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Abstract

In 1998, Daniel Bleichenbacher introduced an adaptive chosen cipher-
text attack against RSA-based encryption using the PKCS #1 v1.5 padding
standard. The attack makes use of a padding oracle based on side-
channel information. We describe the attack in detail, conduct a the-
oretical analysis and analyze the results of large-scale experiments.
Hereby, we consider different oracle types and sizes of the RSA modu-
lus to show how these parameters influence the attack.

Over the last twenty years, different optimization methods for the so-
called “Million Message Attack” have been devised. We provide pre-
cise explanations of their underlying mathematical properties and de-
scribe how to implement them in practice. For the implementation,
we introduce new adjustments to the methods to make them more effi-
cient. Furthermore, we analyze their individual and combined effect on
the attack complexity experimentally. The experimental results show
that applying the different improvement methods together significantly
lowers the number of oracle calls required to decrypt a ciphertext.

Finally, we introduce a novel method for improving a part of the al-
gorithm to further enhance its complexity for some unfortunate cases.
This new technique is also tested and its experimental results are dis-
cussed. From the simulations, it follows that this method allows us
to increase the efficiency of Bleichenbacher’s attack while only slightly
lowering its overall success probability. To show the effect that the
different optimizations have on the Bleichenbacher attack, all results
are visualized and tables containing the relevant complexity results are
provided. Lastly, we give a comprehensive overview of the influence
of all tested improvements on the attack.
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Chapter 1

Introduction

1.1 Motivation and Relevance

In 1998, Daniel Bleichenbacher published a paper that describes an adaptive
chosen ciphertext attack against RSA-based encryption using the PKCS #1
v1.5 padding standard [3]. Chosen ciphertext attacks are usually based on
the assumption that an attacker has access to a decryption device that re-
turns the complete or part of the decryption for a chosen ciphertext. Hence,
if a cryptographic system was vulnerable to a chosen ciphertext attack, this
was only considered a theoretical weakness. However, the attack introduced
by Bleichenbacher showed the practical relevance of this attack model. It
uses a padding oracle based on side-channel information to gradually learn
more details about an encrypted message. The PKCS #1 v1.5 encryption for-
mat, exploited by the attack, was widely deployed, including in a version of
the Secure Sockets Layer (SSL) used by thousands of web servers at the time.
Furthermore, the attack is also known as the “Million Message Attack” be-
cause it needs to send around one million ciphertexts to a decryption device,
i.e., an SSL server, to successfully decrypt a ciphertext.

Since Bleichenbacher’s publication, a great effort has been put into develop-
ing mitigation techniques to thwart the attack. However, these techniques
often introduce new side-channels themselves due to careless implementa-
tions, making the application again vulnerable to the attack [8]. Addition-
ally, slight variations of the vulnerabilities still exist in many modern servers
[4, 10] and new Bleichenbacher-like attacks have been discovered recently
exploiting different types of side-channel information [5, 16, 17].

Furthermore, various optimizations have been devised over the last twenty
years to improve the attack presented by Bleichenbacher [2, 8]. Hence, for
the famous “Million Message Attack”, one nowadays requires significantly
fewer chosen ciphertexts.
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1. Introduction

This thesis aims to provide a detailed and intuitive description of Bleichen-
bacher’s attack. Additionally, we want to give a comprehensive overview
of the different improvements published over the years. For this, we de-
scribe them carefully, as often some details are omitted in the papers, and
then compare their performance to the original algorithm by performing
large-scale experiments. The last objective is to conduct research into devis-
ing new methods for improving the algorithm. Hence, we introduce slight
enhancements to the existing optimizations and present a new heuristic to
lower the attack complexity for some unfortunate cases.

1.2 Thesis Structure

The thesis starts by introducing the concepts relevant to Bleichenbacher’s at-
tack. Hence, Chapter 2 provides an overview of RSA encryption, the Public
Key Cryptography Standards (PKCS), padding oracles and SSL/TLS. Chap-
ter 3 then presents the Bleichenbacher attack. We first describe the attack
in detail, followed by a theoretical analysis and conclude the chapter by ex-
plaining the complexity results of the attack in practice. In Chapter 4, the dif-
ferent improvements are presented and their effect on the attack is analyzed.
Based on the performed experiments, we derived a novel heuristic to further
reduce the attack complexity for some unfortunate cases. This heuristic is
shown in Chapter 5 alongside its results in practice. Finally, Chapter 6 gives
an overview of the experimental results obtained from large-scale experi-
ments when applying the different optimizations. The thesis finishes with a
conclusion on the conducted research on Bleichenbacher’s attack. Further-
more, in the appendix, we provide the code of our implementation of the
Bleichenbacher attack containing all improvements and the heuristic.
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Chapter 2

Preliminaries and Notation

2.1 RSA Encryption

Until the 1970s, only symmetric cryptographic systems existed. In these
methods, two parties that want to communicate securely have to share a
secret key. This key is used to both encrypt and decrypt the exchanged
messages and must not be known by any other party. In 1978, Rivest, Shamir
and Adleman introduced the RSA algorithm [15]. This algorithm presented
a novel way of encrypting and decrypting messages, which is nowadays
widely known as asymmetric encryption. In asymmetric encryption, there
exist two different keys for encryption and decryption. One of them is the
so-called public key which is known publicly and can be given to anyone.
This key is used for encryption. The decryption key is called private key
and must be kept secret. A message is encrypted using the public key and
can only be decrypted with the corresponding private key. Additionally,
it is hard to compute the private key from the public key. In RSA, this is
based on the fact that prime factorization is hard. More precisely, for a large
number n whose factors are two large prime numbers p and q it is hard to
find those primes. The larger the value n is, the more difficult it is to find
the corresponding prime factors.

Generating a public and private key pair using the RSA algorithm is done
in the following steps:

1. Generate two different large random prime numbers p and q. These
values are kept secret.

2. Calculate n = pq. This value n is called the modulus for this key pair
and will be shared in the public key. However, because it is hard to fac-
torize n, the prime numbers remain unknown to the public. The larger
the random prime numbers p and q are, the harder it is to factorize n.

3. Calculate the totient φ(n) = (p− 1)(q− 1).

3



2. Preliminaries and Notation

4. Choose an integer e that is co-prime to φ(n) and satisfies 1 < e < φ(n).
This value e will be shared to be used for encryption.

5. Compute the multiplicative inverse of e in the ring of integers modulo
φ(n). In other words, we want to find the integer d for decryption that
satisfies: e · d ≡ 1 (mod φ(n)). It will be a part of our private key and
should be hidden.

After this procedure, we can construct the private and public keys of this
RSA instance. We set the public key to (n, e) and the private key to (p, q, d).
All parts of the public key have to be shared and all parts constituting the
private key have to remain secret.

As soon as the public and private keys have been set up, an integer message
m smaller than n can be encrypted by computing c ≡ me (mod n). The
resulting ciphertext c can be decrypted by the party holding the private key
in the following way: m ≡ cd (mod n) ≡ med (mod n) ≡ m (mod n). The last
step follows from the Euler-Fermat theorem.

In practice, this implementation of RSA is usually referred to as textbook
RSA and well-known to be insecure. For example, if we encrypt a single
message twice using the same RSA public key, the encryption will result in
two identical ciphertexts. This means that the textbook RSA algorithm is
a deterministic encryption scheme and therefore not IND-CPA secure [7].
Hence, RSA must be used in combination with a padding scheme to meet
standard security notions. In the next section, we will present an encoding
scheme created to achieve this objective. Using a padding scheme also di-
rectly allows us to split a message m which is larger than n into a sequence
of messages smaller than n and encrypt each one separately with RSA.

2.2 Public Key Cryptography Standards

The Public Key Cryptography Standards (PKCS) are a set of standards de-
vised and introduced by the RSA Laboratories. They provide specifications
for implementing RSA-based public key cryptography with the aim to elim-
inate the security issues of textbook RSA. PKCS #1, the first version of the
standards, was published in the early 1990s. We will focus on PKCS #1
v1.5 [11] as Bleichenbacher’s attack [3] exploits the structure of this padding
scheme.

2.2.1 Public Key Cryptography Standards #1 v1.5

We describe PKCS #1 v1.5 by showing how a message M gets transformed
into a ciphertext c by the sender and how the receiver can extract the mes-
sage from an incoming ciphertext. For this, assume that we have an RSA
public key (n, e) as well as a private key (p, q, d). The message M the sender
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2.2. Public Key Cryptography Standards

wants to exchange is a sequence of bits and consists of |M| bytes. The PKCS
#1 v1.5 standard specifies how this message gets padded to encrypt it using
the public key. Let k be the byte length of the modulus n. The data block M
to be encrypted can have at most k− 11 bytes. If the message M consists of
more bytes, the sender can split it into a sequence of smaller messages and
encrypt each message separately. To pad the message, the sender first gener-
ates a pseudo-random padding string PS of k− 3− |M| nonzero bytes. The
constraint that M can consist of at most k− 11 bytes means that the padding
has to consist of at least 8 bytes. Now, the sender can build an encryption
block EB of exactly k bytes in the following way:

EB = 0x00 || 0x02 || PS || 0x00 || M.

Here, || denotes that two bytes or sequences of bytes are concatenated. The
second byte of the encryption block EB is called the block type. There exist
three different block types: 0, 1 and 2. For Bleichenbacher’s attack, only
block type 2 is relevant as it is used for encryption. The other two block
types are reserved for digital signatures.

Next, the sender converts the encryption block EB into an integer m. This
integer can then be encrypted with RSA, resulting in the ciphertext c ≡ me

(mod n).

The receiver, who owns the private key, can easily extract M from the ci-
phertext c. First, the receiver deciphers c with his RSA private key exponent
d. As a result, he obtains the message m and converts it into an encryption
block EB. In this block, he searches for the first zero byte after the initial
two bytes, indicating the end of the padding. Having identified this byte,
the receiver can directly extract the message.

This padding scheme is nowadays widely deployed in practice. Although it
was created to provide a secure way to implement RSA-based encryption,
this encoding scheme is known to introduce security problems. In 1998,
Daniel Bleichenbacher published a paper [3] that shows a now well-known
attack that exploits the padding structure combined with side-channel infor-
mation to decrypt an arbitrary ciphertext. Bleichenbacher’s attack is based
on an oracle that returns whether a given ciphertext corresponds to a cor-
rectly padded plaintext according to the PKCS #1 v 1.5 standard. In the next
section, we introduce different padding oracles for PKCS #1 v 1.5 depending
on how restrictive the checks of the oracle on the plaintext are.

2.2.2 Padding Oracles based on PKCS #1 v1.5

A padding oracle is an oracle that receives a ciphertext and returns whether
the corresponding plaintext has the correct format or not. Hereby, the defi-
nition of correct depends on the used padding scheme for the cryptographic

5



2. Preliminaries and Notation

protocol and how rigorously the oracle checks the specification. In our case,
the oracles are based on the PKCS #1 v1.5. In order to capture the behav-
ior of real devices, where some receivers perform more careful checks than
others, we consider stronger and weaker oracles. Overall, we describe four
different oracles. Each oracle type always checks that the first two bytes of
the plaintext are 0x00 || 0x02. As we will see, this allows Bleichenbacher’s
attack to be used with all four oracle types to decrypt an arbitrary cipher-
text. However, the complexity of deciphering a ciphertext depends on how
restrictive the remaining oracle checks are.

We adopt the convention of characterizing the different oracles with three
Booleans [2]. Each of the three Booleans corresponds to one test the oracle
applies or skips on a decrypted ciphertext. F denotes that the test is con-
ducted and T that the test is skipped. We also keep the same order of the
Booleans for the different checks as presented by Bardou et al. [2]. The
first Boolean stands for testing the existence of at least one zero byte after
the first ten bytes. This property must hold for any plaintext that conforms
to the PKCS #1 v1.5 standard as there is one zero byte directly after the
padding string. The second Boolean stands for checking the existence of
eight nonzero bytes in the padding. This check is necessary because the
padding has at least eight bytes and can only contain nonzero bytes. Finally,
the third Boolean corresponds to assuring that the message contained in the
plaintext is of some particular length. For our analysis, we consider the four
following oracles: TTT, TFT, FFT and FFF. This set of oracle types is sensible
since we assume that in practice, a decrypted ciphertext is parsed from left
to right, performing increasingly more checks. We note that for the FFF or-
acle, we will analyze a particular instance that is of practical relevance. This
oracle is referred to as “Bad Version Oracle” and described in Section 2.3.3.

Let us now describe the four different oracle types:

• TTT Oracle: The TTT oracle is the most permissive oracle as it only
checks that the first two bytes of the plaintext are 0x00 and 0x02. The
oracle does not perform any other checks on the plaintext for a given
ciphertext.

• TFT Oracle: The TFT oracle checks for the 0x00 and 0x02 bytes and the
presence of at least eight bytes of non-zero padding following the two
initial bytes. It returns True on any plaintext with these two properties
and does not test for the existence of a zero byte in the remaining k− 10
bytes.

• FFT Oracle: The FFT oracle returns True on a correctly padded plain-
text of any length. It accepts any ciphertext that when deciphered
results in a plaintext conforming to the PKCS #1 v1.5 format without
requiring the 0x00 byte to be at a specific location.

6



2.3. SSL/TLS

• FFF Oracle: The FFF oracle is the most restrictive oracle and only ac-
cepts correctly padded plaintexts with a fixed message length. This
means that we know exactly how many bytes the padding block has
and at which position in the plaintext the zero byte has to be located.

2.2.3 Access to a Padding Oracle

Bleichenbacher’s attack relies on the access to an oracle that returns True

on any ciphertext whose corresponding plaintext conforms to the PKCS #1
v1.5 padding format [3]. It is important to note that the assumption of such
an oracle also has practical relevance. In practice, an oracle can be in the
form of error messages [4, 8] resulting from incorrectly padded plaintexts.
However, this is not the only side-channel information that can serve as an
oracle. Since its publication, various Bleichenbacher-like attacks have been
discovered, also exploiting other side-channel information such as timing
variations [5, 10], memory access patterns [17] and microarchitectural side-
channels [16].

We also want to describe the behavior which results in the different oracle
types in practice. A TTT oracle arises if some server only checks the first two
bytes and if they are correct, directly extracts a message of known length.
The same holds for a TFT oracle, which also checks for eight nonzero bytes
following the first two bytes. As these oracles do not check for a zero byte
after the padding string, they must have foreknowledge about the length
of the message to extract it. On the other hand, the FFT oracle arises for a
server that checks all properties of a PKCS #1 v1.5 conforming plaintext. It
extracts a message of unknown length after the first discovered zero byte in
the last k − 10 bytes. Finally, we obtain a FFF oracle if a server checks all
specifications, including the zero byte at a fixed position, and extracts the
message of known length.

2.3 SSL/TLS

2.3.1 Description

Transport Layer Security (TLS), often still referred to as Secure Sockets Layer
(SSL), is a cryptographic protocol whose aim is to provide privacy and data
integrity for applications communicating over a computer network [14]. The
protocol is widely established nowadays and used for different applications
such as banking or email. Its main goal is to set up a secure channel be-
tween a client and a server. TLS consists of several subprotocols, the two
most important being the TLS Record Protocol and the TLS Handshake Pro-
tocol. The Handshake Protocol initiates the connection by establishing keys
to communicate securely and making some assurances about the identities
of the communicating parties. The Record Protocol concerns the exchange of
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2. Preliminaries and Notation

application data between the entities. It describes how data is compressed,
authenticated and encrypted. It is important to note that TLS is the successor
and improved version of SSL. Nevertheless, the two terms are still used in-
terchangeably in the industry. There also exist different versions of TLS, the
most recent being TLS 1.3 [13] published in 2018 with several new features
providing more security and reduced latency compared to TLS 1.2. In the re-
maining part of this section, we consider TLS 1.2 as this is the version whose
structure Bleichenbacher’s attack [3] exploits and the most widely used ver-
sion to date. However, also the earlier version SSLv2 is highly vulnerable to
a variation of the attack that enables decryption of RSA ciphertexts [1].

2.3.2 TLS 1.2 Handshake Protocol

We now take a closer look at the Handshake Protocol of TLS 1.2. Bleichen-
bacher’s attack can be used to decipher one of the exchanged messages in
this protocol. Figure 2.1 shows the transmitted messages between a client
C and a server S to set up a secure channel [12]. The messages marked
with an asterisk are optional or situation-dependent and the messages en-
closed in square brackets are encrypted with the keys generated during the
protocol run. First, we look at the different steps on a high level and then
break down one particular message relevant to Bleichenbacher’s attack. We
consider the case where RSA is used for key agreement and authentication
in the TLS 1.2 Handshake Protocol. Furthermore, the TLS 1.2 protocol uses
the PKCS #1 v1.5 standard for RSA-based sessions. Both are requirements
for Bleichenbacher’s attack. We note that other key agreement modes exist
for the TLS 1.2 Handshake Protocol, such as Diffie-Hellman. In TLS 1.3,
the Diffie-Hellman key exchange protocol is used exclusively because of its
better security guarantees, providing perfect forward secrecy.

The first two messages ClientHello and ServerHello are used to agree on
the cipher suite and exchange nonce values for later key derivation. The
server usually also sends a Certificate, which binds his public key to his
identity, to authenticate itself. Optionally, the server can require the client
to provide a Certificate, but this is rarely done in practice. If RSA is used
for key agreement and authentication, the client then generates a so-called
premaster secret consisting of 48 pseudo-random bytes. This premaster

secret is padded, encrypted under the server’s public key from the ob-
tained certificate and sent as the ClientKeyExchange message. The server
can decrypt this message and obtain the premaster secret from which both
communicating parties derive a master secret. This master secret, in
turn, is used to derive the keys for encryption and authentication of this
TLS session. In the Finished messages, a MAC comprises the hash of all
previously exchanges messages to guarantee the integrity of the handshake.
The client and server check these messages. To establish a TLS session, both

8



2.3. SSL/TLS

Figure 2.1: TLS 1.2 Handshake Protocol [12]

of the Finished messages have to be successfully verified. Afterwards, the
negotiated keys can be used for encryption and authentication of application
data.

Bleichenbacher’s attack concerns the ClientKeyExchange message of the
TLS 1.2 Handshake Protocol. If an attacker can decrypt this message, he
obtains the premaster secret and can derive the session keys, breaking all
security guarantees. As the protocol uses PKCS #1 v1.5 for padding the mes-
sage, we know that the structure of a ClientKeyExchange message looks as
follows:

ClientKeyExchange = 0x00 || 0x02 || PS || 0x00 || premaster secret.

The premaster secret has a fixed length of 48 bytes, where the first two
bytes specify the version number of TLS. For TLS 1.2, these bytes (also re-
ferred to as major and minor version numbers) are both 0x03. The remain-
ing bytes are randomly generated by the client and build a pseudo-random
string R of 46 bytes. So, the premaster secret has the following structure:

premaster secret = major || minor || R.

If we have access to an oracle that gives us information about the padding of
a decrypted ciphertext, this oracle can be used in Bleichenbacher’s attack. In
the next section, we introduce an oracle relevant in practice: the Bad Version
Oracle (BVO). It is based on side-channel information revealed due to poor
implementation of the checks on the padding structure.
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2. Preliminaries and Notation

2.3.3 Bad Version Oracle (BVO)

Bleichenbacher’s attack exploits side-channel information about the correct
format of a plaintext to decrypt an arbitrary ciphertext [3]. As a countermea-
sure to his attack, it was recommended not to reveal any information about
the decoding process and where a potential error occurs. Additionally, se-
curity architects were advised to carefully verify all specifications of the
padding structure relevant for TLS 1.2. In particular, they were instructed
to not only check the correctness of the first two bytes, the nonzero padding
string of prescribed length and the zero byte at a fixed position but also
that the version numbers of the ClientKeyExchange message are correct.
These version numbers were introduced to thwart so-called version rollback
attacks. As it was not adequately described how these checks should be
done, many architects simply issued an error message whenever the version
numbers were incorrect. The side-channel information provided by this un-
careful implementation led to a new possible oracle referred to as the Bad
Version Oracle (BVO). The attack based on this oracle was discovered and
published in 2003 by Klı́ma, Pokorný and Rosa [8].

According to our description in Section 2.2.2, an FFF oracle only accepts
plaintexts that conform to the PKCS #1 v1.5 standard and where the mes-
sage M has a fixed length. The BVO, introduced by Klı́ma, Pokorný and
Rosa, describes a particular version of a FFF oracle. We now describe the
properties of the oracle.

First, recall that a plaintext is PKCS #1 v1.5 conforming if:

• The first byte of the plaintext is 0x00.

• The second byte of the plaintext is 0x02.

• The next eight bytes of the plaintext are not 0x00.

• There exists a 0x00 byte in the remaining k - 10 bytes.

In the TLS 1.2 Handshake Protocol, the message, i.e., the premaster secret,
has a fixed length of 48 bytes. The oracle hence only accepts a plaintext if
the length of the message M is exactly 48 bytes.

We call such a plaintext S-PKCS conforming. So, a plaintext is S-PKCS
conforming if:

• The first byte of the plaintext is 0x00.

• The second byte of the plaintext is 0x02.

• The next k− 51 bytes of the plaintext are not 0x00.

• The byte k− 48 is 0x00.

To describe which plaintexts are accepted by the BVO, we first have to intro-
duce the servers’ behavior that results in the side-channel information. It is
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2.3. SSL/TLS

known that the server should not disclose any information whether the de-
crypted ciphertext is S-PKCS conforming or not. Thus, in practice, a server
is recommended to continue with a randomly chosen value of the premaster
secret if the resulting plaintext has the wrong format. The communication
will still break down after sending the Finished message because the client
and server will use different session keys due to this countermeasure. How-
ever, the attacker does not know whether the communication broke down
because he sent an invalid ciphertext or the incorrect premaster secret.

We assume that the server applies all checks to assure that the plaintext
is S-PKCS conforming and the countermeasure to thwart Bleichenbacher’s
attack. Additionally, all S-PKCS conforming plaintexts are processed by the
server to check for the correct version number. This results in the following
behavior of the server:

1. The server checks if the decrypted plaintext is S-PKCS conforming. If
the plaintext is not S-PKCS conforming, the server generates a new
premaster secret randomly and breaks down the communication
with the client after receiving the Finished message.

2. The server checks each S-PKCS conforming plaintext to see whether
the bytes k − 47 and k − 46 contain the expected major and minor

version numbers. If the test fails, the server issues a distinguishable
error message. Note that the test is never done for plaintexts that are
not S-PKCS conforming.

We can now give the definition of the Bad Version Oracle. The BVO accepts
any ciphertext if:

• The corresponding plaintext is S-PKCS conforming.

• Either byte k − 47 of the plaintext is not equal to the major version
number or byte k− 46 is not equal to the minor version number.

We can see that the probability of an S-PKCS conforming plaintext also being
accepted by the oracle is high. A random S-PKCS conforming plaintext
passes the oracle with probability 1− 2−16 because the probability of both
version numbers being correct is 2−16.

It is important to note that receiving an error message in practice is inter-
preted as a True from the BVO. Additionally, if this oracle returns True, we
know with certainty that the deciphered ciphertext is S-PKCS conforming
and hence also PKCS #1 v1.5 conforming. This knowledge implies that we
can apply Bleichenbacher’s attack with this oracle. Obviously, the more re-
strictive checks of this oracle significantly influence the complexity of the
attack, which becomes evident in the theoretical analysis of the attack and
the experimental results.
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Chapter 3

Bleichenbacher’s Attack

Bleichenbacher’s paper describes an adaptive chosen ciphertext attack against
RSA-based encryption using the PKCS #1 v1.5 padding standard [3]. A
chosen-ciphertext attack is an attack model where the attacker can select a
ciphertext and obtain the complete or part of its decryption. In the case of
Bleichenbacher’s devised algorithm, the attacker has access to an oracle that
tells him, for any chosen ciphertext c, whether the corresponding plaintext
has the correct format. An adaptive chosen ciphertext attack means that
the attacker can choose the ciphertexts based on previous outcomes of the
oracle.

3.1 Description

First, we give an overview of the attack and then describe each step in detail.
Let (n, e) be the RSA public key and (p, q, d) the corresponding private key.
Assume the attacker does not have access to the private key and wants to
find m ≡ cd (mod n) for an arbitrary integer c. He chooses integers s,
computes c′ ≡ cse (mod n) and sends c′ to the oracle. Let B = 28(k−2), where
k is the byte length of the modulus n. If the oracle returns True for c′, the
attacker knows that the first two bytes of the plaintext, i.e., ms (mod n),
are 0x00 and 0x02. Hence, the attacker can derive that 2B ≤ ms (mod n)
≤ 3B− 1. By testing different values for s, the attacker collects several such
pieces of information restricting the possible values of m further until he can
derive m.

The attack is divided into three phases. In the first phase, the message is
blinded, resulting in a ciphertext c0 corresponding to an unknown message
m0. This step is only needed for computing signatures where the message m
does not conform to the proper padding. For our consideration of decrypt-
ing an encrypted message, this phase can be skipped as the initial message
already has the correct format. In the second phase, the attacker tries to
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3. Bleichenbacher’s Attack

find small values si for which the oracle accepts c0(si)
e (mod n). For each

successful value si, he narrows down the range of possible values for m0
by computing a set of intervals where one of them must contain m0. To do
this, he uses the previously collected knowledge about m0. We stay in the
second phase until only a single interval is left. As soon as this happens,
we continue with the last phase. The attacker now has enough information
about m0 to choose the si such that the probability of c0(si)

e (mod n) being
accepted by the oracle is a lot higher than for a randomly chosen ciphertext.
During this procedure, the size of si is increased gradually to restrict the
possible range of m0 further until he ends up with only one possible value.

Now, we describe the different phases of the attack in detail.

Step 1: Blinding. Given an integer c, choose different random integers s0
until c(s0)e (mod n) is accepted by the oracle. For the first successful value s0,
set c0 ← c(s0)e (mod n), M0 ← {[2B, 3B− 1]} and i← 1. When decrypting a
ciphertext c corresponding to a correctly padded message m, set s0 = 1 and
c0 = c.

Step 2: Searching for PKCS conforming messages.

Step 2a: Starting the search. If i = 1, then search for the smallest positive
integer s1 ≥ n/(3B), such that the oracle accepts the ciphertext c0(s1)

e (mod
n). This means start by trying the value s1 = dn/(3B)e and increment it by
one until the ciphertext is accepted by the oracle.

Step 2b: Searching with more than one interval left. If i > 1 and the num-
ber of intervals in Mi−1 is at least 2, search for the smallest integer si > si−1,
such that the ciphertext c0(si)

e (mod n) is accepted by the oracle. Similarly
to step 2a, start with si = si−1 + 1 and increment si until the ciphertext is
accepted by the oracle.

Step 2c: Searching with one interval left. If i > 1 and Mi−1 contains exactly
one interval (i.e., Mi−1 = {[a, b]}), choose small integer values ri, si such that

ri ≥ 2
bsi−1 − 2B

n

and
2B + rin

b
≤ si <

3B + rin
a

,

until the ciphertext c0(si)
e (mod n) is accepted by the oracle.

In other words, start with ri = d2 bsi−1−2B
n e. For this ri, compute the possible

si values and test them with the oracle, starting with the lowest. If the
interval of possible si values for this ri is empty or none of the tested values
work, increment ri by one and continue searching.

