorithm, sieving algorithm(...), that cal-
culates the next candidate and stores it into n. The sieve to use can then be
selected by changing both init sieve(...) and sieving algorithm(...)

to the desired sieving procedure.

The variable iterator in Algorithm 3 is used, inter alia, to save the state of
the sieve. For example, iterator can be used to iterate through a sieve array.
Whenever the sieving algorithm is called within the same context again, the
iteration through the sieve array can resume with the use of iterator. How
iterator is used in the case of our sieves can be seen in Section 3.3.

Algorithm 2: NSS PGA
Input: k
Parameter: t, r, L, U

1 j← 0
2 ret← f ailure
3 while ret ̸= success and j < U do
4 ret← NSS iter(n, k, t, r, L)
5 j← j+1
6 end
7 return n

9



3. Algorithms and Sieves

Algorithm 3: NSS iter
Input: n, k, t, r, L

1 n0 ← rand num(k) // trial generated from strong crypto RNG

2 sieve← init sieve(n0, r, L)
3 iterator← 0
4 do
5 ret← sieving algorithm(sieve, n0, n, iterator)
6 if ret ̸= success or n −n0 > L or num bits(n) ̸= k then
7 return failure
8 end
9 while !is prime(n,t)

10 return success

Derivation of the parameters’ values

Let qk,t, L
2 ,U,r,NSS denote the error probability of the NSS PGA with input k

and the corresponding parameters set to t, L, U and r. Moreover, let Nk
be the random variable capturing k-bit prime gaps. From the prime num-
ber theorem [13] we know that the expected k-bit prime gap E[Nk] is well
approximated with kln(2). qk,t, L

2 ,U,r,NSS can then be estimated by using the
findings of [2]’s error probability qk,t, L

2
in the following manner:

qk,t, L
2 ,U,r,NSS =

U

∑
i=1

P[failure in all rounds before round i] · P[error in round i]

≈ qk,t, L
2

U

∑
i=1

P[failure in round 1] · · · P[failure in round i-1] (i.i.d.)

⪅ qk,t, L
2

U

∑
i=1

(e−2c)(i−1)

= qk,t, L
2

U

∑
i=1

(e−
2L

2E[Nk ] )(i−1)

= qk,t, L
2

U

∑
i=1

(e−
L

E[Nk ] )(i−1)

= qk,t, L
2

1− e
−UL
E[Nk ]

1− e
−L

E[Nk ]
. (geometric series)

(3.3)

This leads us to the following conclusion

10



3.2. Algorithms

qk,t, L
2 ,NSS ⪅ qk,t, L

2
· 1− e

−LU
E[Nk ]

1− e
−L

E[Nk ]
. (3.4)

Therefore, in maintaining the NSS PGA error probability ≤ 2−γ it suffices
to maintain

L
2 · ln(2)

(
0.5

L
2 · ln(2)

M

∑
m=3

Pk(Cm)2−t(m−1) + 0.7 · 2−tM

)
· 1− e

−LU
kln(2)

1− e
−L

kln(2)
(3.5)

below or equal to 2−γ.

As NSS rounds are independent, we can approximate the failure probability
by exponentiating the failure probability of one NSS round by U as follows

P[failure in a round]U ⪅ (e−2c)U

= e−
2UL

2kln(2)

= e−
UL

kln(2) .

(3.6)

Hence, we impose restrictions on both U, the maximal NSS rounds, and L
by ensuring that the failure probability of the algorithm is small, i.e. ≤ 2−γ

e−
UL

kln(2) ≤ 2−γ

− UL
kln(2)

≤ −γln(2)

UL ≥ γkln2(2).

(3.7)

By using the user input k, fixing L to some constant value and desirable
upper bounds on the error and failure probabilities, we can derive t and U
using the inequalities (3.4) and (3.7), respectively. In detail, we start deriving
t by setting t = 1 and continuously check if the minimum of (3.5) in M,
3 ≤ M ≤ 2

√
k− 1− 1, is below 2−γ while incrementing t by 1. The first t

that satisfies this condition is returned.

3.2.2 Natural PGA

The next IS PGA we analyze is similar to PrimeInc in the sense that once the
trial n0 is selected it never restarts the algorithm with another starting trial.
Due to its simple and intuitive structure we refer to it as the Natural PGA.
The pseudocode for the Natural PGA is given in Algorithm 4.
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3. Algorithms and Sieves

Algorithm 4: Natural PGA
Input: k
Parameter: t, r, L

1 n0 ← rand num(k) // trial generated from strong crypto RNG

2 iterator← 0
3 sieve← init sieve(n0, r, L)
4 ret← sieving algorithm(sieve, n0, n, iterator)
5 if ret ̸= success or num bits(n) ̸= k then
6 return failure
7 end
8 while !is prime(n,t) do
9 ret← sieving algorithm(sieve, n0, n, iterator)

10 if ret ̸= 1 or num bits(n) ̸= k then
11 return failure
12 end
13 end
14 return n

Derivation of the parameters’ values

Our upper bound on the error probability of PrimeInc in (3.1) grows with
larger c. In the case of the Natural PGA, we indefinitely search for a prime
in the k-bit interval and possibly have a very large c. Therefore, we ap-
proximate the error probability using the approach from [2] for L = ∞. We
first derive L that satisfies the failure probability being ≤ 2−(γ+1). We fur-
ther know that the failure probability can be approximated by e−2c. For
L
2 = ckln(2), we can reformulate the equation to find L for which the failure
probability is ≤ 2−(γ+1) in the following way

e−2c ≤ 2−(γ+1)

e−
2L

2kln(2) ≤ 2−(γ+1)

e−
L

kln(2) ≤ 2−(γ+1)

− L
kln(2)

≤ −(γ + 1)ln(2)

L ≥ (γ + 1)kln2(2).

(3.8)

With the received L and the findings of [2], we can give an approximate
bound on the error probability for the case of L = ∞:

qk,t,∞ ≤ qk,t, L
2

+ e−2c(1 + o(1)). (3.9)
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3.2. Algorithms

Now, t for which qk,t, L
2

is sufficiently small to achieve an error probability of

≤ 2−(γ+1) has to considered as a value for the Natural PGA, given input k.

3.2.3 OpenSSL PGA

The last IS PGA we focus on is the one implemented in the OpenSSL library,
a toolkit for the TLS and SSL protocols written in the C programming lan-
guage [12]. We will therefore call this IS PGA the OpenSSL PGA from now
on.

The OpenSSL PGA works in a similar way to the NSS PGA. Unlike the NSS
PGA, the number of OpenSSL round calls U are unbounded and each round
calls the procedure sieving algorithm(...) only once. In other words,
each round generates only one candidate n and restarts if candidate n is not
a probable prime. Since U = ∞, we omit the usage of U in the context of
the OpenSSL PGA hereinafter. The pseudocode for the OpenSSL PGA and
OpenSSL iter algorithm, which implements one round within the OpenSSL
PGA, are given in Algorithm 5 and 6, respectively.

Algorithm 5: OpenSSL PGA
Input: k
Parameter: t, r, L

1 ret← f ailure
2 while ret = f ailure do
3 ret← OpenSSL iter(n, k, t, r, L)
4 end
5 return n

Derivation of parameters’ values

Let the error probability for the OpenSSL PGA with input k and parameters
t, L and r be denoted as qk,t, L

2 ,r,OpenSSL. Moreover, let Gr
k denote the random

variable capturing the gap of k-bit numbers not divisible by the first r odd
primes. As the OpenSSL PGA restarts the round after testing one candi-
date with is prime(), the expected value for the number of independent
OpenSSL iterations to retrieve the first probable prime is E[Nk]

2·E[Gr
k] . The intu-

ition behind this is that when drawing the trial n0 from the k-bit interval
uniformly it should take us E[Nk]

2 OpenSSL rounds to find a prime in ex-
pectation. The division by 2 comes from the fact that we only consider odd
numbers from the k-bit interval. Additionally, the usage of our three stud-
ied sieves cuts out a fraction of candidates that are not divisible by the first
r odd primes and can be approximated with E[Gr

k] ≈ ∏r
i=0 1 + 1

pi−1 [7]. In
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3. Algorithms and Sieves

Algorithm 6: OpenSSL iter
Input: n, k, t, r, L

1 n0 ← rand num(k) // trial generated from strong crypto RNG

2 sieve← init sieve(n0, r, L)
3 iterator← 0
4 ret← sieving algorithm(sieve, n0, n, iterator)
5 if ret ̸= success or num bits(n) ̸= k then
6 return failure
7 end
8 if is prime(n) then
9 return success

10 else
11 return failure
12 end

summary, the error probability can be approximated by taking the expected
number of independent OpenSSL rounds and multiplying it by the error
probability of one iteration which now implies:

qk,t, L
2 ,r,OpenSSL ≈ P[error in one OpenSSL iteration]

· E[# OpenSSL iter rounds to find probable prime] (i.i.d.)

⪅ qk,t, L
2

E[Nk]
2E[Gr

k]
.

