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Abstract

In this thesis, we analyze six popular cloud backup solutions. Cloud
backup solutions are applications which aim to create secure backups
of local data onto a remote server. Because many cloud backup so-
lutions are open-source and claim strong security, they are attractive
choices for many individuals and groups of all sizes looking to back
up their data securely.

There exists literature on designing a secure cloud backup solution,
but, to the best of our knowledge, all literature so far assumes a much
weaker threat model than what we consider fitting. We define two
threat models for cloud backup solutions, conduct a deep analysis of
three cloud backup solutions Borg, EteSync and Tarsnap, and provide
an overview of three more cloud backup solutions Kopia, Bupstash and
Restic. Further, we describe deduplication, content-based chunking
and its effect on side channel attacks, and define fingerprinting in the
context of cloud backup solutions. Finally, we present multiple attacks
on Borg, Kopia and Restic. More specifically, we present attacks that
allow an attacker to confirm if a user has backed up a file or not, and
we show how it is possible to extract a secret key in Borg.

Overall, we show that while the backup solutions successfully achieve
data confidentiality (even with sub-optimal cryptographic designs), they
often present a privacy risk due to the scarce resistance to fingerprint-
ing attacks.

We conclude by discussing the current state of cloud backup solutions
and recommend an algorithm which mitigates our attacks. We also
comment on potential future research areas, and in particular advo-
cate for conducting the same analysis as we have done for other cloud
backup solutions and diving deeper into specific, complex content-
defined chunking implementations.
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Chapter 1

Introduction

Data security is an ever-present topic for institutions and individuals. Many
companies, organizations, and persons need backups of their data as a
safety measure in case their data is lost or stolen. Saving backups on pri-
vate servers, so-called “self-hosting”, is an attractive solution for individuals
and groups of smaller sizes. However, with increasing size and number of
backups the cost of server hosting inflates exponentially, leading to many
companies and organizations using public cloud hosting services such as
Amazon Web Services and Cloudflare, known as “remote hosting”. As the
hosting services control the servers themselves, a malicious employee or
a nation-state actor has the potential to gain access to the data hosted on
the servers. The Snowden revelations showed that in the past governments
have abused this potential to surveil what is otherwise considered private
data [28]. To protect oneself from these threats several groups have pub-
lished open-source cloud backup solutions which claim to provide security
properties such as data confidentiality, data integrity, and resistance to fin-
gerprinting attacks, even against an adversary with full access to the server.
A user can use such a cloud backup solution in conjunction with a remote-
hosted server to achieve “secure” cloud backups. Intuitively the security
claims above are all minimal goals a self-proclaimed “secure” cloud backup
system should aim to achieve. However, what does “secure” even mean?
First, we must define what “security” means in the context of cloud backup
solutions.

1.1 Cloud Backups vs. Cloud Storage

While it may seem that cloud storage and cloud backups are very similar,
cloud backups are fundamentally a much simpler problem to solve. Cloud
storage aims to offer a data storage service that is easily accessible and pro-
vides additional functionality such as collaboration with other users and
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1. Introduction

interactivity with the data, such as editing a text file. On the other hand,
cloud backups prioritize simplicity and security. Backups are stored once
and rarely accessed, and because data is seldom accessed there is no need
for interactivity or collaboration. This simpler functional design implies a
simpler cryptographic design, reducing the attack surface of a cloud backup
system and thus improving its security.

1.2 Client-Server Model

We define a model for cloud backup solutions which consists of users and
servers. Users have clients installed on their devices that can connect re-
motely to servers that hold backups of the users’ data. The users have their
clients periodically create backups, and in rare cases, retrieve a backup. The
server can be self-hosted or remote-hosted with the user having full access
to it, or the cloud backup solution may provide a server to which the user
does not have full access. The server may contain code for handling re-
quests from clients, or the client may connect to the server remotely and
handle incoming requests itself.

1.3 Threat Model

So far no definition of threat models for cloud backup solutions has been
standardized. There exists some consensus that in any threat model for
cloud backup solutions, an adversary must have at least full access to the
server for the reasons mentioned above. However, we consider this defini-
tion too weak in practice. In our opinion, this threat model is too passive
in the sense that it assumes an adversary that can see the backup repository
but not do or know anything else. The problem is that additional capabil-
ities may arise in reality, that is: the ability to know some plaintext or the
ability to inject plaintext.

We propose two definitions based on our analysis and findings. We dif-
ferentiate between a “weak adversary” with full access to the server and the
ability to know the contents of a specific file in the backup and a “strong ad-
versary” with full access to the server and the ability to inject arbitrary files
into the backup. This will allow us to show different security properties for
the cloud backup systems that we will study.

More specifically, both adversaries not only have access to the data, but can
also observe the content of all user requests, measure their timing, and ar-
bitrarily modify the server’s responses. The weak adversary additionally
knows of a set of files contained in the victim’s repository. This captures, for
instance, the setting where the adversary and the victim share a git reposi-
tory, an unencrypted cloud storage directory, or where the adversary knows
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1.4. Deduplication

the operating system the victim is running, and the victim backs up operat-
ing system-specific files.

The strong adversary can additionally choose to include arbitrary files in the
victim’s repository. This captures the setting where the adversary can trick
the victim into downloading files that will be included in the backup.

1.4 Deduplication

When a client creates multiple backups of a system the difference between
a new backup and the previous backup is often very small. Almost always
the amount of new data to be backed up is much less than the full size of the
directory. In this case, one would like to only have to upload the new data,
i.e. the difference between the old backup and the new backup. Also, one
may have redundant files that are not exactly equal but share the majority of
their content, for example, an image and its cropped version or multiple ver-
sions of a text file. To prevent already backed-up data from being wastefully
backed up again cloud backup systems commonly implement a technique
called deduplication. A local database contains information regarding what
data has already been backed up, and upon uploading a new string of data
the database is checked for potential duplicates. If a duplicate is found, the
data is ignored and not uploaded. Otherwise, if a duplicate is not found,
the file is processed and uploaded to the server.

Deduplication boosts the speed and efficiency of backup systems immensely.
Instead of having to upload all the data in a directory again, the backup
system can simply check which pieces of data are new and upload those.
Some backup systems implement file-level deduplication while others use
finer-grained “chunk”-level deduplication, where chunks are smaller parts
of a file. File-level deduplication is easier to implement, but chunk-level
deduplication is generally more efficient.

1.5 Fingerprint Resistance

While data confidentiality, data authenticity, and metadata authenticity are
necessary for a secure cloud backup system they are by no means sufficient.
Even if the contents of a backup are encrypted, an adversary may still dis-
cover a lot about the contents of a backup by analyzing metadata, ciphertext
length, and information leaked by additional functionalities. Specifically,
they may gain knowledge about what data was backed up.

1.5.1 Fingerprinting

We informally define fingerprinting in the context of cloud backup systems
as “given a backup, and two messages of the same length, the ability to dif-
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1. Introduction

ferentiate between a previously backed up message and a random message
with non-negligible probability”. This definition attempts to capture any
information obtainable by an adversary in the cloud backup system setting.

As a practical example, an adversary might be a nation-state seeking infor-
mation about individuals possessing censored books. If the book is shared
among censorship violators digitally, and the nation-state can successfully
launch a fingerprinting attack on a cloud backup solution, the nation-state
can confirm whether any given user of the cloud backup solution has backed
up, and thus possesses the censored book.

1.5.2 Fingerprint Resistance with Deduplication

Deduplication by definition breaks fingerprint resistance under a strong ad-
versary, as the adversary can inject an arbitrary file into the backup and
check the server to confirm whether new data was added to the backup
repository or not. If new data was added equal to the length of the file the
adversary can confirm that the victim’s backup repository does not contain
any of the injected data. However, if the length of the new data that was
added is less than the injected data’s length, the adversary can conclude
that some of the injected data was already present in the victim’s backup.

1.5.3 Literature

Much research has been done on secure cloud backups and secure dedu-
plication [2, 13, 19, 23, 29, 35]. Today’s standards include ClouDedup [29]
which uses the Convergent Encryption [13] encryption scheme based on
a cryptographic primitive called Message-Locked Encryption [2], and Dup-
LESS [19] which also uses Message-Locked Encryption and secures it against
brute-force attacks.

One of the main desired security properties is that assuming independent
users Alice and Bob, for any file F if Alice uploads F and Bob also uploads
F after Alice, he cannot distinguish if a user has previously uploaded F or
not. At the same time, efficient deduplication must be possible to reduce the
required storage space for the cloud service provider.

However, in all of this literature, the threat model assumes a trusted server.
There exists no literature for our threat model, which is surprising because
cloud backup solutions have existed since the emergence of cloud services.

1.6 Backup Solutions

Here we introduce the backup solutions we evaluated, giving a brief overview
of how they work and what functionalities they provide. In Chapter 4 we
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1.6. Backup Solutions

go deeper and provide a deep analysis of Borg, EteSync, and Tarsnap, and
analyze Kopia, Bupstash, and Restic superficially.

1.6.1 Borg

Borg [4] is an open-source backup application that creates backups in a
“repository” stored in a certain path. Borg organizes backups in an ab-
stract hierarchy of objects, where the lowest levels are data chunks, which
are grouped into objects representing files, which are grouped into objects
representing a “snapshot” of a file system at a point in time, which are
grouped into the repository. In the typical deployment, the repository is
stored on a remote machine. In this case, Borg has a simple server compo-
nent, and the communication between the client and the server is protected
at the transport level by SSH. To communicate with the server over SSH
the Borg client connects to the server through a separate process. The Borg
client provides deduplication and authenticated encryption of files, and SSH
provides a (confidential and authenticated) link between the client and the
server.