14
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Step 3: Narrowing the set of solutions. For each successful si, compute the
set Mi by setting:

Mi ←
⋃

(a,b,r)

{[max(a, d2B + rn
si

e), min(b, b3B− 1 + rn
si

c)]}

for all [a, b] ∈ Mi−1 and
asi − 3B + 1

n
≤ r ≤ bsi − 2B

n
.

Step 4: Computing the solution. If Mi contains only one interval of length
1 (i.e., Mi = {[a, a]}), then set m ← a(s0)−1 (mod n) and return m as the
solution of m ≡ cd (mod n). Otherwise, set i← i + 1 and go to step 2.

Before showing the correctness and analyzing the complexity of this attack,
we make four remarks concerning the algorithm:

• Bleichenbacher’s attack is based on the fact that we want to find a
message m0, which we know is contained in the interval [2B, 3B− 1] .
This is why blinding is required if we are not sure that the message m
conforms to the PKCS #1 v1.5 standard.

• We start step 2a with s1 = dn/(3B)e as for smaller values of s1 the first
two bytes of the message m0s1 (mod n) are never 0x00 || 0x02. This
follows because m0 ∈ [2B, 3B− 1] and hence for 1 < s1 < n/(3B) we
have 3B < m0s1 (mod n) < n.

• We want to find the smallest possible value for s1 in step 2a as with
increasing s1, it gets more likely that we have to perform step 2b. The
larger s1, the more r values are possible in step 3. For each r value,
we then introduce an interval in M1. These intervals do not overlap as
their length is upper bounded by d B

s1
e and two consecutive intervals

are d n
s1
e apart from each other. Note that for a known value n, we

could actually determine the value slim such that if s1 > slim, we have
to perform step 2b.

• For step 2c, we use ri ≥ 2 bsi−1−2B
n because we want to at least double

the value of si with every round of 2c. By doing that, we can roughly
half the length of the remaining interval, computed in step 3, in each
iteration. Hence, we want 2si−1 ≤ si. Combined with the constraint
that 2B+rin

b ≤ si, we get 2si−1 ≤ 2B+rin
b . This leads to ri ≥ 2 bsi−1−B

n .
We see that a slightly higher lower bound on ri can be used compared
to that in Bleichenbacher’s original presentation. However, this is not
relevant in practice as step 2c is already a heuristic procedure.

This attack works for any oracle that returns True on messages where the
first two bytes are 0x00 || 0x02. Hence, it can be used in combination with
all of the previously introduced oracle types.
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We now prove the correctness of the attack. To show that Bleichenbacher’s
attack finds the desired message m, it suffices to show that the attack finds
m0. We prove this by showing that m0 ∈ Mi for all i by induction over i.
By construction, m0 is accepted by the oracle and hence 2B ≤ m0 ≤ 3B− 1.
This shows that m0 ∈ M0. Now, assume that m0 ∈ Mi−1. We want to show
that m0 ∈ Mi. We know that there exists an interval [a, b] ∈ Mi−1 such that
a ≤ m0 ≤ b. Additionally, since m0si (mod n) is accepted by the oracle, there
exists an integer r such that 2B ≤ m0si − rn ≤ 3B− 1. Combining these two
insights, we get the following two equations:

asi − (3B− 1) ≤ rn ≤ bsi − 2B

and
2B + rn

si
≤ m0 ≤

3B− 1 + rn
si

.

Because of how the set of intervals in step 3 is updated, we know that there
exists some interval [a′, b′] ∈ Mi containing m0.

This proves that Bleichenbacher’s attack finds the desired message m for an
arbitrary ciphertext c. The complexity analysis of the attack is performed
in Section 3.3 separately for each oracle type as the more or less restrictive
checks on the decrypted ciphertexts influence its performance.

3.2 Noisy Oracles

Before we continue with the theoretical analysis of the attack, it is important
to note that Bleichenbacher’s attack [3] assumes a noiseless oracle. The at-
tack relies on the correctness of the response it receives from the oracle. In
practice, however, these oracles base on side-channel information, which is
often noisy. An example of such an oracle is remotely timing the decryption
process. But, noisy oracles are also relevant for more recently introduced
attacks based on the leakage from microarchitectural side-channels [16].

Bleichenbacher’s attack actually does not require the oracle to be completely
noiseless. The attack still works in the presence of false negative returns by
the oracle. In this context, a false negative means that the oracle rejects a
valid ciphertext. The attack would continue searching for the next conform-
ing multiplier si until the oracle eventually accepts a ciphertext. Although
the correctness of the attack is not affected, its performance can be influ-
enced a lot by this behavior. On the other hand, if the oracle returned false
positives, Bleichenbacher’s attack could fail. An oracle that returns True on
an invalid ciphertext results in the attack narrowing the possible solutions
down in an incorrect way.

The current solution to this problem is to repeat the timing measurements to
reduce the false positive probability. Hereby, false negatives get ignored as
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they do not influence the correctness of the algorithm. This countermeasure
clearly increases the complexity of the attack. In [16], Ronen et al. issue at
most six queries with the same ciphertext. The ciphertext only gets accepted
if at least five of the issued queries return True. Their simulation results
show that the presence of errors at most doubles the number of queries
required for the attack.

As noisy oracles are a challenge and of importance in practice, it would be
of great interest to discover a version of Bleichenbacher’s attack that copes
with an oracle returning noisy results.

3.3 Theoretical Analysis

For the four different oracle types introduced in Section 2.2.2, we analyze
the complexity of Bleichenbacher’s attack separately. In this context, the
complexity always denotes the number of oracle calls needed to complete
the attack successfully. The theoretical analyses of the attack are conducted
analogously to Bleichenbacher’s paper [3].

Let (n, e) be the RSA public key and (p, q, d) the corresponding private key.
Our analysis considers different lengths for the modulus n: 512, 1024 or
2048 bits. In practice, a modulus n is usually generated to have one of
these lengths and we assume that n has exactly the specified number of bits.
Depending on the generating algorithm, the bit length of the modulus can
also be one bit more or less than the desired size. For simplicity, we exclude
this fact from the theoretical analysis. Let k be the byte length of n. From our
assumption it follows that: 28k−1 < n < 28k. We note that this is a tighter
bound compared to Bleichenbacher’s paper, where he lower bounds n by
28(k−1).

For the analyses of all oracles, we define two probabilities:

• Let Pr(P) be the probability that a randomly chosen integer 0 ≤ m < n
passes all checks conducted by the oracle. This describes the probabil-
ity that a randomly chosen ciphertext c is accepted by the oracle.

• Let Pr(A) be the probability that the first two bytes of the random
plaintext are 0x00 || 0x02. In other words, Pr(A) is the probability
that the first two bytes of the plaintext corresponding to a randomly
chosen ciphertext c are 0x00 || 0x02. Pr(A) can be described by
Pr(A) = B/n for B = 28(k−2). From our assumption on the modulus n
it follows that: 215B < n < 216B. Finally, we obtain: 2−16 < Pr(A) < 2−15.
This holds independently of the oracle type.
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3.3.1 TTT Oracle

The TTT oracle is the most permissive version of the oracles. For a received
ciphertext c, it only checks whether the first two bytes of the corresponding
plaintext m are 0x00 || 0x02. Intuitively, it should be the easiest for an
attacker to randomly produce a ciphertext accepted by the oracle and thus
find si values that work. This observation already suggests that if a device
only checks the first two bytes of a plaintext, it is the most vulnerable to the
Bleichenbacher attack. To approximate how many ciphertexts are needed to
find the desired plaintext m, we conduct a complexity analysis of the attack
under the TTT oracle.

For the TTT oracle, Pr(P) and Pr(A) are equal. We will see that this is not
the case for the oracle types which perform more rigorous checks. Further-
more, we analyze the expected complexity of the Bleichenbacher attack for
keylengths of 512, 1024 and 2048 bits to see how this parameter influences
the attack performance.

keylength = 512 bits

We consider the attack on an encrypted message, which is already a valid
ciphertext. Hence, step 1 is not necessary and we do not incorporate it into
the theoretical analysis.

In step 2a, we want to find a small value s1 that results in a valid ciphertext,
but we do not have any additional information about m0. Thus, we start at
the first value that could result in a valid ciphertext and increase it by one
until we find a conforming multiplier for s1. To approximate the complexity
of step 2a, we use Pr(P). The first multiplier for which the ciphertext is
accepted by the oracle has roughly the size 1/ Pr(P) = n/B < 216. Hence,
we approximate the complexity of step 2a by 216.

For one round of step 2b, we again need to perform roughly 1/ Pr(P) calls
to the oracle. However, the complexity of step 2b depends on how many
times we have to repeat this step until we end up with a single interval. So,
we want to bound the number of intervals in Mi for each value i. For this
goal, Bleichenbacher used the following heuristic in his paper [3]: Let ωi
denote the number of intervals in Mi, then

ωi ≤ 1 + 2i−1si(
B
n
)i.

Before applying this formula to bound the number of intervals in Mi, we
want to explain the heuristic. We start by looking at M1. After having found
s1, we go to step 3 to narrow down the solution. For s1, there exist at most
d (b−a)s1+B−1

n e possible r values. As we are in the first iteration, a = 2B and
b = 3B − 1. So, we approximate the number of different values for r by
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d Bs1
n e. For each possible r, we introduce an interval Ir = [d 2B+rn

s1
e, b 3B−1+rn

s1
c]

in M1. Because these intervals do not overlap, we expect M1 to contain d Bs1
n e

intervals, meaning that ω1 ≤ 1 + s1(
B
n ).

To show that the bound also holds for i > 1, assume that it holds for i− 1.
For each [a′, b′] ∈ Mi−1, the possible number of r values can be approxi-
mated by d (b

′−a′)si
n e. Altogether, the number of intervals Ir can be bounded

by d Bsi
n e. Furthermore, because of how we construct the intervals, each in-

terval Ir or part of it is included in Mi if it overlaps with the corresponding
interval of Mi−1. No interval can overlap with two intervals in Mi−1. To
provide a heuristic, assume that the intervals Ir are randomly distributed.
The probability that one interval Ir, whose length is d B

si
e, intersects with an

interval in Mi−1 of length d B
si−1
e is approximately: B/si+B/si−1

B = 1
si
+ 1

si−1
.

Overall, we expect one interval Ir to be present in Mi with a probability of
( 1

si
+ 1

si−1
)ωi−1. As we have assumed that the heuristic holds for i− 1 and by

considering that one interval must contain m0, we get:

ωi ≤ (
1
si
+

1
si−1

)(1 + 2i−2si−1(
B
n
)i−1)

Bsi

n
≤ 1 + 2i−1si(

B
n
)i.

Using this heuristic and the fact that s1 is approximately 1/ Pr(P) = n/B,
we bound the number of intervals in M1 by ω1 ≤ 1 + 1 = 2. As this is
a bound, we assume for the remaining part of the analysis that |M1| = 1
and we do not have to do a single call to step 2b. We can also analyze how
many intervals we expect M2 to contain. Because s2 has roughly the value
2/ Pr(P) = 2n/B, we have ω2 ≤ 1 + 4 n

B (
B
n )

2 = 1 + 4 B
n < 1 + 2−13. With a

high probability at most one round of step 2b is necessary.

Next, we bound the number of oracle calls needed for step 2c. If we are in
step 2c and searching for si we know that Mi−1 only has one interval left,
i.e., Mi−1 = [a, b] and a ≤ m0 ≤ b. Hence, if m0si (mod n) is accepted by the
oracle, we know:

2B + rin
b

≤ 2B + rin
m0

≤ si ≤
3B− 1 + rin

m0
≤ 3B− 1 + rin

a
.

The length of the outer interval is:

3B− 1 + rin
a

− 2B + rin
b

≥ 3B− 1 + rin
m0

− 2B + rin
m0

≥ B− 1
m0

≥ B− 1
3B

.

We can deduce that we can find an si value for each third value ri that is
tried. Additionally, Bleichenbacher approximates the probability that this si

is also contained in the interval [ 2B+rin
m0

, 3B−1+rin
m0

] and hence accepted by our
oracle by roughly 1/2 [3]. It follows that we find an si such that the oracle
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accepts the decoded message after trying about two chosen ciphertexts. Be-
cause of how we choose si based on the previous si−1, the remaining interval
is divided in half in each step. Using this, we expect step 2c to finish after
around 16k = 210 steps.

In total, to decode an encrypted message, approximately 216 + 210 = 66 560
calls to the oracle are necessary.

keylength = 1024 bits

The analysis of steps 2a and 2b does not depend on the keysize. Therefore
their complexity is the same.

For step 2c, we need 16k calls to the oracle. For a keylength of 1024 bits, this
corresponds to 16 · 128 = 211 oracle calls.

In total, to decode an encrypted message, approximately 216 + 211 = 67 584
calls to the oracle are necessary.

keylength = 2048 bits

The analysis of steps 2a and 2b does not depend on the keysize. Therefore
their complexity is the same.

For step 2c, we need 16k calls to the oracle. For a keylength of 2048 bits, this
corresponds to 16 · 256 = 212 oracle calls.

In total, to decode an encrypted message, approximately 216 + 212 = 69 632
calls to the oracle are necessary.

3.3.2 TFT Oracle

For the remaining three oracles, we conduct the analyses the same way,
using the heuristics introduced for the TTT oracle.

Pr(P) again denotes the probability that a randomly chosen plaintext is ac-
cepted by the oracle. For the TFT oracle, this means that in addition to the
first two bytes being 0x00 and 0x02, the next eight bytes have to be nonzero.
We have

Pr(P | A) =
255
256

8

and by using Pr(A), we deduce:

0.96 · 2−16 < Pr(P) < 0.97 · 2−15.

We observe that this additional check decreases the probability of producing
a valid plaintext by randomly guessing ciphertexts only by a small fraction.
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keylength = 512 bits

We approximate the complexity of step 2a by 1/ Pr(P) < 1.05 · 216.

Each round of step 2b needs 1/ Pr(P) < 1.05 · 216 calls to the oracle. The
additional checks influence the probability of having to conduct a round of
step 2b. Because s1 is roughly 1/ Pr(P) < 1.05n/B, the number of intervals
in M1 is ω1 < 1 + 1.05 = 2.05. As this is a bound and based on heuristics,
we assume that |M1| = 1 and we can skip step 2b. We approximate s2 by
2/ Pr(P) < 2 · 1.05n/B and get ω2 < 1 + 1.05 · 2−13. With a high probability,
at most one round of step 2b is needed.

In step 2c, it is again easy to find values ri, si, which satisfy the conditions.
For each possible si, we want to know the probability that multiplying it
with m0 results in a message accepted by the oracle. This happens if the
first two bytes are 0x00 || 0x02 and the bytes three to ten are nonzero.
We know that the first case happens roughly with probability 1/2 and
Pr(P | A) = 255

256
8. Overall, each si we try is accepted by the TFT oracle with

a probability of ( 255
256

8
)/2. Hence, we expect to find the next si after 2 · 1.05

oracle calls. Therefore, to complete step 2c it takes 1.05 · 16k = 1.05 · 210 calls
to the oracle.

In total, to decode an encrypted message, approximately 1.05(216 + 210) =
69 888 calls to the oracle are necessary.

keylength = 1024 bits

The analysis of steps 2a and 2b does not depend on the keysize. Therefore
their complexity is the same.

For step 2c, we need 1.05 · 16k calls to the oracle. For a keylength of 1024
bits, this corresponds to 1.05 · 16 · 128 = 1.05 · 211 calls to the oracle.

In total, to decode an encrypted message, approximately 1.05(216 + 211) <
70 964 calls to the oracle are necessary.

keylength = 2048 bits

The analysis of steps 2a and 2b does not depend on the keysize. Therefore
their complexity is the same.

For step 2c, we need 1.05 · 16k calls to the oracle. For a keylength of 2048
bits, this corresponds to 1.05 · 16 · 256 = 1.05 · 212 calls to the oracle.

In total, to decode an encrypted message, approximately 1.05(216 + 212) <
73 114 calls to the oracle are necessary.
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3.3.3 FFT Oracle

For the FFT oracle, Pr(P) is equal to the probability that a randomly chosen
plaintext has the correct format specified by the PKCS #1 v1.5 standards. The
oracle checks that the first byte is 0x00, the second byte 0x02, the following
eight bytes are nonzero and that at least one of the remaining bytes is 0x00.
We have

Pr(P | A) =
255
256

8
· (1− (

255
256

)k−10).

The constraint that the resulting plaintext of some ciphertext has to have
another zero byte in the bytes 11 to k influences the probability of randomly
generating an accepted ciphertext a lot. This probability also depends on the
keylength. For longer keys, it is more probable that one byte in the plaintext
of a randomly generated ciphertext is 0x00. In the following analysis, we
see how these two factors influence the performance of the attack.

keylength = 512 bits

For a keylength of 512 bits we have: 0.184 < Pr(P | A) < 0.185.

It follows that: 0.184 · 2−16 < Pr(P) < 0.185 · 2−15.

We approximate the complexity of step 2a by 1/ Pr(P) < 5.44 · 216.

Each round of step 2b needs 1/ Pr(P) < 5.44 · 216 calls to the oracle. The
additional checks influence the probability of having to conduct a round
of step of 2b. Because s1 is roughly 1/ Pr(P) < 5.44n/B, the number of
intervals in M1 is ω1 < 1 + 5.44 = 6.44. We can see that if we perform all
checks on the plaintext to determine whether it is PKCS #1 v1.5 conforming,
it is much more likely that the adversary has to do a round of step 2b. We
approximate s2 by 2/ Pr(P) < 2 · 5.44n/B and get ω2 < 1 + 5.44 · 2−13. With
a high probability, at most one round of step 2b is needed. For the FFT
oracle with a keylength of 512 bits, we assume that we have to do one round
of step 2b. Hence, step 2b requires 1/ Pr(P) < 5.44 · 216 oracle calls.

The new checks also influence the number of calls needed for step 2c. The
probability that a value si which satisfies the conditions in step 2c is also
PKCS #1 v1.5 conforming is roughly Pr(P | A)/2. For a keysize of 512
bits this means we need around 2 · 5.44 calls to the oracle to find the next
conforming multiplier si. Therefore, to complete step 2c it takes 5.44 · 16k =
5.44 · 210 = 1.36 · 212 calls to the oracle.

In total, to decode an encrypted message, approximately 5.44(2 · 216 + 210) =
5.44(217 + 210) = 1.36(219 + 212) < 718 603 calls to the oracle are necessary.

keylength = 1024 bits

For a keylength of 1024 bits we have: 0.358 < Pr(P | A) < 0.359.
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It follows that: 0.358 · 2−16 < Pr(P) < 0.359 · 2−15.

We approximate the complexity of step 2a by 1/ Pr(P) < 2.8 · 216.

Each round of step 2b needs 1/ Pr(P) < 2.8 · 216 calls to the oracle. Be-
cause s1 is roughly 1/ Pr(P) < 2.8n/B, the number of intervals in M1 is
ω1 < 1 + 2.8 = 3.8. Compared to the first two oracle types, it is still more
likely that the adversary has to do a round of 2b. However, with growing
key size, the probability decreases as it is easier to generate a 0x00 in the
remaining k− 10 bytes. We approximate s2 by 2/ Pr(P) < 2 · 2.8n/B and get
ω2 < 1 + 2.8 · 2−13. It still holds that with a high probability, at most one
round of step 2b is needed. For the FFT oracle with a keylength of 1024 bits,
we assume that we have to do one round of step 2b. Hence, step 2b requires
1/ Pr(P) < 2.8 · 216 oracle calls.

For step 2c, we need 2.8 · 16k calls to the oracle. For a keylength of 1024 bits,
this corresponds to 2.8 · 16 · 128 = 2.8 · 211 calls to the oracle.

In total, to decode an encrypted message, approximately 2.8(2 · 216 + 211) =
2.8(217 + 211) = 1.4(218 + 212) = 372 736 calls to the oracle are necessary.

keylength = 2048 bits

For a keylength of 2048 bits we have: 0.599 < Pr(P | A) < 0.6.

It follows that: 0.599 · 2−16 < Pr(P) < 0.6 · 2−15.

We approximate the complexity of step 2a by 1/ Pr(P) < 1.67 · 216.

Each round of step 2b needs 1/ Pr(P) < 1.67 · 216 calls to the oracle. Be-
cause s1 is roughly 1/ Pr(P) < 1.67n/B, the number of intervals in M1 is
ω1 < 1 + 1.67 = 2.67. This bound again shows that with growing keylength,
it is easier to find an accepted ciphertext and less likely that we have to do
a round of step 2b. But, the probability of performing step 2b is still higher
than for the more permissive oracles, which perform fewer checks. We ap-
proximate s2 by 2/ Pr(P) < 2 · 1.67n/B and get ω2 < 1 + 1.67 · 2−13. With a
high probability at most one round of step 2b is needed. For the FFT oracle
with a keylength of 2048 bits, we assume that we have to do one round of
step 2b. Hence, step 2b requires 1/ Pr(P) < 1.67 · 216 oracle calls.

For step 2c, we need 1.67 · 16k calls to the oracle. For a keylength of 2048
bits, this corresponds to 1.67 · 16 · 256 = 1.67 · 212 calls to the oracle.

In total, to decode an encrypted message, approximately 1.67(2 · 216 + 212) =
1.67(217 + 212) < 225 731 calls to the oracle are necessary.

3.3.4 Bad Version Oracle

The BVO is an instance of a FFF oracle. For any FFF oracle, the message
length is fixed, which means that this oracle checks for a zero byte at a par-
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ticular position. This decreases the probability of an attacker generating an
accepted plaintext by randomly trying ciphertexts significantly. The proba-
bility that a random plaintext has a 0x00 byte at a fixed position is 2−8. For
the BVO, we know that the message has a size of 48 bytes. The first two
bytes of this message cannot be equal to major || minor. This, however,
does not influence the performance too much because any random plaintext
satisfies this condition with a probability of 1− 2−16. So, this analysis for the
BVO is almost the same as for a “pure” FFF oracle. Additionally, because
of the fixed message length, the nonzero padding is longer the larger the
keylength. This indicates that it gets harder to generate a valid ciphertext
with growing keylength.

To analyze the complexity of the attack using this oracle, we introduce a
new probability. Let Pr(S− PKCS | A) be the probability that the plaintext
is S-PKCS conforming, according to our definition in Section 2.3.3, assuming
that the first two bytes of the plaintext are 0x00 || 0x02. We can see that

Pr(S− PKCS | A) =
255
256

k−51
· 2−8.

After the first two bytes, there have to be k − 51 nonzero bytes followed
by one 0x00 byte. The probability that we receive an error message if the
randomly chosen ciphertext is S-PKCS conforming is

Pr(P | S− PKCS) = 1− 2−16.

Combining this, we obtain:

Pr(P|A) = Pr(P|S− PKCS) · Pr(S− PKCS|A) = (1− 2−16)(
255
256

k−51
· 2−8)

and

2−24(1− 2−16)(
255
256

k−51
) < Pr(P) < 2−23(1− 2−16)(

255
256

k−51
).

These probabilities depend on the size of the key and are larger the smaller
the keylength.

keylength = 512 bits

For a keylength of 512 bits we have: 0.95 · 2−8 < Pr(P | A) < 0.96 · 2−8.

It follows that: 0.95 · 2−24 < Pr(P) < 0.96 · 2−23.

We approximate the complexity of step 2a by 1/ Pr(P) < 1.06 · 224.

Each round of step 2b needs 1/ Pr(P) < 1.06 · 224 calls to the oracle. Because
s1 is roughly 1/ Pr(P) < 1.06 · 28 · n

B = 271.36 · n
B , the number of intervals
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in M1 is ω1 < 1 + 271.36 = 272.36. With a high probability we have to do
at least one round of 2b. We approximate s2 by 2/ Pr(P) < 1.06 · 29 · n

B and
get ω2 ≤ 1 + 1.06 · 210 · B

n < 1 + 1.06 · 2−5 < 1.04. It still holds that with a
high probability, at most one round of step 2b is needed. For the BVO with
a keylength of 512 bits, we assume that we have to do one round of step 2b.
Hence, step 2b requires 1/ Pr(P) < 1.06 · 224 calls.

The more restrictive checks of the oracle, especially checking for a zero byte
at a certain fixed location, also have an influence on the performance of step
2c. The probability that a value si which satisfies the conditions in step 2c
also results in a ciphertext accepted by the BVO is roughly Pr(P | A)/2.
This implies that an attacker has to do around 1.06 · 29 calls to the oracle to
find the next si in step 2c. For a keylength of 512 bits, this corresponds to
1.06 · 28 · 16k = 1.06 · 212 · 64 = 1.06 · 218 calls to the oracle.

In total, to decode an encrypted message, approximately 1.06(2 · 224 + 218) =
1.06(225 + 218) < 35 845 571 calls to the oracle are necessary.

We observe that the number of oracle calls required to decrypt a ciphertext
has increased significantly compared to the more permissive oracles. As the
BVO is of practical relevance, this motivates finding improvements to the
attack, which are presented in Chapter 4.

keylength = 1024 bits

For a keylength of 1024 bits we have: 0.73 · 2−8 < Pr(P | A) < 0.74 · 2−8.

It follows that: 0.73 · 2−24 < Pr(P) < 0.74 · 2−23.

Each round of step 2b needs 1/ Pr(P) < 1.37 · 224 calls to the oracle. Because
s1 is roughly 1/ Pr(P) < 1.37 · 28 · n

B = 350.72 · n
B , the number of intervals

in M1 is ω1 < 1 + 350.72 = 351.72. With a high probability we have to do
at least one round of 2b. We approximate s2 by 2/ Pr(P) < 1.37 · 29 · n

B and
get ω2 ≤ 1 + 1.37 · 210 · B

n < 1 + 1.37 · 2−5 < 1.05. It still holds that with a
high probability, at most one round of step 2b is needed. For the BVO with
a keylength of 1024 bits, we assume that we have to do one round of step
2b. Hence, step 2b requires 1/ Pr(P) < 1.37 · 224 calls.

For step 2c, we need 1.37 · 28 · 16k calls to the oracle. For a keylength of 1024
bits, this corresponds to 1.37 · 28 · 16 · 128 = 1.37 · 219 calls to the oracle.

In total, to decode an encrypted message, approximately 1.37(2 · 224 + 219) =
1.37(225 + 219) < 46 687 847 calls to the oracle are necessary.

keylength = 2048 bits

For a keylength of 1024 bits we have: 0.44 · 2−8 < Pr(P | A) < 0.45 · 2−8.

It follows that: 0.44 · 2−24 < Pr(P) < 0.45 · 2−23.
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We approximate the complexity of step 2a by 1/ Pr(P) < 2.28 · 224.

Each round of step 2b needs 1/ Pr(P) < 2.28 · 224 calls to the oracle. Because
s1 is roughly 1/ Pr(P) < 2.28 · 28 · n

B = 583.68 · n
B , the number of intervals

in M1 is ω1 < 1 + 583.68 = 584.68. With a high probability we have to do
at least one round of 2b. We approximate s2 by 2/ Pr(P) < 2.28 · 29 · n

B and
get ω2 ≤ 1 + 2.28 · 210 · B

n < 1 + 2.28 · 2−5 < 1.08. It still holds that with
a high probability, at most one round of step 2b is needed. However, we
observe that with growing keylength the probability of having to perform
two rounds of step 2c increases. For the BVO with a keylength of 2048 bits,
we assume that we have to do one round of step 2b. Hence, step 2b requires
1/ Pr(P) < 2.28 · 224 calls.