≈ qk,t, L
2

kln(2)
2 ∏r

i=0 1 + 1
pi−1

.

(3.10)

As the OpenSSL PGA does not bound the number of OpenSSL rounds
its failure probability is always set to 0. We find ourselves in a similar
predicament as for the Natural PGA. In detail, the OpenSSL PGA indefi-
nitely searches for odd candidates that are not divisible by the first r odd
primes in the k-bit interval and c possibly grows very large. We therefore
must first derive c for which the failure probability is ≤ 2−γ. Only then we
derive t for which the error probability is ≤ 2−γ. As a starting point we first
inspect the failure probability for the case of an indefinite search, i.e. L

2 set to
∞, in the PrimeInc Algorithm. We gather from [2] that the error probability
of PrimeInc with L

2 = ∞, i.e. qk,t,∞, is ≤ pk,t, L
2

+ e−2c(1 + o(1)) where pk,t, L
2

denotes the error probability of an algorithm that runs PrimeInc with some
finite L

2 and the second term comes from upper bounding the failure proba-
bility for the same algorithm. To examine the case of the OpenSSL PGA, we
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3.3. Sieves

multiply both sides of the inequality with E[Nk]
2E[Gr

k] . As a result we receive the
following inequality

qk,t, L
2 ,r,OpenSSL ⪅ qk,t,∞

E[Nk]
2 · E[Gr

k]
≤
(

pk,t, L
2

+ e−2c(1 + o(1))
) E[Nk]

2 · E[Gr
k]

. (3.11)

By upper bounding (3.11) with 2γ = 2−(γ+1) + 2−(γ+1) and the failure proba-
bility with e−2c, i.e. omitting the term o(1), we can now split (3.11) into two
separate inequalities that must be satisfied as follows:

pk,t, L
2

E[Nk]
2 · E[Gr

k]
≤ 2−(γ+1)

log2(pk,t, L
2
) + log2

(
E[Nk]

2 · E[Gr
k]

)
≤ −(γ + 1)

(γ + 1) + log2

(
E[Nk]

2 · E[Gr
k]

)
≤ −log2(pk,t, L

2
)

(γ + 1) + log2

(
E[Nk]

2 ∏r
i=0 1 + 1

pi−1

)
≤ −log2(qk,t, L

2
)

(3.12)

and

e−2c E[Nk]
2 · E[Gr

k]
≤ 2−(γ+1)

−2c · log2(e) + log2

(
E[Nk]

2 · E[Gr
k]

)
≤ −(γ + 1)

ln(2)
2

(
(γ + 1) + log2

(
E[Nk]

2 · E[Gr
k]

))
≤ c.

(3.13)

The last step of (3.12) can be justified with the fact that the error probability
of an algorithm that runs PrimeInc with some finite L

2 is exactly qk,t, L
2
. If

we now consider c that satisfies (3.13), we can now derive appropriate t for
which (3.12) is satisfied using L, r and input k. The approach to finding t is

similar to the one used for the NSS PGA but with E[Nk]
2·E[Gr

k] instead of 1−e
−UL
E[Nk ]

1−e
−L

E[Nk ]

and γ + 1 instead of γ.

3.3 Sieves
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3. Algorithms and Sieves

3.3.1 NSS sieve

The first sieving procedure that we consider is the one implemented in the
NSS library. This sieve will therefore be referred to as the NSS sieve.

The NSS sieve initialization function, given in Algorithm 7, sets up an array
of size L

2 such that sieve[j] being non-zero indicates that n0 + 2 · j is composite.
In detail, in each iteration of the for loop the remainder of the trial n0 and
the i-th odd prime is calculated and saved in a variable named rem. If n0
is divisible by p(i+1), offset is set to 0, p(i+1) − rem otherwise. Hence, n0 +
offset determines the nearest number to n0 greater than n0 that is divisible
by the current prime. Moreover, all n0 + offset + σ · p(i+1), σ ∈ N0, are
divisible by p(i+1) and therefore marked as composites in the array as well.

By marking composites as non-zero in the array, we can return candidates
that pass the trial division with the first r odd primes by searching for zero
entries in the array as seen in Algorithm 8. As pointed out in Section 2.5,
we save computational cost by prelabeling candidates that passed the NSS
sieve. The concept of the NSS sieve is that it eliminates candidates that are
divisible with some of the first r odd primes. Therefore, computational cost
is saved since eliminated candidates are never tested with the MR primality
test.

Algorithm 7: NSS sieve init
Input: n0, r, L

1 sieve← alloc(L/2) // allocate memory

2 for i← 0 to r do
3 rem← n0 % prime[i]
4 if rem = 0 then
5 offset← 0
6 else
7 offset← prime[i] - rem
8 end
9 for j← o f f set to L increment by prime[i] do

10 if j % 2 = 0 then
11 sieve[j/2]← 1
12 end
13 end
14 end
15 return success
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3.3. Sieves

Algorithm 8: NSS sieve
Input: sieve, n0, n, iterator

1 if iterator > size(sieve) then
2 return failure
3 end
4 while iterator < size(sieve) and sieve[iterator] ̸= 0 do
5 iterator← iterator+1
6 if iterator ≥ size(sieve) then
7 return failure
8 end
9 end

10 n← n0 + 2·iterator
11 return n

3.3.2 OpenSSL sieve

The second sieving procedure we consider is the one used in the OpenSSL
PGA implementation. We will refer to it as the OpenSSL sieve.

The OpenSSL sieve initialization function initializes an array of size r and
sets its entries to the remainders of the trial n0 with the first r odd primes.
The pseudocode is given in Algorithm 9.

The candidate n is retrieved by checking divisibility of n0 + iterator with
all the first r odd primes. If some prime divides n0 + iterator, we increment
iterator by two, i.e. a new possible candidate is the next odd number. If
n0 + iterator passes the divisibility check, we set n to exactly n0 + itera-

tor. In this way a great portion of composites are eliminated from being a
candidate n. Therefore when using the OpenSSL sieve within an IS PGA, we
do not have to spend computational resources on the MR test to find them.
An example instantiation of the OpenSSL sieve is given in Algorithm 10. In
the OpenSSL library implementation the variable max difference is set to
the largest possible integer subtracted by the r-th odd prime to prevent an
overflow happening in line 4 of Algorithm 10.

Algorithm 9: OpenSSL sieve init
Input: n0, r, L

1 sieve← alloc(r) // allocate memory

2 for i← 0 to r do
3 sieve[i]← n0 % prime[i]
4 end
5 return sieve
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Algorithm 10: OpenSSL sieve
Input: sieve, n0, n, iterator

1 max difference // used to prevent an overflow

2 Loop
3 for i← 0 to r do
4 if (sieve[i] + iterator) % prime[i] = 0 then
5 iterator← iterator + 2
6 if iterator > max difference then
7 return failure
8 end
9 goto loop

10 end
11 end
12 n← n0 + iterator
13 iterator← iterator + 2
14 return n

3.3.3 Dirichlet sieve

The last sieving procedure we consider relies on Dirichlet’s theorem on
arithmetic progressions to generate prime candidates n within IS PGAs.
Thus, we will refer to it as the Dirichlet sieve hereinafter. Dirichlet’s theorem
states that given an arithmetic progression of terms dw + a for w = 1, 2, ... the
series contains an infinite number of primes for coprime d and a. By gener-
ating a starting candidate of form dw + a where d and a are coprime, we can
find primes by incrementing w as it is guaranteed that this series contains
an infinite number of primes as long as we don’t overrun the k-bit or search
interval.

One important question to consider is whether the Dirichlet sieve uniformly
generates primes. As mentioned, d and a must not have a common factor
> 1. The amount of all such a are given by Euler’s totient function φ(d).
The proportion of primes in each of those arithmetic progressions is then
asymptotically equal to 1

φ(d) by the stronger form of Dirichlet’s theorem [14].
If d is equal to a prime number q, then each of the q− 1 progressions

• q + 1, 2q + 1, ...

• q + 2, 2q + 2, ...

• ...

• q + q− 1, 2q + q− 1, ...

asymptotically contain ≈ 1
(q−1) of primes. Intuitively, this implies that for

any fixed d, choosing a and w randomly from the set of coprimes of d and
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the natural numbers, respectively, and setting dw + a as the candidate n in an
IS PGA of our interest yields an almost uniform distribution of an IS PGA’s
prime output.

In our instantiation we choose d to be the product of the first r odd primes to
ensure that a candidate is coprime to the first r odd primes. We will refer to
this product as mr. We model the Dirichlet sieve initialization function such
that n0 stores mr. The product mr will then be used in the Dirichlet sieve to
find coprime a, i.e. a for which gcd(mr, a) = 1. Once a coprime a has been
found, a random z, previously denoted as w, will be generated satisfying
the requirement that n = z ·mr + a lies in the k-bit interval, i.e. [2(k−1), 2k− 1].
We omit the steps on how such z can be found in Algorithm 12 but will
describe them when we discuss our implementation of the Dirichlet sieve in
the next chapter. When the Dirichlet sieve is called more than once in a row,
we define our algorithm to keep adding mr to the previous candidate n. As
an arithmetic progression carries infinite primes, we are guaranteed to find
a probable prime as long as we do not overrun the search interval L as given
in the NSS PGA or the k-bit interval. The pseudocodes for the Dirichlet sieve
initialization and the Dirichlet sieve function are given in Algorithm 11 and
12.