For Borg, we assume a weak adversary as we introduced in Section 1.3. One
of our goals is to analyze fingerprint resistance for the cloud backup solu-
tions that we study, and deduplication trivially breaks fingerprint resistance
under a strong adversary as we explained in Section 1.5.2. This makes the
weak adversary the more logical option for our threat model.

1.6.2 EteSync

EteSync is a notes and contact sync application built upon Etebase [15],
where Etebase is an open source end-to-end encrypted “backend”: a set
of client libraries and a server for building end-to-end encrypted applica-
tions. We study EteSync as an end-to-end encrypted cloud backup solution.
Etebase promises “battle-tested strong encryption using modern cryptog-
raphy” [15]. Instead of creating snapshots of a file system when a user
requests a backup, EteSync processes each file separately, meaning on the
server backed-up files are not organized under snapshots of a file system,
but individually. EteSync provides file-level deduplication but not chunk-
level deduplication as we discussed in Section 1.4. The EteSync server can
be self-hosted (or remote-hosted), but EteSync also offers access to their in-
stances as a service. EteSync supports the sharing of “collections” of data
with different users.

Even though EteSync does not provide chunk-level deduplication we still
assume a weak adversary as defined in Section 1.3, the same threat model
as for Borg.
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1. Introduction

1.6.3 Tarsnap

Tarsnap [36] is an online end-to-end encrypted backup service where Tarsnap
hosts the server. Self-hosting is not supported. Tarsnap advertises itself as
a “backup service for the truly paranoid” [36]. While the client code is
publicly available, the server implementation is not publicly released. The
Tarsnap client provides data deduplication.

We assume a weak adversary for Tarsnap as described in Section 1.3.

1.6.4 Kopia

Kopia [21] is an open-source end-to-end backup solution. Backups are snap-
shots of user-chosen files and directories which are uploaded to a self-hosted
or remote-hosted server. The Kopia client provides encryption, compres-
sion, and deduplication, and claims to provide “end-to-end zero-knowledge
encryption” [20].

For Kopia we assume a weak adversary as defined in Section 1.3.

1.6.5 Bupstash

Bupstash [11] is a simple snapshot-based open-source backup solution where
files and directories are backed up to a self-hosted or remote-hosted server.
Encryption is end-to-end and deduplication and compression are supported.
The Bupstash client is currently in open beta and only recommended for re-
dundant backups [10].

We assume a weak adversary as defined in Section 1.3 for Bupstash.

1.6.6 Restic

Restic [34] is a snapshot-based end-to-end backup solution. The user self-
hosts or remote-hosts the server and the Restic client provides encryption
and data deduplication. Restic claims to be “fast, efficient and secure” [33].

For Restic we assume a weak adversary as defined in Section 1.3.

1.7 Contributions

We first introduce and discuss deduplication and content-defined chunking
in Chapter 3. In Chapter 4 we conduct a deep analysis of Borg, EteSync, and
Tarsnap, and provide a short analysis of Kopia, Bupstash, and Restic. We
present multiple attacks on Borg, Kopia, and Restic in Chapter 5 that allow
an adversary to confirm if a user has backed up a file or not, and in the case
of Borg, allow a secret key to be extracted.
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1.7. Contributions

Overall, we show that the cloud backup solutions that we study success-
fully provide data confidentiality (even with sub-optimal cryptographic de-
signs), but also that they contain vulnerabilities to fingerprinting attacks
which present a privacy risk to users.

Finally, we discuss mitigations for the vulnerabilities we found and advocate
for further research in the development of secure content-defined chunking
algorithms.
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Chapter 2

Background

Before we evaluate the security of the cloud backup solutions we want to
study we must introduce the notation we will use for the rest of this thesis.
The definitions below for cryptographic primitives, encryption, and authen-
tication schemes provide the base we need for our analysis.

2.1 Abbreviations

We use the following abbreviations in this thesis:

MitM Man-in-the-middle
XOR Exclusive or
Nonce Number only used once
MAC Message authentication code
HMAC Hash-based MAC
AEAD Authenticated encryption with associated data
EtM Encrypt-then-Mac
E&M Encrypt-and-Mac
MtE Mac-then-Encrypt
IKM Input key material
IV Initialization vector
IND-CPA Indistinguishability under chosen-plaintext attack
IND-CCA Indistinguishability under adaptive chosen-ciphertext attacks
PRF Pseudo-random function family
PRP Pseudo-random permutation

2.2 Notation

We use standard notation in literature for equations and pseudocode in this
thesis:
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2. Background

• a||b: the result of the concatenation of the strings a and b

• a ⊕ b: the result of the XOR operation on bit strings a and b

• s[i]: assuming s is an array or a string, the i-th element of s

• s[i : j]: the substring of s from i (inclusive) to j (exclusive)

• s[i :]: the substring of s starting from i (inclusive)

• s[: j]: the substring of s from 0 to j (exclusive)

2.3 Cryptographic Zoo

Here we introduce and describe the cryptographic primitives used by the
cloud backup systems that we study.

2.3.1 Salsa20 and ChaCha20

Salsa20 and ChaCha20 are very similar stream ciphers that take a nonce and
a key as their input and output a random bit stream. This bit stream is of-
ten used for encrypting data by XOR’ing the plaintext with the bit stream.
When used for encryption, since the output of stream ciphers is determin-
istic, a new nonce must be utilized every time a cipher is called to prevent
two identical plaintexts resulting in identical ciphertexts. This would al-
low an adversary to draw relations between messages and, if the adversary
knows a plaintext-ciphertext pair, to decrypt future messages. The usage of
a secret key is essential for confidentiality, as an adversary with knowledge
regarding the key can easily decrypt any message.

XSalsa20 and XChaCha20 are variants of Salsa20 and ChaCha20 respectively
with extended nonces.

2.3.2 AES-CTR

AES-CTR is an encryption algorithm that uses the block cipher AES in CTR
(counter) mode. AES-CTR takes a message, a key, and an initialization vector
(IV) to which a counter is concatenated as an input, and outputs a random
bit stream. This bit stream is then XORed with the message.

If the same key is used for two separate messages, the IV must be different
for each message as re-using the IV would lead to two identical messages
resulting in two identical ciphertexts. This would allow an adversary to
learn the result of the XOR operation of the plaintexts, breaking IND-CPA
security.

10



2.3. Cryptographic Zoo

2.3.3 Poly1305

Poly1305 is a MAC scheme that takes a message and a key and outputs a
keyed hash of the message. Anybody with knowledge of the message and
the key can run Poly1305 on the above inputs and confirm the keyed hash.
This allows a user to confirm the integrity of messages, as the probability of
an adversary successfully forging a valid tag for a message is negligible.

2.3.4 HMAC-SHA256

HMAC-SHA256 is a HMAC [22] scheme which uses SHA256 as its hash func-
tion. SHA256 is a very popular hash function and many security protocols
and applications use it today. HMAC-SHA256 hashes the message together
with two separate keys that are both generated from the original key to gen-
erate secure authentication codes. These authentication codes can be used
by anybody with knowledge of the message and the key to confirm the
integrity of the message.

2.3.5 BLAKE2b

Blake2b [1] is a very popular cryptographic hash function based on ChaCha20
which takes a message, an optional key, and the desired hash length in bytes.
Used with a key, BLAKE2b acts as an HMAC scheme and can be used for
message authentication.

2.3.6 Ed25519

Ed25519 is a digital signature algorithm that generates a public key and a
private key, takes a message, and generates a signature for that message
using the generated private key. The public key can be shared (hence “pub-
lic”) and anybody with knowledge of the public key and the message can
confirm that the signature was created by the holder of the corresponding
private key.

2.3.7 RSA-OAEP

RSA-OAEP [18] is a combination of the public-key cryptography encryption
algorithm RSA and the padding scheme OAEP. RSA by itself has many prob-
lems, such as the fact that it is a deterministic encryption algorithm that, for
example, allows an eavesdropping adversary with access to an encryption
oracle to test arbitrary plaintexts against a known ciphertext. OAEP fixes
these problems, and RSA-OAEP has been proven to be IND-CCA secure.
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2.3.8 ChaCha20-Poly1305

ChaCha20-Poly1305 is an AEAD scheme that uses ChaCha20 for encryption
and Poly1305 for authentication of messages. The ciphertext is used in the
computation of the authentication tag which makes ChaCha20-Poly1305 an
encrypt-then-mac (EtM) scheme. ChaCha20-Poly1305 is one of the world-
wide standards [26] for AEAD and many applications use it today.

2.3.9 AES-CTR & HMAC-SHA256

AES-CTR & HMAC-SHA256 is an E&M authenticated encryption scheme
which uses AES-CTR for encryption and HMAC-SHA256 for authentication
of messages. AES-CTR & HMAC-SHA256 being an E&M scheme means the
ciphertext computed by AES-CTR is not used in the computation of the au-
thentication tag, but the plaintext is used instead.

2.3.10 Diffie-Hellman

The Diffie-Hellman key exchange is a way of securely agreeing on a secret
common value over a public (but authentic) communication channel for two
entities. Both entities compute their personal public and private keys, and
by exploiting the difficulty of the discrete logarithm problem they can both
compute a secret without any adversary being able to learn of it, even if the
adversary can eavesdrop on the entire communication.

