
Concrete IND-CCA Security of
NIST PQC KEMs in the ROM

Bachelor Thesis

M. Himmelberger

August 26, 2022

Advisors: Prof. Dr. Kenny Paterson, V. Maram

Applied Cryptography Group
Institute of Information Security

Department of Computer Science, ETH Zürich

Abstract

Public-Key Cryptography is at the heart of today’s internet but with
the advent of quantum-computing on the horizon, new encryption
schemes are needed to ensure continued confidentiality of our data.
The National Institute of Standards and Technology (NIST), at the time
of writing, is in the process of selecting and standardizing post-quantum
algorithms for this purpose. Many of the finalists employ variants
of the FO transformation presented in [FO13] as their constructions.
However, most proposals provide only little in terms of comprehensive
proofs for the concrete classical security of their suggested schemes
(e.g. their security in the ROM) and their changes compared to [FO13]
are often not discussed in detail.

In this work, we provide security reductions that show how the security
of the NIST round 3 finalists in the KEM category can be bounded
in terms of their underlying hardness assumptions. We employ the
modular framework for FO constructions from [HHK17] to describe the
finalists’ constructions in detail. We then provide concrete, stand-alone
and tight reduction proofs in the ROM for all of the round 3 finalists
NTRU, Classic McEliece, CRYSTALS-KYBER and SABER. We also give
an overview of our assumptions and the obstacles we encountered in
each case and we compare our results to the respective specification
documents. Lastly, we slightly improve a bound in one of the theorems
in [HHK17] without requiring any additional assumptions.

These proofs serve as a first step towards formally verifying the secu-
rity proofs for NIST finalists. They also give us confidence in the con-
fidentiality provided by finalists’ constructions given their underlying
hardness assumptions. And finally, we hope that many of our methods
and results can be reused in order to analyze other KEM constructions
in the ROM (such as other NIST candidates) in a similar fashion.

i

Acknowledgement

I would like to extend my thanks first and foremost to my supervisors Varun
Maram and Prof. Dr. Kenny Paterson for helping me find and tackle a topic
that I previously had no experience with. Every meeting helped me to im-
prove my thesis and I have learned a lot in the process.

Further, I want to thank Dr. Kathrin Hövelmanns to whose input I owe the
idea behind the reductions for CRYSTALS-KYBER and SABER and who has
helped me understand the previous research in this space.

Last but not least, I thank my friends, my family, my girlfriend and our cat
for helping me to stay motivated and for supporting me in countless ways
during all of my studies so far.

ii

Contents

Contents iii

1 Introduction 1
1.1 Our Work . 2
1.2 Open Questions and Round 4 3

2 Preliminaries 5
2.1 Notation . 5
2.2 Public-Key Encryption . 6
2.3 KEM . 8
2.4 Security Games . 8
2.5 Lemmas . 10

3 Analysis of NIST Finalists 13
3.1 NTRU . 13

3.1.1 Modified U ̸⊥m transformation 13
3.1.2 Security of NTRU . 18

3.2 Classic McEliece . 21
3.3 CRYSTALS-KYBER and SABER 28

3.3.1 Assumptions . 29
3.3.2 Instantiations . 29
3.3.3 Slightly improved version of [HHK17, Theorem 3.2] . 30
3.3.4 Security of the KS transform 31
3.3.5 Security of the concrete schemes 41

3.4 Summary of Results . 43

A Proof of Theorem 3.8 47

Bibliography 51

iii

Chapter 1

Introduction

Ours is a digital society: No matter whether we are browsing the web, using
electronic banking, texting our friends or trading crypto currencies, most of
us are able to enjoy a global and secure web. An interconnected world like
this would be unthinkable without modern cryptography at its core. In all
of the examples above, cryptography secures our communication against a
third party modifying our messages, it hides the contents of the messages
behind encryption and it is used to authenticate who we are talking to. It is
safe to say that cryptography is essential to our society today.

However, as technology advances and with quantum computing on the hori-
zon, cryptography’s very foundation is being challenged. Problems that
were believed to be infeasible for any realistic number of classical computers
seem in reach of sufficiently large quantum computers and the assumptions
underlying the ”unbreakability” of modern cryptography are being called
into question.

Shor’s algorithm [Sho99] is a well-known quantum algorithm that poses a
risk to all asymmetric cryptography schemes relying on the discrete log-
arithm problem or on the factorization of big integers (see [MVDJ18] for
an overview). This includes the widely used RSA scheme, which underlies
much of the Internet’s protocols, as well as more recent schemes like ECDSA
employing elliptic curves to digitally sign messages. Another quantum al-
gorithm, Grover’s algorithm [Gro96], forces users of most symmetric cryp-
tography schemes to approximately double the size of their keys to achieve
the same level of security as before.

Recently, researchers have been focusing more and more on studying the
short-comings of existing algorithms and on finding alternatives that are
secure even under the presence of adversaries with access to quantum com-
puters. The National Institute of Standards and Technology (NIST) has gone
on the record saying that while this is not as big of an issue for symmet-

1

1. Introduction

ric primitives like AES (with sufficiently large keys) or for the security of
modern hash functions like SHA-256 or SHA-3, quantum computers pose
a much more existential threat to asymmetric schemes like RSA, ECDSA,
ECDH and DSA, which need to be replaced by secure schemes in the near
future [CJL+16].

In an effort to establish suitable so-called ”post-quantum” cryptographic
primitives, NIST has announced a standardization process in late 2016 in
order to find suitable algorithms for digital signatures, public-key encryp-
tion (PKE), as well as key encapsulation. The process proceeds similar to
a competition where applicants submit proposals for algorithms to be stan-
dardized that can then be analyzed by the academic community before NIST
selects a subset of algorithms to advance to the subsequent round.

At the time of starting this thesis, the competition had reached Round 3
[AASA+20] and there were 4 finalists left in the category for public-key
encryption and key encapsulation. These were Classic McEliece [ABC+20],
CRYSTALS-KYBER [SAB+20], NTRU [CDH+20] and SABER [DKR+20].

These proposed algorithms in the PKE category do not directly tackle se-
cure encryption of arbitrarily large messages as would be desirable. Instead
however, confidential communication can be established using the so-called
KEM-DEM composition as seen in [CS03]: One party uses a key encapsu-
lation mechanism (KEM) to generate a fixed-length key and then securely
transmits it to the other party. Using this shared secret key, these parties can
now use a faster symmetric encryption scheme to encrypt variable-length
messages securely. This so-called hybrid encryption is used in many mod-
ern protocols such as TLS, SSH, OpenPGP and PKCS #7.

Towards this goal, all of the finalists above specified a weakly secure PKE
scheme (for fixed-length messages) and then used variants of the Fujisaki-
Okamoto (FO) transformation [FO13] to create a KEM from their PKE scheme.
This KEM is then shown to be strongly secure in an idealized model known
as the so-called random oracle model (ROM).

1.1 Our Work

Our thesis focuses on exactly how the finalists’ transformations to their un-
derlying PKE schemes differ from the FO transformation. It also identifies
complications to the security proofs that may have been overlooked in the
NIST proposals. We then proceed to re-create the exact transformations used
in the proposals within the framework of the modular FO transformations
provided by [HHK17] and finally, we prove the security of the NIST Round
3 finalists in the ROM under appropriate assumptions. In the process, we
also slightly improve upon a bound for the security guarantees of one of the
FO transformations in [HHK17].

2

1.2. Open Questions and Round 4

It is worth noting that the ROM does not correspond to the security of these
algorithms against quantum computers. Instead the ROM only captures the
security against classical computers1.

Nonetheless, our work is relevant to the current discussion, because we pro-
vide an overview of the exact PKE to KEM transformations used in each
proposal and it is important that we can also be confident in the security of
these algorithms in a world without quantum computers. The four finalists’
proposals, at the time of writing, do not provide sufficiently formal proofs
of their security in the ROM.

As an example, the schemes SABER and CRYSTALS-KYBER only cite theo-
rems from [HHK17] and argue that their transformation is therefore secure
in the ROM. Meanwhile, they neglect the fact that the transformations used
by both schemes are not merely compositions of the FO transformations
presented in [HHK17]. Extra steps and additional reductions are needed
to successfully deduce the security of their schemes in the way the authors
claim. For both schemes, we derive a significantly different bound which
also involves the γ-spreadness of the underlying PKE schemes, essentially a
measure of the entropy of ciphertexts generated by the probabilistic encryp-
tion algorithm. This parameter was absent from both bounds presented in
the respective specifications.

The structure of this thesis is as follows: In Chapter 2, we define the relevant
concepts and give the security definitions that are relevant for the remainder
of the thesis. Chapter 3 examines the four finalists in sequence and provides
reductions proving IND-CCA security for each. In Section 3.4, we summarize
our findings and contrast them with the content of the respective specifica-
tion documents. The improvement upon one of the theorems in [HHK17] as
well as its proof can be found in Theorem 3.8 and Appendix A respectively.

1.2 Open Questions and Round 4

This thesis only focuses on the confidentiality of the schemes in the ROM,
i.e. their ability to hide the content of encrypted data in a classical set-
ting. It is important to also study other related notions such as anonymity
and robustness which play a crucial role in upcoming technologies such as
anonymous cryptocurrencies and electronic voting systems. Recent work in

1The ROM technically also allows for quantum computers which use only classical
queries to the random oracle (but can still use quantum computation locally). Because, how-
ever, the hash function used to implement the random oracle in practice is public knowledge,
the adversary could try to implement it using a quantum circuit. Therefore, this specific
case of adversaries using quantum computation locally but not for random oracle queries is
somewhat unrealistic. That is why research focuses on a less restrictive model (the so-called
QROM) that also allows quantum queries to the oracle. This newer model is then used to
prove the post-quantum security of these algorithms.

3

1. Introduction

this direction has been conducted in [GMP22] and [Xag22]. Further, all of
these notions can also be studied in the more powerful quantum random
oracle model.

In addition, our goal is only to prove the security of the KEM schemes under
the assumption that the underlying PKE schemes are secure. Whether or not
that is justified and how secure these schemes are in concrete terms, we also
leave open.

During the final two months of writing this thesis, NIST has closed the third
round of the competition after very nearly two years of active research into
the current proposals [AAC+22]. From the four round 3 finalists we con-
sidered, NIST has selected CRYSTALS-KYBER for standardization. Classic
McEliece has advanced into the fourth round, as have three of the alternate
round 3 KEM candidates that we did not study in this work. The remaining
finalists were no longer considered.

4

Chapter 2

Preliminaries

2.1 Notation

As we borrow a lot of notation from [HHK17], we briefly re-state the relevant
parts here.

For a set S, |S| denotes the cardinality of S. For a finite set S, we denote the
sampling of a uniform random element x by x ←$ S, while we denote the
sampling according to some distribution D by x ← D(S). By JBK we denote
the bit that is 1 if the Boolean Statement B is true, and otherwise 0. If E
denotes a probabilistic event, then E denotes its negation.

Algorithms We denote deterministic computation of an algorithm A on in-
put x by y := A(x). We denote algorithms with access to an oracle O by AO.
Unless stated otherwise, we assume all our algorithms to be probabilistic
and denote the computation by y← A(x). To denote the event of algorithm
A outputting y upon input of x, we write A(x)⇒ y.

Random Oracles We will repeatedly model hash functions as random or-
acles. We call this idealization the Random Oracle Model (ROM). To keep
record of the queries issued to a hash function H, we will use a hash list LH
that contains all tuples (x, H(x)) of arguments x in the domain of H that H
was queried on and the respective answers H(x). We make the convention
that H(x) = ⊥ for all x not in the domain of H.

Games Following [Sho04, BR06], we use code-based games. We implicitly
assume Boolean flags to be initialized to false, numerical types to 0, sets to
∅, and strings to the empty string ϵ unless otherwise noted. We make the
convention that a procedure terminates once it has returned an output. Fur-
ther, procedures that abort and whose output is used yield ⊥. We also make
the following convention: Whenever we use the number of the adversary’s

5

2. Preliminaries

oracle queries (such as qH), we count the total number of times that oracle
is executed in the experiment. That is, the number of explicit queries to the
oracle made by the adversary plus the number of implicit queries made by
the experiment (such as by another oracle defined in terms of the first one).

2.2 Public-Key Encryption

Symmetric cryptography, mentioned briefly in the introduction, captures
cryptographic schemes where both parties share a common key that can be
used to both encrypt and decrypt messages. In this work, we study a certain
kind of asymmetric cryptography, namely public-key encryption (PKE). Let
there be a message spaceM, a space of ciphertexts C, a public key space PK
and a private key space SK. A PKE scheme is defined by three procedures
PKE = (KGen,Enc,Dec) which satisfy the following:

• KGen randomly returns a pair (pk, sk) ∈ PK × SK of public and pri-
vate key respectively. This procedure optionally takes a so-called se-
curity parameter (denoted 1K) as argument.