Algorithm 11: Dirichlet sieve init
Input: n0, r, L

1 n0 ← 1
2 for i← 0 to r do
3 n0 ← n0·prime[i]
4 end
5 return sieve

Algorithm 12: Dirichlet sieve
Input: sieve, n0, n, iterator

1 if iterator = 0 then
2 n← z·mr+a // where gcd(mr,a) = 1 and num bits(n) = k

3 iterator← 1
4 else
5 n← n + n0
6 end
7 return success
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3.4 Safe prime generation

Safe primes have important applications in some Diffie-Hellman key ex-
change protocol implementations due to their desirable mathematical prop-
erties. A safe prime p is of the form p = 2q + 1 where both p and q are prime.
q is also referred to as a Sophie Germain prime. In this section we will ex-
plain the necessary changes to the sieves and IS PGAs from this section to
generate safe primes.

3.4.1 Changes to PGAs and derivation of parameter values

There are two additional things that we need to take care of when generating
safe primes in IS PGAs. We first have to test primality with MR for both n
and n−1

2 . Secondly, the trial generation requires that the bit of the trial n0 at
index 1 must be set to 1 as else n0−1

2 will be even, i.e. not a Sophie Germain
prime. This also implies that the step size in the incremental search changes.
For example, from 2 to 4 in the PrimeInc Algorithm described in Section 3.1.

It is important to note that the bound on the error probability of one round
within an IS PGA when moving from outputting a probable prime to out-
putting a probable safe prime does not increase. However, the failure proba-
bilities are not the same as safe primes have a different density than primes.
This means that for IS PGAs with bounded search intervals, e.g. the NSS
PGA, we must set the thresholds to larger numbers to accomodate the
smaller density. A heuristic estimate for the number of Sophie Germain
primes less than n is ξ(n) = 2 · C · n

ln2(n) , where C = ∏p>2
p(p−2)
(p−1)2 ≈ 0.660161

denotes Hardy–Littlewood’s twin prime constant [15]. Hence, the number
of k-bit safe primes is ≈ ξ(2k−1) − ξ(2k−2). We can approximate the safe
prime gap by dividing the total interval length where the k-bit numbers lay
in with the amount of k-bit safe primes and receive ≈ 763, 000 for k = 1024
(see Appendix A.3 for detailed calculations). In contrast, the average prime
gap for k = 1024 is ≈ 710.

Finally, to give an estimate for the failure probability of the safe Natural
PGA we use the Markov inequality. Sharper bounds like the Chebyshev’s
inequality require a direct assumption on the variance which is not known
yet. Let X be the the random variable capturing the gaps between safe
primes. By previous calculations, we know E[X] ≈ 763, 000. To find the
needed L that satisfies our requirement of the failure probability being ≤
2−γ, we first use the Markov inequality as follows

P[X ≥ a] ≤ E[X]
a

(3.14)

and search for a such that
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E[X]
a
≤ 2−γ

log2(a) ≥ log2

(
E[X]
2−γ

)
.

= log2(E[X])− (−γ) · log2(2)
= log2(E[X]) + γ.

(3.15)

For k = 1024 and γ = 128 we get log2(a) ≈ 147.5. This might lead us to think
that L must be set to ≥ 2log2(a) to maintain the failure probability below 2−γ

for the safe Natural PGA. However, this is only true if Var[X] ≤ E[X]2 on
which we did not find a resource about.

3.4.2 Safe NSS sieve

The Safe NSS sieve initialization now has to additionally factor in that n0−1
2

must also be prime by the definition of safe primes. We therefore check
whether the current prime divides n0 or n0−1

2 . As n0 and n0−1
2 are odd,

we must only consider divisibility for n0 and n0 − 1. Conveniently, we can
reuse the offset for n0 by incrementing it by 1 and setting all array values
accordingly. The NSS sieving algorithm itself only changes in the step size
of 4 instead 2 as we are dealing with safe primes. The pseudocode for the
safe NSS sieve initialization and the safe NSS sieve are given in Algorithm
13 and 14, respectively.

3.4.3 Safe OpenSSL sieve

The safe OpenSSL sieve initialization is equivalent to the non-safe OpenSSL
sieve initialization presented in Algorithm 9. On the other hand, the safe
OpenSSL sieve checks whether n0 + iterator or n0 − 1 + iterator are divisible
by any of the first r odd primes as seen in line 4 of Algorithm 15. This is
accomplished by checking whether a candidates updated array values are
either 0 or 1, i.e. n0 + iterator or n0 − 1 + iterator are divisible by the current
prime, respectively. The iterator now gets incremented by 4 instead of 2 as
seen in line 13 of Algorithm 15.

3.4.4 Safe Dirichlet sieve

The sieve generation step, i.e. the generation of the product mr, works the
same as in the non-safe Dirichlet sieve (see Algorithm 11). The safe Dirichlet
sieve however outputs n = z · mr + a where both a and a − 1 are relatively
prime to mr. We add gcd(mr, a − 1) as an additional requirement because
in this way we ensure that the arithmetic progression of form z·mr+a−1

2 is
satisfied for the Sophie Germain prime as well. As the product mr is always
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Algorithm 13: Safe NSS sieve init
Input: n0, r, L

1 sieve← alloc(L/2) // allocate memory

2 for i← 0 to r do
3 rem← n0 % prime[i]
4 if rem = 0 then
5 offset← 0
6 else
7 offset← prime[i] - rem
8 end
9 for j← o f f set to 2 ⋆ L increment by prime[i] do

10 if j % 4 = 0 then
11 sieve[j/4]← 1
12 end
13 end
14 if offset = prime[i]-1 then
15 offset← −1 // Do not skip first occurence

16 end
17 for j← o f f set + 1 to 2 ⋆ L increment by prime[i] do
18 if j % 4 = 0 then
19 sieve[j/4]← 1
20 end
21 end
22 end
23 return success

Algorithm 14: Safe NSS sieve
Input: sieve, n0, n, iterator

1 if iterator ≥ size(sieve) then
2 return failure
3 end
4 while iterator < size(sieve) and sieve[iterator] ̸= 0 do
5 iterator← iterator+1
6 if iterator ≥ size(sieve) then
7 return failure
8 end
9 end

10 n← n0 + 4·iterator
11 return n
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Algorithm 15: Safe OpenSSL sieve
Input: sieve, n0, n, iterator

1 max difference // used to prevent an overflow

2 Loop
3 for i← 0 to r do
4 if (sieve[i] + iterator) % prime[i] ≤ 1 then
5 iterator← iterator + 4
6 if iterator > max difference then
7 return failure
8 end
9 goto loop

10 end
11 end
12 n← n0 + iterator
13 iterator← iterator + 4
14 return n

odd by construction, it is required that z is even and a is odd to guarantee
that (n−1)

2 is an integer. Consequently, we must increment n by 2 ·mr instead
of mr in all the following calls of the safe Dirichlet sieve. One should keep in
mind that mr is stored in the variable n0 as previously mentioned in Section
3.3.3. The changes are portrayed in Algorithm 16.

Algorithm 16: Safe Dirichlet sieve
Input: sieve, n0, n, iterator

1 if iterator = 0 then
2 n← z · mr+a // where gcd(mr,a) = 1, gcd(mr,a-1) = 1,

num bits(n) = k, z even and a odd

3 iterator← 1
4 else
5 n← n + 2 · n0
6 end
7 return success
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Chapter 4

Implementation

This chapter describes our implementations of the algorithms and sieving
procedures described in Chapter 3. In the first section of this chapter we
introduce and explain our chosen setup.

4.1 Setup

The primary part of our implementation is written in the programming lan-
guage C. Some supplementary programs that are used for plotting and do-
ing precomputations are written in Python. All auxillary functions used
in the PGAs such as the primality testing functions, RNGs and big num-
ber arithmetic are provided by the OpenSSL library (version 3.0.0 Alpha
12) [11]. We choose the OpenSSL library as it provides cryptographically
strong RNGs and an efficient implementation of the MR test. Throughout
this work we focus on the case of output bit-size k = 1024. The results are
easily extended to other bit-sizes as explained in Appendix A.2.

We examine nine different IS PGAs, constructed as a combination from the
algorithms and sieves described in Chapter 3. They are as follows:

• The NSS PGA with the NSS sieve,

• The NSS PGA with the OpenSSL sieve,

• The NSS PGA with the Dirichlet sieve,

• The Natural PGA with the NSS sieve,

• The Natural PGA with the OpenSSL sieve,

• The Natural PGA with the Dirichlet sieve,

• The OpenSSL PGA with the NSS sieve,

• The OpenSSL PGA with the OpenSSL sieve,
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• The OpenSSL PGA with the Dirichlet sieve.