2.3.11 PBKDF2

PBKDF2 is a key derivation function that takes a pseudorandom function, a
password, a salt, the desired number of iterations, and the desired key bit
length. It outputs a secret key which can be used for further cryptography.
The number of iterations affects how easy it is to brute-force a key in the
sense that higher numbers of iterations increase the amount of time required
for each brute-force attempt. However, a password that is common and/or
easy to guess is still easy to brute-force as it is still vulnerable to dictionary
attacks.

2.3.12 Argon2

Argon2 is a key derivation function that takes a password, a salt (random
data that makes brute-force attacks more difficult because it prevents pre-
computation and usage of rainbow tables), the desired degree of parallelism,
the desired key bit length, the amount of computer memory to use, and
the desired number of iterations. Argon2 requires a significant amount of
computer memory to evaluate and access computer memory in an order
dependent on the password. Argon2 is thus a “memory-hard function”,
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making it resistant to FPGA and GPU-based cracking attacks because they
have limited and expensive memory. However, the fact that Argon2 accesses
computer memory in an order dependent on the password has resulted in
side-channel attacks. Argon2i and Argon2id aim to mitigate these attacks,
and thus Argon2id is the recommended variant.

Similarly to PBKDF2, a higher number of iterations increases the amount of
computation required for brute-force attempts.

2.3.13 HKDF-HMAC-SHA512

HKDF-HMAC-SHA512 is a key derivation function that takes input key ma-
terial (also called IKM, for example a password), a salt, an info string (some
public information regarding the input), and the desired key bit length. The
info string is useful when one, for example, wants to derive multiple keys
from the same password with the property that each key is independent of
the others.

2.3.14 Scrypt

Scrypt is a key derivation function originally developed for the Tarsnap
cloud backup system. Scrypt first generates a salt using an expensive com-
putation and then derives the key from PBKDF2 with HMAC-SHA256 with
that salt. The design goal is to increase the amount of computation and thus
time required to successfully execute a brute-force attack.

2.4 SSH

SSH [24] is a widely used network protocol that lets users log in to and
execute commands on remote machines securely. Communication between
the client (the user) and the server (the remote machine) is encrypted by the
transport layer and user authentication is provided by the server. SSH also
provides secure file transfers, which is especially useful for cloud services.

2.5 TLS

TLS [31] is a security protocol that provides data confidentiality, data in-
tegrity, and user authentication. It is used for email, messaging, voice over
IP (VoIP), and most commonly in the encryption between end user and
website. HTTPS is the main web protocol used today and is a combina-
tion of HTTP and TLS, where HTTP provides the communication channel
between the end user and the website and TLS provides the security prop-
erties above.
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Chapter 3

Deduplication

Users create backups of their systems at different points in time, and often
there will be overlaps between the files in different backups. Additionally,
files can be very similar to each other. This implies that there are likely
to be duplicates among the data that is uploaded. Avoiding unnecessary
duplicates in backups results in much faster, more space-efficient, and thus
less expensive backups. Almost every cloud backup solution that we study
works on a snapshot basis, which means that every time we create a backup,
we upload all the files in the snapshot to the server. This implies a lot of po-
tentially wasteful re-uploading of already backed-up data. For this reason,
all snapshot-based cloud backup solutions we study provide deduplication
in one form or another. However, implementing deduplication is not a sim-
ple task and requires careful consideration of multiple trade-offs. A naive
approach may be to simply hash every backed-up file on the server and keep
a list of all file hashes on the server. This, however, would be inefficient as
every file still needs to be sent to the server, even if the file has already been
backed up. The solution to this problem is to do the same hashing as before
but keep the list of file hashes locally on the client. But what if we only
change a single bit in a file? Do we need to back up the whole file again?

This is where chunking comes in.

3.1 Chunking

Chunking is a method that splits files into data smaller pieces of data called
“chunks”. These chunks can later easily be put together again to reconstruct
a file, e.g. by the backup repository holding a list of pointers to chunks for
every file. A chunking algorithm typically determines at what point a chunk
is cut by scanning a file from left to right until a condition is met.

This allows us to perform deduplication on smaller pieces of data which
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Figure 3.1: Fixed Chunking [25]

aids efficiency. For example, assume we have a file of size 2 GB which we
already backed up once and our cloud backup solution allows a maximum
chunk size of 2 MB. If we flip a single bit in this file and try to back it up
again, we only have to send one chunk of a maximum of 2 MB to the server
since all the other chunks are unchanged. Compared to sending the whole
file again this is a reduction of 99.9%!

A chunking algorithm that simply chunks every k bytes works for us in this
case, but if we add or delete a bit or series of bits anywhere in the file all
subsequent chunks will be different, and we end up having to send many
more chunks than necessary to the server again (see Figure 3.1). For this
reason, many cloud backup solutions implement content-defined chunking.

3.1.1 Content-defined Chunking

Content-defined chunking is defined by chunking based on the actual data
in the chunk. Content-defined chunking algorithms look for a local condition
when deciding whether to perform a cut, ensuring that a change in previous
bytes will not affect the decision to chunk in a specific position. In other
words, a single byte addition does not cause global repercussions on the
chunks (see Figure 3.2). This increases deduplication efficiency and is thus
a very popular method. All snapshot-based cloud backup solutions that we
study use chunking algorithms that are content-defined.

The most common way to implement content-defined chunking is to imple-
ment an algorithm that takes a string of data, defines a window with a fixed
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Figure 3.2: Content-Defined Chunking [25]

size (e.g. 64 bytes), and computes a hash over the bytes in that window. If
the hash has a certain number of k trailing zeroes, usually configurable by
the user, the chunk is cut. If it does not, the window “slides” one byte to
the right, i.e. the first byte of the window is removed and the next byte in
the data is added to the window, and the hash is recalculated. E.g. for a
string of data b of size l > 64 bytes and a sliding window of size 64 bytes
b0||b1||...||b63, sliding the window one byte to the right results in a new slid-
ing window b1||b2||...||b64. This process is repeated until one of the hashes
has k trailing zeroes or the specified maximum chunk size is reached, where
the chunk is automatically cut. Because the output of the hash function is
assumed to be distributed uniformly at random, this results in the average
chunk size equalling 2k bytes. Thus a user can choose his desired average
chunk length by changing the value of k.

However, chunking over the actual data implies some relation between the
point where the chunk is cut and the data in it. In other words, a chunk’s
length is directly related to its contents. This opens up potential side-
channel attacks where an adversary with knowledge of how a (otherwise
securely encrypted) file was chunked may be able to derive further infor-
mation about the file itself. We will explore and analyze these attacks in
Chapter 5.
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Chapter 4

Backup Systems Studies

In this chapter we take a deeper look at the backup solutions we study,
focusing on threat models, key hierarchies, cryptographic primitives and
data models.

4.1 Borg

We introduced Borg in Section 1.6.1. Here we delve deeper into its internals,
starting with the threat model, and then exploring the key hierarchy and the
data model.
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Key File

TAM Key

HKDF
AEAD

PBKDF2
or

Argon2id

E&M

or
ChaCha20-
Poly1305

HKDF

PBKDF2: SHA256, 100k iter., zero IV
Argon2id: random salt
E&M: AES-CTR with zero IV, HMAC-SHA256
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HKDF: HMAC-SHA512

Figure 4.1: Borg Key Hierarchy
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4.1.1 Threat Model

Borg introduces a typical threat model for cloud-based backup solutions
where the client is trusted and an attacker has full access to the server and
interactive capabilities in the form of man-in-the-middle (MitM) attacks [3].
Borg also assumes an attacker to possess a specific set of files which the
victim also possesses and backs up. Under these assumptions, Borg claims
the attacker is not able to:

1. modify the data of any archive without the client detecting
the change

2. rename, remove, or add an archive without the client de-
tecting the change

3. recover plaintext data

4. recover definite (heuristics based on access patterns are pos-
sible) structural information such as the object graph (which
archives refer to what chunks)

In the case of multiple clients updating the same remote repository, Borg
does not guarantee confidentiality. This is a result of AES-CTR being used
for data encryption, which requires individual clients to synchronize their
counter values to preserve confidentiality. A malicious secondary client
could intentionally reuse counter values which would reveal the bitwise
XOR of the plaintexts of the data which were encrypted with the same
counter value.

We assumed a weak adversary for Borg in Section 1.6.1 to which Borg’s
threat model is identical. This will allow us to show that there are attacks
that violate fingerprint resistance in Chapter 5.

4.1.2 Key hierarchy

When a repository is created Borg generates a key file that holds the ran-
domly generated AEAD key (“Chunk Encryption Key” in Figure 4.1), the
“Chunk Sign Key”, the object ID generation key which is used to generate
UIDs (unique identifiers) for each chunk with a keyed hash function, and
a 4-byte string which is used as a secret key for the chunking algorithm
(the chunker seed). The user provides a passphrase, from which a key file
encryption key kKF is derived using Argon2id by default, or PBKDF2 with
100′000 iterations if specified by the user. The client encrypts the key file
with kKF using the user-specified AEAD scheme: either an Encrypt-and-
MAC scheme implemented by Borg using AES-CTR and HMAC-SHA256, or
ChaCha20-Poly1305. The developers behind Borg note that while the use of
Encrypt-and-MAC might seem problematic, AES-CTR prevents padding at-
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Figure 4.2: Borg’s Data Model [9]

tacks, and thus their encryption method is secure [8]. The encrypted key file
is either stored locally or remotely in the repository.