• Enc takes two arguments: pk ∈ PK and m ∈ M. Enc returns a value
c ∈ C, possibly in a randomized way. If necessary, we explicitly specify
the randomness used by encryption as another argument r ∈ R where
R is an appropriate randomness space for the scheme.

• Dec is a deterministic procedure taking two arguments: sk ∈ SK and
c ∈ C. It outputs either a message m ∈ M or ⊥ ̸∈ M, a special symbol
denoting decryption failure.

Determinism A PKE scheme is called deterministic if Enc is a determinis-
tic procedure, i.e. for the same pair of inputs (pk, m), we will always get
the same output c. We use the abbreviation DPKE for deterministic PKE
schemes.

Correctness A perfectly correct PKE scheme is one that satisfies

∀m. Pr[Dec(sk,Enc(pk, m)) = m] = 1

where (pk, sk) ← KGen and the probability is taken over the randomness in
Enc and KGen. To define partial correctness, we follow [HHK17] and rely
on two games defined in Figure 2.1. We need to differentiate between PKE
schemes that do not make use of a random oracle and those that do. In the
latter case, the power of an adversary to find messages violating correctness
might depend on the number of queries to the random oracle.

A PKE scheme that does not use a random oracle is called δ-correct if

Pr[CORAPKE ⇒ 1] ≤ δ

6

2.2. Public-Key Encryption

GAME COR

01 (pk, sk)← KGen(1K)
02 m← A(pk, sk)
03 c← Enc(pk, m)

04 return JDec(sk, c) ̸= mK

GAME COR-RO

05 (pk, sk)← KGen(1K)

06 m← AG(pk, sk)
07 c← Enc(pk, m)

08 return JDec(sk, c) ̸= mK

Figure 2.1: Correctness games COR and COR-RO for a scheme PKE = (KGen,Enc,Dec).

for all (possibly unbounded) adversaries A.
A PKE scheme which does use a random oracle G is called δ-correct if

Pr[COR-ROAPKE ⇒ 1] ≤ δ(qG)

for all (possibly unbounded) adversaries A issuing at most qG queries to G.

In the second case, δ is a function while in the first case, δ is a constant. The
first case can thus be viewed as a special case of the second where qG = 0.

Rigidity As in [BP18], we define a DPKE scheme to be rigid, if for all key
pairs (pk, sk) ← KGen, and all ciphertexts c, it holds that either Dec(sk, c) =
⊥ or Enc(pk,Dec(sk, c)) = c. Intuitively, rigidity captures the property that
there is only at most a single ciphertext decrypting to each message while
correctness talks about encrypted messages being recovered properly after
decryption.

Gamma spreadness As in [FO13, HHK17], we define the min-entropy of
Enc(pk, m) by

γ(pk, m) := − log max
c∈C

Pr
r←R

[c = Enc(pk, m; r)]

where (pk, sk) ← KGen and m ∈ M. We say that PKE is γ-spread if, for all
(pk, sk) ← KGen and every message m ∈ M, γ(pk, m) ≥ γ. While we won’t
use this definition exactly later on, we will make use of a consequence of it,
namely that in a γ-spread scheme, for all (pk, sk) ← KGen, every message
m ∈ M and every ciphertext c ∈ C,

Pr
r←R

[c = Enc(pk, m; r)] ≤ 2−γ

Rejection A KEM scheme’s decapsulation function is often defined on at
least some inputs that cannot be produced by encapsulation using the cor-
responding public key. In these cases, the scheme may choose to notify the
user of the failure by outputting ⊥. In this case, we say that the scheme has
explicit rejection. Alternatively, the scheme might output some K ∈ K, pos-
sibly pseudo-randomly, and the failure might not be immediately obvious.
These schemes are said to have implicit rejection.

7

2. Preliminaries

2.3 KEM

Intuitively, while a PKE scheme is used to encrypt and decrypt arbitrary
messages, a key encapsulation mechanism (KEM) aims to instead generate
and distribute a shared key. Formally, let there be a key space K and a
space of ciphertexts C as well as public and private key spaces PK and
SK respectively. A KEM scheme is defined by three procedures KEM =
(KGen,Encaps,Decaps) which satisfy the following:

• KGen randomly returns a pair (pk, sk) ∈ PK × SK of public and pri-
vate key respectively. This procedure optionally takes a so-called se-
curity parameter (denoted 1K) as argument.

• Encaps (short for encapsulation) takes only pk ∈ PK as an argument
and returns a pair (K, c) ∈ K × C in a randomized way.

• Decaps is a deterministic procedure taking two arguments: sk ∈ SK
and c ∈ C. It outputs either a key K ∈ K or ⊥ ̸∈ K, a special symbol
denoting decapsulation failure.

Correctness A KEM scheme can also be perfectly correct, namely if
Decaps(sk, c) = K for all (pk, sk) ← KGen and every (K, c) ← Encaps(pk).
Further, we also define δ-correctness for KEM schemes completely analo-
gously to the definition for PKE schemes but there is no ”worst input” that
the adversary is allowed to pick, so we opt for a definition without games.

A KEM scheme is called δ-correct if

Pr[Decaps(sk, c) ̸= K | (pk, sk)← KGen; (K, c)← Encaps(pk)] ≤ δ

where the probability is taken over the randomness used by KGen and
Encaps. Note that, as there is no game-based definition and no adversary,
we do not need to consider the amount of oracle queries possibly involved
in these procedures.

2.4 Security Games

We previously talked about weakly and strongly secure schemes, two no-
tions which we will now formalize. ”Weakly secure” is what we will define
as OW-CPA or IND-CPA and ”strongly secure” will correspond to IND-CCA
security. In this work, we are concerned only with the confidentiality these
schemes provide and we use security and confidentiality interchangeably.

PKE Security For the security of a PKE scheme, we introduce several no-
tions to express that given a ciphertext and public key, it is hard for an
adversary to reconstruct the corresponding plaintext: One-Wayness under

8

2.4. Security Games

Chosen Plaintext Attacks (OW-CPA), One-Wayness under Plaintext Check-
ing Attacks (OW-PCA), One-Wayness under Validity Checking Attacks (OW-
VA) and One-Wayness under Plaintext and Validity Checking Attacks (OW-
PCVA).

These notions differ only in the capabilities available to the adversary. In all
One-Wayness games, the adversary is given a public key and an encryption
of a random message as inputs in the security game and it has access to
the random oracle (if any) as part of the ROM. Depending on the security
notion in question, the adversary has access to these additional oracles in
the OW-ATK game:

OATK :=


− ATK = CPA

Pco ATK = PCA

Cvo ATK = VA

Pco, Cvo ATK = PCVA

where Pco is a plaintext checking oracle and Cvo is a ciphertext validity
oracle. Pco checks if a given plaintext (⊥ is not a valid input) is indeed the
decryption of a given ciphertext. Cvo checks whether a given ciphertext has
any valid decryption (but it may not be called on c∗).

Following [SXY18], we define these games in terms of a distribution D on
the message space. This yields more general definitions than in [HHK17]
but we can recover the more standard notions of One-Wayness by using
D := U where U is the uniform distribution (on messages). If D is missing
from the notations defined below, we implicitly mean D = U .

The games and the semantics of the oracles in question are defined formally
in Figure 2.2. We also define an adversary’s OW-ATK advantage in these
games (against a scheme PKE) as

Adv OW-ATK
PKE, D (A) := Pr[OW-ATKAPKE,D ⇒ 1]

Another notion we define for PKE schemes is called Indistinguishability un-
der Chosen Plaintext Attacks (IND-CPA). This is a stronger notion than OW-
CPA if the message space is large enough (see [HHK17, Lemma 2.3]). The
IND-CPA security game is defined in Figure 2.3 and we define an adversary’s
IND-CPA advantage (against a scheme PKE) as

Adv IND-CPA
PKE (A) :=

∣∣∣∣Pr[IND-CPAAPKE ⇒ 1]− 1
2

∣∣∣∣
9

2. Preliminaries

GAME OW-ATK

01 (pk, sk)← KGen(1K)
02 m∗ ← D(M)

03 c∗ ← Enc(pk, m)

04 m′ ← AOATK(pk, c∗)
05 return JPco(m′, c∗)K

Pco(m ∈ M, c)

06 return JDec(sk, c) = mK

Cvo(c ̸= c∗)

07 m := Dec(sk, c)
08 return Jm ∈ MK

Figure 2.2: One-Wayness games OW-ATK for a scheme PKE = (KGen,Enc,Dec), a distribution
on messages D and ATK ∈ {CPA,PCA,VA,PCVA}.

GAME IND-CPA

01 (pk, sk)← KGen(1K)
02 b←$ {0, 1}
03 (m∗0 , m∗1 , st)← A1(pk)

04 c∗ ← Enc(pk, m∗b)
05 b′ ← A2(pk, c∗, st)
06 return Jb′ = bK

Figure 2.3: Indistinguishability game IND-CPA for a scheme PKE = (KGen,Enc,Dec).

KEM Security As we are concerned with creating strongly secure KEM
schemes only in this work, we consider only a single notion of security for
KEM schemes, namely Indistinguishability under Chosen Ciphertext At-
tacks (IND-CCA). This is very analogous to IND-CPA and we could define
both for PKE as well as for KEM schemes but we restrict ourselves to the
needed definitions only.

In this game, the adversary has access to a decapsulation oracle Decaps
which may be queried on any ciphertext except c∗ and returns its decap-
sulation. The IND-CCA security game and the semantics of the oracle are
defined formally in Figure 2.4 and we define an adversary’s IND-CCA advan-
tage (against a scheme KEM) as

Adv IND-CCA
KEM (A) :=

∣∣∣∣Pr[IND-CCAAKEM ⇒ 1]− 1
2

∣∣∣∣

2.5 Lemmas

We repeatedly use the following three Lemmas throughout our work with-
out explicitly citing them as they are well-known.

10

2.5. Lemmas

GAME IND-CCA

01 (pk, sk)← KGen(1K)
02 b←$ {0, 1}
03 (K∗0 , c∗)← Encaps(pk)

04 K∗1 ←$ K
05 b′ ← ADecaps(pk, c∗, K∗b)
06 return Jb′ = bK

Decaps(c ̸= c∗)

07 K := Decaps(sk, c)
08 return K

Figure 2.4: Indistinguishability game IND-CCA for a scheme PKE = (KGen,Enc,Dec).

The first theorem was already stated in [Sho04, Lemma 1] but we choose to
re-state it again for convenience:

Lemma 2.1 (Difference Lemma) Let A,B,F be events defined in some probabil-
ity distribution, and suppose that A ∧ F ⇐⇒ B ∧ F. Then |Pr[A]− Pr[B]| ≤
Pr[F].

We will use this lemma to argue the following: If two games only differ if
some event F takes place then the change in the adversary’s success proba-
bility is at most the probability of F. As we often define the two games to
use the same underlying probability space (i.e. we only change the rules for
computing some random variables), F is well-defined in both games and we
may compute its probability in whichever game we choose.

Lemma 2.2 (Domain Separation) Let H be a random oracle with domain A and
range B and let X, Y be two disjoint subsets of A. Further, let HX : X → B and
HY : Y → B be domain-restrictions of H. Then, for all x ∈ X, y ∈ Y and for all
b1, b2 ∈ B such that Pr[HY(y) = b2] > 0, we have

Pr[HX(x) = b1] = Pr[HX(x) = b1 | HY(y) = b2]

where the probabilities are taken over the possible functions H from A to B.

This is equivalent to stating that HX and HY are two independent random oracles.

For the next Lemma, we use some definitions from [Yas21]: Let P and Q be
probability distributions over a finite set Ω. For a distribution P over Ω and
an event A ⊆ Ω, we denote by P(A) the probability of event A, which is
equal to ∑x∈A P(x).

Further, we define the statistical distance between two distributions P and Q
as:

SD(P, Q) = max
A⊆Ω
|P(A)−Q(A)|

11

2. Preliminaries

It follows easily that we can also calculate the statistical distance as follows:

SD(P, Q) =
1
2 ∑

x∈Ω
|P(x)−Q(x)|

Lemma 2.3 (Distribution Replacement) Let GA and GB be two games where
GA employs the distribution P and GB employs the distribution Q. Other than
that, let there be no differences in the definition of the games.

For any adversary B, it holds that∣∣∣Pr[GBA ⇒ 1]− Pr[GBB ⇒ 1]
∣∣∣ ≤ SD(P, Q)

12

Chapter 3

Analysis of NIST Finalists

3.1 NTRU

3.1.1 Modified U ̸⊥m transformation

To begin this chapter, we will discuss a modification to the transformation
U ̸⊥m from [HHK17]. Specifically, we change the distributions used to generate
both m and s, allowing for more control over the resulting scheme. This
transformation could also be viewed as a modified SXY transformation from
[SXY18] which uses only a single random oracle H and does not do the re-
encryption check.