For step 2c, we need 2.28 · 28 · 16k calls to the oracle. For a keylength of 2048
bits, this corresponds to 2.28 · 28 · 16 · 256 = 2.28 · 220 calls to the oracle.

In total, to decode an encrypted message, approximately 2.28(2 · 224 + 220) =
2.28(225 + 220) = 1.14(226 + 221) < 78 894 859 calls to the oracle are necessary.

3.4 Experimental Results

In this section, we present the results of Bleichenbacher’s attack in practice.
We implemented the Bleichenbacher attack and measured its complexity for
the different oracle types and keylengths. For the TTT, TFT and FFT oracles,
we conducted 1 000 000 simulations and for the BVO 10 000 simulations with
each keylength.

In preparation for the experiments, we precomputed 1 000 private and pub-
lic key pairs for each keylength. These key pairs were used in a round-robin
fashion for the different simulations of an experiment. For each simulation
of Bleichenbacher’s attack, we generated a random message. For the TTT,
TFT and FFT oracles, we first determined a random message length and then
generated a message of the corresponding length. For the BVO, the message
size is fixed, so a random message of 46 bytes was generated, and the ver-
sion numbers were prepended. We used the version numbers of TLS 1.2,
namely 0x03 || 0x03. For the generation of pseudo-random bit strings, we
implemented a pseudo-random number generator based on AES to provide
a good source of randomness [7]. Furthermore, we constructed a unique
AES key for every simulation of an experiment to avoid reusing outputs.
Then, we produced pseudo-random numbers by providing a counter value
as an input to the AES instance in ECB mode and incrementing this counter
by one after each generated data block.

In the following parts, we look at the different oracles separately. We present
the experimental results and compare them to the theoretical analysis. For
each oracle type and keylength, we computed the mean and median over
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the number of simulations. Additionally, we also provide the mean and
median values for the individual steps and the number of rounds required
for step 2b. Then, we visualize the distributions of the total number of
oracle calls and oracle calls for the individual steps. In each figure, the x-
axis shows the number of required oracle calls for the attack and the y-axis
the frequency of this number of calls over the performed simulations. The
x-axis is scaled differently for the BVO compared to the other three oracle
types as its complexity is larger. Furthermore, for the TTT, TFT and FFT
oracles, outliers above 226 and for the BVO outliers above 233 oracle calls
were removed from the plots. We explicitly mention whenever an outlier
was removed.

3.4.1 TTT Oracle

The experimental results confirm many of the predictions from the theoret-
ical analysis in Section 3.3.1. Firstly, if they have to be performed, steps 2a
and 2b are the most expensive. As we know, step 2a always has to be done.
However, step 2b can be skipped most of the time for the TTT oracle. This is
visible in Figures 3.1, 3.2 and 3.3, as well as Table 3.5. In the figures, we see
a lot fewer orange bars, indicating step 2b, compared to the blue or green
bars for steps 2a and 2c. Hence, this step does not have to be performed
often. From Table 3.5, we can read out that in the median, we do not have to
perform step 2b, and in the mean, we only have to perform 0.21 rounds of
step 2b. We note that one round of step 2b corresponds to finding the next
suitable integer si and updating all intervals.

Additionally, the distributions of the number of oracle calls to steps 2a and
2b do not depend on the keylength. This can be seen in Figures 3.1, 3.2
and 3.3 because the distributions for steps 2a and 2b are identical. Lastly,
the number of oracle calls for step 2c increases by a factor of two when
doubling the keylength. This is visible in Table 3.4 and by comparing the
green bars in Figures 3.1, 3.2 and 3.3. We also observe that the theoretical
analysis nicely approximates the median of step 2c.

On the other hand, from the figures and Table 3.2, it follows that we over-
estimated the complexity of step 2a in the theoretical analysis in Section
3.3.1. This step usually requires fewer oracle calls. Another interesting ob-
servation from the figures is that there exists an interval where we know s1
cannot lie. We can see this as there is a region into which the number of
calls required for step 2a never falls, see Figures 3.1, 3.2 and 3.3. This region
does not depend on the keylength as it is present for all keylengths. Addi-
tionally, if we have to do at least one round of step 2b, the number of oracle
calls needed for step 2b is constantly above this “hole”. This observation
can be explained mathematically and used to improve the attack, as shown
in Section 4.4.
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What also stands out is that the mean values are always significantly larger
than the respective median values, see Tables 3.1, 3.2, 3.3 and 3.4. This can
be explained by the fact that the distributions for both the total number of
oracle calls and the individual steps have a long tail, as visible in Figures
3.1, 3.2 and 3.3. Thus, there exist rare cases where at least one step of the
attack takes abnormally long. Interestingly, these cases exist for steps 2a, 2b
as well as 2c.

keylength median total mean total theoretical
analysis total

512 21 114 36 272 66 560
1024 23 000 40 815 67 584
2048 26 439 49 767 69 632

Table 3.1: Bleichenbacher’s Attack – TTT Oracle – 106 Simulations – Total

keylength median 2a mean 2a theoretical
analysis 2a

512 19 178 27 180 65 536
1024 19 318 27 361 65 536
2048 19 642 27 841 65 536

Table 3.2: Bleichenbacher’s Attack – TTT Oracle – 106 Simulations – Step 2a

keylength median 2b mean 2b theoretical
analysis 2b

512 0 5 634 0
1024 0 5 675 0
2048 0 5 829 0

Table 3.3: Bleichenbacher’s Attack – TTT Oracle – 106 Simulations – Step 2b

28



3.4. Experimental Results

keylength median 2c mean 2c theoretical
analysis 2c

512 1 030 3 458 1 024
1024 2 126 7 779 2 048
2048 4 320 16 097 4 096

Table 3.4: Bleichenbacher’s Attack – TTT Oracle – 106 Simulations – Step 2c

keylength median
rounds 2b

mean
rounds 2b

theoretical
analysis

rounds 2b

512 0 0.21 0
1024 0 0.21 0
2048 0 0.21 0

Table 3.5: Bleichenbacher’s Attack – TTT Oracle – 106 Simulations – Rounds
of Step 2b
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 3.1: Bleichenbacher’s Attack – TTT Oracle – 106 Simulations –
keylength 512 – outliers removed: 3 from Total, 3 from Step 2c
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 3.2: Bleichenbacher’s Attack – TTT Oracle – 106 Simulations –
keylength 1024 – outliers removed: 5 from Total, 5 from Step 2c
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 3.3: Bleichenbacher’s Attack – TTT Oracle – 106 Simulations –
keylength 2048 – outliers removed: 11 from Total, 11 from Step 2c
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3.4.2 TFT Oracle

As already predicted by the theoretical analysis, the additional check per-
formed by the TFT oracle does not significantly change the number of re-
quired oracle calls. The distributions of the oracle calls for the different
parts of the algorithm stay the same. Hence, we do not provide the figures
for them as they look identical to the TTT oracle shifted by a small factor.
We can also see from the provided mean and median values in Tables 3.6,
3.7, 3.8 and 3.9 that the factor by which the complexity grows is roughly
1.05, as approximated by the theoretical analysis in Section 3.3.2. The other
observations are the same as for the TTT oracle.

keylength median total mean total theoretical
analysis total

512 22 077 39 530 69 888
1024 24 010 42 981 70 964
2048 27 486 51 362 73 114

Table 3.6: Bleichenbacher’s Attack – TFT Oracle – 106 Simulations – Total

keylength median 2a mean 2a theoretical
analysis 2a

512 20 115 28 801 68 813
1024 20 259 29 017 68 813
2048 20 517 29 421 68 813

Table 3.7: Bleichenbacher’s Attack – TFT Oracle – 106 Simulations – Step 2a

keylength median 2b mean 2b theoretical
analysis 2b

512 0 6 969 0
1024 0 7 000 0
2048 0 6 911 0

Table 3.8: Bleichenbacher’s Attack – TFT Oracle – 106 Simulations – Step 2b
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keylength median 2c mean 2c theoretical
analysis 2c

512 1 071 3 759 1 076
1024 2 213 6 964 2 151
2048 4 497 15 030 4 301

Table 3.9: Bleichenbacher’s Attack – TFT Oracle – 106 Simulations – Step 2c

keylength median
rounds 2b

mean
rounds 2b

theoretical
analysis

rounds 2b

512 0 0.23 0
1024 0 0.23 0
2048 0 0.23 0

Table 3.10: Bleichenbacher’s Attack – TFT Oracle – 106 Simulations – Rounds
of Step 2b

3.4.3 FFT Oracle

For the FFT oracle, the complexity of step 2a increases significantly because
it checks for a 0x00 byte, see Table 3.12. We still overestimated the complex-
ity of steps 2a and 2b in the theoretical analysis in Section 3.3.3. However,
the influence of the different parameters on the complexity was accurately
predicted. For example, we see that with increasing keylength, the attack
complexity decreases as it becomes easier for an attacker to randomly gen-
erate a 0x00 byte, see Table 3.11.

The probability of performing step 2b has also increased a lot compared to
the TTT and TFT oracles. This can be seen in Table 3.15 as well as Figures
3.4, 3.5 and 3.6. In the table, we observe that for keylengths of 512 and
1024 bits in the median, we have to do one round of step 2b, compared to
zero rounds for the more permissive oracle types, see Tables 3.5 and 3.10.
The figures show many more orange bars, corresponding to step 2b, than
Figures 3.1, 3.2 and 3.3, indicating that this step is done more frequently
compared to the TTT and TFT oracles. Furthermore, it is evident that steps
2a and 2b determine the complexity of the attack for this oracle, see Tables
3.12 and 3.13 as well as Figures 3.4, 3.5, 3.6.

The other observations made for the TTT oracle still apply here. There is a
region into which the number of oracle calls for step 2a does not fall and the
number of calls for step 2b is constantly above this region, see Figures 3.4, 3.5
and 3.6. The mean values are notably higher than the corresponding median
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values as all distributions are still long-tailed, as visible in the figures and
Tables 3.11, 3.12, 3.13 and 3.14. Finally, the theoretical analysis in Section
3.3.3 approximates the median of step 2c quite well, see Table 3.14.

keylength median total mean total theoretical
analysis total

512 359 198 434 687 718 603
1024 153 859 200 970 372 736
2048 50 191 109 099 225 731

Table 3.11: Bleichenbacher’s Attack – FFT Oracle – 106 Simulations – Total

keylength median 2a mean 2a theoretical
analysis 2a

512 144 030 213 858 356 516
1024 68 647 103 614 183 501
2048 37 019 56 882 109 446

Table 3.12: Bleichenbacher’s Attack – FFT Oracle – 106 Simulations – Step 2a

keylength median 2b mean 2b theoretical
analysis 2b

512 121 714 212 733 356 516
1024 32 483 84 762 183 501
2048 0 33 371 109 446

Table 3.13: Bleichenbacher’s Attack – FFT Oracle – 106 Simulations – Step
2b
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keylength median 2c mean 2c theoretical
analysis 2c

512 6 134 8 097 5 571
1024 6 394 12 593 5 735
2048 7 545 18 846 6 841

Table 3.14: Bleichenbacher’s Attack – FFT Oracle – 106 Simulations – Step 2c

keylength median
rounds 2b

mean
rounds 2b

theoretical
analysis

rounds 2b

512 1 0.95 1
1024 1 0.75 1
2048 0 0.51 1

Table 3.15: Bleichenbacher’s Attack – FFT Oracle – 106 Simulations – Rounds
of Step 2b
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 3.4: Bleichenbacher’s Attack – FFT Oracle – 106 Simulations –
keylength 512 – outliers removed: 3 from Total, 3 from Step 2c
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 3.5: Bleichenbacher’s Attack – FFT Oracle – 106 Simulations –
keylength 1024 – outliers removed: 9 from Total, 1 from Step 2b, 8 from
Step 2c
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 3.6: Bleichenbacher’s Attack – FFT Oracle – 106 Simulations –
keylength 2048 – outliers removed: 12 from Total, 12 from Step 2c
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3.4.4 Bad Version Oracle

As predicted in the theoretical analysis in Section 3.3.4, the complexity of
the attack increases by roughly a factor of 28 compared to the FFT oracle
because the BVO checks for a zero byte at a particular position. The intuition
that for a longer keylength, it is harder to generate the nonzero padding
has also been confirmed, see Table 3.16. For this oracle, the complexity
is also determined by steps 2a and 2b, as visible in Tables 3.17 and 3.18.
Additionally, the number of rounds required for step 2b to end up with a
single interval has grown compared to the FFT oracle. The median of rounds
required for step 2b for a modulus of 2048 bits is now also 1, see Table 3.20.
This is also visible in Figures 3.7, 3.8 and 3.9 because there are now as many
orange bars as blue ones, suggesting that step 2b has to be performed for
every experiment.

However, one result from the experiments does not match our expectations.
The mean number of rounds required for step 2b decreases with increasing
keylength in Table 3.20. This results from the fact that the mean is strongly
affected by outliers. For the BVO, we only performed 10 000 simulations
per keylength. Therefore, a very bad run influences the mean value a lot,
which happened in these cases. With this observation, it is again important
to note that all the distributions have a long tail, see Figures 3.7, 3.8 and 3.9.
There exist some cases where at least one of the steps 2a, 2b and 2c takes an
enormous number of oracle calls.

In the next chapter, we present different improvements devised to overcome
this problem and improve steps 2a and 2b. Afterwards, we introduce a
heuristic based on our observations during the experimental runs to im-
prove or eliminate the unfortunate cases of step 2c.

keylength median total mean total theoretical
analysis total

512 24 227 787 50 146 387 35 845 571
1024 31 076 365 62 343 618 46 687 847
2048 51 200 904 75 265 298 78 894 859

Table 3.16: Bleichenbacher’s Attack – BVO – 104 Simulations – Total
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keylength median 2a mean 2a theoretical
analysis 2a

512 8 019 905 14 499 301 17 783 849
1024 10 548 557 18 231 944 22 984 786
2048 17 708 014 27 544 262 38 252 053

Table 3.17: Bleichenbacher’s Attack – BVO – 104 Simulations – Step 2a

keylength median 2b mean 2b theoretical
analysis 2b

512 11 113 772 34 805 695 17 783 849
1024 13 778 521 42 711 607 22 984 786
2048 22 443 601 44 014 214 38 252 053

Table 3.18: Bleichenbacher’s Attack – BVO – 104 Simulations – Step 2b

keylength median 2c mean 2c theoretical
analysis 2c

512 274 367 841 390 227 873
1024 742 132 1 400 068 718 275
2048 2 583 223 3 706 822 2 390 753

Table 3.19: Bleichenbacher’s Attack – BVO – 104 Simulations – Step 2c

keylength median
rounds 2b

mean
rounds 2b

theoretical
analysis

rounds 2b

512 1 2.68 1
1024 1 2.48 1
2048 1 1.78 1

Table 3.20: Bleichenbacher’s Attack – BVO – 104 Simulations – Rounds of
Step 2b
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 3.7: Bleichenbacher’s Attack – BVO – 104 Simulations – keylength
512 – outliers removed: 4 from Total, 3 from Step 2b
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 3.8: Bleichenbacher’s Attack – BVO – 104 Simulations – keylength
1024 – outliers removed: 6 from Total, 6 from Step 2b

43



3. Bleichenbacher’s Attack

(a) Total Distribution

(b) Distribution of Individual Steps

Figure 3.9: Bleichenbacher’s Attack – BVO – 104 Simulations – keylength
2048 – outliers removed: 1 from Total, 1 from Step 2b
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Chapter 4

Improvements of the Attack

Over the last twenty years, following Bleichenbacher’s publication [3], the
attack has been extensively studied to devise methods that improve its com-
plexity. The experimental results in Section 3.4 show that the attack com-
plexity is usually dominated by steps 2a and 2b. As step 2a is always re-
quired, it seems that the attack takes many queries whenever step 2b has to
be performed. Hence, Klı́ma, Pokorný and Rosa introduced two different
methods for improving step 2b in 2003 [8]. These techniques are called the
Beta Method and the Parallel Threads Method. As we will see from the
experiments, using the Parallel Threads Method reduces the complexity of
step 2b significantly, leaving step 2a as the bottleneck. Afterwards, there was
a great interest in finding techniques to cope with the complexity of step 2a.
In 2012, two novel techniques were introduced with this objective [2]. These
methods are called Skipping Holes and Trimmers. In combination, they
provide a considerable improvement. We first provide a description of the
different improvements and then show the experimental results obtained by
applying these optimizations.

4.1 Tighter Bounds

Bleichenbacher’s attack uses the fact that we want to decrypt a previously
encrypted message m. The message conforms to the PKCS #1 v1.5 standard,
i.e., m ∈ [2B, 3B− 1]. This observation provides the bounds for the initial in-
terval M0. However, the format of the message m is defined more precisely.
Hence, one can specify more constrained bounds on the unknown message
m, depending on the oracle type. This improvement is for free. We now
provide these bounds for the different oracle types but note that they do not
significantly improve the attack. Thus, we have not considered them in our
implementation.

We start by looking at the bounds for the TTT, TFT and FFT oracles. As
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each message is padded using the PKCS #1 v 1.5 encryption standard, the
first two bytes are 0x00 || 0x02. After that, there are at least eight nonzero
bytes followed by some zero byte in the remaining k− 10 bytes. Because of
this format, we can improve the bounds on m to [a, b], where:

a = 2B + 28(k−3) + ... + 28(k−10) and

b = 2B + 255 · (28(k−3) + ... + 28) + 0 = 3B− 28.

For the BVO, the message additionally has a length of 48 bytes, where the
first two bytes are the major and minor version numbers. Hence, we can
construct a more restrictive starting interval [a, b], where:

a = 2B + 28(k−3) + ... + 28(49) = 2B + 28(49)(28(k−51) − 1)/255 and

b = 2B + 255 · (28(k−3) + ... + 28(49)) + 0 + 255 · (28(47) + ... + 28(0)) = 3B −
255 · 28(48) − 1.

If the attacker knows the version numbers, he can make these intervals even
smaller.

4.2 Beta Method

The Beta Method was presented by Klı́ma, Pokorný and Rosa [8]. This
method is intended to improve the complexity of step 2b. However, it was
introduced in the context of the Bad Version Oracle and is only applicable to
FFF oracles as it uses knowledge about the message length. The technique is
based on a generalization of a remark from Bleichenbacher’s original paper
[3]. We present the method and argue why we did not employ it in our
implementation. According to Bardou et al. [2], this method does not sig-
nificantly improve the attack complexity. Additionally, the Parallel Threads
Method introduced in the next section performs well in practice and can be
applied to all oracle types. Hence, we did not consider the Beta Method in
our implementation and experimental runs.

To explain how this method works, we start by mentioning the remark in
Bleichenbacher’s paper on which this approach is based. For the execution
of step 2b, we have assumed that the different si values are independent
of each other. This assumption, however, may be wrong in some cases.
Consider two messages m0 and m0si (mod n), which are both PKCS #1 v1.5
conforming with padding strings of similar lengths. Then, with a high prob-
ability (2si − 1)m0 (mod n) is also PKCS #1 v1.5 conforming. We show this
by assuming that there exists some integer j such that:

m0 = 2 · 28(k−2) + 28jPS + D and

m0si (mod n) = 2 · 28(k−2) + 28jPS′ + D′.

It follows that:
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(2si − 1)m0 (mod n) = 2 · 28(k−2) + 28j(2PS′ − PS) + 2D′ − D.

This message is often PKCS #1 v1.5 conforming too. We can see that this
remark applies whenever the message length, and hence the padding size,
is fixed. If this is the case, we can possibly find a new suitable multiplier
si+1 more efficiently.

The Beta Method generalizes this observation:

Lemma 4.1 Suppose we have two ciphertexts ci and cj, such that ci = (si)
ec0

(mod n), cj = (sj)
ec0 (mod n), and both ci and cj are S-PKCS conforming. That

is, we can write mi = cd
i (mod n) = 2B + 28·49PSi + Di and mj = cd

j (mod n) =
2B + 28·49PSj + Dj, where 0 < PSi,j < 28(k−51) and 0 ≤ Di,j < 28·48. Then for
c = sec0 (mod n) and β ∈ Z, where s = [(1− β)si + βsj] (mod n), it holds that cd

(mod n) = m, such that m = [2B+ 28·49((1− β)PSi + βPSj) + (1− β)Di + βDj]
(mod n).

Proof We use the observation that cd (mod n) = (sec0)d (mod n) = sm0
(mod n) = [(1− β)si + βsj]m0 (mod n) = [(1− β)sim0 + βsjm0] (mod n) =
[(1− β)mi + βmj] (mod n) = m, where m0 = cd

0 (mod n). �

It follows that once we have found suitable multipliers si, sj for a cipher-
text c0, we can try linear combinations of si and sj to find another suitable
multiplier s. This method is intended to improve the efficiency of step 2b
because when searching for si with i > 1, we have already found at least
two suitable multipliers s0 and s1. We now want to show that there exists a
value of β for each triplet of suitable multipliers (si, sj, s). Since the modu-
lus n is the product of two primes, we can assume that gcd(sj − si, n) = 1.
Using Bézout’s Lemma [6], there exist some values u and v ∈ Z such that
u(sj − si) + vn = 1 and hence u(sj − si) + vn (mod n) = u(sj − si) (mod
n) = 1. We can derive u(sj − si) · (s − si) (mod n) = (s − si) (mod n). By
defining β = u(s− si) (mod n), we have β(sj − si) (mod n) = (s− si) (mod
n). Finally, βsj − (β− 1)si (mod n) = s (mod n). Therefore, we can conclude
that we can find any suitable multiplier s with this method when trying the
corresponding value for β.

In [8], Klı́ma, Pokorný and Rosa specify that in practice, one can try small
positive and negative values of β and test whether the resulting linear com-
bination s produces a valid ciphertext. However, their experiments showed
differences in how much information can be obtained from the new s de-
pending on the size of β. Values of β close to n/2 were able to reduce the
size of Mi faster than small values of β. They speculate that this could be
due to a linear dependency on Z, which is stronger for small β. This in-
troduces another challenge, namely finding a “good” β. Finding a β close
to n/2 is not easy as a brute force search would require too many oracle
calls. Even if we could find a β of this size, the resulting s value may be very
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large. This value might not work with our algorithm as it induces a large
interval for r in step 3. Hence, it is desired to extract as much information
as possible by trying small values of β.

Another important point is that when using this method with negative val-
ues of β, assuming that si < sj, we may get a value for s close to n (a small
negative value modulo n). This s again does not work with our algorithm.
However, because of symmetry, we are still able to process these values by
using the following observation:

Lemma 4.2 Suppose we have integers s, m0, and n satisfying a ≤ m0s (mod n)
≤ b, where a, b ∈ Z. Then, the integer v = n− s satisfies a′ ≤ m0v (mod n) ≤ b′,
where a′ = n− b and b′ = n− a.

Proof We can see that m0v (mod n) = m0(n− s) (mod n) = −m0s (mod n)
= n − m0s (mod n). As the upper bound on m0s (mod n) is b, the lower
bound on m0v (mod n) is a′ = n− b. We can determine the upper bound b′

of m0v (mod n) in the same way, obtaining b′ = n− a. �

This symmetry can be used in practice to allow testing negative values for
β. If the resulting s value is close to n, we transform it to v = n − s and
update the bounds to a′ and b′. Otherwise, the algorithm stays the same.

4.3 Parallel Threads Method

4.3.1 Description

The Parallel Threads Method was the second improvement presented by
Klı́ma, Pokorný and Rosa [8] to cope with the complexity of step 2b. Recall
that after step 2a the attacker either proceeds with step 2b or 2c depending
on the number of intervals in M1. In the experimental results in Section 3.4,
we have seen that performing step 2b for finding s2 is expensive. On the
other hand, if we can directly continue with step 2c, we are able to use an
efficient method for finding the next conforming ciphertext. Additionally,
the experiments showed that even if |M1| > 1, there is usually only a small
number of intervals in this set. This was also observed by Klı́ma, Pokorný
and Rosa during their experiments. These observations intuitively suggest
starting an individual thread for each interval in M1 and performing step
2c on it. Because one of these intervals has to contain m0, we will always be
able to find a value for s2. However, when searching in a wrong interval,
we may never find a conforming multiplier s2. In practice, it is usually not
possible to parallelize these threads. Therefore, they are arranged in a cycle
iterating through them by doing one oracle call a time for each interval. To
describe this more precisely: If M1 contains t intervals, we start a thread Ti
executing 2c for each interval [ai, bi] for 1 ≤ i ≤ t. We begin by performing
a single oracle call with T1. If we do not succeed, we continue doing one
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step with thread T2 and so on. As soon as we find a value s2 that results
in an accepted message, we update all intervals in the same way as for the
initial algorithm. This could result in some empty intervals. In that case, the
corresponding thread gets eliminated and the intervals renumbered. For the
new set of intervals, we again start with T1 and do the same procedure as
before, now searching for s3. The Parallel Threads Method gets continued
until we end up with a single interval. If there is only one interval left, we
continue by doing step 2c on this interval.

4.3.2 Heuristic for Parallel Threads Method

Klı́ma, Pokorný and Rosa [8] presented a heuristic to decide whether to
start the Parallel Threads Method. They set a bound on the number of
intervals in Mi−1 such that the method provides an improvement to the
attack complexity. Let ε be the number of rounds of step 2b we have to
perform with the Parallel Threads Method to end up with a single interval.
Hereby, one round of step 2b corresponds to finding an si value that works
and updating all intervals. The Parallel Threads Method is started in step i
if the following inequality holds:

|Mi−1| < (2ε Pr(A))−1 + 1.

This bound can be explained in the following way: Let us approximate the
number of oracle calls required for step 2b, if it has to be performed, by
1/ Pr(P) (see theoretical analysis in Section 3.3). Additionally, we expect to
find the next si value in step 2c after 2/ Pr(P | A) oracle calls. For |Mi−1|
intervals, we hence expect to find si after 2|Mi−1|

Pr(P|A)
oracle calls. This follows

as we perform one oracle call per interval in a round-robin fashion and
only expect to find a conforming multiplier si when performing step 2c on
the interval containing m0. Because we want to improve the complexity of
the attack and considering that we need to find ε conforming multipliers si

to finish the Parallel Threads Method, we get the constraint: ε · 2|Mi−1|
Pr(P|A)

≤
1

Pr(P) =
1

Pr(P|A)·Pr(A)
. This results in: |Mi−1| < (2ε Pr(A))−1 + 1.

In [8], the authors tested this method only with the BVO. For their exper-
iments, they used ε = 2 as it was the ceiling of the mean value observed
for ε. Using that 1/ Pr(A) < 216 gives us a bound of roughly 16 000. We
note that in our experiments, the ceiling of ε for the BVO was also 2. For
the other oracle types, the value of ε is lower in practice, leading to an even
higher bound on |Mi−1| for which the Parallel Threads Method is expected
to improve the attack performance.