Data authentication is provided by the object graph stored on the server,
an abstract data structure built upon key-value stores that resembles a tree
and contains all data and metadata needed to fully reconstruct any previ-
ous backup. Each higher-level object contains a list of lower-level object
UIDs, such that it guarantees the authenticity of the lower-level objects. The
highest-level object, however, the “Manifest”, cannot be authenticated by a
higher-level object (as it is the highest). This requires an external authenti-
cation mechanism, which Borg implements by using a secret key called the
“TAM” (tertiary authentication mechanism) key. The manifest is authenti-
cated using the TAM key. The TAM key is derived from the object ID genera-
tion key id key, the AEAD key enc key and the otherwise redundant auth key
such that tam key = HMAC-SHA512(id key||enc key||auth key, salt, context)
for some random salt and an operation-dependent context string.

Using the data encryption key for two purposes, data encryption and deriv-
ing a new key (the TAM key), is questionable, as it violates the key separa-
tion principle and offers no security benefits.
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4.1.3 Data Model

On a high level, Borg maintains a map of encrypted “objects”, addressed
by unique cryptographic IDs. Object o with byte representation odata has the
unique ID oID, generated by oID = Blake2b(kID, odata) or oID = HMAC(kID, odata)
depending on a user-defined setting.

The structure of a Borg repository is encoded in a hierarchy of objects. The
root object, called “Manifest”, references a list of “Archive” objects. Each
“Archive” represents a snapshot of a user’s backup directories, and refer-
ences a list of “Item” objects: the actual files and directories in a backup,
with the relative metadata.

Finally, each “Item” contains a list of “Chunk” IDs, and the “Chunks” con-
tain the actual file data split into chunks. We will refer to “Chunk” objects
simply as chunks, where the ID cID of a chunk c is equal to its object ID.
This hierarchy can be visualized in Figure 4.2.

On the file system of the server, a Borg backup repository is the user-
specified directory that contains all data and metadata relevant to a user’s
backups. It consists of a data folder that contains “segments”, files that con-
tain chunk data or item metadata at certain offsets; an index file containing
a dictionary of chunk ID to chunk location (segment and offset within the
segment) key-value pairs; a hints file which contains the list of segments;
and an integrity file which contains checksums and other metadata of the
index and hints files.

Because of the nature of Borg’s “transaction log” data structure [39] with
which the repository is updated, Borg stores consecutively uploaded chunks
next to each other in the segments, meaning an adversary with access to the
repository can reconstruct which chunks likely belong to the same file, in
their exact order.

4.1.4 Deduplication

Borg supports the deduplication of files to significantly reduce backup time
and the amount of space used. For all previously backed-up files the item
object representing it is saved locally in a hash map called the “cache” with
an HMAC of the file’s absolute path as the key, and a dictionary containing
metadata and a list of its chunk IDs as the value. Whenever a file is to be
backed up its representing item object is checked against the cache to make
sure the file hasn’t already been backed up before. If the key exists in the
cache and the value is the same, the file is ignored. Otherwise, the file is
chunked again and any new chunks are uploaded to the server.

22



4.2. EteSync

4.1.5 File Backup Process

To upload a file Borg first chunks it into a set of chunks using the chunking
algorithm. Borg then saves this set of chunks and metadata such as the file
path and file inode number into an item object. The cache is then checked
for potential deduplication as described in Section 4.1.4. Borg then performs
authenticated encryption and compression, if specified, on the set of chunks
locally with the chunk encryption key before sending the chunks to the
server over SSH. Borg does not contain any networking code and simply
runs SSH in a separate process, allowing for secure file transfers between
the client and the server.

4.1.6 Own implementations

Borg does not code any cryptography themselves. All available methods
of HMACs and authenticated encryption are implemented using wrappers
around OpenSSL [27] functions.

4.2 EteSync

Following our introduction of EteSync in Section 1.6.2 we take a deeper look
at EteSync’s threat model, key hierarchy, and data model.

4.2.1 Threat Model

EteSync does not specify a threat model, but from our code analysis, we can
deduce that they assume an adversary with at least full backup server access
and MitM capabilities. EteSync does not give many promises regarding
their software, but they claim to provide “strong encryption using modern
cryptography” [15]. With this, we can assume they want to provide:

1. Data integrity

2. Plaintext confidentiality

3. Metadata confidentiality

for their users. EteSync supports multiple clients accessing the same repos-
itory using “invitations”. The owner of a “collection”, EteSync’s name for a
backup snapshot, may share their chunk encryption key with another user
by sending an invitation together with an access level, allowing the receiver
to read, write, and/or delete “items”, i.e. files, in that collection.

The adversary in this threat model does not have a set of specific files that
the victim also backs up, and the threat model is thus weaker than our
assumed weak adversary for EteSync which we discussed in Section 1.6.2.
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4.2.2 Key hierarchy

EteSync queries the user for a passphrase from which the main key kM is
derived using Argon2id with a random salt. The salt is then sent to the
server. The EteSync client derives a seed from kM using Blake2b, with which
an Ed25519 login keypair is generated. The EteSync client then randomly
generates an account key ka and an Ed25519 Identity Keypair. The EteSync
client encrypts these two keys with AEAD with another key derived from
kM and sends them to the server. From ka the client derives four keys using
Blake2b: a data encryption key, a data sign authentication key, a subkey
derivation key, and a deterministic encryption key.

4.2.3 Data Model

Data is stored in “Items,” and organized by “Collections” which contain
a list of items. The EteSync client uses deterministic encryption to derive a
unique identifier (UID) for every item and every collection by hashing a part
of their contents with Blake2b and using it as the nonce for the encryption.
Using their UID as a salt, items in a collection are encrypted with a unique
key derived from the subkey derivation key.
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4.3 Tarsnap

We introduced Tarsnap in Section 1.6.3. In this section, we take a deeper
look and inspect Tarsnap’s threat model, key hierarchy, and data model.

4.3.1 Threat Model

Tarsnap’s threat model assumes a trusted client and an adversary with MitM
capabilities and full access to the server. Tarsnap does not explicitly state any
security guarantees on its website, but from our code analysis, we can derive
that they aim to achieve plaintext confidentiality, data integrity, and meta-
data confidentiality in the case of a single client. For multi-client support,
Tarsnap users must share the key file with all machines, and the Tarsnap
client must not run on multiple machines at the same time, or else Tarsnap
does not guarantee any security properties.

In Tarsnap’s threat model, the adversary does not have the ability to possess
a set of specific files that the victim also backs up, and is thus weaker than
our assumed weak adversary as we discussed in Section 1.6.3.

4.3.2 Key hierarchy

In the center of Tarsnap’s cryptography lies the key file KF, where the file
key encryption RSA keypair (pkENCR, skENCR), the file authentication key kt
and more keys are held. In the same manner as in Borg, the user provides a
passphrase from which a key file encryption key kKF is derived using scrypt
with PBKDF2-SHA256. kKF is used to Encrypt-then-MAC the key file with
AES-CTR with a zero IV and HMAC-SHA256.

Three further authentication keys (kr
auth, kw

auth, kd
auth) are randomly sampled

and shared with the server through a secure channel. The channel is set up
by deriving a DH key pair (pkREG, skREG) from the passphrase and comput-
ing a shared key kM with the server’s public key, which is included in the
client code. kM is used to HMAC-SHA256the three authentication keys
(kr

auth, kw
auth, kd

auth) together, and the keys are sent to the server over a secure
channel which we describe in Subsection 4.3.3.

4.3.3 File encryption

To encrypt a file F the Tarsnap client first chunks F using its chunking al-
gorithm based on the computation of polynomials with parameters derived
from a secret key. The client then generates a random ephemeral file encryp-
tion key kF and processes all chunks with AES-CTR with key kF. To authen-
ticate F an HMAC TF is computed with the key kt and appended. The file
key kF is encrypted with RSA-OAEP with the user’s public key pkENCR and
prepended with a nonce NF. Finally, the client computes another HMAC TE
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with kw
auth and appends it, which is used to authenticate the nonce and bind

the nonce to the file.

To communicate with the server a secure channel is constructed roughly
based on SSLv3’s handshake. The client samples a random DH key pair,
receives the server’s public key and a nonce N from the server, and com-
putes a shared key kM = MGF1(N||DH) with the server, where DH is the
commonly computed DH value and MGF1 is a deterministic function that
works similarly to a hash function. The message to be sent to the server
is then hashed with HMAC-SHA256 in non-keyed mode and the hash is en-
crypted using AES-CTRinitialized with a key kenc

M derived from kM. Another
HMAC TS is computed of this encrypted hash with a key kauth

M also derived
from kM and appended. Finally, everything except for the encrypted hash
is encrypted with AES-CTR with the encryption keystream and uploaded
together with the encrypted hash to the Tarsnap server.
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4.3.4 File decryption

When a user requests to read a file from a backup the server sends the client
a message containing the encrypted file. To decrypt a file F the client first
decrypts the message using the keystream shared with the server, verifies
the tags TS, TE, and TF, and decrypts the file key kF with the user’s private
key skENCR. The client then uses kF to decrypt the file itself.

4.3.5 Data Model

Tarsnap takes a list of files, chunks them based on the chunking algorithm,
assigns every chunk an index, and uploads them to the server along with
relevant metadata. The server manages an “Archive”, a dictionary of chunk
index to data key-value pairs and file index to chunk pointer lists.

4.3.6 Deduplication

Tarsnap holds a local list of all uploaded chunk hashes and only uploads
new chunks if the new chunk’s hash is not already in the local hash list.

4.3.7 Analysis

An observant reader might notice the unconventional usage of public-key
cryptography for file encryption. Indeed, assuming an adversary with ac-
cess to the server discovers the user’s public key, file integrity is broken for
all files of size l ≤ 16 bytes.