For each of the nine options, we provide an assessment on the performance
and distribution. Likewise, we implement and analyse the safe variants of
all nine IS PGAs in an equal manner.

4.1.1 Function prototypes

IS PGAs

We implement all three IS PGAs explained in Section 3.2 with the function
prototype portrayed in Listing 4.1. A sieve used in an algorithm can then be
selected by supplying the function with the corresponding function pointers
to the sieve initialization and sieve function. We choose this setup as it
allows code reusage and easier debugging.

Listing 4.1: Function prototype of the IS PGAs

int is_pga_name(BIGNUM *p, int k, int t, int r, int L, int

(*generate_sieve)(...), int (*sieve_algo)(...), int sieve_sz);

The functions returns 11 if a probable prime has been successfully generated
and stored into input p. p stores the pointer to a BIGNUM, a datastructure
used in the OpenSSL library for arithmetic operations on integers of arbi-
trary size. If the function fails to find a probable prime, it returns 0. -1
is returned whenever internal errors happen, for example when OpenSSL
library functions return an error. Input k and parameters t, r and L are
inputs to the function and follow our parameter notation. We use function
pointers to the sieve initialization and sieve functions in generate sieve

and sieve algo, respectively, as inputs. The OpenSSL PGA, as explained in
Section 3.2.3, reallocates the array of its sieve in every round. Therefore, we
decided to move the array allocation of the sieves into is pga name(). With
this change we save time as memory for the array has to be allocated only
once. In turn, the sieve array allocation size has to be supplied as an input
via sieve sz. The sieve array allocation sizes that have to be used for each
sieve are represented in Table 4.1. Note that the same sizes hold true for
their respective safe variant implementations.

NSS sieve L/2
OpenSSL sieve r− 1
Dirichlet sieve 1

Table 4.1: Sieve array allocation sizes for different sieves

1instead of using success and failure as presented in Chapter 3 we use integers as the
return code
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Sieves

As function pointers are used to select the sieving procedure for an IS PGA,
all sieve initialization and sieve functions must have the same function pro-
totype. The prototype of both functions are given in Listing 4.2.

Listing 4.2: Function prototypes for the sieve initialization and sieve algorithm func-
tions

int sieve_name_generate_sieve(unsigned short *sieve, int sieve_sz,

BIGNUM *n0, int r);

int sieve_name(unsigned short *sieve, int sieve_sz, BIGNUM *n, BIGNUM

*n0, int r, unsigned long *it, int k);

A sieve initialization function (sieve name generate sieve()) returns 1 if
the sieve initialization is successful and 0 otherwise. sieve is a pointer that
points to the allocated datastructure of size sieve sz whereas n0 points to
a BIGNUM storing the trial n0. n0 is initialized in the caller’s function is -

pga name() using a cryptographically strong RNG. Keep in mind that in
the Dirichlet and safe Dirichlet sieve n0 stores the product mr. Parameter r
follows from our parameter notation.

A sieve function, sieve name(), returns 1 if a candidate has been success-
fully selected and stored in n. If the function call fails to find a candidate, 0
is returned. If internal errors occur, the function returns -1. Trial n0, input k
and parameter r are defined as before. Lastly, it points to an unsigned long
that we denoted as iterator in our pseudocode notation of Section 3.2.

Safe variants

The safe variants use the same function prototypes as the non-safe variants.
We alter the function names by adding the prefix safe .

4.2 Optimal parameter selection

As mentioned in the previous chapters, we must guarantee that both the
error and failure probability are ≤ 2−γ for some γ ∈ R+. Free parameters
in our case are r, the number of first odd primes used in sieving, and ad-
ditionally the size of the search interval L if an algorithm makes use of it.
The number of MR-rounds t and the maximal number of the NSS PGA it-
erations U are then derived from the free parameters such that the desired
error and failure probability is satisfied. Concretely, this means if a runtime
test is conducted on varying r and L, an auxillary function is called to cal-
culate the optimal, i.e. the smallest, number of MR rounds t to satisfy the
error and failure probability being ≤ 2−γ for a suitable γ ∈ R+. In the case
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of the NSS PGA, U is calculated using (3.7). We set the security parameter
γ to 128 for k = 1024. However, as the RNG used in our implementations
fixes the two most significant bits to 1, keeping the error probability below
2−128 in reality keeps it below 2−127. An exception for γ is made for the safe
OpenSSL PGA where we set γ = 100. As we will see in the next chapter,
this exception will have no negative implications in regard to our runtime
assessment for the safe variants.

The optimal parameter selection was implemented using generate opti-

mal pga params.py. This program calls functions defined in pga params.py

that calculate the optimized t given an input k, L and r by using the deriva-
tions2 presented in Chapter 3. generate optimal pga params.py stores the
results into an .csv file which will then be used as an input for the per-
formance and distribution assessment. It is important to note that the opti-
mized parameters’ retrieval is only done once at the beginning of each batch
and does not influence the performance assessment.

4.3 Modifications in our implementations

In this section we will focus on differences between our implementations
and the algorithms described in Chapter 3. It should be noted that most of
the implementations follow the corresponding algorithms closely, introduc-
ing only minor performance optimizations. The source code for the imple-
mentations can be found under [4].

4.3.1 Dirichlet sieve

In the first call of the Dirichlet sieve, we have to generate n = z ·mr + a where
n is of k-bits and gcd(mr, a) = 1 holds. The steps to generate such n are as fol-
lows. We first repeatedly generate a in [1, mr − 1] with a cryptographically
strong RNG until gcd(mr, a) = 1 holds. Next, we use BN rand range(x, in-

terval bound) to generate a number x in the interval [0, interval bound).
If we set interval bound = 2k − (2k−1 + 1), i.e. the k-bit interval length, we
can shift x into the interval [2k−1 − a, 2k − 1− a) by adding 2k−1 − a to x. If
we now retrieve the remainder of x

mr
, we can subtract the remainder off of x.

By construction it follows that there must exist a z s.t. x = z ·mr. By adding
a to x, we construct n = x + a = z · mr + a where n ∈ [2k−1, 2k − 1]. As we
want to be consistent with other implementations, we set interval bound

= 2k − (2(k−1) + 2(k−2) + 1) in our non-safe and safe Dirichlet sieve implemen-
tations to make sure that the two most significant bits are set to 1.

2As previously explained, we execute all our derivations in such a manner that the part
including qk,t, L

2
is always maintained below the targeted level times 2
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4.3. Modifications in our implementations

4.3.2 Safe NSS PGA

In Section 3.4.1, we saw that we cannot easily derive L for the safe NSS
PGA. We therefore use similar L as in the non-safe variant but increase U to
infinity. By doing so we do not have a bound on the number of NSS rounds
and do not have to worry about the failure probability. The implication on
the error probability will be explained when we analyze the runtime plots
of the safe NSS PGA in the next chapter.

4.3.3 Non-safe and safe NSS PGA with the Dirichlet sieve

As the Dirichlet sieve initializes n0 to mr, the search interval L is overran in
the first sieving call. This is because for larger r the product mr is signifi-
cantly larger than the largest possible integer that stores L. This makes the
use of L in the sense of the search interval size obsolete. Hence, we propose
changes to the NSS PGA with the Dirichlet sieve and the safe NSS PGA with
the Dirichlet sieve by utilizing L as the number of mr additions instead. The
implementations can be found in nss dir pga.c and safe nss dir pga.c

[4]. For both of the implementations we provide a runtime assessment.
However, for the safe variant the runtime assessment is only carried out in
limited form. This is because an exploration of the effects of the change on
the error probability for the safe variant has not been examined in depth
and is left for future work.

4.3.4 Safe Natural PGA with the NSS sieve

As we have no proper safe prime gap estimates, the combination of the safe
Natural PGA with the NSS sieve requires us to choose a large L. A large L
however implies large memory usage and still no guarantees to find a safe
prime. We therefore propose the reuse of the sieve once we have checked
all candidates in the array of the NSS sieve. If we overrun the array, the
array values get reinitialized with the trial n0 set to the last candidate +4
instead of returning an error. With this modification, we can continuously
search for the next candidate and save memory and runtime by using a
much smaller L. The implementation can be found in safe nat nss pga.c

[4]. The reason why we do not use this modification for the non-safe variant
of the Natural PGA with the NSS sieve is that we have sharper bounds on L
and the memory usage is significantly smaller than what we would have to
use in the safe variant.
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Chapter 5

Experimental Assessment

In this chapter we present our running time and distribution experiments
that are conducted using the implementations from Chapter 4. We primarily
focus on analyzing the runtimes of our implementations whereas the distri-
bution assessment is carried out in limited form. In the first two sections,
we explain how the performance and distribution assessments will be con-
ducted. Lastly, after presenting our runtime plots we provide a summary
table that carries the parameters’ value ranges and minimal runtimes for
every IS PGA implementation.