During the experiments for the unmodified Bleichenbacher attack, we ob-
served that especially for the TTT, TFT and FFT oracles, only a small number
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of intervals were present after step 2a. The reason is that s1 never gets too
large for these oracle types and the number of intervals depends on the size
of s1. Hence, for these oracles, we always want to use the Parallel Threads
Method. This behavior is captured by the heuristic as it gives a large bound
on |Mi−1|. For the BVO, it is harder to find s1 and therefore the number
of intervals in M1 is typically a lot higher. However, there are only in rare
extreme cases over 10 000 intervals in M1. This implies that it always makes
sense to employ the Parallel Threads Method, except for rare cases for the
BVO where the unmodified step 2b is more efficient. This is exactly the aim
of the heuristic.

As we can see in the next section, the Parallel Threads Method decreases the
complexity of step 2b significantly.

4.3.3 Experimental Results

We carried out experiments with different bounds on the number of inter-
vals in M1 such that the Parallel Threads Method is started. Bardou et al.
[2] used the Parallel Threads Method for |Mi−1| ≤ 40. Considering this and
the value provided by the heuristic in Section 4.3.2, we tested bounds of
40, 1 000 and 16 000. For the TTT, TFT and FFT oracles, there was no no-
table difference between a cutoff value of 40 and 1 000. This follows as the
number of intervals is usually very low for these oracle types. However, a
higher bound is better because we still want to perform the Parallel Threads
Method in a rare case where |M1| = 100. On the other hand, for the BVO,
a cutoff value of 1 000 is significantly better than 40. The difference between
a bound of 1 000 and 16 000 could only be observed for a keylength of 2048
bits. There, as expected, the bound of 16 000 performed better. Overall, the
results of these experiments confirmed the heuristic.

Following these observations, in our implementation, we start the Parallel
Threads Method if M1 ≤ 16 000. Note that we start the method after step
2a and do not check whether to start the method after each step i as de-
scribed in [8]. This is reasonable because our experiments showed that the
number of intervals in Mi only decreases as i increases. Since the bound of
16 000 is based on a heuristic, one could possibly find a better bound for the
BVO experimentally or by considering the complexity results of the original
algorithm in practice.

Now, we present the results of the experiments for the Parallel Threads
Method. Firstly, the complexity of step 2a is equal to the original attack as
it has not been modified.

Step 2b is now defined as the number of oracle calls required for the Parallel
Threads Method until we end up with a single interval. Furthermore, the
number of rounds required of step 2b with the Parallel Threads Method
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is still the number of si we need to find to get down to a single interval.
As soon as only one interval is left, the usual step 2c is performed on this
interval. Overall, this method improves step 2b significantly, shifting the
main complexity of the attack to step 2a. This is the case as the Parallel
Threads Method uses step 2c in each thread and step 2c finds an si quickly
when operating on the correct interval.

How much the median and mean of the total complexity are reduced de-
pends on the oracle type. In particular, this depends on how often we have
to perform step 2b in expectation for the oracle and keylength combination.
Hence, we can see large improvements in the total mean and median values
for the BVO and the FFT oracle, whereas the median values stay the same for
the TTT and TFT oracles. However, the total mean values also decrease for
the TTT and TFT values as extreme values influence the mean and having
to perform step 2b is a bad case for these oracle types.

Interestingly, the Parallel Threads Method also reduces the mean of step 2c.
We suppose that this is the case as we find larger values for si with this
method compared to the original step 2b, where we search incrementally.
Thus, we are able to trim the interval slightly more in step 3 of the algorithm,
improving some of the cases where step 2c takes unexpectedly long. These
larger values for si also explain why we require fewer rounds of step 2b with
the Parallel Threads Method in the mean to end up with a single interval as
we produce smaller intervals.

In the tables we provide, we compare the complexity of the attack with the
Parallel Threads Method to the complexity of the “original” Bleichenbacher
attack.

TTT Oracle

For the TTT oracle, the experiments have shown that if we have to perform
step 2b, it is now essentially for free, see Table 4.2. This is also visible in
Figure 4.1, as the number of oracle calls required for step 2b is now always
very low. However, the median of the total complexity has not improved
because step 2b does not have to be performed most of the time, see Table
4.1. The overall complexity is still determined by step 2a. But, because step
2b is a rare but expensive event for the TTT oracle, this method improves
the mean of the total complexity, see Table 4.1. We mention that the mean
number of rounds required for step 2b went down from 0.21 to 0.18 with
this optimization. Also, the mean complexity of step 2c could be slightly
reduced, see Table 4.3.

We only provide the plot for a modulus size of 512 bits, see Figure 4.1, as
the improvement on the complexity of step 2b looks identical for the other
keylengths.
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keylength median total mean total original
median total

original
mean total

512 21 142 30 294 21 114 36 272
1024 23 048 33 626 23 000 40 815
2048 26 474 39 417 26 439 49 767

Table 4.1: Bleichenbacher’s Attack with Parallel Threads Method – TTT Or-
acle – 106 Simulations – Total

keylength median 2b mean 2b original
median 2b

original
mean 2b

512 0 2.63 0 5 634
1024 0 4.02 0 5 675
2048 0 2.89 0 5 829

Table 4.2: Bleichenbacher’s Attack with Parallel Threads Method – TTT Or-
acle – 106 Simulations – Step 2b

keylength median 2c mean 2c original
median 2c

original
mean 2c

512 1 030 3 038 1 030 3 458
1024 2 126 6 174 2 126 7 779
2048 4 318 11 444 4 320 16 097

Table 4.3: Bleichenbacher’s Attack with Parallel Threads Method – TTT Or-
acle – 106 Simulations – Step 2c
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 4.1: Bleichenbacher’s Attack with Parallel Threads Method – TTT
Oracle – 106 Simulations – keylength 512 – outliers removed: 2 from Total, 2
from Step 2c
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TFT Oracle

All observations are the same as for the TTT oracle. For this oracle, the mean
number of rounds required for step 2b could be reduced from 0.23 to 0.20.

We do not provide any figures for this oracle type as the improvement of
step 2b looks identical to the TTT oracle with a keylength of 512 bits, see
Figure 4.1.

keylength median total mean total original
median total

original
mean total

512 22 091 31 888 22 077 39 530
1024 23 920 35 041 24 010 42 981
2048 27 519 41 426 27 486 51 362

Table 4.4: Bleichenbacher’s Attack with Parallel Threads Method – TFT Or-
acle – 106 Simulations – Total

keylength median 2b mean 2b original
median 2b

original
mean 2b

512 0 6.68 0 6 969
1024 0 5.32 0 7 000
2048 0 4.27 0 6 911

Table 4.5: Bleichenbacher’s Attack with Parallel Threads Method – TFT Or-
acle – 106 Simulations – Step 2b

keylength median 2c mean 2c original
median 2c

original
mean 2c

512 1 071 2 956 1 071 3 759
1024 2 214 6 048 2 213 6 964
2048 4 496 11 839 4 497 15 030

Table 4.6: Bleichenbacher’s Attack with Parallel Threads Method – TFT Or-
acle – 106 Simulations – Step 2c

FFT Oracle

For the FFT oracle, both the median and mean of the total number of re-
quired oracle calls are improved by applying the Parallel Threads Method
as we have to perform step 2b most of the time, see Table 4.7. We also ob-
serve that with growing keylength, the influence of the improvement shrinks
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as the attack becomes easier. The other observations are identical to the TTT
oracle. We note that the median number of rounds of step 2b stayed the
same for all keylengths, i.e., 1 for keylengths of 512 and 1024 bits and 0 for
a keylength of 2048 bits. The mean number of rounds required of step 2b
was decreased by roughly 0.03 for each keylength, as for the TTT and TFT
oracles.

Figures 4.2, 4.3 and 4.4 show the distributions of the total number of oracle
calls and the oracle calls for the individual steps required for the Bleichen-
bacher attack with the Parallel Threads Method applied for the different
keylengths.

keylength median total mean total original
median total

original
mean total

512 151 822 222 568 359 198 434 687
1024 76 510 113 759 153 859 200 970
2048 46 787 71 346 50 191 109 099

Table 4.7: Bleichenbacher’s Attack with Parallel Threads Method – FFT Or-
acle – 106 Simulations – Total

keylength median 2b mean 2b original
median 2b

original
mean 2b

512 45 132 121 714 212 733
1024 6 33 32 483 84 762
2048 0 15 0 33 371

Table 4.8: Bleichenbacher’s Attack with Parallel Threads Method – FFT Or-
acle – 106 Simulations – Step 2b

keylength median 2c mean 2c original
median 2c

original
mean 2c

512 6 128 7 947 6 134 8 097
1024 6 392 10 080 6 394 12 593
2048 7 544 14 256 7 545 18 846

Table 4.9: Bleichenbacher’s Attack with Parallel Threads Method – FFT Or-
acle – 106 Simulations – Step 2c
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 4.2: Bleichenbacher’s Attack with Parallel Threads Method – FFT
Oracle – 106 Simulations – keylength 512 – outliers removed: 7 from Total, 7
from Step 2c
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 4.3: Bleichenbacher’s Attack with Parallel Threads Method – FFT
Oracle – 106 Simulations – keylength 1024 – outliers removed: 6 from Total,
1 from Step 2a, 5 from Step 2c
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 4.4: Bleichenbacher’s Attack with Parallel Threads Method – FFT
Oracle – 106 Simulations – keylength 2048 – outliers removed: 8 from Total,
8 from Step 2c
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Bad Version Oracle

For the BVO, there is a notable improvement in the median and mean of the
total required oracle calls, see Table 4.10. This results from the fact that step
2b almost always has to be performed for this oracle type and the Parallel
Threads Method lowers the complexity of step 2b significantly, see Table
4.11. We can also see that with growing keylength, the influence of the
improvement on the total median and mean values increases as the attack
becomes more difficult.

For this oracle type, the median number of rounds required of step 2b stayed
at 1 for all keylengths. However, the mean number of rounds of step 2b for
a keylength of 512 bits was reduced from 2.68 to 1.28, for a keylength of
1024 bits from 2.48 to 1.27 and for a keylength of 2048 bits from 1.78 to
1.24. We note that the variations of the median number of oracle calls for
step 2c in Table 4.12 arise from the randomness of the experiments as we
only performed 10 000 simulations for the BVO. Furthermore, the Parallel
Threads Method also reduces the mean of step 2c for the BVO, as visible in
Table 4.12.

We only include the figure visualizing the improvement for a keylength
of 512 bits as the influence of the method looks similar for the different
keylengths.

keylength median total mean total original
median total

original
mean total

512 8 928 141 17 141 061 24 227 787 50 146 387
1024 11 392 567 19 728 955 31 076 365 62 343 618
2048 22 487 282 34 072 121 51 200 904 75 265 298

Table 4.10: Bleichenbacher’s Attack with Parallel Threads Method – BVO –
104 Simulations – Total
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keylength median 2b mean 2b original
median 2b

original
mean 2b

512 149 303 1 606 714 11 113 772 34 805 695
1024 219 051 1 486 774 13 778 521 42 711 607
2048 610 865 1 589 241 22 443 601 44 014 214

Table 4.11: Bleichenbacher’s Attack with Parallel Threads Method – BVO –
104 Simulations – Step 2b

keylength median 2c mean 2c original
median 2c

original
mean 2c

512 273 782 673 912 274 367 841 390
1024 753 824 1 229 558 742 132 1 400 068
2048 2 589 309 3 277 990 2 583 223 3 706 822

Table 4.12: Bleichenbacher’s Attack with Parallel Threads Method – BVO –
104 Simulations – Step 2c
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 4.5: Bleichenbacher’s Attack with Parallel Threads Method – BVO –
104 Simulations – keylength 512
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4.4 Skipping Holes

4.4.1 Description

In the experimental results in Section 4.3.3, we have seen that the Parallel
Threads Method significantly improves step 2b. It follows that step 2a now
usually determines the complexity of the attack. The Skipping Holes tech-
nique, presented by Bardou et al. [2], aims at improving this step. Like the
tighter bounds, this improvement is for free.

The intuition behind the method is to make the search for s1 faster by skip-
ping over ranges of values for which we know m0s1 (mod n) is never ac-
cepted by the oracle. As a first step, the starting value for s1 can be opti-
mized by noticing that we require n + 2B ≤ m0s1 for a conforming message.
In combination with m0 ≤ 3B− 1, we obtain that we can start with

s1 = d(n + 2B)/(3B− 1)e.

This is a slightly better starting value for s1 compared to s1 = dn/3Be intro-
duced by Bleichenbacher [3]. The observation can also be used when better
bounds on m0 are known. If we can bound m0 from above by b, we set the
starting value to

s1 = d(n + 2B)/be.

This is relevant in combination with the improvement presented in the next
section of trimming the interval M0 before the algorithm is started.

Similarly to this observation, we know that for each value si such that m0si
(mod n) is accepted by an oracle 2B ≤ m0si (mod n) ≤ 3B− 1 holds. This
is equal to saying that 2B ≤ m0si − jn ≤ 3B− 1 for some natural number j.
Hence, we obtain a list of intervals in which si can lie:

2B + jn
3B− 1

≤ si ≤
3B− 1 + jn

2B

for j ∈ N. At the same time, this also provides us with a list of intervals
where a suitable multiplier si can never lie, namely when:

3B− 1 + jn
2B

<
2B + (j + 1)n

3B− 1

for a natural number j. One can observe that with the initial bounds on
m0, i.e., 2B ≤ m0 ≤ 3B − 1, we can only identify one “hole”. For j = 1,
we can skip roughly n

6B values. However, for j > 1, we cannot identify
any more intervals where m0 certainly does not lie because the inequality
2B+jn
3B−1 ≤ si ≤ 3B−1+jn

2B allows all possible si values. Note that this first hole
could also be observed in the experimental results, especially for the TTT
oracle, see Step 2a in Figures 3.1, 3.2 and 3.3.
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In combination with the Trimmers method [2] presented in the next section,
we can potentially find a list of such holes, depending on how successful
the trimming step was. If we were able to trim the interval M0 to [a, b], we
know that for a conforming si, it holds that

2B + jn
b

≤ si ≤
3B− 1 + jn

a

and a hole exists if
3B− 1 + jn

a
<

2B + (j + 1)n
b

for a natural number j.

Having identified all possible holes, we can then skip these to make the
search for si more efficient.

We extend the Skipping Holes technique with another fact based on an ob-
servation from the experimental results. If we have to do a round of step 2b,
we have to do at least n/m0 calls until we find the next conforming multi-
plier si, see for example Figure 3.1. Here, we assume the initial step 2b and
not step 2b optimized with the Parallel Threads Method. Recall that si is a
suitable multiplier if 2B ≤ m0si − jn ≤ 3B− 1 for some natural number j. If
we increment si by one in each step of 2b, si+1 corresponds to the first value
such that 2B ≤ m0si+1 − j′n ≤ 3B− 1 for some j′ ≥ j + 1. Hence, si+1 is at
least n/m0 larger than si. Furthermore, the number of oracle calls required
to find si+1 is roughly r · n/m0 for some natural number r. Let us define amin
as min{a | [a, b] ∈ Mi} and bmax as max{b | [a, b] ∈ Mi}. We bound n/m0 by
n/bmax and initially set

si+1 = si + dn/bmaxe.

Additionally, we can also possibly identify a new hole to skip using amin
and bmax. However, this is not relevant in practice as the Parallel Threads
Method decreases the complexity of step 2b a lot more. We still applied this
approach to our implementation to see how it influences the distribution of
oracle calls required for step 2b.

Now, we look at how the Skipping Holes improvement performs on its own.
This means we can only identify and skip the first hole for step 2a and we
also skip values for step 2b whenever a round of step 2b is required.

4.4.2 Experimental Results

This method improves the complexity of steps 2a and 2b for all oracle types
as it is for free and skips ranges of invalid values for si. Therefore, this
method should always be applied. We compare the complexity of steps 2a
and 2b with the Skipping Holes optimization to the original algorithm. We
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note that this technique does not influence step 2c as it finds the same si
values in steps 2a and 2b as Bleichenbacher’s original algorithm. The only
difference is that we find these values more efficiently.

The Skipping Holes method lowers the number of required oracle calls for
step 2a whenever the value for s1 is beyond the first hole. Additionally,
we identify the hole independently of the oracle type. This means we skip
the same range of values for all oracle types. Hence, because the median
number of oracle calls required for step 2a is beyond the first hole for all
oracles, we observe that the median is always reduced by roughly the same
value. However, how much we can improve the mean of step 2a depends
on how many times this improvement is used. It follows that for the TTT
and TFT oracles, the mean values for step 2a increase less than for the FFT
oracle and BVO. The same holds for the mean value of step 2b. However, the
total complexity of the FFT oracle and BVO is a lot larger than for the more
permissive oracles. Therefore, this improvement is not able to decrease their
total complexity significantly. Furthermore, for the BVO, the experimental
results were dominated by the randomness of the simulations and there
was no noticeable difference in the performance because of the immense
complexity required for this oracle.

TTT Oracle

In Table 4.14, we can see that the median of step 2a can be improved signifi-
cantly with the Skipping Holes technique. Because there are many messages
for which the number of oracle calls required for finding s1 is below the first
identified hole, the mean is reduced less. For the TTT oracle, it is unlikely
that one has to perform step 2b. Hence, the median value for step 2b stays
the same, see Table 4.15. However, as step 2b is costly, whenever it is done,
its mean is decreased notably. Overall, the total mean and median can be
lowered significantly with this method, see Table 4.13.

In Figure 4.6, we can see that the hole for step 2a, which was previously
present in Figure 3.1, is closed. Additionally, the number of steps required
for 2b is not always above n/m0 anymore. We also observe in the figure that
for 5% of the experiments our improvement for step 2b finds the right s2
value immediately.

We only show the plot for a keylength of 512 bits as the improvement looks
identical for the other keylengths.
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keylength median total mean total original
median total

original
mean total

512 14 746 28 937 21 114 36 272
1024 16 741 35 314 23 000 40 815
2048 20 230 41 225 26 439 49 767

Table 4.13: Bleichenbacher’s Attack with Skipping Holes – TTT Oracle – 106

Simulations – Total

keylength median 2a mean 2a original
median 2a

original
mean 2a

512 12 417 23 121 19 178 27 180
1024 12 497 23 236 19 318 27 361
2048 12 699 23 900 19 642 27 841

Table 4.14: Bleichenbacher’s Attack with Skipping Holes – TTT Oracle – 106

Simulations – Step 2a

keylength median 2b mean 2b original
median 2b

original
mean 2b

512 0 2 642 0 5 634
1024 0 2 617 0 5 675
2048 0 2 658 0 5 829

Table 4.15: Bleichenbacher’s Attack with Skipping Holes – TTT Oracle – 106

Simulations – Step 2b
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 4.6: Bleichenbacher’s Attack with Skipping Holes – TTT Oracle – 106

Simulations – keylength 512
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TFT Oracle

The observations are the same as for the TTT oracle. The effect on the
distributions of the oracle calls also looks identical. Hence, the figures are
omitted.

keylength median total mean total original
median total

original
mean total

512 15 658 32 854 22 077 39 530
1024 17 637 37 243 24 010 42 981
2048 21 143 42 475 27 486 51 362

Table 4.16: Bleichenbacher’s Attack with Skipping Holes – TFT Oracle – 106

Simulations – Total

keylength median 2a mean 2a original
median 2a

original
mean 2a

512 13 373 24 656 20 115 28 801
1024 13 392 24 796 20 259 29 017
2048 13 553 25 175 20 517 29 421

Table 4.17: Bleichenbacher’s Attack with Skipping Holes – TFT Oracle – 106

Simulations – Step 2a

keylength median 2b mean 2b original
median 2b

original
mean 2b

512 0 3 904 0 6 969
1024 0 3 816 0 7 000
2048 0 3 970 0 6 911

Table 4.18: Bleichenbacher’s Attack with Skipping Holes – TFT Oracle – 106

Simulations – Step 2b

FFT Oracle

For the FFT oracle, the total improvement on the median of step 2a is equal
to the improvement for the TTT and TFT oracles, see Table 4.20. We observe
that the mean value for step 2a is reduced more compared to the more per-
missive oracles. This can be explained by the fact that for the FFT oracle,
the number of oracle calls required for step 2a is more often above the iden-
tified hole skipped with this optimization. However, this is also influenced
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by the keylength as the improvement depends on the attack complexity. For
keylengths of 512 and 1024 bits, we can reduce the median of step 2b, see
Table 4.21. However, with the initial bounds, we can only identify the first
hole and hence the improvement is not significant compared to the total
complexity, see Table 4.19. This is because the number of oracle calls re-
quired for step 2a is too large compared to the number of values we can
skip.

In Figures 4.7, 4.8 and 4.9, we can see that the hole for step 2a is closed,
compared to Figures 3.4, 3.5 and 3.6. Additionally, the distribution of oracle
calls required for step 2b now looks similar to the distribution of oracle calls
for step 2a.

keylength median total mean total original
median total

original
mean total

512 338 383 416 462 359 198 434 687
1024 134 492 185 089 153 859 200 970
2048 42 177 94 632 50 191 109 099

Table 4.19: Bleichenbacher’s Attack with Skipping Holes – FFT Oracle – 106

Simulations – Total

keylength median 2a mean 2a original
median 2a

original
mean 2a

512 137 592 208 176 144 030 213 858
1024 61 751 97 733 68 647 103 614
2048 30 014 51 431 37 019 56 882

Table 4.20: Bleichenbacher’s Attack with Skipping Holes – FFT Oracle – 106

Simulations – Step 2a

keylength median 2b mean 2b original
median 2b

original
mean 2b

512 107 318 200 315 121 714 212 733
1024 19 590 75 148 32 483 84 762
2048 0 27 117 0 33 371

Table 4.21: Bleichenbacher’s Attack with Skipping Holes – FFT Oracle – 106

Simulations – Step 2b
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 4.7: Bleichenbacher’s Attack with Skipping Holes – FFT Oracle – 106

Simulations – keylength 512 – outliers removed: 5 from Total, 3 from Step
2b, 2 from Step 2c
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 4.8: Bleichenbacher’s Attack with Skipping Holes – FFT Oracle – 106

Simulations – keylength 1024 – outliers removed: 11 from Total, 1 from Step
2b, 10 from Step 2c
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 4.9: Bleichenbacher’s Attack with Skipping Holes – FFT Oracle – 106

Simulations – keylength 2048 – outliers removed: 15 from Total, 15 from
Step 2c

71



4. Improvements of the Attack

Bad Version Oracle

The experimental results for the Skipping Holes method are omitted as the
technique does not provide a significant improvement for the BVO and the
results are highly influenced by the randomness of the experiments. We
note that as the improvement is for free, it should still be applied. However,
the overall complexity is much larger than what can be gained by skipping
the identifiable values. We will see that in combination with the Trimmers
method presented in the following section, we can notably improve the at-
tack complexity.

4.5 Trimmers

4.5.1 Description

The Trimmers improvement was introduced in 2013 alongside the Skipping
Holes method [2]. This technique improves the complexity of step 2a by
“trimming” the initial interval M0 before starting Bleichenbacher’s attack.
By having tighter bounds on the desired message m0, we can find the value
s1 more efficiently. This is achieved by combining the trimming of M0 with
the insights gathered in the previous section about skipping holes. The
smaller the interval M0 is, the more holes can be identified, and hence the
more values can be skipped in step 2a. We start by introducing the theory
behind this method, followed by a description of our implementation of the
Trimmers method. Finally, we compare the experimental results obtained
with this improvement in combination with the Skipping Holes and Parallel
Threads methods to the original algorithm.

The goal of Bleichenbacher’s attack is to find the decryption of some cipher-
text c. To do this, we multiply the ciphertext by different values se (mod
n), which is equal to multiplying the corresponding plaintext by s (mod n).
With the help of the values s that succeed, we collect more and more infor-
mation about the intervals that m0 can lie in until we end up with only one
possible value. The fundamental observation presented by Bardou et al. [2]
is that instead of multiplying the message m by some integer s, we can also
divide it by an integer t. This can be done by multiplying m0 by t−1 (mod
n), which corresponds to multiplying c by t−e (mod n). We know that these
inverses are unique because multiplication modulo n is a group operation
on (Zn)*. Furthermore, if the original message m0 is divisible by t, the result
m0t−1 (mod n) is m0/t. On the other hand, if m0 is not divisible by t, this
results in a random value that cannot be predicted.

Using this fact, Bardou et al. devised the following proposition:

Proposition 4.3 Let u and t be two coprime positive integers such that u < 3
2 t

and t < 2n
9B . If m0 and m0 · ut−1 (mod n) are PKCS #1 v1.5 conforming, then m0
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is divisible by t.

Proof Because u < 3
2 t we know that m0u < m0

3
2 t < 3B 3

2 t < n. It follows
that m0u (mod n) = m0u. Let x = m0 · ut−1 (mod n). Since x is PKCS #1
v1.5 conforming, we know that x < 3B and hence xt < 3Bt < n. So, we
can conclude xt (mod n) = xt. Combining these insights, we get xt = xt
(mod n) = m0u (mod n) = m0u. Since u and t are coprime, this implies that
t divides m0. �

This proposition suggests that if one can find two coprime positive integers
u and t with u < 3

2 t and t < 2n
9B such that m0 · ut−1 (mod n) is also PKCS #1

v1.5 conforming, we know that m0 is divisible by t and hence m0 · ut−1 (mod
n) = m0 · u/t. It follows that 2B ≤ m0 · u/t ≤ 3B− 1. Hence, we can now
”trim” the initial interval M0, which we know m0 lies in. The new bounds
are: 2B · t/u ≤ m0 < 3B · t/u.

Next, Bardou et al. [2] describe how we find these values u and t. Because
2B ≤ m0 < 3B we only have to search for t and u such that 2/3 < u/t < 3/2.
For smaller or larger fractions u/t the message m0 · u/t never lies in the
interval [2B, 3B− 1].

To analyze the probability that m0 · u/t ∈ [2B, 3B− 1] given a fraction u/t in
the specified range, assume that m0 is uniformly distributed in [2B, 3B− 1].
The probability that t divides m0 is 1/t. For 2/3 < u/t < 1 the probability
that t divides m0 and m0 · u/t is in the interval is 1/t · (3− 2 · t/u) and for
1 < u/t < 3/2 it is 1/t · (3 · t/u− 2). We can directly see that smaller values
t are more likely to succeed. This is why we will start with small values for
t and then work our way up to trying larger denominators. However, larger
values for t allow for a more efficient trimming as one is more flexible in
choosing u values. Furthermore, for u close to t, the probability is higher
that we succeed. This observation will also be used for finding the values
for u and t efficiently.

To find the best u and t pairs, Bardou et al. construct a list of suitable
fractions u/t called “trimmers”. They used a few thousand trimmers in
practice depending on which oracle is used and upper bound t by 212. For
small t, they added all suitable fractions to the trimmers list. For t > 50, they
only added (t − 1)/t and (t + 1)/t. Each of these trimmers is then tested
against the oracle to see whether it can be used to trim the bound of the
interval M0 = [2B, 3B− 1]. We have noted before that large denominators
t allow for more efficient trimming. This is why in [2], they adapted the
search for the best u and t pairs by computing the least common multiple t′

of the denominators of all successful trimmers. The least common multiple
t′ also divides the message m0. Using t′, Bardou et al. then search for the
lowest and highest numerators ul and uh, resulting in a PKCS conforming
message. We search for two numerators because we want t′/ul for trimming
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the lower bound to be as large as possible and t′/uh for trimming the upper
bound to be as small as possible. Using the least common multiple allows
us to do a more efficient trimming as all valid u/t fractions observed during
the generation of denominators still work in combination with t′, but there
are now new possible fractions u′/t′. Hence, we could be able to find better
trimmers.