Assume an adversary that knows the public key pk, meaning the adver-
sary can compute RSA.Enc(pk, K) for an arbitrary K of his choice, and an
encrypted file m. Let c = AES-CTR.Enc(K, m, n) for a nonce n. Then the
encrypted file on the server is n||RSA.Enc(pk, K)||c||HMAC(Kauth, c) where
Kauth is the long-term MAC key.

Assume that m is 16 bytes, and we want to make sure that this file decrypts
to a different file of size 16 bytes m′. Then we want that, from the same
ciphertext c we obtain m′ when decrypting instead of m. The reason why
we want the same ciphertext c is that the MAC is done on c, so we cannot
change it. However, AES-CTR encryption works by XOR-ing the message
with the keystream, which is itself the encryption of the nonce.

c = m ⊕ AES.Enc(K, n) (4.1)

Then, we want a new (K′, n′) such that:

c = m′ ⊕ AES.Enc(K′, n′) (4.2)
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This can be done by setting K′ to an arbitrary value and then:

n′ = AES.Dec(K′, c ⊕ m′) (4.3)

However, the randomization of messages provided by OAEP padding pre-
vents us from algebraically reconstructing the public key from known ciphertext-
plaintext pairs.

We require the length of the file to be of size l ≤ 16 bytes for our attack
because creating (K′, n′) pairs for ciphertexts that decrypt to meaningful
plaintexts becomes hard when l > 16 bytes. The reasoning is that, assuming
l = 32, Equation 4.1 becomes:

c[: 16] = m[: 16]⊕ AES.Enc(K, n||00000000)
c[16 : 32] = m[16 : 32]⊕ AES.Enc(K, n||00000001)

(4.4)

This makes the properties we want our new (K′, n′) pair to fulfill the follow-
ing:

c[: 16] = m′[: 16]⊕ AES.Enc(K′, n′||00000000)
c[16 : 32] = m′[16 : 32]⊕ AES.Enc(K′, n′||00000001)

(4.5)

Applying our attack (Equation 4.3) means we try to find K′ such that, for
arbitrary n′:

n′||00000000 = AES.Dec(K′, c[: 16]⊕ m′[: 16])
n′||00000001 = AES.Dec(K′, c[16 : 32]⊕ m′[16 : 32])

(4.6)

However, finding such a K′ can only be done by a brute-force attack, and this
attack requires exponentially increasing amounts of computation for linear
growth in the file size l because the number of equations we need to solve
in Equation 4.6 also grows linearly.

One might also observe that a file F is encrypted and authenticated with
separate keys, kF and kt respectively. Since kF is randomly generated for
every new file F, leakage of one file key does not compromise the confiden-
tiality of other files. However, since kt is used to compute TF for every file
F, if kt is exposed it could lead to the loss of integrity on all files.
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4.3.8 Countermeasures

Authenticating the nonce with a secret key means an adversary cannot com-
pute a n′ such n′ is a valid nonce and n′ = AES.Dec(K′, c ⊕ m′) for an arbi-
trary K′ without knowing the secret key, mitigating our attack.

Implementing a “Key Committing AEAD” scheme [17] that binds a key to
a nonce, ciphertext, and tag by computing an additional value KC also pre-
vents an adversary from successfully computing a pair (K′, n′) that is valid
under the Key Committing AEAD scheme, as long as KC is authenticated
with a secret key. This countermeasure also mitigates our attack.

4.4 Kopia

In Section 1.6.4 we introduced Kopia. Here we describe a brief overview of
Kopia’s threat model, data model, and deduplication implementation.

4.4.1 Threat Model

Kopia does not specify a threat model, but from their documentation and
client code we can deduce a threat model which assumes an untrusted server
and an adversary with full server access. This is a weaker model than our
weak adversary as defined in Section 1.3 as it does not include the adver-
sary’s ability to know the plaintext of a specific file in the backup repository.

4.4.2 Data Model

The Kopia client creates backups on a snapshot basis and files are split into
chunks based on a chunking algorithm called Buzhash which we will intro-
duce in Section 5.1. Chunks are associated with file IDs to bind chunks to
their respective files.

4.4.3 Deduplication

Kopia implements chunk-level deduplication by locally hosting a cache that
contains a dictionary of chunk ID to file ID key-value pairs. Whenever the
client creates a new backup each file is chunked and the client checks the
cache for potential duplicate chunks. All duplicates are ignored and all
non-duplicates are uploaded to the server.

4.5 Bupstash

We introduced Bupstash in Section 1.6.5. Here we give a brief overview of
Bupstash’s threat model, data model, and deduplication implementation.
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4.5.1 Threat Model

Bupstash does not specify a specific threat model but does claim that “strong
privacy”, “secure remote access control” and “safety against malicious at-
tacks” are part of their design goals [10]. It appears that they aim to re-
duce the attack surface on the server but do not explicitly mention that they
assume an adversary with full access to the server. Assuming Bupstash’s
threat model contains an adversary with full access to the server, this threat
model is still weaker than our weak adversary as we defined in Section 1.3
because the adversary does not have the ability to know the plaintext of a
specific file in the backup repository.

4.5.2 Data Model

The Bupstash client creates backups on a snapshots basis and splits files,
also called “items” once processed, into chunks based on a simple chunking
algorithm which we will introduce in Section 5.6.

On the file level, the repository on the server consists of a “data” folder
which contains encrypted data chunks, an “item” folder which contains
metadata for each item, a “meta” folder which contains metadata regarding
the repository and garbage collection, and some files which aid in atomicity
and durability of the repository.

4.5.3 Deduplication

The Bupstash client implements chunk-level deduplication by tracking all
uploads to the server in a local cache which they call the “send log”. The
send log contains a list of chunk IDs (keyed Blake3 tags) for all chunks
that were uploaded in the previous backup and a dictionary of file paths
to chunk ID mappings. This allows the Bupstash client to skip over chunks
and files that were previously backed up, which for example happens often
when periodic snapshots of the same directory are taken. Because the send
log only contains chunk IDs for chunks uploaded in the previous backup, a
user can manually save send logs and specify which send log he wants to
use when requesting a backup to optimize deduplication.

4.6 Restic

In Section 1.6.6 we introduced Restic. Here we dive deeper and give a brief
overview of its assumed threat model, its data model, and deduplication
implementation.
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4.6.1 Threat Model

Restic assumes a trusted client, an untrusted server, and an attacker with
full access to the server and the ability to successfully execute MitM attacks.
Under this threat model Restic guarantees “confidentiality and integrity of
your data” [33].

Restic does not assume an attacker to know a specific file in the backup
and thus has a weaker threat model than our assumed weak adversary as
described in Section 1.6.6.

4.6.2 Data Model

The Restic client creates backups on a snapshot basis and splits files into
chunks using a chunking algorithm based on Rabin fingerprints, which we
will introduce in Section 5.2.

On the file level, the repository on the server consists of:

• a “data” folder which contains data chunks encrypted and authenti-
cated with an EtM AEAD scheme using AES-CTRand Poly1305

• an “index” folder which contains “indexes”, files that provide lists
of chunk information including chunk ID, chunk length, and chunk
location in the repository

• a “keys” folder which contains encrypted key files

• a “snapshots” folder which consists of a file for every backup snap-
shotted, containing the paths of the client directories or files which
were snapshotted and metadata such as the time of the snapshot and
the hostname

• some repository metadata files and a configuration file

For all files in the repository (apart from the configuration file), the name
of the file is the SHA-256 hash of the file’s contents. This makes it easy
to verify that there were no accidental modifications to the file, such as in
the case of disk read errors, and is used to uniquely identify the file. Files
in the repository always contain enough data and/or metadata to prevent
brute-force attacks.

4.6.3 Deduplication

The Restic client implements chunk-level deduplication by locally hosting
the “master index” which consists of a list of “pack” IDs, where packs are
objects that contain chunks. Whenever the client creates a new backup each
file is chunked and each chunk’s ID is checked against the master index to
confirm if it is a duplicate or not. If it is a duplicate it is ignored and not
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uploaded to the server. If it is not a duplicate the client marks it as pending
and, once all chunks have been checked for deduplication and marked as
pending, processes all pending chunks and uploads them to the server.
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Chapter 5

Fingerprinting Attacks on Chunking

We saw in Chapter 3 that content-defined chunking is a popular method
to efficiently implement deduplication. We also discussed that this content-
defined chunking is done over the actual chunk data, which implies some
correlation between the chunk length and the chunk data. If no secret is
introduced in the chunking algorithm the length of a chunk leaks a lot
of information about the plaintext. Section 5.1 and 5.2 introduce two of
the most common rolling hash functions that chunking algorithms are built
upon, called Buzhash and Rabin fingerprints. In the following sections, for
each cloud backup solution that we study, we analyze their chunking algo-
rithm implementations in detail. From these analyses, we will derive critical
fingerprinting vulnerabilities and show a practical attack for Borg in 5.3.5,
which allows a malicious server provider to launch fingerprinting attacks for
arbitrary files. This attack extends to Kopia and Restic and possibly other
cloud backup systems that use content-defined chunking as well. Finally,
in Section 5.8 we will discuss possible countermeasures and mitigations for
our discovered vulnerabilities.