We call this new transformation DU ̸⊥m [DPKE, H,D] and parameterize it using
a random oracle H, a deterministic PKE scheme DPKE and a distribution D
on the message space of DPKE. Implicitly, the natural number ℓ is also a
parameter but we omit it in the notation so as to not overload it.

The following theorem reduces the security of a KEM scheme constructed
using this transformation to a non-standard notion of OW-CPA security. Be-
cause the KEM scheme generates messages not uniformly at random but
instead uses the distribution D, its security does not depend immediately

KGenKEM(1K)

01 (pk, sk)←$ KGen(1K)

02 s←$ {0, 1}ℓ

03 sk := (sk, s)
04 return (pk, sk)

Encaps(pk)

05 m← D(M)

06 c := Enc(pk, m)

07 K := H(m)

08 return (K, c)

Decaps(sk = (sk, s), c)

09 m′ := Dec(sk, c)
10 if m′ ̸= ⊥ then
11 return K := H(m′)
12 else
13 return K := H(s, c)

Figure 3.1: The transformation DU ̸⊥m [DPKE, H,D] where DPKE = (KGen,Enc,Dec).

13

3. Analysis of NIST Finalists

on the OW-CPA security of the underlying PKE scheme. More precisely, its
security instead depends on the underlying scheme being OW-CPA secure
in a game where messages are generated using the same distribution. This
ties in to our definition of Adv OW-CPA

PKE, D (A) given in the Preliminaries.

While we will not use the entire power of this theorem to analyze NTRU
(because NTRU is perfectly correct), we hope that this theorem can find
applications outside of our work as well.

Theorem 3.1 (DPKE rigid, OW-CPA
ROM
=⇒ DU ̸⊥

m [DPKE, H,D] IND-CCA)
Let KEM := DU ̸⊥m [DPKE, H,D] in the following and assume that ({0, 1}ℓ × C) ∩
M = ∅ where M and C are the message and ciphertext spaces of DPKE respec-
tively. If DPKE is δ-correct, then so is KEM. Furthermore, assume that DPKE
is rigid and does not use any random oracle, then for any IND-CCA adversary B
against KEM issuing at most qH queries to the random oracle H, there exists an
OW-CPA adversary A against DPKE, such that

Adv IND-CCA
KEM (B) ≤ Adv OW-CPA

DPKE, D(A) +
qH

2ℓ
+ 2δ

and the running time of A is about that of B.

Proof The proof proceeds very similar to the proofs for [HHK17, Theo-
rem 3.4, Theorem 3.5]. We reconstruct it here as it is omitted in [HHK17].
We call the decapsulation oracle, which B has access to as part of the IND-

CCA game, Decaps ̸⊥m .

It is easy to verify the correctness bound. Let B be an adversary against the
IND-CCA security of KEM, issuing at most qH queries to the random oracle
H. Consider the games given in Figure 3.2.

Game G0 Since game G0 is the original IND-CCA game,∣∣∣∣Pr[GB0 ⇒ 1]− 1
2

∣∣∣∣ = Adv IND-CCA
KEM (B)

Also note that H(m, c) and H(m) operate on different domains (i.e. ({0, 1}ℓ×
C) ∩M = ∅) and are thus independent random oracles.

Game G1 In game G1 we make two changes. First, we raise flag QUERY
and abort if H(s, ·) is queried (lines 35 and 36). Second, we make the pseu-
dorandom keys output by Decaps ̸⊥m perfectly random. That is, in Decaps ̸⊥m ,
we replace K = H(s, c) by K = H′(c) if m′ = Dec(sk, c) = ⊥ (line 14), where
H′ is an internal random oracle that cannot be accessed by B. The latter
remains unnoticed by B unless H(s, c) is queried, in which case G1 aborts.
Since B’s view is independent of (the uniform secret) s unless G1 aborts,∣∣∣Pr[GB1 ⇒ 1]− Pr[GB0 ⇒ 1]

∣∣∣ ≤ qH

2ℓ

14

3.1. NTRU

GAMES G0-G3

01 (pk, sk)← KGen(1K)

02 s←$ {0, 1}ℓ

03 sk′ := (sk, s)
04 m∗ ← D(M)

05 c∗ := Enc(pk, m∗)
06 K∗0 := H(m∗)
07 K∗1 ←$ {0, 1}n

08 b←$ {0, 1}

09 b′ ← BDecaps ̸⊥m ,H(pk, c∗, K∗b)
10 return Jb′ = bK

Decaps ̸⊥m(c ̸= c∗) // G0-G1

11 m′ := Dec(sk, c)
12 if m′ = ⊥ then
13 return K := H(s, c) // G0

14 return K := H′(c) // G1

15 else return K := H(m′)

Decaps ̸⊥m(c ̸= c∗) // G2-G3

16 if ∃K such that (c, K) ∈ LD

17 return K
18 K ←$ K
19 LD := LD ∪ {(c, K)}
20 return K

H(m) // m ∈ M

21 if ∃K s.th. (m, K) ∈ LH

22 return K
23 if m = m∗ // G3

24 CHAL := true; abort // G3

25 c′ := Enc(pk, m) // G2-G3

26 K ←$ K
27 if ∃K′ s.th. (c′, K′) ∈ LD // G2-G3

28 K := K′ // G2-G3

29 else // G2-G3

30 LD := LD ∪ {(c′, K)} // G2-G3

31 LH := LH ∪ {(m, K)}
32 return K

H(s′, c) // (s′, c) ∈ {0, 1}ℓ × C

33 if ∃K s.th. (s′, c, K) ∈ LHs

34 return K
35 if s′ = s then // G1-G3

36 QUERY := true; abort // G1-G3

37 K ←$ K
38 LHs := LHs ∪ {(s′, c, K)}
39 return K

Figure 3.2: Games G0 - G3 for the proof of Theorem 3.1

15

3. Analysis of NIST Finalists

Game G2 In game G2, the oracles H and Decaps ̸⊥m are modified such that
Decaps ̸⊥m does not make use of the secret key any longer. In game G2 we
will use two lists, LH and LD, for bookkeeping. (m, K) ∈ LH indicates
that H was queried on m and H(m) = K holds; (c, K) ∈ LD indicates that
Decaps ̸⊥m(c) = K holds and either H was queried on some message m such
that c = Enc(pk, m) or Decaps ̸⊥m was queried on c.

Let CORERR denote the event that LH contains an entry (m, K) with
Dec(sk,Enc(pk, m)) ̸= m. Intuitively, CORERR denotes the event that a cor-
rectness error of DPKE actually occurs. We will show that the view of B is
identical in games G1 and G2 unless CORERR happens.

To do so, we have to examine if Decaps ̸⊥m and H handle queries consistently
in game G2. To analyze game G2, let c be a query to Decaps ̸⊥m , and let
m′ := Dec(sk, c).

We first show that before the query to Decaps ̸⊥m on c and the query to H
on m′, no entry of the form (c, K) could already exist in LD yet unless
CORERR happened: since neither Decaps ̸⊥m was yet queried on c nor H
was yet queried on m′, existence of an entry (c, K) in LD implies that H
was queried on some message m ̸= m′ such that Enc(pk, m) = c. Hence,
Dec(sk,Enc(pk, m)) = Dec(sk, c) = m′ ̸= m, meaning that m induces a cor-
rectness error and CORERR happened.

We will now analyze the games’ behavior in the case that CORERR did not
happen.

• Case 1: m′ = ⊥. Since H cannot be queried on m′, the simulation of
H can never add a tuple of the form (c, K) to LD. Hence, querying
Decaps ̸⊥m in game G2 will return a uniformly random key, as in Game
G1.

• Case 2: m′ ̸= ⊥. In game G1, it holds that Decaps ̸⊥m(c) = H(Dec(sk, c))
for all valid ciphertexts. We will now show that H in game G2 is
”patched”, meaning that it is ensured Decaps ̸⊥m(c) = H(m′), for all
valid ciphertexts c assuming CORERR did not happen. We distinguish
two sub-cases: B might either first query H on m′, then Decaps ̸⊥m on c,
or the other way round.

– If H is queried on m′ first, c = Enc(pk, m′) is computed correctly
(because CORERR did not happen and DPKE is rigid) and since
Decaps ̸⊥m was not yet queried on c, no entry of the form (c, K) al-
ready exists in LD. Therefore, besides adding (m′, K ←$ K) to LH,
H also adds (c, K) to LD in line 30, thereby defining Decaps ̸⊥m(c) :=
K = H(m′).

16

3.1. NTRU

– If Decaps ̸⊥m is queried on c first, it adds (c, K ←$ K) to LD, thereby
defining Decaps ̸⊥m(c) := K. When queried on m′ afterwards, H
computes c = Enc(pk, m′) and recognizes that an entry of the
form (c, K) already exists in LD in line 27. By adding (m′, K) to
LH and returning K, H defines H(m′) := K = Decaps ̸⊥m(c)

We have shown that B’s view is identical in both games unless a correctness
error (in the form of CORERR) occurs.∣∣∣Pr[GB2 ⇒ 1]− Pr[GB1 ⇒ 1]

∣∣∣ ≤ Pr[CORERR]

We can bound Pr[CORERR] with a straightforward reduction to the δ-correctness
of DPKE. In this reduction, an adversary on DPKE’s correctness simulates
Game G1 and additionally checks for CORERR upon every Decaps ̸⊥m and ev-
ery H query. As DPKE does not use any random oracle, δ-correctness of
DPKE gives us:

Pr[CORERR] ≤ δ

Game G3 In Game G3, we abort (with uniformly random output) immedi-
ately on the event that B queries H on m∗. Denote this event as CHAL. We
also define the event CORERR exactly as in Game G2. Due to the difference
lemma and the argument above that Pr[CORERR] ≤ δ,∣∣∣Pr[GB3 ⇒ 1]− Pr[GB2 ⇒ 1]

∣∣∣ ≤ Pr[CHAL]

= Pr[CHAL∧ CORERR] + Pr[CHAL∧ CORERR]

≤ Pr[CHAL∧ CORERR] + Pr[CORERR]

≤ Pr[CHAL∧ CORERR] + δ

In Game G3, H(m∗) will not be given to B; neither through a hash nor a
decapsulation query, meaning bit b is independent from B’s view. Hence,

Pr[GB3 ⇒ 1] =
1
2

It remains to bound Pr[CHAL ∧ CORERR]. To this end, we construct an
adversary A against the OW-CPA security of DPKE under the message dis-
tribution D, simulating G3 for B as in Figure 3.3.

Assume that CORERR does not occur and note that the simulation is perfect
until CHAL occurs. Furthermore, CHAL implies that B queried H(m∗), which
implies that (m∗, K′) ∈ LH for some K′. In this case, we have Enc(pk, m∗) =
c∗ (since DPKE is deterministic). We can also be sure that there is no

17

3. Analysis of NIST Finalists

A(pk, c∗)

01 K∗ ←$ K

02 b′ ← BDecaps ̸⊥m (·),H(·)(pk, c∗, K∗)
03 if ∃(m′, K′) ∈ LH s.th. Enc(pk, m′) = c∗

04 return m′

05 else
06 abort

Figure 3.3: Adversary A against OW-CPA for the proof of Theorem 3.1, where H is defined as

in Game G2 and Decaps ̸⊥m is defined as in Game G3 of Figure 3.2

m′ ̸= m∗ such that ∃K′′(m′, K′′) ∈ LH ∧ Enc(pk, m′) = c∗ because then ei-
ther m′ or m∗ would have to exhibit a correctness error and CORERR would
occur, contradicting our assumption. Thus A returns the unique m′ = m∗

and wins the OW-CPA game (because CORERR did not occur and therefore
Dec(sk, c∗) = m∗ matching A’s output). Hence,

Pr[CHAL∧ CORERR] ≤ Adv OW-CPA
DPKE, D(A)

Collecting the probabilities yields the required bound. □

3.1.2 Security of NTRU

Let M and C be the message and ciphertext spaces for NTRU-DPKE re-
spectively and let K be the key space used for the NTRU KEM. Let H :
M∪ ({0, 1}ℓ × C)→ K be a random oracle.

We can see from Figure 3.4 that the NTRU KEM can almost be interpreted
as
U ̸⊥m [NTRU-DPKE, H] of [HHK17] with the only difference being that rm and
s are not sampled uniformly at random from the same space M. This dif-
ference is precisely what the DU ̸⊥m transformation seen in Figure 3.1 does

KGen(1K)

01 (pk, sk)←$ KGen(1K)

02 s←$ {0, 1}256

03 sk := (sk, s)
04 return (pk, sk)

Encaps(pk = h)

05 coins←$ {0, 1}256

06 rm← Sample rm(coins)
07 c := Enc(h, rm)

08 K := H(rm)

09 return (K, c)

Decaps(sk = (sk, s), c)

10 rm := Dec(sk, c)
11 if rm ̸= ⊥ then
12 return K := H(rm)

13 else
14 return K := H(s, c)

Figure 3.4: The NTRU KEM scheme, as described in [Xag22, Figure 7] and [CDH+20] with
(KGen,Enc,Dec) = NTRU-DPKE.