The search for these trimmers also requires oracle calls. By testing more
trimmers, we might find better trimmers and thus be able to trim the inter-
val M0 more. The shorter the initial interval M0, the faster we can potentially
find s1 and overall succeed with the attack. On the other hand, if we spend
too many oracle calls on testing trimmers, the overall complexity could be
worse than without the Trimmers method. Bardou et al. stated their experi-
mentally found values for the best number of oracle calls allowed for testing
trimmers. They also declared that the bound of 50 in the construction of
the trimmers is an experimentally found bound and might not be optimal.
In the following section, we present our implementation of the Trimmers
method with the aim of finding good trimmers in the most efficient way to
improve the performance of the attack maximally.

4.5.2 Implementation of Trimmers

When implementing the Trimmers method ourselves, we made a few obser-
vations and adapted the algorithm accordingly to do as few oracle calls as
possible while finding good trimmers. If the algorithm is implemented as
stated in [2], different trimmers with the same denominator are sent to the
oracle when testing the generated trimmers. In the next step, one then com-
putes the lowest common multiple t′ of the denominators of all successful
trimmers and discards the other information gathered during the first round
of testing. So, one essentially only cares about finding successful trimmer
denominators. This is why in our implementation, as soon as there was
one successful trimmer for some denominator t, we skipped the remaining
possible trimmers and directly tested the next denominator.

Additionally, we want to spend the oracle calls we allow for searching trim-
mers as carefully as possible. We want to find many different working de-
nominators to obtain a large least common multiple, which will allow for a
more effective trimming. To spend our oracle calls in the best way, we state
the following:

Lemma 4.4 Suppose we have an integer t > 4. Then, whenever t divides the
message m0, either (t− 1)/t or (t + 1)/t is a valid trimmer.

Proof The message m0 is either in the interval L = [2B, 2.5B) or R =
[2.5B, 3B − 1]. If m0 ∈ L and t > 4 divides m0, then m0 · (t + 1)/t ≤
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m0 · 6/5 < 2.5B · 6/5 = 3B and hence m0 · (t + 1)/t is also in the inter-
val [2B, 3B− 1]. On the other hand, if m0 ∈ R and t > 4 divides m0, then
m0 · (t− 1)/t ≥ 2.5B · 4/5 = 2B. This shows that either (t− 1)/t or (t + 1)/t
is a valid trimmer if t > 4 divides the message m0. �

Using this observation and that the only possible trimmers for t ≤ 4 are
4/3, 3/4 and 5/4, we proceed in the following way: First, we test the trim-
mer 4/3. Then, we test 3/4 and only if 3/4 does not work we test 5/4.
Otherwise, we know that t = 4 divides m0 and is a valid denominator, so
we do not need to check 5/4. For t > 4, we first test (t − 1)/t. After-
wards, if and only if that trimmer does not result in a conforming message,
we test (t + 1)/t. With this procedure, we should find more valid trimmer
denominators than by checking all the possible u/t fractions and possibly
testing one valid denominator t several times before finding the numerator
u it works with. Doing this, we spend our oracle calls more carefully and
hence should be able to conduct a more effective trimming afterwards.

However, there exists another problem. Considering the different oracle
types, we realize that if we test a valid trimmer, i.e., m0 · u/t ∈ [2B, 3B− 1],
the oracle might still reject the message if m0 ·u/t does not pass all its checks.
For example, the message could be in the interval [2B, 3B− 1], but if it has a
zero byte in the first eight bytes of padding, the TFT oracle rejects it. Hence,
an oracle may return False for a working trimmer. We refer to this as a false
negative result. Recall that we want to find as many working t denominators
as possible such that the least common multiple t′ is large. So, we do not
want the probability of missing a valid denominator to be too large. This
observation motivated a slight adjustment to the above procedure. For one
denominator t, we do not only test the trimmers (t− 1)/t and (t + 1)/t, but
also (t− 2)/t and (t+ 2)/t, ... until (t− st− 1)/t and (t+ st + 1)/t for some
value st. As soon as one trimmer works, we stop checking and append t to
the list of valid denominators. Of course, it always has to hold that t− x ≥
2t/3 or t + x ≤ 3t/2 and gcd(t− x, t) = 1 or gcd(t + x, t) = 1, otherwise we
do not test the corresponding trimmer (t− x)/t or (t + x)/t. In this way, we
reduce the probability of rejecting a valid trimmer denominator t. We aim
to find a good trade-off between not rejecting too many valid denominators
while also not wasting too many oracle calls on denominators that do not
work. So, we have to define reasonable values for st for the different oracle
types and keylengths, depending on how large the probability of receiving
a false negative result is. To decide on this, we will analyze the different
probabilities of receiving a false negative result in the next section. But first,
let us present the rest of the Trimmers implementation.

In the first step, we have found a list of working denominators t and com-
puted their least common multiple t′. From the analysis, we know that we
want to find a trimmer 1 < t′/ul < 3/2 to trim the lower bound and another
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trimmer 2/3 < t′/uh < 1 to trim the upper bound. Bardou et al. [2] did
not specify how they used this information exactly in their implementation
of the Trimmers method. However, naively searching for ul and uh is ineffi-
cient, especially for large values t′. This is why we perform a binary search
for ul and uh in the respective intervals. For ul , we do a binary search in
[b2t′/3c+ 1, t′] and for uh in [t′, d3t′/2e − 1]. Let us define the median value
of an interval for which we do a step of the binary search as um. Now we
describe the binary search for ul . We want to minimize ul such that t′/ul is
as large as possible. Hence, if um is accepted by the oracle, we update the
upper bound of the interval to um. Like this, we keep the guarantee that the
upper bound is a valid trimmer nominator for t′. If um is rejected, we set
the lower bound of the interval to um + 1. When searching for uh, we do
it the other way around because we want to maximize uh. We update the
lower bound to um whenever it is a valid nominator. Therefore, the lower
bound always results in a working trimmer pair with t′. If um does not work,
we update the upper bound to um − 1 and continue searching in this new
interval.

For this procedure, we have the same problem with false negatives as before.
Some false negatives could occur, resulting in cutting the interval incorrectly
and thus losing a good trimmer. Hence, we want to reduce the probability
of falsely discarding the interval in which the best trimmer lies. An impor-
tant observation is that, even if our least common multiple t′ is large, the
binary search does not require many oracle calls. Thus, we can check more
values around um at each step to reduce the probability of making a wrong
decision. This is why we determine some value sb for the different oracles
to use in the binary search. We now describe how sb is used to improve the
binary search. When searching for ul , we do not want to throw away the
whole lower interval because um resulted in a false negative result, but some
values below um would have worked as a trimmer numerator. To make the
probability of this event occurring smaller, we first check um, then um − 1
until um − sb. If any of these numerators work as a trimmer in combina-
tion with t′, we can adapt the upper bound to this numerator and continue
searching in the new interval. On the other hand, if all of the values do not
work, we continue checking in the upper interval, i.e., we update the lower
bound to um + 1. Different from testing for valid trimmers, we do not check
around um in both directions. We only care about making the probability
of falsely rejecting all numerators u′ ≤ um low because that would hurt the
performance of the trimmers. For finding the best value for uh, we proceed
in an analogous way. First, we check um, then um + 1 until um + sb. As soon
as we find one valid trimmer numerator, we adjust the lower bound accord-
ingly. If none of the tested trimmers is accepted by the oracle, we continue
in the interval with a new upper bound of um − 1.

We note that our implementation of the Trimmers method has the aim of
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finding the best trimmer pairs. However, it is not guaranteed to be optimal.
One possible enhancement, for example, could be to allow st to shrink with
growing t as it is less likely that a larger t divides the message. Furthermore,
in the current implementation, we gradually increase t and test each possi-
ble denominator without using the already collected knowledge about valid
trimmer denominators. A further improvement would be to only allow test-
ing a denominator t which does not divide the least common multiple of
the list of trimmer denominators collected so far. This follows because if t
divides their least common multiple, we already know that t is also a valid
trimmer and hence do not have to check it.

4.5.3 Probability of False Negative Result

To complete the description of our implementation of the Trimmers method,
we still need to provide reasonable values for st and sb. In order to do this,
we analyze the false negative probability for the different oracle types and
keylengths. For this, assume that some t divides m0 and u/t is a valid
trimmer, i.e., m0 · u/t ∈ [2B, 3B− 1]. According to our theoretical analysis
in Section 3.3, this means that for m0 · u/t event A holds. The probability
of a false negative result (FN) is now precisely Pr(FN) = 1− Pr(P | A),
which means that although the message is in the interval [2B, 3B − 1], it
does not pass all checks of the oracle. Hence, the oracle returns False. This
is interpreted as u/t being an invalid trimmer. Therefore, we can reuse the
computed probabilities from our theoretical analysis for approximating the
likelihood of receiving a false negative result.

Based on this probability, we want to define the values st and sb to bring
the probability of making a wrong decision (WD) down to a reasonable
value. We want a good trade-off between a low Pr(WD) and not doing too
many unnecessary oracle calls. To approximate Pr(WD) by using Pr(FN),
we make some simplifications.

First, assume that m0 · u′/t ∈ [2B, 3B− 1] for all the trimmers u′/t we test.
This assumption is reasonable because, for large values of t, we try different
trimming fractions that are close to each other. Hence, we can assume that
if u/t is a valid trimmer, then all other fractions u′/t we test also keep
the message in the interval [2B, 3B − 1]. Additionally, we assume that the
tested trimmers are independent of each other. With that, the probability
of receiving a false negative result is independent for the different tested
trimmers. This assumption is made for simplicity, but it is important to note
that it does not hold. For example, a false negative result for a TFT oracle
means that there is a 0x00 byte in the bytes 3 to 10. Therefore, by trying a
trimmer with a fraction close to u/t, we will likely still have a zero byte in
the bytes 3 to 10 and again receive a false negative result. Nevertheless, we
assume this to analyze the probability of making a wrong decision.
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Using these assumptions, the probability of making a wrong decision when
generating and testing valid trimmer denominators is Pr(WDt) = Pr(FN)(2st+2).
Furthermore, when using sb for the binary search, the probability of making
a wrong decision is Pr(WDb) = Pr(FN)(sb+1). We now compute the respec-
tive probabilities for the different oracle types and provide precise values
for st and sb.

TTT Oracle

We know that Pr(P | A) = 1 and hence Pr(FN) = 0. Therefore, we set st =
sb = 0 because we cannot have any false negative results. This means that
when searching for trimmer denominators for t > 4, we only try (t− 1)/t
and (t + 1)/t as we know that if t divides the message, one of these two
trimmers has to work. For t ≤ 4, we potentially test all three pairs. When
performing the binary searches in the intervals, we only test um.

TFT Oracle

We know that Pr(P | A) = 255
256

8 and hence Pr(FN) = 1 − Pr(P | A) =

1 − 255
256

8
< 0.031. Therefore, the probability of receiving a false negative

result is roughly 3%. For this oracle, we also set st = sb = 0 as this is a low
false negative probability. Larger values for st and sb were also tested but
resulted in a higher attack complexity. So, we reason that a false negative
probability of 3% is low enough to provide good performance.

FFT Oracle

We know that Pr(P | A) = 255
256

8 · (1− ( 255
256 )

k−10) and hence Pr(FN) = 1−
255
256

8 · (1 − ( 255
256 )

k−10). This probability decreases with growing keylength.
Hence, we define different values for st and sb depending on the keylength.
We experimentally saw that bringing Pr(WD) to approximately 3% provides
the best improvement to the attack. So, we set st and sb to achieve this.

For a keylength of 512 bits, we have Pr(FN) ≈ 0.815. It follows that st = 8
and sb = 17.

For a keylength of 1024 bits, we have Pr(FN) ≈ 0.641. It follows that st = 3
and sb = 7.

For a keylength of 1024 bits, we have Pr(FN) ≈ 0.4. It follows that st = 1
and sb = 3.

Bad Version Oracle

We know that Pr(P | A) = (1− 2−16)( 255
256

k−51 · 2−8) and hence Pr(FN) =

1− (1− 2−16)( 255
256

k−51 · 2−8). This probability grows with growing keylength.
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Overall, the probability of receiving a false negative result is very large.

For a keylength of 512 bits, we have Pr(FN) ≈ 0.996. It follows that st = 450
and sb = 900.

For a keylength of 1024 bits, we have Pr(FN) ≈ 0.997. It follows that st = 600
and sb = 1 200.

For a keylength of 2048 bits, we have Pr(FN) ≈ 0.998. It follows that st = 900
and sb = 1 800.

For the BVO, we observe that this theoretical derivation results in very large
values for st and sb. Of course, in the actual code, we usually cannot use such
large values of st and sb because of the constraints that 2t/3 ≤ u ≤ 3t/2.

We note that we started off using these values for st and sb in our experi-
ments and experimentally refined them later.

The following section shows the experimental results for our implementa-
tion of the Trimmers method combined with the Skipping Holes and Par-
allel Threads improvements. We also present the best parameters for the
Trimmers technique found in practice, depending on the oracle type and
keylength.

4.5.4 Experimental Results

For all experiments, we used the Trimmers technique in combination with
the Parallel Threads and Skipping Holes methods. This was done as they
provide a significant improvement, especially in combination with Trim-
mers. Since we want to find the best parameters for improving the attack
while using all possible optimizations, it is reasonable to search for the trim-
mer parameters with the other optimizations.

As a first step, we tested different numbers of allowed oracle calls to generate
and test trimmer denominators. The aim of this was to figure out the best
value for each oracle and keylength combination. For this, we started by
using the number of oracle calls presented by Bardou et al. [2] for testing
trimmers as well as one smaller and one larger value for each oracle type
and keylength. We performed 100 000 simulations for the TTT, TFT and FFT
oracles and 1 000 for the BVO to determine which of the three number of
allowed oracle calls works best with our implementation of the Trimmers
method. Hereby, we kept st and sb fixed on the values derived from the
theoretical analysis. Then, we continued searching until we found a number
of allowed oracle calls such that when allowing more or fewer calls, the
attack complexity is larger. After having found these values, we fixed them
and refined st and sb in the same way, starting with our theoretically derived
values.
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The experimental results show that the Trimmers method in combination
with Skipping Holes significantly lowers the complexity of step 2a. Further-
more, trimming M0 also affects the performance of step 2b. Because the
initial interval M0 = [a, b] is smaller if we find a trimmer, there are fewer
possible values for r in step 3 of the attack. This means that it is less likely
that one has to perform step 2b and even if we have to, we expect M1 to
contain fewer intervals. The influence of this can be seen in the mean and
median values for step 2b and the mean number of rounds required of step
2b. However, this improvement is not significant compared to applying the
Parallel Threads Method on its own, as the Parallel Threads Method already
makes step 2b highly efficient. Lastly, the Trimmers technique does not fur-
ther improve step 2c compared to the Parallel Threads Method.

Now, we present the experimentally best parameters found for the different
oracles and keylengths and compare the results obtained with these parame-
ters to the original Bleichenbacher algorithm. We note that step 2a is defined
as the number of oracle calls required for finding s1 after trimming the in-
terval M0. In total, to obtain the value s1, we performed some number of
oracle calls for the trimmers and step 2a. In the provided plots, we show
the number of oracle calls allowed for generating and testing trimmer de-
nominators. After finding the valid denominator and computing their least
common multiple, we also need a certain number of oracle calls for the bi-
nary search, i.e., for finding ul and uh. This value, however, is not significant
as the binary search is very efficient, even for a large least common multiple
t′. Hence, we do not consider it in the figures.

TTT Oracle

For the TTT oracle, we observed that allowing 400 oracle calls for generating
and testing trimmers gives the best attack complexity. As analyzed in the
previous section, for this oracle, we set st = sb = 0 because we cannot have
any false negative results. Both the median and mean values observed for
the total number of oracle calls required for the Trimmers technique were
roughly 410.

From Table 4.23, we can see that step 2a is improved a lot by applying the
Trimmers method. Figure 4.10 visualizes this. Step 2a is now often very
cheap after spending approximately 400 oracle calls to find trimmers. Ad-
ditionally, in the experimental results, we could see that step 2a usually is
more efficient the more we were able to trim the interval M0. The cases
where step 2a still requires many oracle calls arise when we cannot find a
good trimmer for the desired message m0. From Table 4.24, it is visible that
the complexity of step 2b is also reduced. As we can see when compar-
ing these values to Table 4.2, step 2b is more efficient when combining the
Parallel Threads Method with the Trimmers technique. However, this im-
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provement is not significant as the Parallel Threads Method makes step 2b
already essentially free. Finally, we could further reduce the mean number
of rounds required for step 2b from 0.18 to 0.03.

As there are no false negative results for this oracle, we can often find good
trimmers. This is visible in Table 4.25. In the median, we expect to be able to
shrink M0 by a factor of 30. However, the mean value is a lot larger because
there exist cases where one can find highly efficient trimmers.

We only provide the plot visualizing the distribution of the required oracle
calls for a keylength of 512 bits, see Figure 4.10, as the improvement of the
Trimmers method looks similar for the longer keylengths.

keylength median total mean total original
median total

original
mean total

512 2 114 10 007 21 114 36 272
1024 3 384 12 641 23 000 40 815
2048 5 860 19 012 26 439 49 767

Table 4.22: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads – TTT Oracle – 106 Simulations –Total

keylength median 2a mean 2a original
median 2a

original
mean 2a

512 316 6 474 19 178 27 180
1024 329 6 518 19 318 27 361
2048 338 6 651 19 642 27 841

Table 4.23: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads – TTT Oracle – 106 Simulations – Step 2a
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keylength median 2b mean 2b original
median 2b

original
mean 2b

512 0 0.82 0 5 634
1024 0 0.67 0 5 675
2048 0 0.61 0 5 829

Table 4.24: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads – TTT Oracle – 106 Simulations – Step 2b

keylength median trimmer
improvement

mean trimmer
improvement

512 30 1 248 449 116
1024 29 4 126 404 091
2048 29 412 411 811

Table 4.25: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads – TTT Oracle – 106 Simulations – Trimmer Improvement
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 4.10: Bleichenbacher’s Attack with Skipping Holes, Trimmers and
Parallel Threads – TTT Oracle – 106 Simulations – keylength 512 – outliers
removed: 4 from Total, 4 from Step 2c
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TFT Oracle

For the TFT oracle, we experimentally found that allowing 500 oracle calls
for generating and testing trimmers works the best. We again set st = sb = 0
because the probability of receiving a false negative result is low. In practice,
these parameters gave the best complexity improvement. Both the median
and mean values observed for the total oracle calls required for the Trim-
ming technique were roughly 510.

All observations are identical to the TTT oracle except for the trimmer im-
provement. We can observe in Table 4.29 that the median value has gone
down compared to Table 4.25. This means that the Trimmers method is less
effective for this oracle type because of the false negatives that can occur.
What stands out more is that the mean value is drastically lower. This is un-
expected as the probability of receiving a false negative result is very low for
the TFT oracle. Hence, we expect the Trimmers method to achieve roughly
the same improvement. Interestingly, during the experiments we observed
that for the TFT oracle and also the more restrictive oracles, we could not
provide an improvement of more than a factor of 28. On the other hand, for
the TTT oracle, M0 could be trimmed by up to a factor of 250.

We also note that for the TFT oracle, the mean number of rounds required
of step 2b with all the applied improvements is 0.04 compared to 0.20 when
only applying the Parallel Threads Method.

The distribution of the required oracle calls for the different steps after ap-
plying the Trimmers method with the described parameters looks identical
as for the TTT oracle, see Figure 4.10.

keylength median total mean total original
median total

original
mean total

512 2 479 10 980 22 077 39 530
1024 3 797 14 278 24 010 42 981
2048 6 355 19 605 27 486 51 362

Table 4.26: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads – TFT Oracle – 106 Simulations – Total
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keylength median 2a mean 2a original
median 2a

original
mean 2a

512 520 7 258 20 115 28 801
1024 540 7 416 20 259 29 017
2048 550 7 549 20 517 29 421

Table 4.27: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads – TFT Oracle – 106 Simulations – Step 2a

keylength median 2b mean 2b original
median 2b

original
mean 2b

512 0 0.76 0 6 969
1024 0 2.14 0 7 000
2048 0 0.80 0 6 911

Table 4.28: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads – TFT Oracle – 106 Simulations – Step 2b

keylength median trimmer
improvement

mean trimmer
improvement

512 21 64
1024 20 63
2048 20 63

Table 4.29: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads – TFT Oracle – 106 Simulations – Trimmer Improvement

FFT Oracle

For the FFT oracle, the experimentally best parameters are the following:

For a keylength of 512 bits, we allow 10 000 oracle calls for generating and
testing trimmers. We set st = 10 and sb = 21. Both the median and mean
values observed for the total oracle calls required for the Trimming tech-
nique were roughly 10 100.

For a keylength of 1024 bits, we allow 4 000 oracle calls for generating and
testing trimmers. We set st = 4 and sb = 9. Both the median and mean val-
ues observed for the total oracle calls required for the Trimming technique
were roughly 4 050.

For a keylength of 2048 bits, we allow 1 000 oracle calls for generating and
testing trimmers. We set st = 1 and sb = 3. Both the median and mean val-
ues observed for the total oracle calls required for the Trimming technique
were roughly 1 025.
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The main observations are the same as for the more permissive oracles. For
the FFT oracle, the mean number of rounds required for step 2b now have
the following values: 0.34 for a keylength of 512 bits, 0.21 for a keylength
of 1024 bits and 0.12 for a keylength of 2048 bits. Furthermore, we can ob-
serve that the median and mean of the possible trimmer improvement have
gone down compared to the more permissive oracles as the probability of
receiving a false negative is higher for this oracle. However, with grow-
ing keylength, it becomes again easier to find good trimmers as the false
negative probability shrinks, see Table 4.33.

In Figures 4.11, 4.12 and 4.13, the significant improvement on step 2a is vis-
ible, as well as how the different keylengths influence the attack complexity.

keylength median total mean total original
median total

original
mean total

512 38 464 123 821 359 198 434 687
1024 16 137 54 058 153 859 200 970
2048 11 393 34 118 50 191 109 099

Table 4.30: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads – FFT Oracle – 106 Simulations – Total

keylength median 2a mean 2a original
median 2a

original
mean 2a

512 21 153 105 768 144 030 213 858
1024 4 677 40 203 68 647 103 614
2048 1 804 18 849 37 019 56 882

Table 4.31: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads – FFT Oracle – 106 Simulations – Step 2a
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keylength median 2b mean 2b original
median 2b

original
mean 2b

512 0 43 121 714 212 733
1024 0 12 32 483 84 762
2048 0 9 0 33 371

Table 4.32: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads – FFT Oracle – 106 Simulations – Step 2b

keylength median trimmer
improvement

mean trimmer
improvement

512 10 57
1024 14 61
2048 15 58

Table 4.33: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads – FFT Oracle – 106 Simulations – Trimmer Improvement
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 4.11: Bleichenbacher’s Attack with Skipping Holes, Trimmers and
Parallel Threads – FFT Oracle – 106 Simulations – keylength 512 – outliers
removed: 6 from Total, 6 from Step 2c
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 4.12: Bleichenbacher’s Attack with Skipping Holes, Trimmers and
Parallel Threads – FFT Oracle – 106 Simulations – keylength 1024 – outliers
removed: 7 from Total, 7 from Step 2c
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 4.13: Bleichenbacher’s Attack with Skipping Holes, Trimmers and
Parallel Threads – FFT Oracle – 106 Simulations – keylength 2048 – outliers
removed: 15 from Total, 2 from Step 2a, 13 from Step 2c
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Bad Version Oracle

For the BVO, the experimentally best parameters are the following:

For a keylength of 512 bits, we allow 50 000 oracle calls for generating and
testing trimmers. We set st = 450 and sb = 900. The median values observed
for the total number of oracle calls required for the Trimming technique was
50 000. Hence, usually we were not able to find a trimmer. The mean value
was roughly 50 200.

For a keylength of 1024 bits, we allow 50 000 oracle calls for generating
and testing trimmers. We set st = 600 and sb = 1 200. The median values
observed for the total number of oracle calls required for the Trimming tech-
nique was 50 000. Hence, usually we were not able to find a trimmer. The
mean value was roughly 50 200.

For a keylength of 2048 bits, we allow 80 000 oracle calls for generating
and testing trimmers. We set st = 900 and sb = 1 800. The median values
observed for the total number of oracle calls required for the Trimming tech-
nique was 80 000. Hence, usually we were not able to find a trimmer. The
mean value was roughly 80 150.

We can see that for the BVO, it is challenging to find trimmers because of
the high false negative rate. Hence, we cannot significantly improve step 2a,
see Table 4.35. Because it becomes harder to find a trimmer with growing
keylength, the mean trimmer improvement sinks with increasing modulus
size, see Table 4.37. The main improvement on the total complexity still
comes from the Parallel Threads Method for step 2b, see Table 4.36. How-
ever, in combination with the Trimmers technique, we can lower the com-
plexity of step 2b notably compared to only applying the Parallel Threads
Method, as visible when comparing the results to Table 4.11. Additionally,
for the BVO, the mean number of rounds required for step 2b now have
the following values: 1.23 for a key length of 512 bits, 1.25 for a keylength
of 1024 bits and 1.23 for a keylength of 2048 bits. These are slightly lower
compared to only applying the Parallel Threads Method, see Section 4.3.3.

We only visualize the improved distributions for a keylength of 512 bits, see
Figure 4.14, as they look similar for the longer keylengths.
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keylength median total mean total original
median total

original
mean total

512 8 889 976 17 057 401 24 227 787 50 146 387
1024 12 033 457 21 122 774 31 076 365 62 343 618
2048 20 563 963 33 706 806 51 200 904 75 265 298

Table 4.34: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads – BVO – 104 Simulations – Total

keylength median 2a mean 2a original
median 2a

original
mean 2a

512 8 097 901 14 317 720 8 019 905 14 499 301
1024 10 511 671 17 590 261 10 548 557 18 231 944
2048 16 249 408 28 613 532 17 708 014 27 544 262

Table 4.35: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads – BVO – 104 Simulations – Step 2a

keylength median 2b mean 2b original
median 2b

original
mean 2b

512 112 155 1 661 303 11 113 772 34 805 695
1024 190 402 1 856 419 13 778 521 42 711 607
2048 492 769 1 721 121 22 443 601 44 014 214

Table 4.36: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads – BVO – 104 Simulations – Step 2b

keylength median trimmer
improvement

mean trimmer
improvement

512 1 3.19
1024 1 2.52
2048 1 1.71

Table 4.37: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads – BVO – 104 Simulations – Trimmer Improvement
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(a) Total Distribution

(b) Distribution of Individual Steps

Figure 4.14: Bleichenbacher’s Attack with Skipping Holes, Trimmers and
Parallel Threads – BVO – 104 Simulations – keylength 512

93





Chapter 5

Heuristic for Step 2c

In the previous chapter, we have presented different methods for improv-
ing the complexity of Bleichenbacher’s attack. These techniques focus on
making steps 2a or 2b less expensive as the number of oracle calls required
for decrypting a message seems to rely on their performance. On the other
hand, it is assumed that step 2c uses an efficient method for finding valid
ciphertexts. Hence, this step is considered optimal and the improvements
do not aim at improving its performance. However, this is not always the
case. In the experimental results of the unmodified Bleichenbacher attack
in Section 3.4, we could see that the distribution of oracle calls required for
step 2c has a long tail. So, there exist some cases where Bleichenbacher’s
heuristic analysis for step 2c does not hold, see for example Figure 3.1. This
is the case for all oracle types.