5.1 Buzhash

Buzhash [37] is a cyclic polynomial rolling hash. Buzhash takes as its input
a byte window and a hash function that takes a single byte as an input
and outputs a bit string of 32 bits, and produces a (non-cryptographic) hash
of the sliding window by evaluating the polynomial in Figure 5.1. Sliding
the input window one byte to the right does not require recomputing the
entire hash as seen in Figure 5.2, allowing Buzhash to be used efficiently in
a stream fashion (hence the ”rolling hash”). To do this Buzhash maintains a
state, which we name bh. To update the Buzhash state one can simply call the
Buzhash update function with the current state (bh), the byte to be removed
(b1), the byte to be added (b2), and the length of the input window (n).
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Buzhash(k: Byte Array, h: Hash Function)

1 : bh := 0
2 : n := length(k)
3 : for i = 0 to n :
4 : bh := BROTL(bh, 1)⊕ h(k[i])
5 : return bh

Figure 5.1: The Buzhash Algorithm
BROTL(k,i) is the bitwise rotate-left function, applied on the binary representation of k, i times

Buzhash-Update(bh: Integer, b1: Byte, b2: Byte, h: Hash Function, n: Integer)

1 : nmod := n mod 32
2 : bh := BROTL(bh, 1)⊕ BROTL(h(b1), nmod)⊕ h(b2)
3 : return bh

Figure 5.2: The Buzhash Update Algorithm
BROTL(k,i) is the bitwise rotate-left function, applied on the binary representation of k, i times

A new chunk is cut when the k least significant bits of the state bh are all
0. We refer to k as the chunking threshold. To set minimum sizes for the
chunks, some implementations skip the first Sm bytes of input, and only
start evaluating Buzhash after that.

Rolling hashes like Buzhash are commonly used for separating large files
into chunks that can be deduplicated efficiently. This is because they provide
content-defined chunk cuts. For example, two files with different headers
but overlapping content are likely to produce at least some identical chunks.
Compared to a simple fixed chunking algorithm, this allows the beginning
of a file to be changed without all the resulting chunks being different (see
Figure 3.1 and Figure 3.2).

While advantageous for deduplication, content-defined chunking may leak
some information about the file being chunked. This is crucial when the
chunks are being encrypted: encryption does not traditionally hide the
length of the plaintext being encrypted, and in this case, the length of a
chunk itself leaks some information about the plaintext, since the hash is
calculated over the plaintext.

Implementing a chunking algorithm that just uses Buzhash as is without any
secrets (we also call this “plain Buzhash”) would allow an adversary with ac-
cess to a target user’s backup server to execute a trivial fingerprinting attack
by running the chunking algorithm on an arbitrary file F and comparing the
resulting chunk lengths with the lengths of the chunks contained in the tar-
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get user’s repository. If the target user’s repository contains a list of chunks
for which their respective lengths equal the chunk lengths resulting from
chunking F, an adversary can conclude with very high probability that the
target user’s repository contains F and thus the target user has backed up
F. We call this the “plain Buzhash attack”.

This implies that, under the threat models defined by the cloud backup
solutions we study where the adversary has full access to the server, im-
plementing a chunking algorithm which just uses Buzhash as is without any
secrets would trivially break fingerprint resistance. Under the weak adversary
threat model we defined in Section 1.3 plain Buzhash also breaks fingerprint
resistance, as the adversary also has full access to the server.

5.2 Rabin Fingerprint

A Rabin fingerprint [30] of a bit string m with length n is the remainder of
the division of two polynomials over the finite field GF(2). More specifically,
a polynomial f (x) = m0 + m1x + ... + mn−1xn−1, where mi is the i-th bit of
m, is constructed and divided by an irreducible polynomial p(x) of degree
q chosen at random. The remainder r(x) of this division is a polynomial of
degree q − 1 and can be interpreted as a q-bit number.

The Rabin fingerprint scheme is an efficient rolling hash function, as the
computation of r(x) for two different bit strings with overlapping regions
has overlapping summands. For example, let bit string a = m0, m1, ..., m63,
bit string b = m1, m2, ..., m64 and RF(a) be the Rabin fingerprint of a. If
we know RF(a) we can compute RF(b) much more efficiently compared to
having to compute f (x) again.

For an arbitrary file F, content-defined chunking algorithms using Rabin fin-
gerprints start chunking at the specified minimum chunk size and calculate
Rabin fingerprints over a sliding window of a specific size l. The algorithm
cuts a chunk whenever RF(F[i], F[i + 1], ..., F[i + l − 1]) has k trailing zero
bits, where 2k is the specified (desired) average chunk size value in bytes.

As we discussed in Section 5.1, implementing a content-defined chunking
algorithm based on a rolling hash function without any secrets breaks fin-
gerprint resistance under an adversary with full access to the server, and
thus also under a weak adversary. This also applies to chunking algorithms
based on Rabin fingerprints.
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5.3 Borg

5.3.1 Borg’s Buzhash Implementation

To combat the trivial Buzhash attack Borg introduces a 32-bit secret Buzhash chun-
ker seed. As a substitute for a hash function, Borg uses a fixed hash table
that maps single bytes to 32-bit values and XORs every element of the hash
table with the secret chunker seed. Borg claims that this makes chunk size-
based fingerprinting attacks difficult, but we will show that this is not true
by easily extracting the secret Buzhash chunker seed.

The secret chunker seed is held encrypted locally in the key file and is only
shared when specifically requested by the user.

In Borg, the chunking threshold k is by default set to 21, but it can be altered
by users using the HASH MASK BITS configuration parameter. The mini-
mum and maximum chunk sizes have a default value of 219 bytes and 223

bytes respectively and can also be changed by users. Borg achieves the mini-
mum and maximum chunk sizes by, for the minimum size, starting to chunk
only after 219 bytes; for the maximum size forcing a cut after 223 bytes; and
for the average size having a chunk cut if the last 21 bits of the Buzhash equal
zero. The expected chunk size is 1′568′770 bytes and the probability of cut-
ting a chunk after 2 MiB is ≈ 0.527. We provide a short probability analysis
in the Appendix A.1.

5.3.2 Threat Model

In their threat model, Borg assumes an adversary who has full server access
and possesses a set of files that the victim also backs up.

Borg’s documentation recognizes that fingerprint attacks are problematic
[6]:

A Borg repository does not hide the size of the chunks it stores
(size information is needed to operate the repository).

The documentation suggests some workarounds to make size-based finger-
printing difficult [6]:

• using the Buzhash chunker with a secret, random per-repo
chunker seed

• optional obfuscate pseudo compressor with different choices
of algorithm and parameters

• using the fixed chunker with a user-selectable compression
algorithm

Borg’s documentation also claims that the seed prevents chunk size-based
fingerprinting attacks in [5]. This, together with the fact that the Buzhash chun-
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ker is selected by default, means that many Borg users use Buzhash and rely
on the secret chunker seed for fingerprint resistance.

5.3.3 Fixed Chunker

Instead of a Buzhash chunker, a user can specify that he wants to use a
“fixed” chunker with a fixed chunk size p so that every file is chunked
into chunks of size p except for the last chunk. This drastically reduces
deduplication efficiency as we discussed in Chapter 3. Additionally, the
fixed chunker does not protect a user against fingerprinting attacks. Assume
a weak adversary that wants to execute a fingerprinting attack for a file
FA of length l and let n be the number of files in the victim’s repository.
The adversary can calculate lmod = l mod p and search the repository for
chunks of length lmod. The reasoning is that if the victim backed up FA, it
would have been chunked into chunks of length p except for the last chunk,
where the last chunk would have length lmod. If the adversary finds a chunk
of length lmod, he can deduce with probability at least P = (1 − 1

p )
n−1 that

the victim’s repository contains FA. If the adversary does not find a chunk
of length lmod, he can safely deduce that the victim’s repository does not
contain FA.

5.3.4 Extracting the Secret Seed

A trivial way to obtain the secret seed would be to brute-force all the possible
values of the seed. In our weak threat model, we assume the adversary
knows a set of files contained in the repository. It is therefore possible for
the adversary to check the chunk sizes of the known file to verify which
seed guesses were correct.

A deeper mathematical inspection of how Borg’s secret chunker seed inter-
acts with Buzhash reveals that there exists an even easier method to recover
the seed. Let bi be the i-th byte of a chunk c, i ∈ N, and Tj be the j-th
Buzhash table entry for all j ∈ {0, ..., 255}. Let sm(b) be the bitwise rotate-left
function, applied on the binary representation of byte b, m times. Assuming
a default window size of 4095 bytes, the Buzhash of chunk c under seed σ is:

bhσ(c) = s30(h(b0))⊕ s29(h(b1))⊕ ...⊕ s0(h(b31))⊕ s30(h(b32))⊕ ...⊕ s0(h(b4095))
(5.1)

where h(bi) = Ti mod 256 ⊕ σ for all i ∈ N. Due to the linearity of s() and the
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associativity of ⊕ we derive:

bhσ(c) = s30(h(b0))⊕ s29(h(b1))⊕ ... ⊕ s0(h(b31))⊕ s30(h(b32))⊕ ... ⊕ s0(h(b4095))

= s30(T0 ⊕ σ)⊕ s29(T1 ⊕ σ)⊕ ... ⊕ s0(T31 ⊕ σ)

⊕ s30(T32 ⊕ σ)⊕ ... ⊕ s0(T255 ⊕ σ)

= (s30(T0)⊕ s30(σ))⊕ (s29(T1)⊕ s29(σ))⊕ ... ⊕ (s0(T31)⊕ s0(σ))

⊕ (s30(T32)⊕ s30(σ))⊕ ... ⊕ (s0(T255)⊕ s0(σ))

= (s30(σ)⊕ s29(σ)⊕ ... ⊕ s0(σ)⊕ s31(σ)⊕ ...s0(σ))