5.1 Performance assessment

All performance assessments are carried out using AMD EPYC 7742 CPUs,
which are part of Euler, a high-performance cluster service administered
by ETH. For each IS PGA and for each set of free parameters, i.e. r and if
needed L, we run 64 batches of 8,192 PGA function calls. For each batch
we calculate the mean CPU time of one PGA function call. Given k, r, L, op-
timized parameter values for t and U are derived using the previously ex-
plained methods. The code of our performance assessment can be found in
nss benchmark.c, nat benchmark.c, openssl benchmark.c [4]. In order
to measure the performance of the safe variants, the corresponding non-safe
IS PGA functions have to be exchanged with its safe variants.

5.2 Distribution assessment

For each combination of the IS PGAs and sieves we will carry out a limited
distribution check. To check the distribution we run 2,240,000 samples on
the parameters’ values that gave us the best results in the performance as-
sessment. We then plot a histogram that counts the occurences of the most
significant byte of the outputted primes with a 5% acceptance band. The 5%
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acceptance band is calculated using the upper and lower range µ± (τ · √µ),
respectively. µ denotes the expected number of occurences per bin, i.e.
2, 240, 000/64 = 35, 000. We divide by 64 = 26 as 6 bits vary in the most
significant byte of the prime output. Only 6 bits vary as the RNG fixes the
first two bits to 11. τ = 1.960 is the t-value extracted from the t-distribution
table using a confidence of 0.95 and infinite degrees of freedom [5]. It should
be noted that the distribution check is rather limited as we only extract the
most significant byte of the generated primes. Moreover, the number of
samples is not large enough to give an elaborate analysis on the distribution
of our IS PGAs. The distribution assessment is implemented in distribu-

tion check.c [4].

5.3 Non-safe variants

5.3.1 Runtime results

To compare the runtime results of all implementations, we run 64 batches
that provide the mean runtime of 8,192 function calls. The mean of those 64
batches are extracted and plotted in either a heatmap plot or a 2D plot. A
heatmap plot is used whenever both r and L are varied, i.e. in the NSS PGA.
Additionally, we use a heatmap plot whenever we vary the NSS sieve array
size, i.e. in the Natural PGA with the NSS sieve and the OpenSSL PGA with
the NSS sieve. A 2D plot is provided otherwise, where the maximum and
minimum mean runtime of all 8,192 sample batches are illustrated as well.

For the OpenSSL PGA with the OpenSSL sieve implementation, we addi-
tionally provide runtime results of the native OpenSSL implementation, i.e.
the IS PGA implemented in the OpenSSL library. The native implementation
uses r = 128 for the case of k = 1024 as provided by [1].

Runtime plots

Figure 5.1 shows the benchmark of the NSS PGA with the NSS sieve. As we
can see the NSS PGA with the NSS sieve performs well across a large selec-
tion of parameters (dark-blue) but is expectedly more intensive in memory
consumption for large L as the NSS sieve allocates an array of size L

2 . Due
to compatibility reasons with our other two sieving procedures, we use un-

signed short as the datatype for the array. However, in practice a bit-array
of size L

2 can be used for the NSS sieve which reduces memory consumption.

The NSS PGA with the OpenSSL sieve, whose runtime plot can be found
in Figure 5.2, performed similarily to the NSS PGA with the NSS sieve but
uses much less memory for large L as the OpenSSL sieve allocates an array of
size r− 1. Due to the similarity of the OpenSSL and NSS sieve, comparable
performance results were expected.
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5.3. Non-safe variants

Figure 5.1: The NSS PGA with the NSS sieve

Figure 5.2: The NSS PGA with the OpenSSL sieve

Figure 5.3: The NSS PGA with the Dirichlet sieve

In Figure 5.3 the runtime plot of the NSS PGA with the Dirichlet sieve
is depicted. Albeit runtimes seem rather high with minimal runtimes at
≈ 0.0405s in comparison to the NSS PGA with both the NSS and OpenSSL
sieve with minimal runtimes at≤ 0.035s, this implementation requires much
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less memory due to the nature of the Dirichlet sieve. In contrast, the Dirich-
let sieve does not allocate an additional array. However, we observe that
this optimization in memory consumption costs runtime. As larger L do
not significantly impact our performance results, we think that the main
proportion of time is spent for the preparation of the first candidate. After
the first candidate has been generated, all following candidates are found
in a significantly shorter time as we only have to increment n by mr. Fur-
ther work should therefore investigate different strategies for generating the
first candidate. Additionally, larger choices for r should be examined. The
reason why we did not expand the runtime plots with larger r was due to
observed failures. This has to do with the fact that mr significantly grows
with larger r and so does the step size. If mr grows so large that only a
small number of candidates are tested before starting a new round due to
overrunning the k-bit interval, we get failures as we set U according to our
derivations of Section 3.2.1. The acquired U is in cases of r > 100 too small
to give any certainty about the output.

Figure 5.4: The Natural PGA with the NSS sieve

The IS PGA implementation with the fastest runtime was the Natural PGA
with the NSS sieve. The runtime plot of the Natural PGA with the NSS sieve
in Figure 5.4 indicates that runtimes of ≈ 0.033s were achieved as illustrated
in the colormap of the heatmap plot. Nevertheless, this implementation also
consumed the most memory due to the need of a large NSS sieve array to
satisfy the failure probability being ≤ 2−128 as explained in Section 3.2.2.
It should be noted that the difference in memory usage compared to other
implementations is not significant for most devices as this implementation
consumes only a few more MB. Additionally, the NSS sieve could utilize a
bit-array for real world implementations which would lower the memory
consumption.

Figure 5.5 illustrates the runtime plot of the Natural PGA with the OpenSSL
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5.3. Non-safe variants

Figure 5.5: The Natural PGA with the OpenSSL sieve

sieve. We observe diminishing returns in terms of performance from using
r ≥ 512. As the OpenSSL sieve allocates an array of size r − 1, this imple-
mentation does not use as much memory in comparison to the Natural PGA
with the NSS sieve and still yields comparable runtime results. Although as
before the difference in memory consumption is not significant for most de-
vices. We believe that comparable runtimes to the Natural PGA with the
NSS sieves are achieved due to the similarity of both sieves.

Figure 5.6: The Natural PGA with Dirichlet the sieve

The Natural PGA with the Dirichlet sieve (see Figure 5.6) performs the same
as the NSS PGA with the Dirichlet sieve from Figure 5.3. As all three al-
gorithms of Section 3.2 follow a similar structure and do not require the
allocation of complex datastructures, a significant portion of the memory
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usage arises from the sieving procedure. Due to the nature of the Dirichlet
sieve, only an unsigned short array of size 1 must be allocated, hence why
it uses the least amount of memory if we compare the three studied sieves,
i.e. the NSS, OpenSSL and Dirichlet sieve. To see all the different array al-
location sizes one can examine Table 4.1. Moreover, it can be observed that
with larger r better runtimes can be achieved. This trend is also visible in
the NSS PGA with Dirichlet sieve combination (see Figure 5.3). The reason
for this might be that with larger r the step size mr is more in line with the
distribution of primes.

Figure 5.7: The OpenSSL PGA with the NSS sieve

The OpenSSL PGA with the NSS sieve runtime plot in Figure 5.7 suggests
that smaller r significantly improve its performance whereas smaller NSS
sieve array sizes do not contribute to the performance of the IS PGA. This
is contrary to the belief that larger NSS sieve array sizes should worsen
performance as the OpenSSL PGA only calls the sieving algorithm once
as explained in Section 3.2.3. This suggests that only the first zero entry,
i.e. the first candidate not divisible by the first r odd primes, of the array
precomputed by the NSS sieve is considered and therefore smaller array
sizes should be preferred, especially with the random memory accesses of
the NSS sieve. The reason why we don’t see a performance dropoff with
larger array sizes might be because the given array size is still small enough
for the whole array to fit into the cache.

In Figure 5.8 the runtime plot of the OpenSSL PGA with the OpenSSL sieve
can be found. Immediately we can see that the cost of the sieve quickly
outweighs the gains made by the sieve at around r = 280. It should be noted
that the OpenSSL PGA implementation with the OpenSSL sieve performed
slightly worse than the OpenSSL library implementation. This might have to
do with internal optimizations done by OpenSSL, but further investigations
would be required to say something meaningful. We leave this out for future
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Figure 5.8: The OpenSSL PGA with the OpenSSL sieve

work.

Figure 5.9: The OpenSSL PGA with the Dirichlet sieve

Unsurprisingly, the worst runtimes can be found for the OpenSSL PGA with
the Dirichlet sieve as illustrated in Figure 5.9. As an OpenSSL round calls
the Dirichlet sieve only once, computational resources are wasted by not
incrementing the initially generated n by mr. Additionally, the product mr
has to be recomputed for every round which increases the computational
cost even further. We therefore expect a dip in runtimes for smaller r. This
fact can be observed in the curve of Figure 5.9. Future work can optimize the
runtimes by precomputing mr and storing the result in a constant variable
before the first OpenSSL round. By doing this the Dirichlet sieve intialization
step is no longer needed and computational resources are saved.
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To provide a quick overview of the runtime plots, the parameters’ ranges
and the minimal runtimes of our implementations are illustrated in Table
5.1.