18

3.1. NTRU

as well. The paper [SXY18] presents the SXY transformation for a similar
effect but the security proof of the SXY transformation in the ROM relies
on [HHK17, Theorem 3.6] without arguing about the non-uniform message
distribution at all. So instead of basing the security of NTRU on the SXY
transformation, we use our own Theorem 3.1 above.

Corollary 3.2 (Security of NTRU in the ROM) NTRU is perfectly correct. Fur-
thermore, for any IND-CCA adversary B against NTRU issuing at most qH queries
to the random oracle H, there exists an OW-CPA adversary A against NTRU-
DPKE, such that

Adv IND-CCA
NTRU (B) ≤ Adv OW-CPA

NTRU-DPKE, Sample rm(A) +
qH

2256

Proof This follows directly from Theorem 3.1 because NTRU-DPKE is per-
fectly correct, deterministic, rigid and does not use any random oracle. The
message distribution used in NTRU is Sample rm. And further, in NTRU-
DPKE messages have a length of 8 · dpke plaintext bytes bits and ciphertexts
have a bit length of 8 · dpke ciphertext bytes (see [CDH+20]). In any reason-
able parameter set, we will have dpke plaintext bytes < dpke ciphertext bytes
and ℓ = 256 is fixed, so we can conclude that ({0, 1}ℓ × C) ∩M = ∅. □

As we just showed, we can reduce the IND-CCA security of NTRU to a certain
non-standard OW-CPA security (using the Sample rm distribution) of NTRU-
DPKE. Typically, we would want to reduce instead to the standard notion of
OW-CPA security, namely under a uniform message distribution.

It is well-known that we could achieve this last step by now arguing that the
only difference is this change of distribution and therefore we can bound the
OW-CPA security under the Sample rm distribution by the standard OW-CPA
security plus the statistical distance SD(Sample rm,U).

The following section pursues this approach.

Statistical Distance in NTRU-HRSS We require a bound on the statistical
distance between a uniform distribution on S/31 and the distribution that
Sample rm produces. As the following will simply serve as an illustration of
the problem, we focus on the NTRU-HRSS parameter set. In the following,
let D be the distribution produces by Sample rm.

Sample rm gets as input an appropriate number of independent, uniformly
random bits. These bits are grouped into bytes and interpreted as the co-
efficients of the polynomial v ∈ Z[x]. By construction, v has degree n− 2.
Before v is returned from Sample rm however, it is reduced modulo Φn and
the coefficients are reduced modulo 3.

1For the definition of the polynomial space S/3, we refer the reader to [CDH+20].

19

3. Analysis of NIST Finalists

The former does nothing, as v’s degree is already small enough. During
the latter process however, we move from every coefficient being indepen-
dent and identically distributed (i.i.d.) following a uniform distribution on
{0, 1, . . . , 255} to every coefficient being i.i.d. using a non-uniform distribu-
tion we call F on {−1, 0, 1}. In particular:

F (0) = 258
768

=
1
3
+

2
768

F (1) = F (−1) =
255
768

=
1
3
− 1

768

This affects the distribution D, as the probability of any polynomial de-
pends now on the number of coefficients that are 0. In particular, given any
polynomial x ∈ S/3 with z coefficients equal to 0, we have:

PrD [x] = F (0)z · F (1)n−1−z

By using the formula SD(D,U) = 1
2 ∑x∈S/3 |PrD [x]− PrU [x]| and by group-

ing polynomials together by the number of coefficients equal to 0, we get:

SD(D,U) = 1
2

n−1

∑
z=0

(
n− 1

z

)
· 2n−1−z ·

∣∣∣F (0)z · F (1)n−1−z − 31−n
∣∣∣

This can be computed for the case of n = 701 that NTRU recommends for
NTRU-HRSS to give a statistical distance of 0.05821. It should also be noted
that this statistical distance could be significant in terms of the concrete se-
curity of NTRU. In fact, the statistical distance even increases monotonically
with n, though we provide no proof for that fact here.

Security of NTRU From the discussion above, it becomes clear that we
cannot really reduce the security of NTRU to the OW-CPA security of NTRU-
DPKE using a uniform distribution. Instead we simply stick with Corol-
lary 3.2 above and assume the OW-CPA security of NTRU-DPKE under the
message distribution Sample rm. We have shown that NTRU is an IND-CCA
secure KEM under this assumption.

From here, there are two options to fully prove the security of NTRU. There
may well be another way to tightly reduce the security of NTRU-DPKE to
OW-CPA security under a uniform distribution. For example, other research
suggests using the Hellinger Distance instead [Yas21].

It might also be possible to instead further reduce the OW-CPA security of
NTRU-DPKE using the non-uniform distribution to some reasonable hard-
ness assumption. Note that this has to examined for a given parameter set.
Both of these tasks are left open for future work.

20

3.2. Classic McEliece

KGen(1K)

01 return KGenB(1K)

Enc(pk, e)

02 return EncB(pk, e)

Dec(sk, c)

05 e := DecB(sk, c)
06 if EncB(pk, e) = c then
07 return e
08 return ⊥

Figure 3.5: A DPKE scheme CM-DPKE = (KGen,Enc,Dec) incorporating a re-encryption check
as part of decryption where (KGenB,EncB,DecB) = CM-BASE.

KGenI(1K)

01 return KGen(1K)

EncI(pk, e)

02 c0 := Enc(pk, e)
03 c1 := F(e)
04 return (c0, c1)

DecI(sk, (c0, c1))

05 e := Dec(sk, c0)

06 if e ̸= ⊥∧ c1 = F(e) then
07 return e
08 return ⊥

Figure 3.6: An intermediate scheme CM-INTER = (KGenI ,EncI ,DecI) incorporating hashing
of the message as part of encryption where (KGen,Enc,Dec) = CM-DPKE.

3.2 Classic McEliece

In order to understand Classic McEliece in a more modular sense, we define
multiple schemes gradually building up to the Classic McEliece KEM in an
analogous way to the FO ̸⊥ transformation from [HHK17].

• CM-BASE is the Niederreiter PKE using Goppa Codes which is at the
core of Classic McEliece.

• CM-DPKE can be described as a T transformation of CM-BASE, and it
is the scheme the Classic McEliece specification uses for the Encode

and Decode procedures. It is defined in Figure 3.5 and in [ABC+20].

• CM-INTER is essentially CM-DPKE but it also incorporates a hash of
the message as part of the ciphertext and checks it upon decryption. It
is defined in Figure 3.6.

• CM-KEM is then finally the Classic McEliece KEM and almost a DU ̸⊥

transformation of CM-INTER (a more detailed description of the trans-
formation follows further below). It is defined in Figure 3.7.

Let M and C be the message and ciphertext spaces for CM-DPKE respec-
tively and let K be the key space used for the Classic McEliece KEM. Let
F : M → R be a random oracle and let H0 : {0, 1}ℓ × C × R → K and
H1 : M×C ×R → K be two more random oracles, all three of them inde-
pendent.

21

3. Analysis of NIST Finalists

KGenKEM(1K)

01 (pk, sk)←$ KGenI(1K)
02 s←$ Fn

2

03 sk := (sk, s)
04 return (pk, sk)

Encaps(pk)

05 e← FixedWeight()

06 c := EncI(pk, e)
07 K := H1(e, c)
08 return (K, c)

Decaps(sk = (sk, s), c)

09 e := DecI(sk, c)
10 if e ̸= ⊥ then
11 K := H1(e, c0, c1)

12 else
13 K := H0(s, c0, c1)

14 return K

Figure 3.7: The Classic McEliece KEM scheme, as described in [Xag22, Fig. 18] and [ABC+20]
with (KGenI ,EncI ,DecI) = CM-INTER. We renamed the oracles from [ABC+20] to H0, H1
and F (implicit in CM-INTER) depending on their first argument. FixedWeight is used to
generate messages for the underlying PKE scheme.

Security Goals Notice first that the message distribution used by the KEM
construction (in the specification this distributions is generated by the func-
tion FixedWeight) indeed outputs uniformly random elements of the mes-
sage space of CM-BASE. This is why we can analyze this finalist without
worrying about non-uniform message distributions.

We will prove the following security guarantees, assuming that CM-BASE is
OW-CPA secure.

• CM-DPKE is OW-PCA secure.

• CM-INTER is OW-PCA secure.

• CM-KEM is IND-CCA secure.

CM-DPKE CM-DPKE, as depicted in Figure 3.5, can be understood as sim-
ply the output of a T transformation applied to CM-BASE. In particular, this
scheme adds a ”re-encryption check” to decryption. We conclude that CM-
DPKE is OW-PCA secure:

Corollary 3.3 (Security of CM-DPKE in the ROM) CM-DPKE is perfectly cor-
rect. Furthermore, for any OW-PCA adversary B against CM-DPKE issuing at
most qP queries to a plaintext checking oracle Pco, there exists an OW-CPA adver-
sary A against CM-BASE, such that

Adv OW-PCA
CM-DPKE(B) ≤ Adv OW-CPA

CM-BASE(A)

and the running time of A is about that of B. Furthermore, CM-DPKE is rigid.

Proof We carry out a direct reduction from CM-DPKE’s OW-PCA security
to the OW-CPA of CM-BASE. In essence, this proof is a shortened version of
the proof for [HHK17, Theorem 3.1] where the PKE scheme is determinis-
tic and perfectly correct, like CM-BASE. Under these two assumptions we

22

3.2. Classic McEliece

A(pk, c∗)

01 m′ ← BPco(·)(pk, c∗)
02 return m′

Pco(m ∈ M, c)

03 return JEncB(pk, m) = cK

Figure 3.8: Adversary A against OW-CPA security of CM-BASE.

can carry out a direct reduction rather simply and without introducing any
game hops.

Let B be some OW-PCA adversary against CM-DPKE issuing at most qP
queries to a plaintext checking oracle Pco. We construct an OW-CPA adver-
sary A against CM-BASE explicitly as in Figure 3.8.

We argue first that A’s implementation of the Pco oracle is a perfect simu-
lation. Because KGen = KGenB and Enc = EncB, simply forwarding pk, c∗ is
already a perfect simulation of the setup procedure. Then, we argue about
the advantage A achieves and finish the proof.

Let Pco be a plaintext checking oracle for CM-DPKE. Pco is characterized
by the fact that, upon input of m ∈ M, c, it responds with bit 1 if and only
if DecB(sk, c) ̸= ⊥, EncB(pk,DecB(sk, c)) = c and DecB(sk, c) = m.

Our implementation checks whether EncB(pk, m) = c. If this is the case, then
by the perfect correctness of CM-BASE, DecB(sk, c) = m ̸= ⊥. This satisfies
all three of the requirements above.

On the other hand, if EncB(pk, m) ̸= c then all of the three statements above
cannot be simultaneously true as EncB(pk,DecB(sk, c)) = c and DecB(sk, c) =
m together imply EncB(pk, m) = c, contradicting our assumption.

This shows that JEncB(pk, m) = cK is indeed 1 if and only if Pco(m, c) returns
1 as well and thus that A perfectly simulates the OW-PCA game towards B.

Now, note that whenever B wins the OW-PCA game against CM-DPKE, we
have Dec(sk, c∗) = m′. By definition this implies DecB(sk, c∗) = m′. Since A
returns exactly the same m′, it also wins its OW-CPA game against CM-BASE.
This lets us conclude

Adv OW-PCA
CM-DPKE(B) ≤ Adv OW-CPA

CM-BASE(A)

finishing our proof.

Note that in [HHK17], there was no argument about why the T transfor-
mation adds rigidity to a non-rigid scheme, so we quickly include this for
completeness. Assume that there exist some m, c such that Dec(sk, c) =
m ∧ Enc(pk, m) ̸= c, i.e. a violation of CM-DPKE’s rigidity. Because Dec in-
corporated a re-encryption check, it can only output m after decryption if

23

3. Analysis of NIST Finalists

EncB(pk, m) = c (notice this is the underlying encryption function). How-
ever, this contradicts our assumption that Enc(pk, m) ̸= c since for any pk, m
it is true that Enc(pk, m) = EncB(pk, m). Thus, the T transformation has
managed to provide rigidity by means of the re-encryption check. □

CM-INTER The change between CM-DPKE and CM-INTER (namely the
addition of a message hash to the ciphertext) is not one usually carried
out in any of the transformations in [HHK17] but it does not decrease the
security of the scheme. We will prove this fact by reduction where the main
technique is to patch the random oracle F to be consistent with a hash that
we generate before knowing m∗.