⊕ (s30(T0)⊕ s29(T1)⊕ ... ⊕ s0(T31)⊕ s31(T32)⊕ ... ⊕ s0(T255))

= s31(σ)⊕ (s30(T0)⊕ s29(T1)⊕ ... ⊕ s0(T31)⊕ s31(T32)⊕ ... ⊕ s0(T255))

(5.2)

From equation 5.2 we can see that the only difference between a Buzhash sum
computed without a seed and Borg’s computed Buzhash sum is a summand
of σ bit rotated left by 31. Let Ci, i ∈ N be arbitrary summands which are
independent of the seed. Whenever we update the Buzhash sum we get the
following:

prevsum = s31(σ)⊕ C1

sum = s(prevsum)⊕ s31(σ ⊕ C2)⊕ (σ ⊕ C3)

= s(s31(σ)⊕ C1)⊕ s31(σ)⊕ σ ⊕ s31(C2)⊕ C3

= σ ⊕ s(C1)⊕ s31(σ)⊕ σ ⊕ s31(C2)⊕ C3

= s31(σ)⊕ C4

(5.3)

Thus an update of the Buzhash sum does not alter the influence the seed has
on the sum. Let bhzero(c) be the Buzhash of a chunk c computed with a zero
seed, and bhσ(c) the Buzhash of chunk c computed with seed σ. From the
conclusions above we derive:

bhzero = s31(0)⊕ (s30(T0)⊕ s29(T1)⊕ ... ⊕ s0(T31)⊕ s31(T32)⊕ ... ⊕ s0(T255))

= s30(T0)⊕ s29(T1)⊕ ... ⊕ s0(T31)⊕ s31(T32)⊕ ... ⊕ s0(T255)

bhσ = s31(σ)⊕ (s30(T0)⊕ s29(T1)⊕ ... ⊕ s0(T31)⊕ s31(T32)⊕ ... ⊕ s0(T255))

bhσ = s31(σ)⊕ bhzero

σ = s(bhzero ⊕ bhσ)

(5.4)

Assuming our chunk was cut because bhσ had k trailing zero bits we con-
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clude

σ[(32 − k) :] = s(bhzero[(32 − k) :]⊕ bhσ[(32 − k) :])
σ[(32 − k) :] = s(bhzero[(32 − k) :]⊕ 0)
σ[(32 − k) :] = s(bhzero[(32 − k) :])
σ[(32 − k) :] = bhzero[(32 − k − 1) : 32]

(5.5)

Thus we can derive k bits of the seed by calculating the Buzhash of a data
input under the zero seed for which we know the Buzhash under the actual
seed has k trailing zero bits. A natural question might be to ask how we can
extract the remaining 32 − k bits of the seed. As an observant reader may
already have noticed, only those k bits of the seed ever have any influence,
and the remaining 32 − k bits might as well not exist.

Remark 5.1 In Borg, the top 32− k seed bits never impact the chunking algorithm.
This is because Borg only uses the secret Buzhash chunker seed to calculate the
Buzhash sum, which is only used to check if its k trailing bits are all zeros, and
the fact that at any point only bits 32 − k to 31 of the seed have an effect on the k
trailing bits of the seed, as seen in Equation 5.5. It follows that the seed would be
even easier to brute-force.

Theorem 5.2 (Seed Recovery Theorem) Let bhzero be the Buzhash under the
zero seed of a chunk c in a Borg repository R with length l greater than the min-
imum chunk size and smaller than the maximum chunk size, and σ be the secret
chunker seed of R. By the definition of Buzhash chunking, we know that when
c was chunked, the chunking algorithm state bhσ had k trailing zero bits. Let us
assume that we know the content of c. Then we can recover the least significant
bits of the secret seed σ by computing the zero-seed Buzhash state bhzero over c:
σ[(32 − k) :] = bhzero[(32 − k − 1) : 32].

To apply Equation 5.5 and extract our victim’s seed in practice we need a
string of data for which we know that our victim backed it up and that a
chunk was cut at the last bit because bhσ had k trailing zero bits. By the spec-
ification of the weak adversary threat model, we assume that the adversary
knows a specific file F in the backup. If F is big enough the probability of all
chunks bhσ never having k trailing zero bits becomes negligible. In practice,
for a default average chunk size value of k = 21, F being 8 MiB or larger
is sufficient. Because chunks are stored sequentially in the segment files,
the adversary can search through the repository’s segment files to check for
chunk sequences that add up to the length of F. Once we have a chunk of
size n for which we deduced that it was chunked because bhσ had k trailing
bits, we can take the corresponding n bits of F concatenated with the follow-
ing 4095 bits. This gives us a data string for which the Buzhash sum bhσ at
the n-th bit has 21 trailing zero bits. Calculating the Buzhash sum under the
zero seed for this data string gives us all we need as seen in Equation 5.5.
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In conclusion, we only require knowledge of a file that is sufficiently large
to extract the entire secret Buzhash chunker seed.

5.3.5 Proof of Concept Attack

We describe an attack that allows a weak adversary to extract the secret
chunker seed and successfully execute a fingerprinting attack on an arbi-
trary file using the plain Buzhash attack we described in Section 5.1. We
wrote a Python script to validate this attack and were able to consistently
extract the secret chunker seed if the file we knew was sufficiently large (> 8
MiB). Once we had the secret chunker seed, executing the plain Buzhash at-
tack was trivial and we were able to launch fingerprinting attacks for arbi-
trary files without fail.

Assume we have knowledge of a file F of sufficiently large size l f in the
victim’s repository and we want to execute a fingerprinting attack for a
file FA. We access the repository’s index file which contains the location
of each data chunk in the repository. Going through each segment file we
check for a list of subsequent chunks in the same segment file for which
the data lengths of the chunks sum up to l f . Having found the chunks
corresponding to our known file F, we note the length of the first chunk lc.
We take the first lc + 4095 bytes of file F and run Buzhash on it, saving the
result as bhzero. Using Theorem 5.2 with bhzero and the default k = 21 we
can fully recover the secret chunker seed σ. With σ we can calculate bhσ for
file FA and chunk it the same way the victim’s repository would chunk it.
This gives us a list of n chunk lengths la1, la2, ..., lan. Finally, we check the
repository for data chunks of lengths la1, la2, ..., lan. If we find a matching
chunk for every la, we can deduce with a very high probability that the
victim’s repository contains FA. If we do not find a match, we can safely
deduce that the victim’s repository does not contain FA.

5.3.6 Borg’s Documentation

We discovered this attack independently, but we later noticed that the same
attack was first discovered in Borg’s Github issue 3687 [16]. At the time,
Borg’s documentation mentioned this attack including the fact that [38]:

Within our attack model, an attacker possessing a specific set of
files that he assumes that the victim also possesses (and backups
into the repository) could try a brute force fingerprinting attack
based on the chunk sizes in the repository to prove his assump-
tion.

Borg’s documentation still mentions this problem today [7]. However, it is
contained in the wrong section (the “Fixed Chunker” section) and shortly
thereafter Borg’s documentation mentions that, for the Buzhash chunker, the
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secret chunker seed makes fingerprinting more difficult, which we showed
is not true.

We commend Borg for warning its users of this vulnerability at the time, but
we can see that since then this warning has been eroded from Borg’s docu-
mentation and users are unknowingly exposing themselves to fingerprinting
vulnerabilities.

5.4 Tarsnap

Tarsnap implements its own chunking algorithm based on the computation
of some polynomials with parameters derived from a secret key. Tarsnap’s
minimum chunk size is 4 KiB, the maximum chunk size is 261′120 bytes and
the average chunk size is 65′536 bytes.

As Tarsnap’s chunking algorithm is constructed in a much more complex
way compared to other cloud backup solutions that we study, an in-depth
analysis of Tarsnap’s chunking algorithm is out of scope for this thesis.

5.5 Kopia

Kopia uses Buzhash and implements it by using imported functions from
a Buzhash implementation written by Duquesne [14]. This implementation
uses a fixed hash table as a hash function and Kopia specifies a 64 byte
rolling window size, 8 MiB maximum chunk size, 2 MiB minimum chunk
size, and 4 MiB average chunk size. Further, Kopia does not use the standard
method of calculating an initial hash over the initial rolling window. Instead,
Kopia generates an empty rolling window and starts rolling from the first
byte after the minimum chunk size.

Kopia does not introduce any secrets in the chunking process. This leaves
Kopia vulnerable to the plain Buzhash attack shown in 5.1 and breaks fin-
gerprint resistance under its threat model.

5.6 Bupstash

Bupstash’s chunking algorithm uses a rolling hash function, called “roll-
sum”, which is a very simple, modified version of Buzhash where instead of
using the bit rotate left (BROTL) function to rotate values by 1, Bupstash’s
rollsum update function simply shifts the state left by 1. Bupstash’s rollsum
does not use a sliding window. Instead, the initial state rs is 0, and for every
new byte Bupstash’s rollsum left-shifts rs by 1 and XORs it with the new
byte. Bupstash’s rollsum uses a hash function h which hashes individual
bytes to 4 byte byte string. This means at any point only the most recently
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Rollsum-Update(rs: Integer, b: Byte, h: Hash Function)

1 : rs := (rs ≪ 1)⊕ h(b)
2 : return rs

Figure 5.3: The Rollsum Update Algorithm

added 32 bytes influence rs, as a newly added byte b is left-shifted 32 times
after 32 iterations, removing it from the equation. We describe the pseu-
docode of the rollsum update function in Figure 5.3. The minimum chunk
size is 8 KiB, the maximum chunk size is 20 MiB and the average chunk size
is 2 MiB, as a chunk is cut whenever rs has 21 trailing zero bits.