Following the experiments for the different improvements, we know that
combining the optimizations can significantly decrease the attack complex-
ity. The Trimmers and Parallel Threads Method successfully eliminate the
immense complexity of step 2b. Additionally, the Trimmers and Skipping
Holes techniques help in making step 2a a lot more efficient in most cases.
After applying all improvements, it still seems that step 2a determines the
complexity of Bleichenbacher’s attack while the performance of step 2c is
roughly fixed. However, the distribution of the number of oracle calls for
step 2c still has a long tail, see for example Figure 4.10. Additionally, we can
see that the outliers we removed for the different figures mostly came from
step 2c. This indicates that the worst cases for Bleichenbacher’s attack arise
when step 2c requires an extremely large number of queries. In these cases,
we cannot find the next si value quickly using the method of step 2c. These
extreme cases also influence the mean value of step 2c significantly, which
is visible in the different tables, for example Table 4.3. The mean number
of oracle calls required for step 2c is always considerably larger than its
median.

95



5. Heuristic for Step 2c

We conclude that the overall worst cases appear when the “efficient” method
of finding the next si value in step 2c turns out not to be efficient at all.
This motivated us to create a heuristic for improving the “bad” cases and
aborting for “very bad” cases that cannot be saved. Before presenting the
heuristic, we describe the observations made for the messages which require
notably more oracle calls in step 2c than expected. These insights were then
used to derive the heuristic.

5.1 Observation

First, we start by explaining the high-level pattern observed and then show
a particular example of a case where the number of calls for step 2c was
extremely large. In the following two sections, we assume that we have a
TTT oracle with a keylength of 1024 bits. The examples we provide were
found in this setting. For this oracle and keylength combination, we expect
step 2c to require roughly 2 000 oracle calls with all applied improvements.
However, the mean value is approximately 6 000, see Table 4.3.

In practice, the experiments which take unexpectedly long for step 2c start
this step as expected. This means when starting step 2c, they only need one
or two oracle calls to find the next si value, considering the TTT oracle. Then,
after some number of rounds, they suddenly cannot find the next si value
for a long time. After having finally found the next conforming multiplier
si, they continue to follow a pattern. From there on, the experiments always
require roughly the same number of oracle calls. But, this number is larger
than the expected number of calls for one step of 2c. Essentially, after the
period where they cannot find a value si for a long time, Bleichenbacher’s
method works again, just with some fixed offset.

Interestingly, this behavior happens at different scales. To demonstrate this,
we describe three different examples:

• For a message m1 and modulus n1, we start by having to do two oracle
calls to find s2, followed by one oracle call to find s3. Then, we require
129 oracle calls and after that always between 31 and 33. This results
in a complexity of 31 811 for step 2c.

• For a message m2 and modulus n2, we start by having to do one oracle
call to find the next si for seven rounds of step 2c. Then, it takes 11 379
oracle calls and after that always between 1 400 and 1 402. This results
in a complexity of 1 387 189 for step 2c.

• For a message m3 and modulus n3, we start by having to do one or
two oracle calls to find the next si. Suddenly, it takes 28 705 563 calls
and after that once 3 633 812, once 5 776 136, once 5 897 519 and then

96



5.2. Example of an Extreme Case

always between 5 776 136 and 5 776 138. This results in a complexity of
5 629 537 199 for step 2c.

We note that these experiments arose in experimental runs where all im-
provements were applied. However, the same behavior was observed for
these experiments without any optimizations. Additionally, we expect the
bad cases to arise from an unfortunate modulus and message combination.
There seems to be a large region of ri, si values that do not work and where
Bleichenbacher’s heuristic analysis for step 2c is wrong. One could possi-
bly identify which ranges can be skipped, similarly to the Hole Skipping
technique. However, we note that this is an open problem.

Our experimental observations suggest that step 2c can be improved for
some of the bad cases by exploiting the structure of required oracle calls. In
the following sections, we present a heuristic devised to do precisely that
and analyze its performance in practice. But, we first want to look at the
last example in more detail to provide the values for a case where step 2c is
extremely unfortunate.

5.2 Example of an Extreme Case

Recall that we consider the TTT oracle and a keylength of 1024 bits. Addi-
tionally, all improvements are applied. Hence, we allow 400 oracle calls to
find trimmer denominators and set st = sb = 0. Furthermore, the Parallel
Threads Method is performed with a bound of 16 000 intervals on M1.

We first display the relevant values of the RSA keys, i.e., (n, e, d), and the
message m. Then, we explain the run of the algorithm on this message and
modulus combination in detail.

n = 1199725689746578919119599477279587385317778413719551540111539691

8951503336647323055184106739216501477266202281805159423463409824369

1718033865314593335094058708319328748614037708004150691268285952132

6622601051124580525403867641039868107446834416174599001233786662233

15861155094559095945256048112008434445593989

e = 65537

d = 5223640471324386141733337059092272462890093692950150784607593437

0245990465116096766662875292360478760668184706549006538066801858244

0937805567351378407390697270101749981791166785469464796957634582809

4508545746943486365357619447367695509074926685022639415954451485663

9811542789225275651764008605184730900981793
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m = 5757117374837080106362895065131625459948524262525083733552337861

3219825205534219401386354182928560932075070804445668252304823541003

3923054014812850146599607948717587940118591706053064762058995408131

1423791339709802121481039191106630412177084083622299772401409304241

930817987986350425955372160585228338432

We start by generating and testing different trimmer denominators for 400
oracle calls and end up with the following list of working denominators td:

td = [4, 7, 8, 13, 14, 16, 26, 28, 32, 52, 56, 64, 91, 104, 112, 128, 182, 208]

The least common multiple t′ of this list is 11 648.

Then, we search for the best trimmers t′/ul and t′/uh and obtain: ul =
11 100 and uh = 16 649.

This allows us to shrink the initial interval:

M0 = [54861240687936886832559362511872092700743926359323320701120019

8845619738175967294716517569953636279361328472533787211174495818386

2744647903224103718245670299614498700710006264535590197791934024641

5125412623597951915939539289081689902927585003914562122604525965755

09589842140073806143686060649302051520512,

8229186103190533024883904376780813905111588953898498105168002982684

2960726395094207477635493045441904199270880068081676174372757941169

7185483615557736850544942174805106500939680338529668790103696226881

1893539692787390930893362253485439137750587184318390678894863264384

763210110709215529090973953077280767]

by a factor of 7 933 to:

M0 = [5756970554352151872303166257101676898903290578679261617357171

0956340348741204207647369339232612210648655441874536517439284029662

7326573502493282523514644753602789917710541918642437429043967995666

8859286542699720215467241023776788504408112703834205582018896562604

642856079391673846302851822922799125775758,

57573163391172640202923730062311802730938667868946907279114000085474

61148063247386201570654231445175686906764436500783014469901402479097
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13286873326717450606492068720636706285386304474357743235500849943665

90155770068790655922808293950624708101891718986494460788856570096535

45039914766201144312847945472183]

We proceed by searching for the first conforming multiplier s1 and can find
s1 = 20 840 with a single oracle call because of the Skipping Holes method
combined with the successful trimming of M0. This shows that even when
finding good trimmers, a very bad case for step 2c can arise. Without the
improvements, step 2a would have taken 6 262 oracle calls. We note that we
find the same value for s1 with or without the optimizations.

Because |M1| = 1, we skip step 2b and continue directly with step 2c. Until
now, the attack has been highly efficient as we have only needed 426 ora-
cle calls, whereof 25 were required for the binary search of the Trimmers
improvement.

For step 2c, the following pattern of oracle calls required to find the next si
occurs:

• We need to perform two oracle calls to find s2 and another two oracle
calls for s3.

• Then, for 16 rounds we only have to perform a single oracle call to find
the next conforming multiplier si.

• Then, we require 28 705 563 calls to find the next si.

• Then, we require 3 633 812 calls to find the next si.

• Then, we require 5 776 136 calls to find the next si.

• Then, we require 5 897 519 calls to find the next si.

• After this, we always need to perform between 5 776 136 and 5 776 138
oracle calls to find the next conforming multiplier si.

We note that if we do not perform any improvements, this pattern for step
2c is identical.

Overall, we end up with 5 629 537 199 oracle calls for step 2c.

In total, the attack complexity with all improvements applied is 5 629 537 625.

5.3 Heuristic to Improve Step 2c

Based on the previous observation, we devised a heuristic to improve the
performance of step 2c. As we can see from the three examples in Section
5.1, it only makes sense to exploit the structure of required oracle calls for
the first message. For the other two examples, we would still need too many
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oracle calls to decrypt it because we need an enormous number of oracle
calls for finding one si before the pattern occurs. Hence, for the “bad” cases,
we want to learn the pattern to improve their performance and for the “very
bad” cases of step 2c, we want to abort the attack.

We now explain how we implemented this heuristic:

Let ce be the expected number of oracle calls to find the next conforming
multiplier si in step 2c, see the theoretical analysis in Section 3.3. For the
TTT oracle, for example, we have ce = 2.

First, we perform steps 2a and 2b with all previously introduced improve-
ments. Then, we do a single round of step 2c, meaning we search for the
next conforming multiplier si. Let ci be the number of oracle calls required
for finding this value si. If this value is very large, we know that we have
come across a very bad case. Hence, if ci > 500 · ce, we abort the attack. Else
if ci is larger than expected, but not too large, i.e., 5 · ce < ci < 500 · ce, we
want to improve the performance of step 2c. In this case, we learn the pat-
tern of oracle calls required for finding the next si in step 2c. More precisely,
we aim to identify the number of values we would always unnecessarily
test with the oracle and then skip these tests. As soon as we have found this
offset, step 2c should be efficient again. The third case which can arise is
that ci ≤ 5 · ce. In that case, step 2c behaves as expected and we continue
with the next round of step 2c. For this next step, we again consider ci+1 to
decide whether we want to abort, start the pattern recognition or continue
as usual.

Now, we describe how we aim to find the offset value if 5 · ce < ci < 500 · ce.
We continue by searching for si+1 and si+2. When doing this, we save the
values ci+1 and ci+2. From the observation in Section 5.1, it follows that these
numbers should follow a pattern after some time. If we find the desired
offset and always skip testing this number of si values we would otherwise
send to the oracle, we can significantly lower the complexity of step 2c for
these bad cases. We provide an easy heuristic with the aim to find the
pattern and show the experimental results in the following section. First, we
compute cmin = min(ci+1, ci+2). Then, we define cskip = max(cmin − ce, 0).
This is the number of values that we, from now on, do not test with the
oracle. If we have already computed a value for cskip and observe that 5 · ce <
ci < 500 · ce later in the attack, we also count ci+1 and ci+2 in the following
two rounds. The new number of values to skip is then defined as: cskip =
max(cskip + cmin − ce, 0).

This is a heuristic procedure to improve the performance of step 2c by ex-
ploiting its pattern of oracle calls. All values were derived by using exper-
imental results and one could possibly find better values. However, as we
will see in the experimental results for the heuristic, this procedure already
brings down the mean of step 2c nicely and eliminates the very bad cases
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that are still too expensive. Because these cases are rare, the success proba-
bility remains high.

5.4 Experimental Results

We now look at the experimental results obtained by using this procedure.
In particular, we compare the performance of Bleichenbacher’s attack with
all improvements to its complexity when adding the heuristic.

Since the technique only modifies step 2c, the complexity of steps 2a and 2b
stays the same. We can see that the heuristic lowers the mean of step 2c a lot,
bringing it close to its median. This results from the fact that we improve
the “bad” cases to roughly reach the expected performance and eliminate
the “very bad” cases of step 2c. Additionally, the experimental results show
that the attack still has a high success probability with this heuristic as the
extremely bad cases are rare.

The improvement on the mean of the total complexity depends on how
much this complexity is influenced by step 2c. Hence, we see a significant
decrease in the total mean for the TTT and TFT oracles, whereas the im-
provement is not as notable for the FFT oracle and the BVO.

For this heuristic, we include additional plots for visualizing the improve-
ment on step 2c. In these figures, the x-axis still describes the number of
oracle calls. However, on the y-axis, we now display the frequency of ex-
periments requiring at least that number of oracle calls to complete step
2c. Essentially, we plot 1− CDF, where CDF is the cumulative distribution
function of the number of oracle calls for step 2c over the experiments.

5.4.1 TTT Oracle

For the TTT oracle, we can see in Table 5.2 that we are able to reduce the
mean of step 2c significantly. The mean and median values for step 2c
are now almost identical. In Figure 5.1, it is visible that the long tail of
the distribution of oracle calls required for step 2c, present in Figure 3.1,
is gone. Additionally, this distribution is more concentrated around the
expected number of oracle calls for step 2c.

The influence on the mean of the total complexity is also significant for this
oracle because, after all improvements, the total performance depends on
steps 2a and 2c, see Figure 5.1. The effect is visible in Table 5.1. Furthermore,
the success probability is very high. We only abort the algorithm for 0.3% of
the messages, see Table 5.1.

Figure 5.2 further illustrates that the probability of running into a bad case
is a lot lower with the heuristic. For example, without this heuristic, the
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5. Heuristic for Step 2c

probability of having to perform at least 212 oracle calls for a keylength
of 512 bits in step 2c is larger than 5%. However, with the heuristic, this
probability is almost zero. Additionally, the figure also visualizes that the
heuristic brings the mean value very close to its median.

We omit the figures for the other keylengths as this heuristic produces a
similar shape for their distribution of step 2c.

keylength success
probability

median
total with
heuristic

mean
total with
heuristic

median
total with
improve-

ments

mean
total with
improve-

ments

512 0.997 1 933 7 998 2 114 10 007
1024 0.997 3 192 9 228 3 384 12 641
2048 0.997 5 639 11 704 5 860 19 012

Table 5.1: Bleichenbacher’s Attack with Skipping Holes, Trimmers, Parallel
Threads and Heuristics for 2c – TTT Oracle – 106 Simulations – Total

keylength median 2c
with heuristic

mean 2c with
heuristic

median 2c
with im-

provements

mean 2c
with im-

provements

512 1 021 1 112 1 029 3 121
1024 2 107 2 285 2 126 5 711
2048 4 278 4 635 4 320 11 948

Table 5.2: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads and Heuristics for 2c – TTT Oracle – 106 Simulations – Step
2c
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5.4. Experimental Results

(a) Total Distribution

(b) Distribution of Individual Steps

Figure 5.1: Bleichenbacher’s Attack with Skipping Holes, Trimmers, Parallel
Threads and Heuristics for 2c – TTT Oracle – 106 Simulations – keylength
512 – success probability of 0.997
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5. Heuristic for Step 2c

Figure 5.2: 1 - CDF of Step 2c – TTT Oracle – 106 Simulations – keylength
512 – success probability of 0.997 with heuristic
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5.4. Experimental Results

5.4.2 TFT Oracle

The observations are exactly the same as for the TTT oracle. Because the
influence of the heuristic on the distribution of step 2c looks identical to
Figures 5.1 and 5.2, we omit them.

keylength success
probability

median
total with
heuristic

mean
total with
heuristic

median
total with
improve-

ments

mean
total with
improve-

ments

512 0.997 2 254 8 935 2 479 10 980
1024 0.997 3 590 10 232 3 797 14 278
2048 0.997 6 214 12 852 6 355 19 605

Table 5.3: Bleichenbacher’s Attack with Skipping Holes, Trimmers, Parallel
Threads and Heuristics for 2c – TFT Oracle – 106 Simulations – Total

keylength median 2c
with heuristic

mean 2c with
heuristic

median 2c
with im-

provements

mean 2c
with im-

provements

512 1 069 1 163 1 071 3 209
1024 2 208 2 397 2 213 6 348
2048 4 485 4 862 4 497 11 543

Table 5.4: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads and Heuristics for 2c – TFT Oracle – 106 Simulations – Step
2c
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5. Heuristic for Step 2c

5.4.3 FFT Oracle

From Table 5.6, we can see that also for the FFT oracle, the heuristic brings
the mean of step 2c close to its median. However, for this oracle type, be-
cause its total complexity is significantly larger than the complexity required
for step 2c, the heuristic does not substantially improve the total mean of the
attack, see Table 5.5. It is important to note that for this oracle type, the im-
pact of the heuristic increases with increasing keylength. Furthermore, we
obtain an even higher success probability of 99.8% or 99.9%.

Figures 5.3, 5.5 and 5.7 show that the long tail of the distribution of oracle
calls required for step 2c is removed compared to Figures 4.11, 4.12 and 4.13.
Furthermore, Figures 5.4, 5.6 and 5.8 visualize that the heuristic improves
the ”bad” cases and removes the ”very bad” cases.

keylength success
probability

median
total with
heuristic

mean
total with
heuristic

median
total with
improve-

ments

mean
total with
improve-

ments

512 0.999 37 770 122 142 38 464 123 821
1024 0.999 15 933 50 827 16 137 54 058
2048 0.998 11 428 28 016 11 393 34 118

Table 5.5: Bleichenbacher’s Attack with Skipping Holes, Trimmers, Parallel
Threads and Heuristics for 2c – FFT Oracle – 106 Simulations – Total

keylength median 2c
with heuristic

mean 2c with
heuristic

median 2c
with im-

provements

mean 2c
with im-

provements

512 6 143 6 337 6 141 7 881
1024 6 405 6 780 6 396 9 789
2048 7 567 8 225 7 545 14 231

Table 5.6: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads and Heuristics for 2c – FFT Oracle – 106 Simulations – Step
2c
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5.4. Experimental Results

(a) Total Distribution

(b) Distribution of Individual Steps

Figure 5.3: Bleichenbacher’s Attack with Skipping Holes, Trimmers, Parallel
Threads and Heuristics for 2c – FFT Oracle – 106 Simulations – keylength
512 – success probability of 0.999
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5. Heuristic for Step 2c

Figure 5.4: 1 - CDF of Step 2c – FFT Oracle – 106 Simulations – keylength
512 – success probability of 0.999 with heuristic
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5.4. Experimental Results

(a) Total Distribution

(b) Distribution of Individual Steps

Figure 5.5: Bleichenbacher’s Attack with Skipping Holes, Trimmers, Parallel
Threads and Heuristics for 2c – FFT Oracle – 106 Simulations – keylength
1024 - success probability of 0.999
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5. Heuristic for Step 2c

Figure 5.6: 1 - CDF of Step 2c – FFT Oracle – 106 Simulations – keylength
1024 - success probability of 0.999 with heuristic
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5.4. Experimental Results

(a) Total Distribution

(b) Distribution of Individual Steps

Figure 5.7: Bleichenbacher’s Attack with Skipping Holes, Trimmers, Parallel
Threads and Heuristics for 2c – FFT Oracle – 106 Simulations – keylength
2048 - success probability of 0.998
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5. Heuristic for Step 2c

Figure 5.8: 1 - CDF of Step 2c – FFT Oracle – 106 Simulations – keylength
2048 - success probability of 0.998 with heuristic
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5.4. Experimental Results

5.4.4 Bad Version Oracle

For the BVO, we can observe that the heuristic improves the mean of step 2c
significantly, see Table 5.8. However, as the total complexity for this oracle is
a lot larger, this does not provide a notable improvement to the total mean,
see Table 5.7. We note that the mean values are also affected by randomness
of the experiments because we only performed 10 000 simulations for the
BVO.

Figure 5.9 removes the long tail of the number of oracle calls for step 2c
compared to Figure 4.14 without the heuristic. Additionally, Figure 5.10
showcases that the heuristic improves the attack complexity for a lot of the
bad cases significantly.

We do not provide the figures for the additional keylenghts as the improve-
ment on step 2c looks very similar.

keylength success
probability

median
total with
heuristic

mean
total with
heuristic

median
total with
improve-

ments

mean
total with
improve-

ments

512 0.996 8 677 741 15 847 517 8 889 976 17 057 401
1024 0.998 11 654 632 19 591 262 12 033 457 21 122 774
2048 1 22 121 516 34 508 968 20 563 963 33 706 806

Table 5.7: Bleichenbacher’s Attack with Skipping Holes, Trimmers, Parallel
Threads and Heuristics for 2c – BVO – 104 Simulations – Total

keylength median 2c
with heuristic

mean 2c with
heuristic

median 2c
with im-

provements

mean 2c
with im-

provements

512 272 088 365 335 274 367 841 390
1024 731 733 942 994 742 132 1 400 068
2048 2 546 302 2 920 683 2 583 223 3 706 822

Table 5.8: Bleichenbacher’s Attack with Skipping Holes, Trimmers and Par-
allel Threads and Heuristics for 2c – BVO – 104 Simulations – Step 2c
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5. Heuristic for Step 2c

(a) Total Distribution

(b) Distribution of Individual Steps

Figure 5.9: Bleichenbacher’s Attack with Skipping Holes, Trimmers, Parallel
Threads and Heuristics for 2c – BVO – 104 Simulations – keylength 512 -
success probability of 0.996
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5.4. Experimental Results

Figure 5.10: 1 - CDF of Step 2c – BVO – 104 Simulations – keylength 512 -
success probability of 0.996 with heuristic
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Chapter 6

Improvements Overview

In this chapter, we provide tables containing the experimental results of all
improvements we tested. In each table, one row corresponds to a particular
oracle type and keylength combination. The column headers describe the
applied improvements on the attack and whether this column displays the
median or mean value. We use the following abbreviations for the different
optimizations: Parallel Threads Method (PT), Skipping Holes (SH), Trim-
mers (T), Heuristic for Step 2c (H2c). For the improvements, we used the
best parameters found during the experiment runs, see Chapter 4. We note
that when applying the heuristic for step 2c (H2c), we might abort for some
messages. Hence, we have a slightly lower success probability. However, as
seen in the experimental results in section 5.4, the likelihood of aborting is
very low, namely at most 0.4%.

The first table presents the median and mean values of the total number of
oracle calls required for the different attack variants, see Table 6.1. Addi-
tionally, we also provide a table for each step of the algorithm, see Tables
6.2, 6.3 and 6.5. Finally, one table displays the number of rounds required
of step 2b when different optimizations are used, see Table 6.4.

We point out that for the TTT, TFT and FFT oracles, the improvements
reduce the median of the total attack complexity by up to a factor of 10,
see Table 6.1. Hereby, we are able to optimize the attack more for smaller
keylengths. For the BVO, we obtain an improvement of up to a factor of 3
when applying all optimizations.
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6. Improvements Overview
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Chapter 7

Conclusion

In this thesis, we gave a detailed description of Bleichenbacher’s attack with
the goal to provide intuition behind its mechanism and why it succeeds.
Following this, we explored the effects that different keylengths and ora-
cle types have on the attack complexity by providing a theoretical analysis
and tying it to practical results of large-scale experiments. This was done
to analyze different situations that arise in practice. Hereby, we applied a
larger number of tests than in the existing literature to lower the influence
of statistical fluctuations.

Furthermore, we provided a comprehensive overview of all improvements,
describing their technique and mathematical background precisely. We gave
details relevant for implementing the different optimizations that are absent
from the original papers. Additionally, we devised slight variations of the
described improvements to increase their efficiency. For this, we performed
extensive research into the best parameters for the implementation of the
different optimizations, especially for the Trimmers method. Finally, we
conducted a large number of simulations for the presented improvements
on their own and in combination with each other to analyze their influence
on the Bleichenbacher attack. The results have shown that combining the
optimization methods significantly lowers the median and mean complexity
for all oracle types and keylengths.

Based on rare experiments observed in the large number of simulations, we
then introduced a novel heuristic for improving step 2c. The experimental
results for the optimizations with the heuristic suggest a further improve-
ment in the attack’s mean and median values. We now compare these to the
results of previous publications.

Klı́ma, Pokorný and Rosa [8] presented practical results of the Bad Version
Oracle. They conducted 1 200 experiments for both a keylength of 1024 and
2048 bits. We observe that for a keylength of 1024 bits, our achieved median
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7. Conclusion

and mean values of 11 654 632 and 19 591 262 are slightly better than the
values of 13 331 256 and 20 835 297 they obtained. However, for a modulus
of 2048 bits, we obtained a median of 22 121 516 and a mean of 34 508 968,
which is higher compared to their values of 19 908 079 and 28 728 801. We
note that the randomness of the experiments heavily influences the results
since they only performed 1 200 simulations. We conducted 10 000 simula-
tions, which may still not be enough to obtain a reasonable estimate of the
mean value. Additionally, for a keylength of 2048 bits, our implementation
without the heuristic has a significantly lower median value compared to the
results with the heuristic, also showcasing the influence of the small number
of experiments on the median values for the BVO.

Bardou et al. [2] performed 1 000 experiments with a keylength of 1024
bits for the TTT, TFT, FFT and FFF oracles. For the TTT oracle, our final
implementation with a median of 3 192 and a mean of 9 228 brings an im-
provement to their median of 3 768 and mean of 9 374. The same holds for
the TFT oracle, where we obtain a median of 3 590 and a mean of 10 232
compared to their median of 4 014 and mean of 10 295. On the other hand,
for the FFT oracle, our median and mean values of 15 933 and 50 827 are
slightly higher than their values of 14 501 and 49 001. Finally, for the BVO,
our median of 11 654 632 is lower than the median of 12 525 835 from their
experiments. However, we obtained a higher mean value of 19 591 262 com-
pared to a mean of 18 040 221 obtained by Bardou et al. We note that they
experimented with an FFF oracle whose complexity is slightly lower com-
pared to the BVO because we do not check the version numbers with an
FFF oracle. Additionally, we can observe that our mean values are only
close to values achieved by Bardou et al. after applying our new heuristic
for step 2c. This suggests that because of their significantly lower number of
simulations, they did not run into the very bad cases and hence their mean
was already lower. Overall, our median values suggest an improvement to
their algorithm for the TTT oracle, TFT oracle and BVO. However, because
of the randomness and their small number of conducted experiments, this
may not actually be the case. Furthermore, our implementation aborts for
a small fraction of messages. However, this probability in practice was at
most 0.4% and one can see that even without the heuristic, we obtained
lower mean values than Bardou et al. for the TTT oracle, TFT oracle and
BVO.

We can conclude that we confirmed the experimental results of [2, 8] and
possibly improved some of the presented optimization techniques.