Theorem 3.4 (Security of CM-INTER in the ROM) CM-INTER is perfectly cor-
rect. Furthermore, for any OW-PCA adversary B against CM-INTER issuing at
most qP queries to a plaintext checking oracle PcoI , there exists an OW-PCA ad-
versary A against CM-DPKE that makes at most qP queries to its Pco oracle, such
that

Adv OW-PCA
CM-INTER(B) ≤ Adv OW-PCA

CM-DPKE(A)

and the running time of A is about that of B. Furthermore, CM-INTER is rigid.

Proof Correctness and rigidity are easy to verify given correctness and rigid-
ity of CM-DPKE.

Let B be an adversary against CM-INTER issuing at most qP queries to
a plaintext checking oracle PcoI . We construct an OW-PCA adversary A
against CM-DPKE as shown in Figure 3.9.

Using the plaintext checking oracle Pco from the OW-PCA game against
CM-DPKE, A can perfectly simulate the oracle PcoI for B as shown. The
patching of F(m∗) cannot be noticed by B as the random oracle’s outputs
remain uniformly random. There can also not be any m′ ̸= m∗ that F could
”mistake” for m∗ because if we had Enc(pk, m′) = Enc(pk, m∗), at least one of
them would exhibit a correctness error in CM-DPKE. But that is not possible
as CM-DPKE is perfectly correct.

These two observations allow us to conclude that the OW-PCA game for B
is in fact perfectly simulated by A.

We now finish the proof by simply noticing that if PcoI(m, c0, c1) = 1 for
some m, c0, c1 then it must also hold that Pco(m, c0) = 1 for the same m
and c0. Thus, every time B wins the simulated game with A, A wins the
OW-PCA game against CM-DPKE:

Adv OW-PCA
CM-INTER(B) = Pr[OW-PCAB

CM-INTER ⇒ 1]

≤ Pr[OW-PCAA
CM-DPKE ⇒ 1] = Adv OW-PCA

CM-DPKE(A) □

24

3.2. Classic McEliece

A(pk, c∗)

01 r ←$ R
02 c := (c∗, r)

03 m′ ← BPcoI(·),F(·)(pk, c)
04 return m′

PcoI(m, c0, c1)

05 return Pco(m, c0) ∧ F(e) = c1

F(m)

06 if Enc(pk, e) = c∗

07 return r
08 else
09 return F′(e)

Figure 3.9: Adversary A against OW-PCA where Pco is defined as in the OW-PCA game
against CM-DPKE and F′ is an internal random oracle that B cannot access.

KGen(1K)

01 (pk, sk)←$ KGen(1K)

02 s←$ {0, 1}ℓ

03 sk := (sk, s)
04 return (pk, sk)

Encaps(pk)

05 m← D(M)

06 c := Enc(pk, m)

07 K := H1(m, c)
08 return (K, c)

Decaps(sk = (sk, s), c)

09 m′ := Dec(sk, c)
10 if m′ ̸= ⊥ then
11 return K := H1(m′, c)
12 else
13 return K := H0(s, c)

Figure 3.10: The transformation DU
̸⊥
[DPKE, H0, H1,D] where DPKE = (KGen,Enc,Dec).

CM-KEM And finally, we can analyze CM-KEM as the result of applying a
slightly modified DU ̸⊥ transformation to CM-INTER where instead of using
the same random oracle for both H(m, c) and H(s, c) queries, we use two
independent random oracles. We call this transformation DU

̸⊥ and we de-
fine it explicitly in Figure 3.10 and we present a theorem about the security
it provides as Theorem 3.5.

Theorem 3.5 (DPKE OW-PCA
ROM
=⇒ DU

̸⊥
[DPKE, H0, H1,D] IND-CCA) Let

KEM := DU
̸⊥
[DPKE, H0, H1,D] in the following. Let H0, H1 be two independent

random oracles. If DPKE is δ-correct, then so is KEM. For any IND-CCA adversary
B against KEM issuing at most qH0 queries to the random oracle H0, there exists
an OW-PCA adversary A against DPKE, such that

Adv IND-CCA
KEM (B) ≤ Adv OW-PCA

DPKE, D(A) +
qH0

2ℓ

and the running time of A is about that of B.

Proof (Proof sketch) This proof is essentially obtained from the proof of
[HHK17, Theorem 3.4]. The only differences in the proof are as follows:

25

3. Analysis of NIST Finalists

We generate m∗ using the distribution D as in the other theorems. Conse-
quently, D will show up again in the advantage against DPKE but otherwise
the proof is unaffected. We also generate s uniformly at random from the
space {0, 1}ℓ.

In Game G1, we would further change the use of H0 to using an internal
random oracle (H′ in the proofs of Theorem 3.1 and [HHK17, Theorem 3.4])
to make the output from decapsulation perfectly random upon decryption
failure. So we adapt the proof and argue instead that:∣∣∣Pr[GB1 ⇒ 1]− Pr[GB0 ⇒ 1]

∣∣∣ ≤ qH0

2ℓ

We again use that 2ℓ is the size of the space (the uniform secret) s is sampled
from. We can omit the check whether m′ = s as there is no harm in making
such queries on H1 available to the adversary.

From this point on, H0 is used only to check whether the adversary queries
it on inputs of the form H0(s, ·) (called QUERY in [HHK17]) but it is not
used in the game anymore and its output is either irrelevant or not available
for B from this point onward. The rest of the proof proceeds as in [HHK17]
where their H is instantiated with our H1. Also note that we do not need to
check for the QUERY event in H1 as queries involving s produce no output
of any particular relevance.

The final change is the addition of the D distribution into the bound in
Game G3. In particular, we conclude now that

Pr[CHAL] = Adv OW-PCA
DPKE, D(A)

With these modifications, the proof holds for our modified games.

We provide the game hops incorporating our changes in Figure 3.11.

Corollary 3.6 (Security of CM-KEM in the ROM) CM-KEM is perfectly cor-
rect. For any IND-CCA adversary B against CM-KEM issuing at most qH0 queries
to the random oracle H0 and qH1 queries to the random oracle H1, there exists an
OW-PCA adversary A against CM-INTER, such that

Adv IND-CCA
CM-KEM(B) ≤ Adv OW-PCA

CM-INTER(A) +
qH0

2ℓ

and the running time of A is about that of B.

Proof This follows directly from Theorem 3.5 because CM-INTER is per-
fectly correct and deterministic. Also, H0 and H1 are in fact independent
random oracles because of Domain Separation. In particular, the first byte
of the input to the underlying random oracle is fixed and different for the
two oracles. Finally, the message distribution in use (FixedWeight) is in fact
the uniform distribution, hence we can omit D in the advantage term. □

26

3.2. Classic McEliece

GAMES G0-G3

01 (pk, sk)← KGen(1K)

02 s←$ {0, 1}ℓ

03 sk′ := (sk, s)
04 m∗ ← D(M)

05 c∗ := Enc(pk, m∗)
06 K∗0 := H1(m∗, c∗)
07 K∗1 ←$ {0, 1}n

08 b←$ {0, 1}

09 b′ ← BDecaps ̸⊥ ,H0,H1(pk, c∗, K∗b)
10 return Jb′ = bK

Decaps ̸⊥m(c ̸= c∗) // G0-G1

11 m′ := Dec(sk, c)
12 if m′ = ⊥ then
13 return K := H0(s, c) // G0

14 return K := H′(c) // G1

15 else return K := H1(m′, c)

Decaps ̸⊥m(c ̸= c∗) // G2-G3

16 if ∃K such that (c, K) ∈ LD

17 return K
18 K ←$ K
19 LD := LD ∪ {(c, K)}
20 return K

H1(m, c)

21 if ∃K s.th. (m, K) ∈ LH

22 return K
23 K ←$ K
24 if Dec(sk′, c) = m // G2-G3

25 if m = m∗ // G3

26 CHAL := true; abort // G3

27 if ∃K′ s.th. (c, K′) ∈ LD // G2-G3

28 K := K′ // G2-G3

29 else // G2-G3

30 LD := LD ∪ {(c, K)} // G2-G3

31 LH := LH ∪ {(m, c, K)}
32 return K

H0(s′, c)

33 if ∃K s.th. (s′, c, K) ∈ LHs

34 return K
35 if s′ = s then // G1-G3

36 QUERY := true; abort // G1-G3

37 K ←$ K
38 LHs := LHs ∪ {(s′, c, K)}
39 return K □

Figure 3.11: Games G0 - G3 for the proof of Theorem 3.5

As this was the last reduction needed, we can now collect all the bounds in
a final corollary.

Corollary 3.7 (Security of Classic McEliece in the ROM) CM-KEM is perfectly
correct. For any IND-CCA adversary B against CM-KEM issuing at most qH0

queries to the random oracle H0 and qH1 queries to the random oracle H1, there
exists an OW-CPA adversary A against CM-BASE, such that

Adv IND-CCA
CM-KEM(B) ≤ Adv OW-CPA

CM-BASE(A) +
qH0

2256

and the running time of A is about that of B.

27

3. Analysis of NIST Finalists

KGen(1K)

01 (pk, sk)←$ KGen(1K)

02 z←$ {0, 1}ℓ

03 sk := (sk, z, pk)
04 return (pk, sk)

Encaps(pk)

05 m←$ M
06 m := H(m)

07 r := G2(m, H(pk))

08 c := Enc(pk, m; r)
09 K′ := G1(m, H(pk))

10 K := KDF(K′, H(c))
11 return (K, c)

Decaps(sk = (sk, z, pk), c)

12 m′ := Dec(sk, c)
13 r := G2(m′, H(pk))

14 if c ̸= Enc(pk, m′; r) then
15 return K := KDF(z, H(c))
16 else
17 K′ := G1(m′, H(pk))

18 return K := KDF(K′, H(c))

Figure 3.12: The abstract KS transformation where H, G1, G2 and KDF are random oracles, ℓ
is a parameter of the transformation defaulting to ℓ = 256 and the underlying PKE scheme is
PKE = (KGen,Enc,Dec).

Proof This follows from Theorems and Corollaries 3.3, 3.4 and 3.6 as well
as the fact that ℓ = 256 is fixed in [ABC+20].

We construct an OW-PCA adversary A′ against CM-INTER analogous to
[HHK17, Figure 14], with the same minor changes as in the game hops
in the proof of Theorem 3.5 (we omit the construction here). Notice that this
adversary now makes qP = qH1 queries to the Pco oracle.

We then construct another OW-PCA adversary A′′ against CM-DPKE as in
Figure 3.9. And finally, we employ Theorem 3.3 to get a third adversary A
against CM-BASE.

From our constructions as well as Theorem 3.3, Theorem 3.4 and Theo-
rem 3.6 respectively, we conclude:

Adv OW-PCA
CM-DPKE(A′′) ≤ Adv OW-CPA

CM-BASE(A)

Adv OW-PCA
CM-INTER(A′) ≤ Adv OW-PCA

CM-DPKE(A′′)

Adv IND-CCA
CM-KEM(B) ≤ Adv OW-PCA

CM-INTER(A′) +
qH0

2ℓ

Combining these inequalities yields our claimed bound. □

This concludes our discussion of Classic McEliece as we have now success-
fully reduced the IND-CCA security of CM-KEM to the OW-CPA security of
CM-BASE, i.e. the Niederreiter PKE using Goppa Codes.

3.3 CRYSTALS-KYBER and SABER

We will discuss the last two remaining finalists in one section because we
can easily abstract them to the same type of transformation which we will

28

3.3. CRYSTALS-KYBER and SABER

call KS. Loosely, this transformation is somewhat similar to FO ̸⊥ in [HHK17]
but there a couple of details that complicate this approach. We define it in
Figure 3.12.

3.3.1 Assumptions

LetM and C be the message and ciphertext space for PKE respectively. Let
PK be the public key space of PKE and let K be the key space used for
the final KEM. Let R be a space used for fixing the randomness in PKE’s
encryption. Let S be the output space of the random oracle H defined below.
Let K′ = {0, 1}ℓ.

Let H : (M∪ C ∪ PK) → S , G1 : M× S → K′ and G2 : M× S → R
be independent random oracles. KDF : K′ × S → K is either another inde-
pendent random oracle or it may resolve to the same underlying function
as H. Any instantiation needs to define these random oracles as well as the
underlying PKE scheme PKE = (KGen,Enc,Dec) and the parameter ℓ.

Let PKE be δ-correct.