PGA Sieve range for r range for L minimal runtime
NSS NSS 16 2048 700 48000 0.0345s
NSS OpenSSL 16 2048 700 48000 0.034s
NSS Dirichlet 8 100 700 64000 0.0405s

Natural NSS 16 2048 - - 0.033s
Natural OpenSSL 16 3024 - - 0.0345s
Natural Dirichlet 8 100 - - 0.042s

OpenSSL NSS 16 2048 - - 0.045s
OpenSSL OpenSSL 16 2048 - - 0.0415s
OpenSSL Dirichlet 8 100 - - 0.06s

Table 5.1: Summary of minimal runtimes and observed ranges for r and L for our non-safe IS
PGA implementations

5.3.2 Distribution results

The results of the limited distribution assessment can be found in Fig-
ure 5.10, Figure 5.11 and Figure 5.12 for the NSS PGA, Natural PGA and
OpenSSL PGA, respectively. Each figure carries three subfigures that illus-
trate the distribution results of the IS PGA in combination with either the
NSS sieve, OpenSSL sieve or Dirichlet sieve. We conclude that the distribu-
tion results of all studied non-safe IS PGAs are in the accepted range given
our limited assessment in regards to the distribution.

(a) NSS sieve (b) OpenSSL sieve (c) Dirichlet sieve

Figure 5.10: Distribution histograms of the NSS PGA in combination with our sieves

5.4 Safe variants

5.4.1 Runtime results

The runtime assessment for the safe variant implementations is carried out
equivalently. However, the density and range in where we vary L is sig-
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(a) NSS sieve (b) OpenSSL sieve (c) Dirichlet sieve

Figure 5.11: Distribution histograms of the Natural PGA in combination with our sieves

(a) NSS sieve (b) OpenSSL sieve (c) Dirichlet sieve

Figure 5.12: Distribution histograms of the OpenSSL PGA in combination with our sieves

nificantly reduced due to increased runtimes. As seen in Figure 5.9 (c), we
reduced the batch size from 8,192 to 2,048 in the benchmark of the safe
OpenSSL PGA with Dirichlet sieve as runtimes were substantially larger
than those of other combinations.

Like in the case of the non-safe OpenSSL PGA with the OpenSSL sieve, the
runtime results of the safe native OpenSSL implementation is provided.

Runtime plots

Figure 5.13: The safe NSS PGA with the NSS sieve

Figure 5.13 shows the benchmark plot of the safe NSS PGA with the NSS
sieve. Out of all safe IS PGAs this combination performed the best at the
expense of using the most memory. The color gradient of the runtime plot
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indicates that with growing r and L mean runtimes decrease approximately
linearly. This is expected as with larger r more composites are weeded out
whilst with larger L we amortize the costs of the sieve. However, we believe
that much larger choices for r and L do not significantly decrease runtimes
which is why we left it out for our runtime plots. Further work should inves-
tigate larger choices for r and L to give a conclusive analysis for the safe NSS
PGA with the NSS sieve. It is worth mentioning that the optimized param-
eter derivation is done in the same manner as for the non-safe variant. This
implies that the upper bound on the error probability increases by the factor
of the expected number of rounds. We have experimentally determined that
the expected number of rounds is ⪅ 1000 for L ≥ 8000. Therefore, instead
of setting parameter t while maintaining the error probability ≤ 2−γ, we set
optimized values for t that maintain the error probability ≤ 2−γ+log2(1000).
Therefore, the obtained error probability is ≤ 2−γ+log2(1000) which for γ = 128
and k = 1024 is still acceptable. This approach is worthwhile since we expect
developers to have a unified procedure for finding parameter t and U for
both the safe and non-safe variant. The same holds true for the safe NSS
PGA with the OpenSSL sieve. However, the error probability for the safe
OpenSSL PGA is left for further work because of its additional complexity.

Figure 5.14: The safe NSS PGA with the OpenSSL sieve

In Figure 5.14 the benchmark of the Safe NSS PGA with the OpenSSL sieve
is illustrated. We observe similar minimal runtime results to the safe NSS
PGA with the NSS sieve (1.25s vs. 1.22s). This combination however uses
smaller sieve array sizes which in turn means less memory consumption for
a 2.5% increase in minimal runtime. For instance, one can use the parameter
configuration r = 5600 with L = 8000 and yield runtime results of ≈ 1.3s.
In comparison, one would have to use r = 5600 with L = 25000 in the safe
NSS PGA with the NSS sieve for similar runtimes results but would have to
utilize as much as 1.5 times the memory for the array allocation. However, as
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previously mentioned the safe NSS sieve could be implemented only using
a bit-array of size L

2 which would decrease the amount of memory used. For
the OpenSSL sieve it is necessary to use unsigned short as the datatype
because each entry needs to hold the remainders of the trial, which can be
as large as pr − 1. Nevertheless, in practice the difference in overall memory
consumption would be negligible as all implementations only differ in a few
MB.

Figure 5.15: The safe NSS PGA with the Dirichlet sieve

The safe NSS PGA with the Dirichlet sieve benchmark results are plotted
in Figure 5.15. Alas, this combination produces very poor runtime results.
As in the non-safe implementation of this IS PGA (see Figure 5.3) one can
observe that different choices for L from the range [700, 16000] do not impact
performance that much. Due to the nature of the safe Dirichlet sieve, this
indicates that a very large amount of time is spent in generating the first
candidate. We believe that finding an appropriate a as explained in Section
4.3.1 might have to do with this. Additionally to the requirement that a
must be coprime to mr in the non-safe Dirichlet sieve, we must now ensure
a− 1 is coprime to mr as well. With our approach we repeatedly generate
a randomly until both gcd(mr, a) = 1 and gcd(mr, a − 1) = 1. Given this
additional requirement, i.e. gcd(mr, a − 1) = 1, we assume that this raises
the amount of iterations until such a has been found significantly. Hence,
this is why runtimes are substantially larger than for the other two studied
sieves. This trend of substantially larger runtimes can be observed in all safe
implementations that use the safe Dirichlet sieve, i.e. in Figure 5.15, Figure
5.18 and Figure 5.21.

Similar runtime results to the safe NSS PGA with the NSS sieve can be
observed in the safe Natural PGA with the NSS sieve. In Figure 5.16 one can
see that larger r reduce the runtimes of the algorithm. Due to our proposed
modifications in Section 4.3.4, this implementation now requires much less
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Figure 5.16: The safe Natural PGA with the NSS sieve

memory and performs among the best in our safe implementations with
minimal runtimes of ≈ 1.27s.

Figure 5.17: The safe Natural PGA with the OpenSSL sieve

The next safe IS PGA implementation is the safe Natural PGA with the
OpenSSL sieve whose runtime plot can be seen in Figure 5.17. Immediately
one can observe that with larger r the mean runtime stabilizes at ≈ 1.4s.
Therefore, this implementation performs significantly worse than the NSS
PGA with the OpenSSL sieve whose minimal runtimes were ≈ 1.25s. Re-
call that for the non-safe implementations, i.e. for the NSS PGA with the
OpenSSL sieve and the Natural PGA with the OpenSSL, minimal runtimes
were similar.

In Figure 5.18 the safe Natural PGA with the Dirichlet sieve is depicted. One
can see that we achieve similar runtime results to the safe NSS PGA with
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Figure 5.18: The safe Natural PGA with the Dirichlet sieve

the Dirichlet sieve for r ∈ [64, 100] as seen in Figure 5.15. This comes as
no surprise as both the safe Natural PGA and the safe NSS PGA follow a
similar structure. The only difference is that the safe NSS PGA restarts the
NSS round after L additions of mr or after overrunning the k-bit interval.
However, there does not seem to be a reason to use the safe NSS PGA over
the Natural PGA as the safe Natural PGA follows a simpler structure whilst
yielding similar runtime results. A simpler structure means easier debug-
ging and less room for error when implementing this algorithm in practice.
As with any IS PGA utilizing the Dirichlet sieve, memory consumption is
minimized. Nevertheless, for real world applications the runtimes are sig-
nificantly larger than our best implementations which is why we do not
recommend this implementation.

Figure 5.19: The safe OpenSSL PGA with the NSS sieve
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Figure 5.19 shows the OpenSSL PGA with the NSS sieve runtime plot. As the
safe OpenSSL PGA generates only one candidate n per round, we expect that
this safe IS PGA performs worse than other combinations. This is exactly the
case. As for the non-safe implementation, we see that the implementation
has the best runtimes between r ≈ 128 and r ≈ 512 whilst different options
of NSS sieve array sizes don’t change runtimes much. Therefore smaller NSS
sieve array sizes should be preferred in practice in order to save memory.
One should keep in mind that the runtime experiments for all safe OpenSSL
PGA implementations were conducted using γ = 100 instead of γ = 128.
An implication of this is that the number of MR rounds t decreases which
in turn means lower average runtimes. However, as all safe OpenSSL PGA
implementations achieve runtimes significantly worse than our fastest safe
IS PGA implementations and given that runtime experiments for our three
safe OpenSSL PGAs that satisfy γ = 128 would only increase runtimes, we
can conclude that our safe OpenSSL PGA implementations are not suitable
for practical applications even if γ = 128.