Finally, the thesis also showcased that the attack is still relevant over twenty
years later. New Bleichenbacher-like attacks have appeared in practice re-
cently and will probably also in the future. So, we point out the importance
of implementing the decryption process of a message carefully without leak-
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ing any side-channel information. Furthermore, a solution to the attack
would be to switch away from PKCS #1 v1.5 to a better encoding scheme,
e.g., RSA-OAEP [11], which is provably IND-CCA secure [7]. However, also
for the RSA-OAEP encryption scheme, it is essential to implement it care-
fully as otherwise, the padding scheme is vulnerable to Manger’s attack [9].
Lastly, one should consider using a key exchange method different from
RSA to thwart the Bleichenbacher attack. This is already done in TLS 1.3
[13], where RSA is not an option anymore and one has to use the Diffie-
Hellman key exchange protocol.
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Appendix A

Appendix

A.1 Implementation of the Bleichenbacher attack

import os
import math
import time
import numpy as np
import mult iprocess ing as mp
from aes random import AES Random
import pandas as pd

# h i s t o g r a m s f o r t h i s expe r iment , w i l l c o n t a i n t h e r e s u l t s f o r a l l
s i m u l a t i o n s

h i s t = [ ] # t o t a l o r a c l e c a l l s
h i s t a = [ ] # o r a c l e c a l l s f o r s t e p 2 . a
h i s t b = [ ] # o r a c l e c a l l s f o r s t e p 2 . b
h i s t c = [ ] # o r a c l e c a l l s f o r s t e p 2 . c

his t roundsb = [ ] #number o f rounds o f 2b r e q u i r e d
h i s t i n t e r v a l s 2 b = [ ] #how many i n t e r v a l s t h e r e were b e f o r e e a c h

round o f 2b

his t utmin = [ ] # ( u , t ) p a i r used f o r tr imming l o w e r bound on
message

hist utmax = [ ] # ( u , t ) p a i r used f o r tr imming upper bound on
message

h i s t t = [ ] # o r a c l e c a l l s r e q u i r e d f o r t r immers
h i s t t r i m v a l u e = [ ] #how much l a r g e r i n i t i a l i n t e r v a l was compared

t o trimmed i n t e r v a l

index = [ ] # t o k e e p t r a c k which i n d e x r e t u r n e d which r e s u l t

# k e y l e n g t h , k and B f o r t h e s e s i m u l a t i o n s
keylength = 0
k = 0
B = 0
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A. Appendix

#RSA k e y s
n = 0
e = 0
d = 0

#Random number g e n e r a t o r
aes random = AES Random ( ( 0 ) . t o b y t e s ( 1 6 , ’ big ’ ) )

# Bounds on t h e message
a = 0 # l o w e r bound on t h e message
b = 0 # upper bound on t h e message

# S p e c i f y which o r a c l e i s used , i n i t i a l l y a l l a r e s e t t o f a l s e and we
s e t t h e c o r r e s p o n d i n g one t o True when i n i t i a l i z i n g

# e v e r y o r a c l e c h e c k s t h a t t h e f i r s t two b y t e s a r e 0x00 and 0x02
check eight nonzero = Fa l se # i f True o r a c l e a l s o c h e c k s whe the r

b y t e s 3−10 a r e nonzero
check one zero = Fa l se # i f True o r a c l e a l s o c h e c k s whe the r t h e r e

e x i s t s one z e r o b y t e in b y t e s 11−k ( used in c o m b i n a t i o n with
c h e c k e i g h t n o n z e r o )

BVO = False # i f True bad v e r s i o n o r a c l e f o r SSL / TLS messanges ,
c h e c k s whe the r p l a i n t e x t i s S−PKCS con fo rming and t h e v e r s i o n
number i s wrong ( used on i t s own with c h e c k e i g h t n o n z e r o and
c h e c k o n e z e r o = F a l s e )

v major = 3 # major v e r s i o n number f o r SSL / TLS s e s s i o n
v minor = 3 # minor v e r s i o n number f o r SSL / TLS s e s s i o n

# Improvements

# Improvements f o r S t ep 2 . a ( and 2 . b )

# S k i p p i n g Hol e s
sk ipping holes = Fa l se # s k i p a l l h o l e s we can i d e n t i f y us ing t h e

bounds on t h e message f o r s t e p 2 a and 2b , a l s o s t a r t a t an
improved v a l u e o f c e i l ( ( n+2B ) / ( b ) ) f o r 2 a and += c e i l ( n / bmax ) −
1 f o r 2b

# Trimmers
trimmers = Fa l se # use t r immers t o improve t h e p e r f o r m a n c e o f t h e

a t t a c k
tr immer values = 0 #how many d i f f e r e n t o r a c l e c a l l s we a l l o w f o r

g e n e r a t i n g and t e s t i n g tr immer d e n o m i n a t o r s
t s l a c k = 0 # s l a c k used when t e s t i n g / g e n e r a t i n g tr immer

d e n o m i n a t o r s
b s s l a c k = 0 # s l a c k used in b i n a r y s e a r c h f o r tr immer numera tor s

# Improvements f o r S t ep 2 . b

# P a r a l l e l Threads
d o p a r a l l e l t h r e a d s = Fa l se
p t m a x i n t e r v a l s = 0 #maximum number o f i n t e r v a l s such t h a t we

p e r f o r m p a r a l l e l t h r e a d s , o t h e r w i s e do normal 2b
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A.1. Implementation of the Bleichenbacher attack

# Improvements f o r S t ep 2 . c

# H e u r i s t i c f o r S t ep 2 . c
improve 2c = Fa l se
e x p t r i e s = 0 #how many t r i e s we e x p e c t t o need f o r f i n d i n g t h e

nex t s i v a l u e in s t e p 2 c
c u t o f f 2 c = 0 # a f t e r how many t r i e s t o s t e p 2 c we a b o r t

def c e i l ( a1 , b1 ) : # f u n c t i o n f o r computing c e i l ( a1 / b1 )
return ( a1 // b1 ) + ( a1 % b1 > 0)

def gen message ( k ) : # g e n e r a t e random message f o r k e y l e n g t h o f k
b y t e s

i f BVO:
msize = 48 # where t h e f i r s t two b y t e s c o n t a i n t h e major and

minor v e r s i o n number
message = bytearray ( [ v major , v minor ] )
message . extend ( aes random . random bytes ( 4 6 ) ) # e x t e n d major

and minor v e r s i o n numbers with 46 random b y t e s
return ( message , msize )

e lse :
msize = aes random . randint ( k−11) # message s i z e in b y t e s ,

can be a t most k −11
return ( aes random . random bytes ( msize ) , msize ) # g e n e r a t e and

r e t u r n random message o f ms iz e b y t e s

def pad message ( message , msize ) : # pad message o f ms iz e b y t e s
a c c o r d i n g t o PKCS#1 v1 . 5 s t a n d a r d

padsize = k − 3 − msize

padding = aes random . random nonzero bytes ( padsize )

EB = b ’\x00\x02 ’ + padding + b ’\x00 ’ + message

return EB

def n e x t s ( curr s , m, step2b , M) :
# St ep 2 . a − S t a r t i n g t h e S e a r c h or S t ep 2 . b − S e a r c h i n g with

more than one i n t e r v a l l e f t
# c u r r s = nex t s v a l u e t o t e s t , s t e p 2 b = F a l s e i f in s t e p 2 . a

and True i f in s t e p 2 . b

c a l l s = 0

s = c u r r s

global a
global b

i f sk ipping holes :
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A. Appendix

i f ( not step2b ) : # improved s t a r t i n g v a l u e i f s k i p p i n g h o l e s
and in s t e p 2 a
s = c e i l ( n+2*B , b )

e lse :
#we a r e in s t e p 2b so we know we can i n c r e a s e t h e

s t a r t i n g v a l u e

# compute i n t e r v a l in which we know t h e message has t o
l i e

amin = b
bmax = a

for ( a1 , b1 ) in M:
i f a1 < amin :

amin = a1
i f b1 > bmax :

bmax = b1

# u pd a t e bounds us ing t h e computed i n t e r v a l
a = amin
b = bmax

# s k i p a l l s v a l u e s we know cannot work ( which a r e c e i l ( n
, m) − 1 >= c e i l ( n , b ) − 1 many )

s += c e i l ( n , b ) − 1

# compute f i r s t i n t e r v a l which can be s k i p p e d
j = 1
low = c e i l (3 * B + j * n , a )
high = c e i l (2 * B + ( j + 1) * n , b ) − 1

while True :
# t e s t and i n c r e m e n t s u n t i l we f i n d a working s v a l u e

i f sk ipping holes and not ( j == −1) : # c h e c k whe the r we can
s k i p c u r r e n t s v a l u e ( i f we have not a l r e a d y s k i p p e d a l l

p o s s i b l e i n t e r v a l s we can i d e n t i f y f o r s k i p p i n g h o l e s )
s , j , low , high = check and skip s ( s , j , low , high )

c a l l s += 1

i f o r a c l e ( s , m) :
return s , c a l l s

s += 1

def n e x t s 2 ( a1 , b1 , curr s , m, sk ip nr ) :
# St ep 2 . c − S e a r c h i n g with one i n t e r v a l l e f t

r = c e i l ( 2 * ( b1 * c u r r s − 2*B ) , n )
c a l l s = 0
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A.1. Implementation of the Bleichenbacher attack

while True :
slow = c e i l ( ( 2 * B + r *n ) , b1 )
shigh = c e i l ( ( 3 * B + r *n ) , a1 )

for s in range ( slow , shigh ) :

i f improve 2c and c a l l s > c u t o f f 2 c : # i f we a r e a p p l y i n g
h e u r i s t i c and c a l l s t o f i n d nex t s i i s v e ry h igh

we a b o r t a s we a r e in a ” ve ry bad ” c a s e t h a t canno t
be s a v e d
return Exception

e l i f improve 2c and sk ip nr > 0 : # s k i p t e s t i n g some s i
v a l u e s i f we a r e a p p l y i n g h e u r i s t i c and have
i d e n t i f i e d a s k i p n r ( and t h e r e a r e s t i l l v a l u e s we
s h o u l d s k i p )
sk ip nr −= 1

e lse :
c a l l s += 1
i f o r a c l e ( s , m) :

return s , c a l l s

r += 1

def o n e s t e p n e x t s 2 ( a1 , b1 , r , curr s , m, c a l l s ) :
# v e r s i o n o f s t e p 2 . c which a lways on ly d o e s one s t e p and r e t u r n s

whe the r t h i s s t e p has be en s u c c e s s f u l o r not f o r t h e
P a r a l l e l Threads Method

# r = c u r r e n t r va lue , c u r r s = c u r r e n t s v a l u e t o t e s t

c a l l s += 1

# compute h i g h e s t s v a l u e f o r t h i s r
shigh = c e i l ( ( 3 * B + r *n ) , a1 ) − 1

while c u r r s > shigh : # i f c u r r s i s h i g h e r than s h i g h we k e e p
i n c r e a s i n g r u n t i l we f i n d a c u r r s which we can t e s t
r += 1
c u r r s = c e i l ( ( 2 * B + r *n ) , b1 )
shigh = c e i l ( ( 3 * B + r * n ) , a1 ) − 1

i f o r a c l e ( curr s , m) :
return True , curr s , r , c a l l s # i f c u r r s works we r e t u r n

t h i s s v a l u e and r e t u r n True ( now , we can up da t e a l l
i n t e r v a l s in t h e p a r a l l e l t h r e a d s method )

e lse :
# i f c u r r s d o e s not work we r e t u r n F a l s e , t h e c u r r e n t r

v a l u e as w e l l a s t h e nex t s v a l u e t o t e s t which i s
c u r r s + 1

c u r r s +=1
return False , curr s , r , c a l l s

def p a r a l l e l t h r e a d s (M, message , s , i n t e r v a l s 2 b ) :
# p e r f o r m p a r a l l e l t h r e a d s improvement
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c a l l s = 0
rounds b = 0 # c o u n t s how many s v a l u e s have t o be found t o be

done with 2b / u n t i l we have on ly one i n t e r v a l l e f t and can
c o n t i n u e with s t e p 2 c

s t a t e = g e n s t a t e (M, s )

while True : #we c o n t i n u e s e a r c h i n g in a round − r o b i n f a s h i o n
u n t i l we f i n d an s v a l u e a c c e p t e d by t h e o r a c l e / we have
on ly one i n t e r v a l l e f t

for i in range ( len (M) ) :
# do one s t e p f o r t h e c u r r e n t i n t e r v a l
success , curr s , r , c a l l s = o n e s t e p n e x t s 2 (M[ i ] [ 0 ] , M[

i ] [ 1 ] , s t a t e [ i ] [ 0 ] , s t a t e [ i ] [ 1 ] , message , c a l l s )

i f success :
# u pd a t e a l l i n t e r v a l s i f we found an s v a l u e ( and

e l i m i n a t e empty ones )
M = u p d a t e i n t e r v a l s (M, c u r r s )
rounds b += 1

i f len (M) == 1 : # i f we on ly have one i n t e r v a l l e f t
we can c o n t i n u e with s t e p 2 c
return c a l l s , curr s , M, rounds b , i n t e r v a l s 2 b

e lse : # i f we have more than one i n t e r v a l l e f t a f t e r
t h e up da t e we up da t e t h e s t a t e s and s t a r t wi th
t h e p a r a l l e l t h r e a d s method f o r t h e new
i n t e r v a l s
i n t e r v a l s 2 b . append ( len (M) )
s t a t e = g e n s t a t e (M, c u r r s )
break

else : # u pd a t e on ly t h e s t a t e o f t h i s i n t e r v a l i f we have
not found a working s v a l u e

s t a t e [ i ] = ( r , c u r r s )

def g e n s t a t e (M, s ) :
# g e n e r a t e s t a t e f o r e a c h i n t e r v a l in M t o p e r f o r m p a r a l l e l

t h r e a d s method
# t h e s t a t e a r e t h e c u r r e n t r and s v a l u e s , we k e e p them t o be

a b l e t o a lways on ly do one s t e p o f s t e p 2 c f o r a s i n g l e
i n t e r v a l and then p r o c e e d with t h e nex t i n t e r v a l

s t a t e = [ ]

for i in range ( len (M) ) :
( a1 , b1 ) = M[ i ]
r = c e i l (2 * ( b1 * s − 2 * B ) , n )
slow = c e i l ( ( 2 * B + r * n ) , b1 )
s t a t e . append ( ( r , slow ) )

return s t a t e
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def o r a c l e ( s , m) :
# o r a c l e which r e t u r n s whe the r m* s mod n i s con fo rming ( a c c o r d i n g

t o t h e d i f f e r e n t o r a c l e s / more or l e s s r e s t r i c t i v e t e s t s )

r = (m* s ) % n
i n i n t e r v a l = ( 2 * B <= r ) and ( r < 3*B ) # c h e c k s whe the r f i r s t

b y t e i s 0x00 and s e c o n d b y t e i s 0x02

i f not i n i n t e r v a l : # r e t u r n F a l s e i f f i r s t t e s t f a i l s ( made by
a l l o r a c l e s ) , make i t f a s t e r f o r s i m u l a t i o n ( in p r a c t i c e not
a good i d e a t o i m m e d i a t e l y r e t u r n F a l s e i f t h i s t e s t f a i l s )

return Fa lse

EB = i n t . t o b y t e s ( r , k , ’ big ’ ) # t r a n s f o r m r i n t o a b y t e s o b j e c t ,
n o t e : i n d e x i n g in python s t a r t s wi th 0 but we s t a r t

c o u n t i n g b y t e s f o r EB with i n d e x 1

i f check eight nonzero : # o r a c l e c h e c k s t h a t EB1 = 0x00 , EB2 = 0
x02 and EB3 − EB10 a r e nonzero

eight nonzero = a l l ( ( x != 0) for x in EB [ 2 : 1 0 ] )

i f not eight nonzero : # i f d o e s not p a s s t h e c h e c k we r e t u r n
F a l s e
return Fa lse

i f check one zero : # o r a c l e a l s o c h e c k s t h a t a t l e a s t one
b y t e from EB11 t o EBk i s 0x00

one zero = any ( ( x == 0) for x in EB [ 1 0 : ] )
return one zero

return True

e l i f BVO: #Bad V e r s i o n O r a c l e f o r SSL / TLS s e s s i o n s
# in a d d i t i o n t o t e s t i n g t h a t EB1 = 0x00 and EB2 = 0x02 a l s o

t e s t s t h a t EB3 t o EB ( k −49) a r e nonzero , EB ( k −48) = 0 , EB
( k −47) = major and EB ( k −46) = minor

# f i r s t c h e c k z e r o b y t e and i f not z e r o d i r e c t l y r e t u r n F a l s e
( t o make s i m u l a t i o n s f a s t e r )

zero = EB [ k − 49] == 0
i f not zero :

return Fa lse

# nex t c h e c k t h a t t h e r e i s some wrong v e r s i o n number and i f
no t d i r e c t l y r e t u r n F a l s e ( aga in , t o make s i m u l a t i o n s
f a s t e r )

wrong vnumbers = EB [ k − 48] != v major or EB [ k − 47] !=
v minor

i f not wrong vnumbers :
return Fa lse
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# l a s t l y , c h e c k t h a t EB3 t o EB ( k −49) a r e nonzero
nonzeros = a l l ( ( x != 0) for x in EB [ 2 : ( k−49) ] )

return nonzeros

return i n i n t e r v a l # o r a c l e t h a t on ly c h e c k s t h a t EB1 = 00 and
EB2 = 02

def check over laps (newM, low , high ) :
# c h e c k t h a t t h e new i n t e r v a l [ low , h igh ] d o e s not o v e r l a p with

any p r i o r i n t e r v a l , i f y e s we union them i n t o one i n t e r v a l

for i in range ( len (newM) ) :

( a1 , b1 ) = newM[ i ]

i f ( a1 <= high ) and ( b1 >= low ) :
newa = min ( a1 , low )
newb = max ( b1 , high )

newM[ i ] = ( newa , newb)

return newM

newM. append ( ( low , high ) )

return newM

def u p d a t e i n t e r v a l s (M, s ) :
# u pd a t e t h e i n t e r v a l ( s ) in M us ing t h e found s v a l u e a c c o r d i n g

t o S t ep 3

newM = [ ]
for ( a1 , b1 ) in M:

rlow = c e i l ( ( a1 * s − 3*B + 1) , n )
rhigh = ( b1 * s − 2*B ) //n + 1

for r in range ( rlow , rhigh ) :
i n t e r v a l l o w = max ( a1 , c e i l ( ( 2 * B+r *n ) , s ) )
i n t e r v a l h i g h = min ( b1 , ( 3 * B−1+r *n ) //s )

newM = check over laps (newM, in terva l low , i n t e r v a l h i g h )

return newM

def gen and tes t t r immers ( message ) :
# g e n e r a t i n g working d e n o m i n a t o r s t

tr ims den = [ ] # a r r a y c o n t a i n i n g a l l work ing d e n o m i n a t o r s
maxt = c e i l ( 2 * n , 9 * B ) #maximum v a l u e o f t u n t i l which we t e s t
count = 0

#we t e s t u in range t − t s l a c k − 1 t o t + t s l a c k + 1

134



A.1. Implementation of the Bleichenbacher attack

# t s l a c k s p e c i f i e d f o r d i f f e r e n t o r a c l e t y p e s and k e y l e n g t h s t o
have good p e r f o r m a n c e

s l a c k = t s l a c k + 1

for t in range ( 3 , maxt ) :

t i n v = pow( t , −1 , n )

umin = (2 * t ) // 3 + 1 # s m a l l e s t u v a l u e which can work f o r
t h i s t

umax = c e i l (3 * t , 2 ) − 1 # l a r g e s t u v a l u e which can work
f o r t h i s t

for s in range ( 1 , s l a c k +1) :
# t e s t t −1 , t +1 , . . . , t − s l a c k , t + s l a c k
# as soon as one working u v a l u e i s found we append t t o

t h e denomina to r a r r a y and d i r e c t l y c o n t i n u e with
nex t t

# s t o p and r e t u r n found d e n o m i n a t o r s t a s soon as we have
r e a c h e d t h e a l l o w e d number o f o r a c l e c a l l s t o

s e a r c h f o r tr immer d e n o m i n a t o r s ( t r i m m e r v a l u e s )

i f t −s < umin and t +s > umax : # i f we a r e a l r e a d y be low
umin and a b o v e umax we know t h i s t canno t work
break

i f count >= trimmer values : # i f we have a l r e a d y t e s t e d
t r i m m e r v a l u e s many tr immers with t h e o r a c l e we a r e
not a l l o w e d t o t e s t any more t r immers and r e t u r n t h e

found d e n o m i n a t o r s in t r i m s d e n
return trims den , count

i f t −s >= umin and math . gcd ( t −s , t ) == 1 : # on ly t e s t u =
t −s i f i t i s l a r g e r than umin and t h e gcd o f u and

t i s 1
count += 1

i f o r a c l e ( ( ( t − s ) * t i n v ) % n , message ) : # i f u = t
−s works we know t i s a v a l i d denomina to r
tr ims den . append ( t )
break

i f count >= trimmer values :
return trims den , count

i f t +s <= umax and math . gcd ( t +s , t ) == 1 : # on ly t e s t u =
t +s i f i t i s s m a l l e r than umax and t h e gcd o f u and
t i s 1

count += 1

i f o r a c l e ( ( ( t + s ) * t i n v ) % n , message ) : # i f u = t
+s works we know t i s a v a l i d denomina to r
tr ims den . append ( t )
break
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return trims den , count

def f ind low high ( t , message ) :
# t = lcm o f a l l work ing trimming d e n o m i n a t o r s found
#want t o f i n d b e s t p o s s i b l e tr imming p a i r s ( u l , t ) and ( u h , t )

t o t r im t h e l o w e r r e s p e c t i v e l y upper bound on t h e message

c a l l s = 0

t i n v = pow( t , −1 , n )

low = ( 2 * t ) //3 + 1 # l o w e s t p o s s i b l e u v a l u e we have t o t e s t f o r
f i n d i n g u l ( a l o w e r v a l u e canno t work )

high = c e i l ( 3 * t , 2 ) −1 # h i g h e s t p o s s i b l e u v a l u e we have t o t e s t
f o r f i n d i n g u h ( a h i g h e r v a l u e canno t work )

# f i n d u l by p e r f o r m i n g b i n a r y s e a r c h in [ low , t ] , want u l a s
s m a l l a s p o s s i b l e

#want u / t >= 1 t o t r im i n t e r v a l , s o upper bound on u l i s t
u l , c a l l s = bin search tr immers ( low , t , t inv , message , True ,

c a l l s )

# f i n d u h by p e r f o r m i n g b i n a r y s e a r c h in [ t , h igh ] , want u h as
l a r g e as p o s s i b l e

#want u / t <= 1 t o t r im i n t e r v a l , s o l o w e r bound i s t
u h , c a l l s = bin search tr immers ( t , high , t inv , message , False ,

c a l l s )

return ( u l , t ) , ( u h , t ) , c a l l s

def bin search tr immers ( low , high , t inv , message , findmin , c a l l s ) :
# p e r f o r m b i n a r y s e a r c h f o r t h e b e s t tr immer p a i r s f o r t h e t in

t h e i n t e r v a l [ low , h igh ]
# t i n v = i n v e r s e o f t h e lcm
# f indmin = True i f we want t o f i n d t h e u l and F a l s e i f we want

t o f i n d u h

i f low >= high :
i f findmin : #we know t h a t our h igh bound a lways works i f we

want t o f i n d t h e minimum u l
return high , c a l l s

e lse : #we know t h a t our low bound a lways works i f we want t o
f i n d t h e maximum u h

return low , c a l l s
e lse :

# i f t h e r e a r e a t l e a s t two v a l u e s l e f t we l o o k a t midd l e
v a l u e mid and t e s t whe the r t h e tr immer p a i r ( mid , t )
works

i f findmin :
mid = ( low + high ) //2

e lse :
mid = c e i l ( low + high , 2 )
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c a l l s += 1

i f o r a c l e ( ( mid * t i n v ) % n , message ) :
# i f t r immer p a i r ( mid , t ) works we can up da t e t h e bounds

, f o r u l we can up da t e t h e h igh bound ( as we want
t o f i n d t h e minimum ) and f o r u h t h e l o w e r bound ( as
we want t o maximize u h )

i f findmin :
return bin search tr immers ( low , mid , t inv , message ,

findmin , c a l l s )
e lse :

return bin search tr immers ( mid , high , t inv , message
, findmin , c a l l s )

e lse :
# i f t h e tr immer p a i r ( mid , t ) d o e s not work we c o u l d

have a f a l s e n e g a t i v e ( depend ing on t h e o r a c l e t y p e )
and we do not want t o p r o c e e s wi th t h e wrong

i n t e r v a l ( and h e n c e throw away a good tr immer )
# f o r u l we want t o f i n d t h e s m a l l e s t work ing u va lue ,

h e n c e i f mid d o e s not work ( t o make t h e f a l s e
n e g a t i v e p r o b a b i l i t y s m a l l e r ) we t r y v a l u e s mid − 1 ,

. . . , mid − b s s l a c k
# f o r u h we want t o f i n d t h e l a r g e s t working u va lue ,

h e n c e i f mid d o e s not work ( t o make t h e f a l s e
n e g a t i v e p r o b a b i l i t y s m a l l e r ) we t r y v a l u e s mid + 1 ,

. . . , mid + b s s l a c k
# b s s l a c k i s s e t d i f f e r e n t l y f o r t h e d i f f e r e n t o r a c l e

t y p e s and k e y l e n g t h s t o o b t a i n t h e b e s t p e r f o r m a n c e
( in t e rms o f r e q u i r e d o r a c l e c a l l s )

i f findmin :
# i f mid d o e s not work we l o o k a t v a l u e s mid −1 , mid

−2 , . . . mid− b s s l a c k

for s in range ( 1 , b s s l a c k +1) :

i f mid − s >= low :
# i f t h e u v a l u e i s a b o v e t h e l o w e r bound we

t e s t i t
c a l l s += 1
i f o r a c l e ( ( ( mid−s ) * t i n v ) % n , message ) : #

as soon as we have found a working v a l u e
we r e t u r n t h e upda t ed i n t e r v a l and

c o n t i n u e s e a r c h i n g t h e r e
return bin search tr immers ( low , mid − s ,

t inv , message , findmin , c a l l s )
e lse :

# i f we have t e s t e d a l l v a l u e s u n t i l t h e
l o w e r bound we know t h a t a l l o f them do
not work and p r o c e e d t o s e a r c h in t h e
upper i n t e r v a l
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return bin search tr immers ( mid + 1 , high ,
t inv , message , findmin , c a l l s )

# i f we have not found a working tr immer l o o k in
upper i n t e r v a l

return bin search tr immers ( mid + 1 , high , t inv ,
message , findmin , c a l l s )

e lse :
# i f mid d o e s not work we l o o k a t v a l u e s mid +1 , mid

+2 , . . . mid+ b s s l a c k

for s in range ( 1 , b s s l a c k + 1) :

i f mid + s <= high :
# i f t h e u v a l u e i s be l ow t h e upper bound we

t e s t i t
c a l l s +=1
i f o r a c l e ( ( ( mid + s ) * t i n v ) % n , message ) :

#we have found a working u va lue , s o
up da t e t h e i n t e r v a l and c o n t i n u e
s e a r c h i n g t h e r e
return bin search tr immers ( mid + s , high

, t inv , message , findmin , c a l l s )
e lse :

# i f we have t e s t e d a l l v a l u e s be low t h e
upper bound we p r o c e e d t o s e a r c h in t h e
l o w e r i n t e r v a l

return bin search tr immers ( low , mid−1 , t inv
, message , findmin , c a l l s )

# i f none o f t h e t e s t e d u v a l u e s worked we c o n t i n u e
s e a r c h i n g in t h e l o w e r i n t e r v a l

return bin search tr immers ( low , mid − 1 , t inv ,
message , findmin , c a l l s )

def check and skip s ( s , j , low , high ) :
# c h e c k i n g whe the r we know t h a t we can s k i p t h e c u r r e n t s v a l u e

and i f s o we s k i p a l l o f t h e one s we know cannot work
a c c o r d i n g t o t h e S k i p p i n g Hol e s t e c h n i q u e