To ensure that the random oracles never interfere with each other in the
analysis and modifications to parts of the oracles do not affect other parts,
we require the following:

• If H and KDF are instantiated using the same underlying hash function
(i.e. they denote the same random oracle in our model) then we require
all of the following to be true

– (K′ × S) ∩ PK = ∅

– (K′ × S) ∩ C = ∅

– (K′ × S) ∩M = ∅

– PK ∩M = ∅

– C ∩M = ∅

• If, on the other hand, H and KDF are independent random oracles
then we only require that the following holds

– PK ∩M = ∅

– C ∩M = ∅

3.3.2 Instantiations

To get CRYSTALS-KYBER, we instantiate:

• H with SHA3-256

29

3. Analysis of NIST Finalists

• G1, G2 with SHA3-512.
In CRYSTALS-KYBER, only one random oracle G with longer output
was used for generating both intermediate keys (the K′ in Figure 3.12)
as well as for fixing PKE’s random coins. In other words, lines 7
and 9 in Figure 3.12 would be replaced by a single line (K′, r) :=
G(m, H(pk)). As the outputs of G were split exactly in half and used
in distinct contexts in [SAB+20], we decided to instead regard these
outputs as the outputs of two independent random oracles (the out-
put of G1 comes from the first half of G’s output and the output of G2
comes from the second half). This modelling is equivalent in the ROM
because we assume G1 and G2 to be independent.

• KDF with SHAKE-256

• PKE with Kyber.CPAPKE from [SAB+20]

• ℓ with ℓ = 256

• M with {0, 1}256

In all of the parameter sets for CRYSTALS-KYBER (Kyber512, Kyber768,
Kyber1024 as well as their 90s variants), the spaces of message, ciphertext
and public key are such that the above requirements are met.

To obtain SABER, we instantiate:

• H and KDF with SHA3-256

• G1, G2 with SHA3-512 (as above, G1’s output comes from the first half
and G2’s from the second half)

• PKE with Saber.PKE from [DKR+20]

• ℓ with ℓ = 256

• M with {0, 1}256

In all of the parameter sets for SABER (LightSaber-KEM, Saber-KEM and
FireSaber-KEM), the spaces of message, ciphertext and public key are such
that the above requirements are met.

Note that while the hashing of the message in line 6 is not present in
[DKR+20, Section 2.5], it is present in the technical specification in [DKR+20,
Section 8.5.2]. We will regard it as a part of SABER in this work but other-
wise SABER simply corresponds to the scheme KS’ below and has a slightly
better bound on the IND-CCA adversary’s advantage.

3.3.3 Slightly improved version of [HHK17, Theorem 3.2]

The original theorem 3.2 in [HHK17] had two issues that we want to point
out here. Firstly, [HHK17, Theorem 3.2] contained an error as the term

30

3.3. CRYSTALS-KYBER and SABER

2qG + 1 should have instead been 2(qG + qP) + 1. This stems from the fact
that queries to the Pco oracle also caused a query to G hence contributing to
the probability of the event QUERY. This mistake was corrected in [Höv21b,
Theorem 2.1.3] and pointed out in an updated version of the original paper.

Secondly, even the bound given in [Höv21b, Theorem 2.1.3] can be made
slightly tighter. We now state an improved version of this theorem.

Theorem 3.8 (PKE IND-CPA
ROM
=⇒ T[PKE, G] OW-PCVA) Let

PKE’ := T[PKE, G] in the following. Assume PKE to be δ-correct and γ-spread.
Then, for any OW-PCVA adversary B that issues at most qG queries to the random
oracle G, qP queries to a plaintext checking oracle Pco, and qV queries to a validity
checking oracle Cvo, there exists an IND-CPA adversary A such that

Adv OW-PCVA
PKE’ (B) ≤ (qG + qP) · δ + qV · 2−γ +

qG + qP + 1
|M| + 3 · Adv IND-CPA

PKE (A)

and the running time of B is about that of A.

A proof of this new theorem can be found in Appendix A. We have informed
the author of [Höv21b] about our findings and they have confirmed that our
improved analysis is correct [Höv22].

3.3.4 Security of the KS transform

Proof Outline In order to prove the security of the KS transformation, we
will again define multiple schemes leading up to KS:

• DPKE will be the output of a modified T transformation of PKE as in
[HHK17] but also incorporating the public key hash. It is defined in
Figure 3.13.

• The KEM scheme KS-INTER is constructed very similarly to how the
U ̸⊥m transformation works in [HHK17]. It is defined in Figure 3.14.

• Another KEM scheme KS’ will be obtained using a custom transfor-
mation. It is defined in Figure 3.15.

• And finally, KS can be obtained by modifying the message generation
of KS’. It is defined in Figure 3.12.

Security Goals These schemes all use independently uniform message dis-
tributions, except for the final scheme KS. Nonetheless, we will prove that
KS also gives good security guarantees in the ROM. Assuming that PKE is
IND-CPA secure and δ-correct, we will show that:

• DPKE is OW-VA secure and δ1-correct in the ROM where δ1(qG2) :=
qG2 · δ.

31

3. Analysis of NIST Finalists

KGen1(1K)

01 (pk, sk)←$ KGen(1K)
02 return (pk, sk)

Enc1(pk, m)

03 r := G2(m, H(pk))

04 c := Enc(pk, m; r)
05 return c

Dec1(sk, c)

06 m′ := Dec(sk, c)
07 r := G2(m′, H(pk))

08 if c ̸= Enc(pk, m′; r) then
09 return ⊥
10 else return m′

Figure 3.13: The scheme DPKE where PKE = (KGen,Enc,Dec).

KGenI(1K)

01 (pk, sk)←$ KGen(1K)
02 sk := (sk, pk)
03 return (pk, sk)

EncapsI(pk)

04 m←$ M
05 c := Enc1(pk, m)

06 K′ := G1(m, H(pk))

07 return (K′, c)

DecapsI(sk = (sk, z, pk), c)

08 m′ := Dec1(sk, c)
09 if m′ = ⊥ then
10 return ⊥
11 else
12 return K′ := G1(m′, H(pk))

Figure 3.14: The scheme KS-INTER where DPKE = (KGen1,Enc1,Dec1) as in Figure 3.13.

KGen′(1K)

01 (pk, sk)←$ KGen(1K)

02 z←$ {0, 1}ℓ

03 sk := (sk, z, pk)
04 return (pk, sk)

Encaps′(pk)

05 m←$ M
06 c := Enc1(pk, m)

07 K′ := G1(m, H(pk))

08 K := KDF(K′, H(c))
09 return (K, c)

Decaps′(sk = (sk, z, pk), c)

10 m′ := Dec1(sk, c)
11 if m′ = ⊥ then
12 return K := KDF(z, H(c))
13 else
14 K′ := G1(m′, H(pk))

15 return K := KDF(K′, H(c))

Figure 3.15: The scheme KS’ where DPKE = (KGen1,Enc1,Dec1) as in Figure 3.13.

• KS-INTER is IND-CCA secure and δ1-correct.

• KS’ is IND-CCA secure and δ1-correct.

• KS is IND-CCA secure and δ1-correct.

DPKE DPKE, as defined in Figure 3.13, can be understood as the output of
a T transformation ([HHK17]) applied to PKE with a special random oracle
G′2(x) := G2(x, H(pk)). While we cannot construct G′2 independently of the
game run, this looks like an arbitrary random oracle to the adversary. The
reason is that there is only one generation of pk per game run and it hap-
pens before the adversary is first executed, i.e. by the time that the adversary
begins executing G′2 is constructed and its outputs are independently uni-

32

3.3. CRYSTALS-KYBER and SABER

formly at random from the space S - like any regular random oracle’s. We
prove that this addition of static inputs to the random oracle is secure by
providing a reduction.

As a consequence, we inherit exactly the same guarantees as with a regular
T transformation:

Corollary 3.9 (Security of DPKE in the ROM) Assume PKE to be γ-spread.
Then, for any OW-VA adversary B against DPKE issuing at most qG2 queries to
the random oracle G2, and qV queries to a validity checking oracle Cvo, there exists
an IND-CPA adversary A against PKE, such that

Adv OW-VA
DPKE (B) ≤ qG2 · δ + qV · 2−γ +

qG2 + 1
|M| + 3 · Adv IND-CPA

PKE (A)

and the running time of A is about that of B. Furthermore, DPKE is rigid and is
δ1-correct with δ1(qG2) := qG2 · δ.

Proof Let G′2 be a random oracle defined as G′2(x) := G2(x, H(pk)).

DPKE is the scheme where adversaries have access to G2. Let DPKE-T
be the scheme where adversaries only have access to G′2. In other words,
DPKE-T := T[PKE, G′2] using the T transformation from [HHK17]. Both ad-
versaries are allowed to query H on arbitrary inputs as the only output of
H that is not completely independent from the security games is H(pk) and
its value as well as pk can be regarded as public knowledge.

We first reduce the security of DPKE to that of DPKE-T by providing a proof
by reduction.

Let B be an OW-VA adversary against DPKE issuing at most qG2 queries
to the random oracle G2. We can construct an OW-VA adversary C against
DPKE-T that issues at most qG2 queries to its random oracle G′2: C simulates
an internal random oracle F using on-the-fly simulation (as already seen in
e.g. the simulation of H0 and H1 in Game G0 in Figure 3.11). All inputs to
C are forwarded to B, the output of B is the output of C. Every query that
B makes to Cvo is forwarded to the validity checking oracle available to C.
Every query G2(x) made by B is resolved as follows:

By definition x is of the form (m, s) for m ∈ M, s ∈ S .

• If s = H(pk), we return G′2(m) (this is valid as G′2 is available to C).

• Otherwise, the query is forwarded to the internal random oracle F
which is not accessible by B.

Since this is a perfect simulation of the OW-VA game towards B, we have:

Adv OW-VA
DPKE (B) = Adv OW-VA

DPKE-T(C)

33

3. Analysis of NIST Finalists

Correctness of DPKE similarly reduces to the correctness of DPKE-T.

This concludes our proof by reduction. The rest of our claim depends on
DPKE-T only. The security and correctness of DPKE-T in turn follows di-
rectly from Theorem 3.8 together with our assumption about the correctness
of PKE.

Because we only require OW-VA security going forward, we disallow use of
the plaintext checking oracle and set qP = 0 to get a tighter reduction. In
particular this means that there exists an IND-CPA adversary A against PKE,
such that

Adv OW-VA
DPKE-T(B) ≤ qG2 · δ + qV · 2−γ +

qG2 + 1
|M| + 3 · Adv IND-CPA

PKE (A)

Combining the two equations above yields the required bound.

Note that in [HHK17], there was no argument about why the T transforma-
tion adds rigidity to a non-rigid scheme. We have already explained why
this is the case in the proof of Corollary 3.3. □

KS-INTER The scheme, as defined in Figure 3.14 is a U⊥m transformation
as in [HHK17] with the single change that instead of a random oracle for
key generation shared across all users, independent of the public key, we
again use a public-key-dependent oracle G′1(x) := G1(x, H(pk)) to generate
the keys.

With the same reasoning as before, we get:

Corollary 3.10 (Security of KS-INTER in the ROM) For any IND-CCA adver-
sary B against KS-INTER, issuing at most qD queries to the decapsulation oracle
DecapsI and at most qG2 , resp. qG1 queries to its random oracles G2 and G1, there
exists an OW-VA adversary A against DPKE that makes at most qD queries to the
Cvo oracle and at most qG1 + qG2 queries to the random oracle G2 such that

Adv IND-CCA
KS-INTER(B) ≤ Adv OW-VA

DPKE (A) + δ · (qG2 + 2 · (qG1 + qD))

and the running time of A is about that of B. Furthermore, KS-INTER is δ1-correct
with δ1(qG2) := qG2 · δ.

Proof Again, we split this proof into two parts. Let G′1 be a random oracle
defined as G′1(x) := G1(x, H(pk)). We define the scheme KS-INTER-U to be
U⊥m [DPKE, G′1] as in [HHK17].

The security of KS-INTER reduces to the security of KS-INTER-U. We provide
a proof by reduction.

Let B be an IND-CCA adversary against KS-INTER issuing at most qD queries
to the decapsulation oracle DecapsI and at most qG2 , resp. qG1 queries to

34

3.3. CRYSTALS-KYBER and SABER

its random oracles G2 and G1. We can construct an IND-CCA adversary
C against KS-INTER-U that issues at most qD queries to the decapsulation
oracle DecapsI and at most qG2 , resp. qG1 queries to its random oracles G2 and
G′1: C simulates an internal random oracle F using on-the-fly simulation (as
already seen in e.g. the simulation of H0 and H1 in Game G0 in Figure 3.11).
All inputs to C are forwarded to B, the output of B is the output of C. Every
query that B makes to DecapsI is forwarded to the decapsulation oracle
available to C. Every query G1(x) made by B is resolved as follows:

By definition x is of the form (m, s) for m ∈ M, s ∈ S .

• If s = H(pk), we return G′1(m) (this is valid as G′1 is available to C).

• Otherwise, the query is forwarded to the internal random oracle F
which is not accessible by B.

Since this is a perfect simulation of the OW-VA game towards B, we have:

Adv IND-CCA
KS-INTER(B) = Adv IND-CCA

KS-INTER-U(C)

Correctness of DPKE similarly reduces to the correctness of KS-INTER-U.