For the hash function h in Bupstash’s rollsum implementation Bupstash’s
chunking algorithm uses a 256-element hash table derived from a determin-
istic ChaCha20call with a secret 32 byte key. Every element of the hash table
is a 4 byte byte string. This prevents the plain Buzhash attack applied to
Bupstash’s chunking algorithm as long as the secret key or the hash table
cannot be extracted.

However, due to the nature of how Bupstash’s rollsum works, rs leaks in-
formation about the individual hashes of the last 32 bytes of a chunk. Let
b0, b1, ..., b31 be the last 32 bytes of the plaintext of a chunk that the adversary
knows. We know that rs = (h(b0) ≪ 31)⊕ (h(b1) ≪ 30)⊕ ... ⊕ (h(b30) ≪
1) ⊕ h(b31). Because rs must have 21 trailing zero bits, the adversary can
deduce that h(b31)[31] = 0, h(b31)[30]⊕ h(b30)[31] = 0, and so on.

Under our weak adversary threat model this is not enough information to
conclusively extract the hash table, and thus we did not find a practical at-
tack for Bupstash. We conjecture that a strong adversary, however, could
easily extract the hash table by injecting many files and applying linear al-
gebra, and with the hash table successfully execute a plain Buzhash attack
adapted to Bupstash’s chunking algorithm.

5.7 Restic

Restic’s chunking algorithm uses Rabin fingerprints over a 64 byte sliding
window with a minimum chunk size of 512 KiB, a maximum chunk size of
8 MiB and an average chunk size of 1 MiB [32].

Restic does not introduce any secrets in the chunking process. This makes
Restic vulnerable to the plain Rabin fingerprints attack we described in Sec-
tion 5.2 and breaks fingerprint resistance under Restic’s threat model.
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5.8 Mitigations

In this chapter, we showed that many popular cloud backup solutions are
vulnerable to the plain Buzhash and Rabin fingerprint attacks which break
fingerprint resistance under the corresponding cloud backup solution’s threat
model. In Section 5.3.1 we explained that Borg introduces a secret chun-
ker seed to prevent the plain Buzhash attack, but their countermeasure ulti-
mately fails as it is possible to fully recover the secret chunker seed as we
showed in Section 5.3.4.

To prevent our chunk size-based fingerprinting attacks we must target the
root problem, which is the fact that the result of the polynomial being eval-
uated for chunking is a non-keyed function of the plaintext and both the
result of the polynomial and the function are available to an adversary un-
der a standard threat model. Ideally, we want a PRF that works as a secure
rolling hash function.

We recommend a secure rolling hash function suggested by user D.W. on
the Cryptography Stack Exchange Q&A website [12]. D.W. proposes the
rolling hash function construction Fk1,k2(x) = Ek1(Rk2(x)) where Rk2(·) is a
non-cryptographic rolling hash function (e.g. Buzhash or Rabin fingerprint),
Ek1 is a cryptographically secure block cipher such as AES, and k1, k2 are
secret keys. For Rk2 the parameters of the rolling hash function should be
based on k2, e.g. the average chunk size.

This is still a rolling hash function, as for any input x and corresponding
output y = Fk1,k2(x) we can compute z = E−1

k1 (y), update z with the corre-
sponding update function of R to get z′, and encrypt z′ for which we get
y′ = Ek1(z′). Updating the input x to x′ would give us u′ = Rk2(x′) = z′ and
thus Ek1(u′) = Ek1(Rk2(x′)) = Ek1(z′) = y′.

D.W. argues that F is a secure PRF because:

(1) if R is universal and E is a PRF, then E ◦ R is a PRF; (2) if
E is a PRP with large domain, then E is a PRF. Of course, the
definition of security for a block cipher is that it should be a PRP.
Consequently, if E is a secure block cipher, then it is a secure PRF,
and so too will F be. A PRF (pseudorandom function) provides
exactly the security property you want; it is the right way to for-
malize what you mean by ”cryptographic security” for a keyed
hash.

This secure rolling hash function construction prevents our attack on Borg
and the plain Buzhash and Rabin fingerprint attacks, as our Borg attack re-
quires knowledge of the secret chunker seed and the plain Buzhash and
Rabin attacks require the rolling hash function to not be keyed. However,
we cannot formally prove that this rolling hash function prevents finger-
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printing attacks in general, as a formal definition of fingerprinting has yet
to be defined.
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Chapter 6

Conclusion

We endeavored to analyze security properties and discover potential vul-
nerabilities of commonly used cloud backup solutions. To this end, we de-
fined two threat models, a weak adversary, and a strong adversary, defined
fingerprint resistance in the context of cloud backup solutions, and stud-
ied popular cloud backup solutions for achieved (or non-achieved) security
properties under our threat models.

Although we did not find attacks against data confidentiality, data integrity,
or metadata integrity thanks to their simple design and general understand-
ing of AEAD usage, our analysis of six popular cloud backup solutions in
Chapter 5 showed that many cloud backup solutions that provide chunk-
level data deduplication are vulnerable to side-channel attacks which break
fingerprinting resistance, even against our weak adversary as defined in Sec-
tion 1.3.

6.1 Discussion

An adversary with the ability to successfully execute a fingerprinting attack
can check for an arbitrary user if the user possesses any specific files. This
adversary might take the form of, for example, a nation-state that aspires to
censor certain books or find independent journalists who are acting against
the will of the state. If some journalists communicate amongst themselves
and share a file that the nation-state knows of, for example, a guidebook
on how to successfully evade the nation-state’s surveillance, the nation-state
can test all users of a backup solutions’ backups for that file and discover
the identities of the journalists.

We showed that, as of the date of publication of this thesis, three of the
cloud backup solutions we studied including Borg, Kopia, and Restic are
vulnerable to fingerprinting attacks under the assumption of a weak adver-
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sary with full access to the server and knowledge of a specific file. Tarsnap
implements a complex chunking algorithm with parameters derived from
secret keys, for which we leave its security analysis for further research,
and Bupstash introduces a secret that prevents our attacks against content-
defined chunking. EteSync does not provide deduplication and is thus not
exploitable through our attacks.

Borg introduces a secret chunker seed to counteract the plain Buzhash at-
tack outlined in Section 5.1. However, we rediscovered an attack on Borg’s
implementation and showed that it is trivial for a weak adversary to ex-
tract the secret chunker seed, which nullifies Borg’s mitigation of the plain
Buzhash attack and thus breaks fingerprinting resistance in Borg even under
the weak adversary.

In Section 5.8 we recommended a method to implement secure content-
defined chunking using a secure block cipher such as AES. We highly rec-
ommend all cloud backup solutions that support chunk-level deduplication
using content-defined chunking to implement this scheme and secure them-
selves against fingerprinting attacks.

6.2 Future Work

We showed that content-defined chunking algorithms that use Buzhash or
Rabin fingerprints as is without introducing any secrets do not provide fin-
gerprint resistance even against a weak adversary. Our analysis focused
on six individual cloud backup solutions and we found half of them to be
vulnerable to fingerprinting attacks.

Name Content-defined Chunking Vulnerable to Fingerprinting
Borg ✓ ✓

EteSync ✗ ✗

Tarsnap ✓ ?
Kopia ✓ ✓

Bupstash ✓ ?
Restic ✓ ✓

Further, Tarsnap’s implementation of content-defined chunking evaluates
polynomials with parameters derived from secret keys. A deep analysis of
the security of this scheme was out of scope for this thesis, but we assume
that there exists some plaintext and parameter information is leaked. Bup-
stash’s chunking algorithm implementation also reveals some information
about the secret hash table.

Thus we propose that further research focus on the security of other cloud
backup solutions that support chunk-level deduplication with content-defined
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chunking, and specific implementations such as Tarsnap’s and Bupstash’s
chunking algorithms.
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Appendix A

Appendix

A.1 Borg Chunk Size Probability Analysis

Let X be a random variable defined as the amount of bytes of input data
resulting in a cut by the last k = 21 bits of the Buzhash resulting in zero.
Assuming a uniformly distributed hash table and a uniformly distributed
hash input, the probability of the Buzhash resulting in a chunk after k bytes
is:

Pr[X = k] = 0 for k < 219 + 4095

Pr[X = k] =
1

221 for k = 219 + 4095

Pr[X = k] = (1 − 1
221 )

1
221 for k = 219 + 4095 + 1

Pr[X = k] = (1 − 1
221 )

2 1
221 for k = 219 + 4095 + 2

...

Pr[X = k] = (1 − 1
221 )

223−219 1
221 for k = 223 + 4095

Pr[X = k] = 0 for k > 223 + 4095

i.e.

Pr[X = k] =

{
(1 − 1

221 )
k−219−4095 1

221 for 219 + 4095 ≤ k ≤ 223 + 4095
0 else

(A.1)
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thus X is geometrically distributed X ∼ Geo( 1
221 ) for 219 + 4095 ≤ X ≤

223 + 4095, from which we derive

Pr[X ≤ k] =


0 for k < 219 + 4095
1 − (1 − 1

221 )
223−219+1 for k > 223 + 4095

1 − (1 − 1
221 )

k−(219+4095−1) else

(A.2)

We expect to cut a chunk after 1568770 bytes

E[X] = 221 − (219 + 4095 − 1)
= 1568770

(A.3)

The probability of a chunk being cut after 2 MiB is

Pr[X ≤ 221] = 1 − (1 − 1
221 )

221−(219+4095−1)

≈ 0.527
(A.4)
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