# j = c u r r e n t index , low = nex t l o w e r bound on s v a l u e s we know
we can s k i p , h igh = nex t upper bound on s v a l u e s which can
be s k i p p e d

while True :
i f s >= low and s <= high : # i f s l i e s in t h e nex t i n t e r v a l

we can s k i p , we jump t o t h e f i r s t v a l u e a b o v e t h i s
i n t e r v a l
s = high + 1

e l i f low > high : # i f t h e i n t e r v a l i s empty we know t h a t we
canno t i d e n t i f y any more i n t e r v a l s t o s k i p , s o we r e t u r n

an i n d e x j o f −1
return s , −1 , 0 , 0

e l i f s < low :
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return s , j , low , high # i f s i s be low t h e l o w e r bound we
know t h a t we cannot s k i p and r e t u r n t h e same s

va lue , i n d e x j , low and h igh bound

j += 1
low = c e i l (3 * B + j * n , a )
high = c e i l (2 * B + ( j + 1) * n , b ) − 1

def ble ichenbacher p ( i , rn key , r sa keys ) :
# p a r a l l e l v e r s i o n o f b l e i c h e n b a c h e r s a l g o r i t h m which g e n e r a t e s

message ( r e p r o d u c i b l e ) and u s e s s p e c i f i e d r s a key from
p r e g e n e r a t e d k e y f i l e

# t r y c a t c h b l o c k b e c a u s e o f h e u r i s t i c ( when a b o r t i n g we r e t u r n
an e x c e p t i o n which t e l l s t h e p r o c e s s o r t o not append
a n y t h i n g t o t h e s o l u t i o n a r r a y s but c o n t i n u e with nex t
s i m u l a t i o n )

t r y :

#GENERATE MESSAGE

# i n i t i a l i z e random number g e n e r a t o r f o r t h i s s i m u l a t i o n o f
t h e e x p e r i m e n t

global aes random
aes random = AES Random ( rn key )

# e x t r a c t k e y s from i n p u t r s a k e y s
global n , e , d
n , e , d = i n t ( r sa keys [ 0 ] ) , i n t ( r sa keys [ 1 ] ) , i n t ( r sa keys

[ 2 ] )

# g e n e r a t e a message f o r a k e y l e n g t h o f k b y t e s , message i s a
b y t e s o b j e c t wi th ms ize b y t e s

( message , msize ) = gen message ( k )

# pad t h e message a c c o r d i n g t o t h e PKCS#1 v1 . 5 s t a n d a r d
EB = pad message ( message , msize )

# c o n v e r t t h e message t o an i n t e g e r f o r p r o c e s s i n g in t h e
d e c r y p t i o n a l g o r i t h m

message = i n t . f rom bytes ( EB , ’ big ’ )

# c i p h e r t e x t = pow ( message , e , n ) # e n c r y p t i o n not n e c e s s a r y
as we w i l l t a k e a s h o r t c u t in t h e o r a c l e t o improve
p e r f o r m a n c e

# i n i t i a l i z e o r a c l e c a l l s f o r t h e d i f f e r e n t p a r t s ( c a l l s
ne eded f o r s t e p 2a , 2b and 2 c )

o r a c l e c a l l s a = 0
o r a c l e c a l l s b = 0
o r a c l e c a l l s c = 0

# i n i t i a l i z e how many rounds o f 2b were needed , how many
i n t e r v a l s t h e r e were b e f o r e a round o f 2b ( i f a round o f
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2b had t o be made )
rounds b = 0
i n t e r v a l s 2 b = [ ]

# i n i t i a l i z e number o f o r a c l e c a l l s r e q u i r e d f o r f i n d i n g and
d e t e r m i n i n g t h e b e s t t r immers

o r a c l e c a l l s t = 0

#START ATTACK

global a , b
a = 2*B # l o w e r bound on t h e message ( t h a t t h e a t t a c k e r knows

)
b = 3*B−1 # upper bound on t h e message ( t h a t t h e a t t a c k e r

knows )

low = ( 1 , 1 ) # i n i t i a l i z e tr immer p a i r t o t r im l o w e r bound ( u
, t ) , want t o maximize t / u

high = ( 1 , 1 ) # i n i t i a l i z e tr immer p a i r t o t r im upper bound (
u , t ) , want t o minimize t / u

# p e r f o r m tr immer improvement
i f trimmers :

# g e n e r a t e v a l i d tr immer d e n o m i n a t o r s t ( in a r r a y
t r i m s d e n )

trims den , c a l l s = gen and tes t t r immers ( message )
o r a c l e c a l l s t += c a l l s

# i f we have found a t l e a s t one v a l i d denomina to r we
compute t h e lcm o f a l l f ound d e n o m i n a t o r s and s e a r c h

f o r t h e b e s t u l and u h f o r t h i s lcm
i f ( len ( tr ims den ) != 0) :

lcm = i n t ( np . lcm . reduce ( tr ims den ) )
low , high , c a l l s = f ind low high ( lcm , message )
o r a c l e c a l l s t += c a l l s
a = ( 2 * B* low [ 1 ] ) //low [ 0 ] # t r im t h e l o w e r bound with

t h e b e s t found trimming p a i r ( u l , lcm )
b = ( 3 * B − 1) * high [1]// high [ 0 ] + 1 # t r im t h e l o w e r

bound with t h e b e s t found trimming p a i r ( u h ,
lcm )

# i n i t i a l i z e M
M = [ ( a , b ) ]

#How much l a r g e r t h e i n i t i a l i n t e r v a l was compared t o t h e
one o b t a i n e d by trimming t h e i n t e r v a l

t r im value = ( B−1) /(b−a +1)

# St ep 1 on ly n eed ed f o r s i g n a t u r e s , our c i p h e r t e x t i s
a l r e a d y PKCS con fo rming so we s k i p t h i s s t e p

# St ep 2

140



A.1. Implementation of the Bleichenbacher attack

# St ep 2 . a
s , c a l l s = n e x t s ( c e i l ( n , ( 3 * B ) ) , message , False , M)
o r a c l e c a l l s a += c a l l s

M = u p d a t e i n t e r v a l s (M, s )

# i n i t i a l i z e v a r i a b e s used f o r h e u r i s t i c f o r s t e p 2 c
sk ip nr = 0 # i n i t i a l i z e how many v a l u e s in s t e p 2 c we w i l l

s k i p ( which we would o t h e r w i s e t e s t wi th t h e o r a c l e )
c a l l s 2 c 1 = 0
count 2c = Fa l se

while True :
# St ep 2 . b
i f len (M) > 1 :

i n t e r v a l s 2 b . append ( len (M) ) # s a v e t h e number o f
i n t e r v a l s t h a t were p r e s e n t b e f o r e p e r f o r m i n g a
round o f s t e p 2b

# p e r f o r m p a r a l l e l t h r e a d s on t h e i n t e r v a l s i f we do
not have more t h a t p t m a x i n t e r v a l s i n t e r v a l s

i f d o p a r a l l e l t h r e a d s and len (M) <=
p t m a x i n t e r v a l s :
o r a c l e c a l l s b , s , M, rounds b , i n t e r v a l s 2 b =

p a r a l l e l t h r e a d s (M, message , s , i n t e r v a l s 2 b )
continue

# count how many t i m e s we had t o p e r f o r m a round o f 2
b

rounds b += 1

s , c a l l s = n e x t s ( s +1 , message , True , M)
o r a c l e c a l l s b += c a l l s

# St ep 2 . c
e l i f len (M) == 1 :

( a1 , b1 ) = M[ 0 ]

# St ep 4
i f a1 == b1 : # i f t h e i n t e r v a l on ly c o n t a i n s one

number we a r e done and have found t h e d e s i r e d
message
a s s e r t a1 == message
return i , o r a c l e c a l l s a , o r a c l e c a l l s b ,

o r a c l e c a l l s c , o r a c l e c a l l s t , rounds b ,
tr im value , i n t e r v a l s 2 b , low , high

s , c a l l s = n e x t s 2 ( a1 , b1 , s , message , sk ip nr )
o r a c l e c a l l s c += c a l l s

i f improve 2c :
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i f c a l l s > 5* e x p t r i e s and not count 2c : #we a r e
not a l r e a d y c o u n t i n g c a l l s t o s e e s t r u c t u r e
and found a c a s e where we have t o o many

c a l l s , s o we s t a r t ” p a t t e r n r e c o g n i t i o n ”
count 2c = True

e l i f count 2c and c a l l s 2 c 1 == 0 : #we s a v e t h e
v a l u e o f t h e f i r s t c a l l t o 2 c ( i f we a r e
c o u n t i n g c a l l s )
c a l l s 2 c 1 = c a l l s

e l i f count 2c and c a l l s 2 c 1 != 0 :
#we s e t t h e nr t o s k i p t h e p r e v i o u s s k i p

number + t o t h e minimum o b s e r v e d v a l u e (
out o f two ) − t h e e x p e c t e d number o f
c a l l s t o 2 c

#we add t o t h e s k i p number i f we , f o r some
r e a s o n u n d e r e s t i m a t e d t h e number o f
c a l l s t o s k i p in t h e f i r s t round

sk ip nr += min ( c a l l s 2 c 1 , c a l l s ) −
e x p t r i e s

sk ip nr = max ( 0 , sk ip nr )
count 2c = Fa l se
c a l l s 2 c 1 = 0

# St ep 3
M = u p d a t e i n t e r v a l s (M, s ) # a f t e r we have found a

working s v a l u e we u pda t e a l l o f t h e i n t e r v a l s

except Exception as e :
i f not improve 2c :

print ( e )
return Exception

def c o l l e c t r e s u l t ( r e s u l t ) :
# f u n c t i o n s c a l l e d whenever one s i m u l a t i o n o f t h e e x p e r i m e n t i s

done , s a v e s a l l t h e r e s u l t s f o r one s i m u l a t i o n in t h e
c o r r e c t a r r a y s

# t h i s f u n c t i o n i s c a l l e d s e q u e n t i a l l y f o r e a c h f i n i s h e d
s i m u l a t i o n , so we have t h e same o r d e r o f t h e r e s u l t s in t h e
d i f f e r e n t a r r a y s

# t r y and c a t c h b l o c k f o r t h e h e u r i s t i c a s we w i l l no t append any
r e s u l t s whenever we a b o r t

t r y :
# e x t r a c t t h e r e s u l t from a s i m u l a t i o n
global h i s t , h i s ta , h is tb , h i s t c , hist roundsb ,

h i s t i n t e r v a l s 2 b , his t utmin , hist utmax , h i s t t ,
h i s t t r i m v a l u e , index

( i , o r a c l e c a l l s a , o r a c l e c a l l s b , o r a c l e c a l l s c ,
o r a c l e c a l l s t , rounds b , tr im value , i n t e r v a l s 2 b ,
utmin , utmax ) = r e s u l t
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# compute t o t a l number o f o r a c l e c a l l s r e q u i r e d f o r t h e
s i m u l a t i o n

o r a c l e c a l l s = o r a c l e c a l l s a + o r a c l e c a l l s b +
o r a c l e c a l l s c + o r a c l e c a l l s t

# append r e s u l t s t o t h e a r r a y s
h i s t . append ( o r a c l e c a l l s )
h i s t a . append ( o r a c l e c a l l s a )
h i s t b . append ( o r a c l e c a l l s b )
his t roundsb . append ( rounds b )
h i s t c . append ( o r a c l e c a l l s c )
h i s t t . append ( o r a c l e c a l l s t )
h i s t t r i m v a l u e . append ( t r im value )
h i s t i n t e r v a l s 2 b . append ( i n t e r v a l s 2 b )
h is t utmin . append ( utmin )
hist utmax . append ( utmax )
index . append ( i )

except Exception :
pass

def i n i t p r o c e s s ( orac le , keylength , SH, T , PT , I2C , T N , P M ,
t s l a c k , b s s l a c k ) :
# i n i t i a l i z e t h e g l o b a l v a r i a b l e s o f t h e p r o c e s s e s f o r one

e x p e r i m e n t ( t h e s e w i l l s t a y t h e same f o r a l l t h e s i m u l a t i o n s
o f one e x p e r i m e n t )

# i n i t i a l i z e k e y l e n g t h , k , B , a and b
global keylength , k , B , a , b
keylength = keylength
k = keylength // 8
B = 2 * * (8 * ( k − 2) )
a = 2 * B # l o w e r bound on message we want t o f i n d
b = 3 * B − 1 # upper bound on message we want t o f i n d

# i n i t i a l i z e o r a c l e . t r immer s l a c k v a l u e s and e x p e c t e d t r i e s f o r
s t e p 2 c ( depend ing on o r a c l e and k e y l e n g t h )

global check eight nonzero , check one zero , BVO, t s l a c k ,
bs s lack , e x p t r i e s , c u t o f f 2 c

i f o r a c l e == ’TTT ’ :
check eight nonzero = Fa l se
check one zero = Fa l se
BVO = False
t s l a c k = t s l a c k
b s s l a c k = b s s l a c k
e x p t r i e s = 2
c u t o f f 2 c = 1000

e l i f o r a c l e == ’TFT ’ :
check eight nonzero = True
check one zero = Fa l se
BVO = False
t s l a c k = t s l a c k
b s s l a c k = b s s l a c k
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e x p t r i e s = 2
c u t o f f 2 c = 1000

e l i f o r a c l e == ’ FFT ’ :
check eight nonzero = True
check one zero = True
BVO = False
i f keylength == 5 1 2 :

t s l a c k = t s l a c k
b s s l a c k = b s s l a c k
e x p t r i e s = 11
c u t o f f 2 c = 5500

e l i f keylength == 1024 :
t s l a c k = t s l a c k
b s s l a c k = b s s l a c k
e x p t r i e s = 5 . 6
c u t o f f 2 c = 2800

e l i f keylength == 2048 :
t s l a c k = t s l a c k
b s s l a c k = b s s l a c k
e x p t r i e s = 3 . 3 4
c u t o f f 2 c = 1670

e l i f o r a c l e == ’BVO ’ :
check eight nonzero = Fa l se
check one zero = Fa l se
BVO = True
t s l a c k = t s l a c k
b s s l a c k = b s s l a c k
i f keylength == 5 1 2 :

e x p t r i e s = 1 . 0 5 *pow( 2 , 9 )
c u t o f f 2 c = 1 0 0 0 * 1 . 0 5 *pow( 2 , 8 )

e l i f keylength == 1024 :
e x p t r i e s = 1 . 3 7 *pow( 2 , 9 )
c u t o f f 2 c = 1 0 0 0 * 1 . 3 7 *pow( 2 , 8 )

e l i f keylength == 2048 :
e x p t r i e s = 2 . 2 8 *pow( 2 , 9 )
c u t o f f 2 c = 1 0 0 0 * 2 . 2 8 *pow( 2 , 9 )

# i n i t i a l i z e improvements and h e u r i s t i c s f o r t h i s
e x p e r i m e n t

global skipping holes , trimmers , d o p a r a l l e l t h r e a d s ,
trimmer values , p t max interva ls , improve 2c

sk ipping holes = SH
trimmers = T
d o p a r a l l e l t h r e a d s = PT
trimmer values = T N
p t m a x i n t e r v a l s = P M
improve 2c = I2C

def b l e i c h e n b a c h e r s i m u l a t i o n s (R , E , orac le , keylength , N, path , SH,
T , PT , I2C , T N , P M , t s l a c k , b s s l a c k ) :

#R = Exper iment Round , E = Exper iment Number , k e y l e n g t h , N =
number o f s i m u l a t i o n s , pa th = where t o s a v e t h e g e n e r a t e d
d a t a
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#SH = S k i p p i n g Holes , T = Trimmers , PT = P a r a l l e l Threads , I2C =
Improve S t ep 2c , T N = number o f tr immers , P M = maximum

number o f i n t e r v a l s t o s t a r t PT method
# t s l a c k = s l a c k v a l u e used f o r g e n e r a t i n g and t e s t i n g tr immers

, b s s l a c k = s l a c k v a l u e used f o r b i n a r y s e a r c h f o r
t r immers

processes = 50 #how many p r o c e s s e s used t o p a r a l l e l i z e
s i m u l a t i o n s

# i n i t i a l i z e a l l t h e h i s t o g r a m s t o be empty when s t a r t i n g an
e x p e r i m e n t

global h i s t , h i s ta , h is tb , h i s t c , hist roundsb , h i s t i n t e r v a l s 2 b
, his t utmin , hist utmax , h i s t t , h i s t t r i m v a l u e , index

h i s t = [ ]
h i s t a = [ ]
h i s t b = [ ]
h i s t c = [ ]
h is t roundsb = [ ]
h i s t i n t e r v a l s 2 b = [ ]
h is t utmin = [ ]
hist utmax = [ ]
h i s t t = [ ]
h i s t t r i m v a l u e = [ ]
index = [ ]

# r e a d k e y s from g e n e r a t e d k e y f i l e
keys path = ’/home/ l c a p o l /Daisen Code/Generated Keys/rsa keys −

keylength %d . csv ’ %keylength
# k e y s p a t h = ’ / Users / L i v i a / Desktop / Daisen Code / G e n e r a t e d Keys /

r s a k e y s − k e y l e n g t h %d . c s v ’ % k e y l e n g t h

# r e a d in t h e p r e g e n e r a t e d k e y s with t h e c o r r e c t k e y l e n g t h
#we use a f i l e o f 1000 p r e g e n e r a t e d k e y s and w i l l use them in a

round − r o b i n f a s h i o n f o r t h e s i m u l a t i o n s
keys = pd . read csv ( keys path )
keys = keys . drop ( keys . columns [ 0 ] , a x i s =1) . to numpy ( )

’ ’ ’
# s t e p through one e x p e r i m e n t ( t o i n s p e c t i t )
i = 20119
r n k e y = (R) . t o b y t e s ( 4 , ’ b i g ’ ) + ( E ) . t o b y t e s ( 4 , ’ b i g ’ ) + ( i ) .

t o b y t e s ( 4 , ’ b i g ’ ) + ( 0 ) . t o b y t e s ( 4 , ’ b i g ’ )
i n i t p r o c e s s ( o r a c l e , k e y l e n g t h , SH, T , PT , A2b , A1S2b , A1R2b ,

I2C , T N , P M , t s l a c k , b s s l a c k )
r e s u l t = b l e i c h e n b a c h e r p ( i , rn key , k e y s [ i % 1 0 0 0 ] )
’ ’ ’

# p a r a l l e l i z e us ing a p o o l o f p r o c e s s e s , i n i t i a l i z e t h e g l o b a l
v a r i a b l e s o f t h e p r o c e s s e s wi th t h e d e s i r e d p a r a m e t e r s (
o r a c l e type , k e y l e n g t h , e t c . )

pool = mp. Pool ( i n i t i a l i z e r = i n i t p r o c e s s , i n i t a r g s =( orac le ,
keylength , SH, T , PT , I2C , T N , P M , t s l a c k , b s s l a c k ) ,
processes=processes )
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# p r i n t s t a r t t ime o f e x p e r i m e n t
t = time . l o c a l t i m e ( )
c u r r e n t t i m e = time . s t r f t i m e ( ”%H:%M:%S” , t )
print ( ” S t a r t i n g Experiment %d : %s ” %(E , c u r r e n t t i m e ) )

#run N s i m u l a t i o n s o f t h e e x p e r i m e n t a s y n c h r o n o u s l y on t h e
s p e c i f i e d number o f p r o c e s s e s and s a v e t h e r e s u l t s f o r e a c h
run in t h e h i s t o g r a m s

for i in range (N) :
# s p e c i f y t h e key f o r t h e random number g e n e r a t o r f o r t h i s

s i m u l a t i o n o f t h e expe r iment , t h i s key i s unique f o r
e a c h s i m u l a t i o n and e x p e r i m e n t such t h a t we a lways
g e n e r a t e d i f f e r e n t random v a l u e s and m e s s a g e s

rn key = (R) . t o b y t e s ( 4 , ’ big ’ ) + ( E ) . t o b y t e s ( 4 , ’ big ’ ) + (
i ) . t o b y t e s ( 4 , ’ big ’ ) + ( 0 ) . t o b y t e s ( 4 , ’ big ’ )

# a p p l y t h e b l e i c h e n b a c h e r f u n c t i o n us ing t h i s random number
g e n e r a t o r key and r s a key

pool . apply async ( ble ichenbacher p , args =[ i , rn key , keys [ i %
1 0 0 0 ] ] , c a l l b a c k = c o l l e c t r e s u l t )

# c l o s e t h e p r o c e s s o r p o o l and wa i t f o r a l l o f them t o f i n i s h
pool . c l o s e ( )
pool . j o i n ( )
# now a l l o f t h e d a t a i s in t h e r e s p e c t i v e h i s t o g r a m s

# c a l c u l a t e m e t a d a t a t o s t o r e in m e t a d a t a f i l e
success prob = len ( h i s t ) / N
mean = np . average ( h i s t )
median = np . median ( h i s t )
mean 2a = np . average ( h i s t a )
median 2a = np . median ( h i s t a )
mean 2b = np . average ( h i s t b )
median 2b = np . median ( h i s t b )
mean 2c = np . average ( h i s t c )
median 2c = np . median ( h i s t c )
mean rb = np . average ( his t roundsb )
median rb = np . median ( his t roundsb )
mean t = np . average ( h i s t t )
median t = np . median ( h i s t t )
mean trimf = np . average ( h i s t t r i m v a l u e )
median trimf = np . median ( h i s t t r i m v a l u e )

# c r e a t e a r r a y c o n t a i n i n g m e t a d a t a and l a b l e s f o r t h e r e s p e c t i v e
m e t a d a t a

metadata = np . array ( [ R , E , N, success prob , mean , median ,
mean 2a , median 2a , mean 2b , median 2b , mean 2c , median 2c ,
mean rb , median rb , mean t , median t , mean trimf ,
median trimf ] )

l a b e l s = [ ’ Experiment Round ’ , ’ Experiment Number ’ , ’Number of
Simulat ions ’ , ’ Success P r o b a b i l i t y ’ , ’Mean Tota l ’ , ’ Median
Tota l ’ , ’Mean 2a ’ , ’ Median 2a ’ , ’Mean 2b ’ , ’ Median 2b ’ , ’Mean

2 c ’ , ’ Median 2 c ’ , ’Mean Rounds 2b ’ , ’ Median Rounds 2b ’ , ’
Mean Trimmers ’ , ’ Median Trimmers ’ , ’Mean Trimmer I n t e r v a l
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Improvement ’ , ’ Median Trimmer I n t e r v a l Improvement ’ ]

# c r e a t e m e t a d a t a f i l e and s t o r e m e t a d a t a t h e r e
resul ts path md = os . path . j o i n ( path , ’ metadata . csv ’ )
results md = pd . DataFrame ( metadata , index= l a b e l s )
results md . t o c s v ( resul ts path md )

# s t o r e d a t a c o l l e c t e d from a l l o f t h e s i m u l a t i o n s f o r t h e
e x p e r i m e n t in a f i l e

r e s u l t s p a t h = os . path . j o i n ( path , ’ experimental r e s u l t s . csv ’ )
r e s u l t s = pd . DataFrame ({ ’ i ’ : index , ’ Tota l Oracle C a l l s ’ : h i s t ,

’ Oracle C a l l s 2a ’ : h i s t a , ’ Oracle C a l l s 2b ’ : h is tb , ’ Oracle
C a l l s 2 c ’ : h i s t c , ’Number of i n t e r v a l s before c a l l to 2b ’ :
h i s t i n t e r v a l s 2 b , ’ Rounds of 2b ’ : hist roundsb , ’ Oracle
C a l l s Trimmers ’ : h i s t t , ’ I n t e r v a l Improvement Trimmers ’ :
h i s t t r i m v a l u e , ’ ( umin , t ) ’ : h is t utmin , ’ (umax , t ) ’ :
his t utmax } )

r e s u l t s . t o c s v ( r e s u l t s p a t h )

# p r i n t end t ime o f e x p e r i m e n t
t = time . l o c a l t i m e ( )
c u r r e n t t i m e = time . s t r f t i m e ( ”%H:%M:%S” , t )
print ( ” Experiment %d Complete : %s ” % ( E , c u r r e n t t i m e ) )

A.2 Random Number Generator based on AES

from Cryptodome . Cipher import AES

c l a s s AES Random :
#random number g e n e r a t o r b a s e d on AES with ECB mode

count = ( 0 ) . t o b y t e s ( 1 6 , ’ big ’ ) # c u r r e n t c o u n t e r ( t o be
e n c r y p t e d us ing AES) , i s i n c r e m e n t e d a f t e r e a c h r e q u e s t e d
b l o c k o f random d a t a

key = ( 0 ) . t o b y t e s ( 1 6 , ’ big ’ ) # key used f o r AES
c ipher = AES . new( key , AES .MODE ECB) #AES module

def i n i t ( s e l f , key ) :
s e l f . key = key
s e l f . c ipher = AES . new( s e l f . key , AES .MODE ECB)

def c e i l ( s e l f , a , b ) : # f u n c t i o n f o r c e i l ( a / b )
return ( a // b ) + ( a % b > 0)

def random bytes ( s e l f , n bytes ) :

n blocks = s e l f . c e i l ( n bytes , 16) #how many AES b l o c k s (128
b i t s ) we w i l l need t o p r o v i d e n b y t e s random d a t a

r es = b ’ ’

# g e n e r a t e n b l o c k s number o f b l o c k s o f 128 random b i t s us ing
AES
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for i in range ( n blocks ) :

re s += s e l f . c ipher . encrypt ( s e l f . count )

# i n c r e m e n t c o u n t e r a f t e r e a c h g e n e r a t e d d a t a b l o c k
s e l f . count = ( i n t . f rom bytes ( s e l f . count , ’ big ’ ) + 1) %

pow( 2 , 128)
s e l f . count = s e l f . count . t o b y t e s ( 1 6 , ’ big ’ )

return r es [ : n bytes ] # r e t u r n n b y t e s random b y t e s

def randint ( s e l f , n ) : # r e t u r n a random i n t e g e r 0 <= r <= n ,
assumes t h a t 0 <= n < 256 ( in our c a s e n i s a t most 256 −
11)
r = n+1

while r > n :
rb = s e l f . random bytes ( 1 ) # on ly g e n e r a t e one random b y t e

as n i s a lways < 256 in our c a s e
r = i n t . f rom bytes ( rb , ’ big ’ )

return r

def random nonzero bytes ( s e l f , n bytes ) : # g e n e r a t e n b y t e s
nonzero b y t e s

remaining = n bytes
r es = b ’ ’

while len ( r es ) < n bytes :
r b y t e s = s e l f . random bytes ( remaining ) # g e n e r a t e

r ema in ing number o f b y t e s we need

re s += s e l f . remove zero bytes ( r b y t e s ) # f i l t e r out z e r o
b y t e s

remaining = n bytes − len ( re s ) # u pd a t e how many
rema in ing b y t e s we need

return r es

def remove zero bytes ( s e l f , bytes ) : # f i l t e r out z e r o b y t e s
r es = b ’ ’

for i in range ( len ( bytes ) ) :
i f bytes [ i ] != 0 :

r es += bytes [ i : i +1]

return r es
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