This concludes our proof by reduction. The rest of our claim depends on
KS-INTER-U only. The security and correctness of KS-INTER-U in turn fol-
lows directly from [HHK17, Theorem 3.5] because DPKE is δ1-correct with
δ1(qG2) := qG2 · δ, deterministic and rigid. Furthermore, qEnc1,G2 = 1 and
qDec1,G2 = 1 are upper bounds on the number of G2 queries that Enc1, resp.
Dec1 make upon a single invocation. This lets us deduce that there exists
an OW-VA adversary A against DPKE that makes at most qD queries to the
Cvo oracle and at most qG1 + qG2 queries to the random oracle G2 such that

Adv IND-CCA
KS-INTER-U(B) ≤ Adv OW-VA

DPKE (A) + δ · (qG2 + 2 · (qG1 + qD))

Combining the two equations above yields the required bound. □

KS’ Up to this point, we did not have to change a lot in comparison to the
transformations in [HHK17]. For this scheme however, an idea from Kathrin
Hövelmanns’ [Höv21a] comes into play: KS-INTER is a secure scheme with
explicit rejection which makes it easier for us to reduce the security of KS’
to that of DPKE. Our reduction will introduce the secret z and move away
from explicit rejection as well as change the way that the keys are generated
by simulating the correct generation involving KDF.

Theorem 3.11 (Security of KS’ in the ROM) For any IND-CCA adversary B
against KS’, issuing at most qD queries to the decapsulation oracle Decaps′, at
most qKDF queries to the random oracle KDF and at most qG2 , resp. qG1 queries
to its random oracles G2 and G1, there exists an IND-CCA adversary A against

35

3. Analysis of NIST Finalists

KS-INTER that makes at most qD queries to the DecapsI oracle and at most qG2 ,
resp. qG1 queries to the random oracles G2 and G1 such that

Adv IND-CCA
KS’ (B) ≤ Adv IND-CCA

KS-INTER(A) +
qKDF

2ℓ

and the running time of A is about that of B. Furthermore, KS’ is δ1-correct with
δ1(qG2) := qG2 · δ.

Proof The proof proceeds similarly in spirit to the proofs for [HHK17, The-
orem 3.5] and Theorem 3.1. We adapt it here to our new situation.

It is easy to verify the correctness bound as KS-INTER is also δ1-correct. Let
B be an adversary against the IND-CCA security of KS’, issuing at most qKDF
queries to the random oracle KDF. Consider the games given in Figure 3.16.

Game G0 Since game G0 is the original IND-CCA game w.r.t. KS’,∣∣∣∣Pr[GB0 ⇒ 1]− 1
2

∣∣∣∣ = Adv IND-CCA
KS’ (B)

Game G1 In game G1 we make two changes. First, we raise flag QUERY
and abort if KDF(K′′, H(c∗)) is queried (lines 16 and 17).

This change does not affect the queries to H even if the oracles H and KDF
were identical because all other queries to H whose output is ever used
are queries with domains PK or C and the domain of the KDF queries we
modify is K′ × S . Thus, we have domain separation between the H queries
and the modified KDF queries since we assumed (K′ × S) ∩ PK = ∅ and
(K′×S)∩ C = ∅ in section 3.3.1. If the oracles H and KDF are independent,
our modification trivially has no effect on the H queries.

Second, we make the perfectly random key K∗1 only pseudorandom. That is,
in the setup procedure, we replace K∗1 ←$ {0, 1}n by K∗1 := KDF(K′′, H(c∗)),
where K′′ is a random value from {0, 1}ℓ. The latter remains unnoticed by
B unless KDF(K′′, H(c∗)) is queried, in which case G1 aborts. Let the event
of B querying KDF(K′′, H(c∗)) be QUERY. This means∣∣∣Pr[GB1 ⇒ 1]− Pr[GB0 ⇒ 1]

∣∣∣ ≤ Pr[QUERY]

Here, B’s view in Game G1 is not completely independent of K′′, in the
sense that had we chosen a different K′′ and changed nothing else, B would
notice because K∗1 changed. However, K′′ is used only in the computation of
K∗1 and K∗1 is by definition a perfectly random value. Notice however, that
the event QUERY is well-defined already in Game G0 and only occurs if B
can guess K′′. Due to the difference lemma, the probability of QUERY is the

36

3.3. CRYSTALS-KYBER and SABER

same in both games and in Game G0, B’s view is completely independent
of the uniform secret K′′. Therefore, the probability of QUERY is at most
qKDF · 2−ℓ and hence,∣∣∣Pr[GB1 ⇒ 1]− Pr[GB0 ⇒ 1]

∣∣∣ ≤ qKDF

2ℓ

It remains to bound Pr[GB1 ⇒ 1]. To this end, we construct an adversary
A against the IND-CCA security of KS-INTER, simulating G1 for B as in
Figure 3.17.

Notice that if b = 0 then A receives K′∗0 = G1(m∗, H(pk)) for some message
m∗. A then computes KDF(K′∗0 , H(c∗)) where c∗ = EncI(pk, m∗) and uses
this as K∗0 for B. This simulates perfectly the key generation for the case
b = 0 in Game G1.

If however, b = 1 then A receives K′∗1 , a value sampled uniformly at ran-
dom. Now A again computes KDF(K′∗1 , H(c∗)), again for c∗ = EncI(pk, m∗)
and some m∗ but this time c∗ is fully independent from K′∗1 . A then uses
this newly computed value as K∗1 for B. This simulates perfectly the key
generation for the case b = 1 in Game G1.

A is able to perfectly simulate Game G1 towards B because it has all the nec-
essary information to convert the keys (as seen above), it recognizes when
its decapsulation oracle rejects (because KS-INTER is an explicit-rejection
scheme) and it can pick z arbitrarily because KS-INTER does not use it. Also
note that A wins its game against KS-INTER if and only if B wins the simu-
lated game against KS’. Hence,∣∣∣∣Pr[GB1 ⇒ 1]− 1

2

∣∣∣∣ = Adv IND-CCA
KS-INTER(A)

Collecting the probabilities and applying the reverse triangle inequality yields
the required bound.

KS Finally, we only need to adapt the message generation from KS’ (line 5
in Figure 3.15) to instead use the hash of the uniformly generated message
(line 6 in Figure 3.12). This is the only difference between the schemes
KS’ and KS. For a random oracle, the hash of a uniformly sampled input
will also be uniformly distributed in the range. Hence, we don’t need to
introduce our notion of non-uniform message generation here but we do
need to isolate the hash operation from the rest of the game by forbidding
(unlikely) queries about the uniformly generated message.

We can prove the following statement:

37

3. Analysis of NIST Finalists

GAMES G0 and G1

01 (pk, sk)← KGen(1K)

02 z←$ {0, 1}ℓ

03 sk := (sk, z, pk)
04 m∗ ←$ M
05 c∗ := EncI(pk, m∗)
06 K′ := G1(m∗, H(pk))

07 K′′ ←$ {0, 1}ℓ

08 K∗0 := KDF(K′, H(c∗))
09 K∗1 ←$ {0, 1}n // G0

10 K∗1 := KDF(K′′, H(c∗)) // G1

11 b←$ {0, 1}

12 b′ ← BDecaps′ ,KDF(pk, c∗, K∗b)
13 return Jb′ = bK

KDF(k′, ch) // (k′, ch) ∈ {0, 1}ℓ × S

14 if ∃K s.th. (k′, ch, K) ∈ LKDF

15 return K
16 if k′ = K′′ then // G1

17 QUERY := true; abort // G1

18 K ←$ K
19 LKDF := LKDF ∪ {(k′, ch, K)}
20 return K

Figure 3.16: Games G0 and G1 for the proof of Theorem 3.11

A(pk, c∗, K′∗b)

01 K∗b := KDF(K′∗b , H(c∗))

02 z←$ {0, 1}ℓ

03 b′ ← BDecaps′′ ,KDF(pk, c∗, K∗b)
04 return b′

Decaps′′(c ̸= c∗)

05 K′ := DecapsI(c)
06 if K′ = ⊥ then
07 return K := KDF(z, H(c))
08 else return K := KDF(K′, H(c))□

Figure 3.17: Adversary A against IND-CCA w.r.t. KS-INTER for the proof of Theorem 3.11,
where KDF is defined as in Game G0 of Figure 3.16

Theorem 3.12 (Security of KS in the ROM) For any IND-CCA adversary B against
KS, issuing at most qD queries to the decapsulation oracle Decaps, at most qH
queries to the random oracle H, at most qKDF queries to the random oracle KDF
and at most qG2 , resp. qG1 queries to its random oracles G2 and G1, there exists an
IND-CCA adversary A against KS’ that makes at most qD queries to the Decaps′

oracle, at most qKDF queries to the random oracle KDF and at most qG2 , resp. qG1

queries to the random oracles G2 and G1 such that

Adv IND-CCA
KS (B) ≤ Adv IND-CCA

KS’ (A) + qH

|M|

and the running time of A is about that of B. Furthermore, KS is δ1-correct with
δ1(qG2) := qG2 · δ.

Proof The proof will use a single game hop to forbid queries of the form
H(m′∗).

38

3.3. CRYSTALS-KYBER and SABER

It is easy to verify the correctness bound as KS’ is also δ1-correct. Let B be
an adversary against the IND-CCA security of KS, issuing at most qH queries
to the random oracle H. Consider the games given in Figure 3.18.

Game G0 Since game G0 is the original IND-CCA game,

Pr[GB0 ⇒ 1]− 1
2
= Adv IND-CCA

KS (B)

Game G1 In game G1 we make two changes. First, we raise flag QUERY
and abort if H(m′∗) is queried (lines 15 and 16).

This change does not affect the queries to KDF even if the oracles H and KDF
were identical because all other queries to KDF whose output is ever used
are queries with domainsK′×S and the domain of the H queries we modify
is M. Thus, we have domain separation between the KDF queries and the
modified H queries since we assumed (K′ × S) ∩M = ∅ in section 3.3.1.
If the oracles H and KDF are independent, our modification trivially has no
effect on the KDF queries.

No matter whether the oracles H and KDF are identical or whether they are
independent, our modification to the H queries also has no effect on other
H queries we use because all other queries to H whose output is ever used
are queries with domains PK or C and the domain of the H queries we
modify is M. We have domain separation here as well since we assumed
PK ∩M = ∅ and C ∩M = ∅ in section 3.3.1.

Second, we make the pseudorandom message output by H(m′∗) on line 5
perfectly random. That is, in the setup procedure, we replace m∗ := H(m′∗)
by m∗ ←$ M. The latter remains unnoticed by B unless H(m′∗) is queried,
in which case G1 aborts. Since B’s view is independent of (the uniform
secret) m′∗ unless G1 aborts (B only gets the inputs c∗, K∗b and pk which do
depend only on m∗ but not on m′∗),∣∣∣Pr[GB1 ⇒ 1]− Pr[GB0 ⇒ 1]

∣∣∣ ≤ qH

|M|

As the Game G1 is exactly the IND-CCA game against KS’, we can construct
the adversary A against KS’ as simply running B while simulating the game
G1 towards B and copying B’s outputs. Hence, there exists an adversary A
against KS’ such that∣∣∣∣Pr[GB1 ⇒ 1]− 1

2

∣∣∣∣ = Adv IND-CCA
KS’ (A)

Collecting the probabilities and applying the reverse triangle inequality yields
the required bound.

39

3. Analysis of NIST Finalists

GAMES G0 and G1

01 (pk, sk)← KGen(1K)

02 z←$ {0, 1}ℓ

03 sk := (sk, z, pk)
04 m′∗ ←$ M
05 m∗ := H(m′∗) // G0

06 m∗ ←$ M // G1

07 c∗ := EncI(pk, m∗)
08 K′ := G1(m∗, H(pk))

09 K∗0 := KDF(K′, H(c))
10 K∗1 ←$ {0, 1}n

11 b←$ {0, 1}
12 b′ ← BDecaps,H(pk, c∗, K∗b)
13 return Jb′ = bK

H(m) // m ∈ M

13 if ∃X s.th. (m, X) ∈ LH

14 return X
15 if m = m′∗ then // G1

16 QUERY := true; abort // G1

17 X ←$ M
18 LH := LH ∪ {(m, X)}
19 return X □

Figure 3.18: Games G0 and G1 for the proof of Theorem 3.12

As this was the last reduction needed, we can now collect all the bounds in
a final corollary.

Corollary 3.13 (Security of the full KS reduction in the ROM) Assume PKE
to be γ-spread. Then, for any IND-CCA adversary B against KS issuing at most
qD queries to the decapsulation oracle Decaps, at most qH queries to the random
oracle H, at most qKDF queries to the random oracle KDF and at most qG2 , resp.
qG1 queries to its random oracles G2 and G1, there exists an IND-CPA adversary A
against PKE, such that

Adv IND-CCA
KS (B) ≤ (3 · qG1 + 2 · qG2 + 2 · qD) · δ + qD · 2−γ +

qKDF

2ℓ

+
qH + qG2 + qG1 + 1

|M| + 3 · Adv IND-CPA
PKE (A)

and the running time of A is about that of B. Furthermore, if PKE is δ-correct then
KS is δ1-correct with δ1(qG2) := qG2 · δ.