Figure 5.20: The safe OpenSSL PGA with the OpenSSL sieve

The safe OpenSSL PGA with the OpenSSL sieve runtime plot is illustrated
in Figure 5.20. Similar to the non-safe variant, this implementation per-
forms worse than the native safe OpenSSL implementation. As previously
mentioned this might have to do with internal optimizations done by the
OpenSSL library. Interesting to note is that the increase in runtime with
higher r is not as significant as in the non-safe implementation. Compared
to our other safe implementations this implementation uses slightly less
memory at the expense of having higher runtimes.

Again, similar to the case for the non-safe implementations the safe OpenSSL
PGA with the Dirichlet sieve (seen in Figure 5.21) has the worst running
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Figure 5.21: The safe OpenSSL PGA with the Dirichlet sieve

times. The reasons for this are equivalent to those for the non-safe variant.

A quick overview of all parameters’ ranges and minimal runtimes is sum-
marized in Table 5.2.

PGA Sieve range for r range for L minimal runtime
NSS NSS 1024 5968 8380 32956 1.22s
NSS OpenSSL 512 5968 8380 32956 1.25s
NSS Dirichlet 16 100 700 16572 5.3s

Natural NSS 512 5968 - - 1.27s
Natural OpenSSL 128 3024 - - 1.35s
Natural Dirichlet 64 100 - - 5.125s

OpenSSL NSS 16 2048 - - 2.5s
OpenSSL OpenSSL 16 2048 - - 2.1s
OpenSSL Dirichlet 8 56 - - 16.5s

Table 5.2: Summary of minimal runtimes and observed ranges for r and L for our safe IS PGA
implementations

5.4.2 Distribution results

As the focus of this thesis lies in analyzing IS PGAs in regards to their
runtime and memory consumption and due to safe IS PGAs having sub-
stantially larger runtimes, we only showcase the distribution results of the
fastest implementation, namely the safe NSS PGA with the NSS sieve. We
expect other safe variant implementations to yield similar distribution re-
sults to Figure 5.22.
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(a) Safe NSS PGA with NSS sieve

Figure 5.22: Distribution of the Safe NSS with the NSS sieve
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Chapter 6

Discussion and Conclusion

In the following we want to summarize the key findings and give interpre-
tations to the results of Chapter 5. We have seen many different impleme-
nations of algorithms that generate primes under the requirements imposed
by cryptographic applications from Section 2.1.1. Two of the nine described
algorithms find use in the real world and are employed in cryptographic
libraries, namely the OpenSSL and NSS library. Although past research has
analyzed the strengths and weaknesses of some of our IS PGAs of interest
[2, 16, 8], a experimental comparison of their implementations has not been
done yet. In this thesis we therefore described, implemented and analyzed
three different IS PGAs using three different sieving procedures. To analyze
the total nine different IS PGA implementations, we derived its error and
failure probabilities dependent on its input and internal parameters’ values.
By conducting runtime experiments for our IS PGA implementations with
internal parameter values that satisfy the requirements of Section 2.1.1, we
are given a framework to directly compare different IS PGA implementa-
tions. Now, our goal is to find the most efficient implementation among the
studied IS PGAs in regards to runtime and memory consumption and give
comments on the suitability of our implementations for different scenarios.

6.1 Non-safe variants

The runtime results of our implementations demonstrate that there exist
multiple viable options comparable to the IS PGA implementation in the
OpenSSL library in terms of runtime and memory consumption. We gather
that all of our studied IS PGA implementations but the OpenSSL PGA with
the Dirichlet sieve yield minimal runtimes in the range of [0.033, 0.045]s and
are therefore feasible choices for the efficient generation of large primes.
The difference in overall memory consumption for all of our implementa-
tions are not significant for most devices. However, if a device requires
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minimal memory usage either the Natural PGA with the Dirichlet sieve or
the NSS PGA with the Dirichlet sieve should be used. For the best runtime
results one should resort to the Natural PGA with the NSS sieve. It achieves
minimal mean runtimes of ≈ 0.033s.

When comparing the studied sieves, it becomes apparent that the Dirichlet
sieve implementations perform slightly worse than implementations with
the two other sieves, namely the OpenSSL sieve and the NSS sieve. This
mainly has to do with the fact that our IS PGA implementations were not
optimized for the usage of the Dirichlet sieve. Additional research needs
to be conducted to determine how well the Dirichlet sieve performs in an
optimized setting. In other words different strategies for generating the
initial trial of form n = z · mr + a should be investigated. Moreover, the
product mr should be precomputed such that no additional computational
resources have to be wasted.

The data shows that the OpenSSL PGA with the NSS sieve and the Dirich-
let sieve performs worse than our other implementations. As one round
of the OpenSSL PGA calls the sieving algorithm only once after its initial-
ization, the NSS sieve and the Dirichlet sieve cannot amortize their costs.
Especially in combination with the Dirichlet sieve the substantially larger
runtimes suggest that the Dirichlet sieve works better with IS PGAs that call
the sieving algorithm more than once after initializing the sieve.

6.1.1 Recommendations

The conducted comparison of our IS PGA implementations shows that the
Natural PGA with the NSS sieve is the most suitable IS PGA to implement
in practice. The runtime plot of the Natural PGA with the NSS sieve shows
that the best runtime results out of all combinations were achieved using
this IS PGA with parameter values r ≈ 2048 and NSS sieve array sizes
of ≈ 33, 000 with a mean runtime of ≈ 0.033s. In comparison the native
OpenSSL libary PGA implementation achieved mean runtimes of ≈ 0.041s.
When we compare overall memory consumption with other implementa-
tions, the Natural PGA with the NSS sieve uses slightly more memory. As
previously mentioned in Chapter 5, memory consumption can be reduced
by using a bit-array in the NSS sieve instead of the unsigned short array
that our implementations use. However, the difference in overall memory
consumption even without any memory optimizations is not significant for
most modern devices. Furthermore, the Natural PGA with the NSS sieve fol-
lows a simple and intuitive structure which eliminates a lot of corner cases
that have to be considered. This makes this IS PGA appealing to implement
in practice.
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6.1.2 Limitations and further work

The Dirichlet sieve is a promising algorithm but further optimizations in
our IS PGA implementations are needed to unlock its full potential. For
example, one can force the product mr to be computed only once in one IS
PGA call. Also, different strategies for generating the first candidate of form
n = z · mr + a should be examined. In particular, a more efficient way for
generating coprime a should be examined. Furthermore, the choice of r was
constrained due to the lack of data in regards to the maximal choice of r for
given k. To avoid failures in the implementations using the Dirichlet sieve for
k = 1024, r = 100 was used as the maximum. We inspected that with larger
choices of r it was not guaranteed that a probable prime is found in the k-
bit interval. This has to do with the fact that with larger r the product mr
grows significantly and so does the step size for generating new candidates.
For example, in combination with the Natural PGA this means that fewer
candidates will be tested and therefore the failure probability significantly
increases. Future studies should therefore examine a correct range for r for
the Dirichlet sieve in more detail.

When investigating the performance of the OpenSSL library PGA imple-
mentation, we found that for the case of k = 1024 better runtimes can be
achieved by using the Natural PGA with the NSS sieve for example. As the
OpenSSL library is widely used, further work should investigate whether
the same holds true for larger choices of k. Depending on the results, a new
implementation for the OpenSSL library using a different IS PGA might be
worthwhile.

As the focus of this study was to provide a direct comparison of IS PGA im-
plementations in regards to runtime, only a limited distribution assessment
was conducted. Further work should investigate the output distribution of
different IS PGA implementations in a more detailed manner.

6.1.3 Conclusion

The data contributes a clearer understanding of which IS PGAs can be used
in certain scenarios, for example for limited-memory devices. All of our IS
PGA implementations but the OpenSSL PGA with the Dirichlet sieve are
considered viable choices but if memory is highly restrained then the Nat-
ural PGA with the Dirichlet sieve or the OpenSSL PGA with the OpenSSL
sieve provide an excellent choice where both memory consumption and run-
time are balanced. For example, the Natural PGA with the Dirichlet sieve
using r ≈ 100 achieves runtimes of 0.042s whereas the OpenSSL PGA with
the OpenSSL sieve yields minimal runtimes of 0.042s with r ≈ 200. If run-
times are more important, one should resort to the Natural PGA with the
NSS sieve using r ≈ 2048 and NSS sieve array sizes of ≈ 33, 000 as the data
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suggests that the best runtimes (0.033s) were achieved using these parame-
ters.

As our runtime assessment was only carried out using k = 1024, future work
should expand the runtime assessment to all k values of interest using the
approach described in this thesis.

6.2 Safe variants

Similarily to the non-safe variants multiple viable IS PGAs for the efficient
generation of large safe primes exist. From the runtime plots we observe
that the following implementations are feasible options when considering
implementing safe IS PGAs:

• Safe NSS PGA with the NSS sieve (1.22s),

• Safe NSS PGA with the OpenSSL sieve (1.25s),

• Safe Natural PGA with the NSS sieve (1.27s),

• Safe Natural PGA with the OpenSSL sieve (1.37s),

where approximate minimal mean runtimes of the respective implementa-
tion are denoted in brackets. Other implementations had significantly larger
minimal runtimes and are therefore not recommended to be used in prac-
tice.

When comparing the non-safe variants with the safe variants we found that
the choice of L for the safe NSS PGA with the NSS sieve affects the runtimes
significantly more than for its non-safe counterpart. This indicates that the
average safe prime gap is much larger than the average prime gap which is
in line with what we discussed in Section 3.4.1. Furthermore, we see that
implementations with the safe Dirichlet sieve perform significantly worse
than implementations with our other two sieves. As for the non-safe variants
this has to do with the lack of optimizations for the safe Dirichlet sieve in
our implementations.

6.2.1 Recommendations

The direct comparison between all safe IS PGA implementations shows that
the safe NSS PGA with the NSS sieve performs the best with minimal run-
times of 1.22s using r ≈ 5600 and L ≈ 32000. Although overall memory
usage is slightly above the ones of other implementations, for most modern
devices this difference is not significant.
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6.2.2 Limitations and further work

As mentioned with the non-safe variants, further work needs to optimize
our IS PGA implementations such that the safe Dirichlet sieve can be effi-
ciently used. Optimizations include precomputation of the product mr and
finding the optimal range of r. Moreover, further studies should investigate
different strategies for generating a and z for the trial n = z ·mr + a.

We have seen that the failure probability changes dramatically for safe primes.
Due to this change, more complex derivations to calculate the error proba-
bilites for the safe variants are required, which we did not discuss other than
for the safe NSS PGA. Further work should find the best way to unify the
error probability for both the safe and non-safe variants from a theoretical
and practical point of view. Additionally, a closer investigation of the error
probability for the NSS PGA with the Dirichlet sieve needs to be done to
state conclusive facts about said implementation.

Like for the case of the non-safe variants, the distribution assessment for
safe IS PGA implementations should be expanded. Future work should also
assess runtimes for all k values of interest using the approach described in
this thesis.

6.2.3 Conclusion

As seen with the implementations of the non-safe variants, one has to trade
off increased runtime for less memory consumption for our safe IS PGA
implementations. If runtime is more important, one should use the safe NSS
PGA with the NSS sieve with r ≈ 5600 and L ≈ 32000 which yields minimal
runtimes of 1.22s. However, using large L linearly increases the memory
consumption. For a tradeoff between runtime and memory consumption
both the safe NSS PGA with the OpenSSL sieve with minimal runtimes of
1.25s at r ≈ 5600 and L ≈ 8000 and the safe Natural PGA with the NSS
sieve with minimal runtimes of 1.25s at r ≈ 5600 and NSS sieve array sizes
of ≈ 4000 are the way to go. As previously stated the overall difference in
memory consumption is not significant and therefore the safe NSS PGA with
the NSS sieve should be preferred in practice due to its minimal runtime.
However, if one wants to unify the non-safe and safe IS PGAs to one single
implementation, then one would first have to examine the behaviour of the
Natural PGA with the NSS sieve using our modifications applied on the
safe Natural PGA with the NSS sieve. If similar runtime were observed in
comparison to our current non-safe variant of the Natural PGA with the
NSS sieve, then the unified non-safe and safe Natural PGA with the NSS
sieve would stand out as the best option as for both implementations we
achieve very fast runtimes and optimal memory consumption.
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Appendix

A.1 Installation of OpenSSL 3.0.0

In order to compile our code the installation of the OpenSSL library is nec-
essary. For this thesis we used version 3.0.0 Alpha 12 of OpenSSL which
can be downloaded here [11]. After creating a new directory (in our case
./openssl), we run the following commands in the directory of the down-
loaded archive.

1. tar -xf openssl-3.0.0-alpha12.tar.gz

2. cd openssl-3.0.0-alpha12

3. ./Configure --prefix=/openssl --openssldir=/openssl shared zlib

4. make

5. make test

6. make install

A.2 Compilation of the benchmark files

To run benchmarks using our implementations of the IS PGAs, one must
first generate the optimized parameter values using generate optimal -

pga params.py. The variables of generate optimal pga params.py, which
are explained in Table A.1, must be set to the desired configuration. Files
containing the optimized parameter values are then generated in the direc-
tory data/optimal_params/nss_pga/.

To configure the benchmark files, found in [4], we must change the following
variables according to the ones set in generate optimal pga params.py.

1. set k
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variable name explanation
k output bit-size
r max maximal r to use
L max maximal L to use
r bound bound from where to increment r with larger step sizes
L bound bound from where to increment L with larger step sizes

Table A.1: Explanations of the configuration variables in generate optimal pga params.py

2. set initial L

3. set incrementation size of L in L inc

4. set path to output file

5. set path to the generated optimized parameter values

6. set the maximal L in the while loop condition

7. set the bound where L’s incrementation size changes at the end of the
while loop

8. set the sieve used according to our explanations in Section 4.1.1

Assuming the OpenSSL library has been installed in the directory ./openssl

as explained in Section A.1, we compile pga name benchmark.c with the
following command.

gcc -std=gnu99 -I/openssl/include -L/openssl/lib -Wl,-rpath=/openssl/lib

pga name benchmark.c name pga.c -lcrypto -o executable name -O3

A.3 Estimating the expected safe prime gap for k=1024

To give an approximation on the expected safe prime gap E[X], we use the
arbitrary precision calculator found in [3]. First, we calculate the number of
k-bit safe primes with ξ(2k−1)− ξ(2k−2).

ξ(2k−1) = 2360278414030469604329784551233417011467616550916022816701
36345562138347365704509237943563372293816630735054885346106372415692
37581049733664261514798864931668696553286657051740028587454096524411
44328936040466813824774322375304267513883074562981848728268440897426
55002813353668821292298596178900140851538

ξ(2k−2) = 1182449806965398203438023693463957291284508554278775372545
22675909485436156031223267313945638190857758840959708970023221937206
18994187257592226319231015380884629369984773648008615376728053700383
98167113043291446194329389762757495309001052707098945873912015109960
89736352423949018288917415171147500625333
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Now, both of these values are used to acquire

ξ(2k−1)− ξ(2k−2) = 11778286070650714008917608577694597201831079966372
47444156136696526529112096732859706296177341029588718940951763760831
50478486185868624760720351955678495507840671833018834037314132107260
42824027461618229971753676304449326125467722048820218558829028543564
2578746565266460929719803003381181007752640226205.

Now, we divide the k-bit interval length, i.e. 2k − 2k−1, by the number of
k-bit safe primes to receive an approximation on the expected safe prime
gap as follows

E[X] =
2k − 2k−1

ξ(2k−1)− ξ(2k−2)
≈ 763, 000. (A.1)
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question—investigating the origins of {RSA} public keys. In 25th
{USENIX} Security Symposium ({USENIX} Security 16), pages 893–910,
2016.

58

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Overview
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Overview
https://www.openssl.org/source/
https://www.openssl.org/source/
https://www.openssl.org/
https://www.openssl.org/

	Contents
	Introduction
	Background
	Incremental search PGAs
	Requirements of IS PGAs

	Primality testing algorithms
	Error probability
	Failure probability
	Sieving
	Parameters

	Algorithms and Sieves
	Generic probability bounds for IS PGAs
	Algorithms
	NSS PGA
	Natural PGA
	OpenSSL PGA

	Sieves
	NSS sieve
	OpenSSL sieve
	Dirichlet sieve

	Safe prime generation
	Changes to PGAs and derivation of parameter values
	Safe NSS sieve
	Safe OpenSSL sieve
	Safe Dirichlet sieve


	Implementation
	Setup
	Function prototypes

	Optimal parameter selection
	Modifications in our implementations
	Dirichlet sieve
	Safe NSS PGA
	Non-safe and safe NSS PGA with the Dirichlet sieve
	Safe Natural PGA with the NSS sieve


	Experimental Assessment
	Performance assessment
	Distribution assessment
	Non-safe variants
	Runtime results
	Distribution results

	Safe variants
	Runtime results
	Distribution results


	Discussion and Conclusion
	Non-safe variants
	Recommendations
	Limitations and further work
	Conclusion

	Safe variants
	Recommendations
	Limitations and further work
	Conclusion


	Appendix
	Installation of OpenSSL 3.0.0
	Compilation of the benchmark files
	Estimating the expected safe prime gap for k=1024

	Bibliography