Proof This follows from Theorems and Corollaries 3.9, 3.10, 3.11 and 3.12.

Given adversary B against KS, we construct an IND-CCA adversaryA1 against
KS’ as described in Theorem 3.12. Given adversary A1 against KS’, we
then construct another IND-CCA adversary A2 against KS-INTER as in Fig-
ure 3.17. Given adversaryA2 against KS-INTER, we also construct an OW-VA
adversary A3 against DPKE just as in [HHK17, Figure 17]. And finally, we
employ Theorem 3.9 to get the claimed adversary A against the IND-CPA
security of PKE.

40

3.3. CRYSTALS-KYBER and SABER

From our constructions as well as Theorem 3.9, 3.10, 3.11 and 3.12 respec-
tively, we conclude:

Adv OW-VA
DPKE (A3) ≤ qG2 · δ + qV · 2−γ +

qG2 + 1
|M| + 3 · Adv IND-CPA

PKE (A)

Adv OW-VA
KS-INTER(A2) ≤ Adv OW-VA

DPKE (A3) + δ · (qG2 + 2 · (qG1 + qD)))

Adv IND-CCA
KS’ (A1) ≤ Adv IND-CCA

KS-INTER(A2) +
qKDF

2ℓ

Adv IND-CCA
KS (B) ≤ Adv IND-CCA

KS’ (A1) +
qH

|M|

where the numbers of queries refer to the queries made by the adversary in
the left-hand side of each line (e.g. in the first line qG2 denotes the number of
queries to G2 made by A3). We now have to establish connections between
these query numbers.

Assume, as in the corollary, that the adversary B makes at most qD queries
to the decapsulation oracle Decaps, at most qH queries to the random oracle
H, at most qKDF queries to the random oracle KDF and at most qG2 , resp. qG1

queries to its random oracles G2 and G1.

According to our constructions, we can get the following bounds on the
number of relevant queries for each adversary:

• A1 makes the same number of queries to all oracles as B

• A2 makes the same number of queries to the oracles DecapsI , G2 and
G1

• A3 makes qG2 + qG1 queries to the oracle G2 and qD queries to the Cvo

oracle

Combining the inequalities above and the amounts of queries yields our
claimed bound. □

3.3.5 Security of the concrete schemes

For the concrete schemes CRYSTALS-KYBER and SABER, given the instan-
tiations described in Section 3.3.2, we now get the following bounds.

Corollary 3.14 (Security of CRYSTALS-KYBER in the ROM) Assume
Kyber.CPAPKE to be γ-spread. Then, for any IND-CCA adversary B against Ky-
ber.CCAKEM issuing at most qD queries to the decapsulation oracle Decaps, at
most qH queries to the random oracle H, at most qKDF queries to the random oracle
KDF and at most qG2 , resp. qG1 queries to its random oracles G2 and G1, there

41

3. Analysis of NIST Finalists

exists an IND-CPA adversary A against Kyber.CPAPKE, such that

Adv IND-CCA
Kyber.CCAKEM(B) ≤ (3 · qG1 + 2 · qG2 + 2 · qD) · δ + qD · 2−γ

+
qKDF + qH + qG2 + qG1 + 1

2256 + 3 · Adv IND-CPA
Kyber.CPAPKE(A)

and the running time of A is about that of B. Furthermore, if Kyber.CPAPKE is
δ-correct then Kyber.CCAKEM is δ1-correct with δ1(qG2) := qG2 · δ.

Proof This follows directly from Corollary 3.13 together with parts of the
instantiations explained in Section 3.3.2, namely:

• PKE with Kyber.CPAPKE from [SAB+20]

• ℓ with ℓ = 256

• M with {0, 1}256

and the fact that the CRYSTALS-KYBER KEM, Kyber.CCAKEM, is constructed
as a KS transform. □

Corollary 3.15 (Security of SABER in the ROM) Assume Saber.PKE to be γ-
spread. Then, for any IND-CCA adversary B against Saber.KEM issuing at most
qD queries to the decapsulation oracle Decaps, at most qH queries to the random
oracle H = KDF and at most qG2 , resp. qG1 queries to its random oracles G2 and
G1, there exists an IND-CPA adversary A against Saber.PKE, such that

Adv IND-CCA
Saber.KEM(B) ≤ (3 · qG1 + 2 · qG2 + 2 · qD) · δ + qD · 2−γ

+
2qH + qG2 + qG1 + 1

2256 + 3 · Adv IND-CPA
Saber.PKE(A)

and the running time of A is about that of B. Furthermore, if Saber.PKE is δ-
correct then Saber.KEM is δ1-correct with δ1(qG2) := qG2 · δ.

Proof This follows directly from Corollary 3.13 together with parts of the
instantiations explained in Section 3.3.2, namely:

• PKE with Saber.PKE from [DKR+20]

• The fact that H and KDF are instantiated as the same underlying func-
tion (hence qKDF = qH)

• ℓ with ℓ = 256

• M with {0, 1}256

and the fact that the SABER KEM, Saber.KEM, is constructed as a KS trans-
form. □

This concludes our discussion of CRYSTALS-KYBER and SABER as we have
now successfully reduced the IND-CCA security of both of them (as instanti-
ations of the KS transformation) to the IND-CPA security of their respective

42

3.4. Summary of Results

underlying PKE schemes. Note that for our work to be meaningful, there
must still be formal proofs justifying the δ-correctness and IND-CPA secu-
rity of those PKE schemes (which can be reduced to the underlying lattice
assumptions) as well as the fact that they are indeed γ-spread, all with ac-
ceptable parameters.

3.4 Summary of Results

In this final section of the thesis, we will now summarize our results and
compare the bounds we found to the bounds presented in the specifications
(if any). Table 3.1 shows the bounds in the specification documents. Table 3.2
displays our results. Table 3.3 gives an overview of the assumptions we
made for our bounds as well as the correctness we were able to prove for
the respective KEMs.

In all entries, B is an IND-CCA adversary against the KEM scheme and A
an IND-CPA or OW-CPA adversary against the PKE scheme. The bounds are
understood with the quantifications ∀B∃A and the parameters qRO, qD are
upper bounds on the respective queries made by B: qRO is an upper bound
on the total number of queries to all different random oracles involved (more
precise bounds are available in each of the respective sections) and qD is a
bound on the number of decapsulation queries. The running time of A is
about that of B.

Introducing a single bound qRO for the sum of queries to all random oracles
causes a certain loss of tightness compared to the earlier results. Neverthe-
less, we did feel that it aids readability and makes it easier to compare the
different schemes. For the most precise bounds presented in this work, we
refer the reader to the earlier sections cited in Table 3.2.

In our work, we have managed to provide full reductions from IND-CCA
security of the KEMs to OW-CPA or IND-CPA security of the underlying PKE
schemes. We have stated the resulting bounds in terms of concrete security.
Our work reduces all KEM schemes to the respective PKE scheme outlined
in the specification documents except for Classic McEliece which we chose
to reduce even further to the Niederreiter PKE using Goppa Codes.

All of our reductions are tight in the ROM.

In the case of NTRU, we were only able to reduce to a non-standard notion
of one-wayness due to the non-uniform message distribution. All other
reductions use a standard notion.

For NTRU we also require rigidity of the underlying PKE scheme as NTRU
does not explicitly add a re-encryption check as part of the scheme like the
other three schemes we considered.

43

3. Analysis of NIST Finalists

Scheme Bound in specification

NTRU
[CDH+20, Sec. 5.1]

Adv IND-CCA
KEM (B) ≤ Adv OW-CPA

PKE (A) + qRO
2256

Classic McEliece
[ABC+20, Sec. 6.3]

Adv IND-CCA
KEM (B) ≤ Adv OW-CPA

PKE (A) + qD · 2−256 + qD
|M|

CRYSTALS-KYBER
[SAB+20, Sec. 4.3.1]

Adv IND-CCA
KEM (B) ≤ Adv IND-CPA

PKE (A) + 4 · qRO · δ

SABER
[DKR+20, Thm. 6.3]

Adv IND-CCA
KEM (B) ≤ 3 · Adv IND-CPA

PKE (A) + qRO · δ + (2qRO + 1) · 2−256

Table 3.1: The security bounds from the respective specifications. While NTRU did not explicitly
state a bound in terms of concrete security, its specification document cited three possible sources
for such a bound. Among them was [HHK17, Theorem 3.6], whose bound we adapted to the
situation here (the uniform secret s is sampled from {0, 1}ℓ instead of M and we use the
correction from [Höv21b] to replace qD by qRO).

Scheme Bound in our work

NTRU,
see Cor. 3.2

Adv IND-CCA
KEM (B) ≤ Adv OW-CPA

PKE, Sample rm(A) +
qRO
2256

Classic McEliece,
see Cor. 3.7

Adv IND-CCA
KEM (B) ≤ Adv OW-CPA

PKE (A) + qRO
2256

CRYSTALS-KYBER,
see Cor. 3.14 Adv IND-CCA

KEM (B) ≤ 3 · Adv IND-CPA
PKE (A) + qD · 2−γ

+
2qRO + 1

2256 + (3qRO + 2 · qD) · δSABER,
see Cor. 3.15

Table 3.2: The security bounds we proved in this work. CRYSTALS-KYBER and SABER share
the same bound in the table but for the case of CRYSTALS-KYBER, the bound can be improved
by replacing the term (2qRO + 1)/2256 by simply (qRO + 1)/2256.

44

3.4. Summary of Results

Underlying PKE KEM
Scheme δ-correct Rigidity γ-spread δ1-correct with

NTRU For δ = 0 Det. and rigid Not required δ1(qRO) = 0

Classic McEliece For δ = 0 Det. only Not required δ1(qRO) = 0

CRYSTALS-KYBER For some δ Neither For some γ δ1(qRO) = δ · qRO

SABER For some δ Neither For some γ δ1(qRO) = δ · qRO

Table 3.3: The assumptions under which our bounds in Table 3.2 are valid as well as the resulting
correctness of the KEM. These are stated explicitly in the Corollaries and their corresponding
proofs cited in Table 3.2. The second column describes a maximum acceptable correctness error
δ, the third column states whether we require determinism, rigidity, both or neither and the
fourth column states whether or not we require γ-spreadness.

For Classic McEliece we arrived at a similarly tight bound as the specifica-
tion stated but we ended up with different additional bounds (namely, we
used qRO and not qD). This difference could simply stem from the differ-
ent frameworks employed in the respective analyses but it is noteworthy
nonetheless.

For CRYSTALS-KYBER and SABER we were forced to introduce the addi-
tional assumption of γ-spreadness to ensure that our reductions applied
because we relied on an intermediate scheme with explicit rejection for our
analysis. The NTRU and Classic McEliece reductions have no such require-
ment since their PKE scheme was already deterministic.

Finally, we have improved on the bound given in [HHK17, Theorem 3.2] and
[Höv21b, Theorem 2.1.3] as Theorem 3.8.

45

Appendix A

Proof of Theorem 3.8

We will now prove our claim that Theorem 3.8 is indeed correct and pro-
vides a tighter bound than [Höv21b, Theorem 2.1.3] (the corrected version
of [HHK17, Theorem 3.2]).

For the reader’s convenience, we will now restate the original and outline
the relevant parts of the proof in [Höv21b]. The original theorem stated:

Theorem (PKE IND-CPA
ROM
=⇒ T[PKE, G] OW-PCVA) Let PKE’ := T[PKE, G]

in the following. Assume PKE to be δ-correct and γ-spread. Then, for any OW-
PCVA adversary B that issues at most qG queries to the random oracle G, qP queries
to a plaintext checking oracle Pco, and qV queries to a validity checking oracle Cvo,
there exists an IND-CPA adversary A such that

Adv OW-PCVA
PKE’ (B) ≤ (qG + qP) · δ+ qV · 2−γ +

2(qG + qP) + 1
|M| + 3 ·Adv IND-CPA

PKE (A)

and the running time of B is about that of A.

Note that the only difference between this and Theorem 3.8 is the factor of
2 in the second to last term. We will not change the argument presented in
the original proof but instead only provide a better analysis on one of the
events.

Proof The proof in [Höv21b] first argues that there exists an adversary C
such that

Adv OW-PCVA
PKE’ (B) ≤ (qG + qP) · δ+ qV · 2−γ +

1
|M| + 3 ·Adv IND-CPA

PKE (C)+Pr[QUERY]

(A.1)

In the proof, an IND-CPA adversary D is constructed which in turn uses B.
During a game run, two messages m∗0 and m∗1 are sample independently and
uniformly at random. The event QUERY mentioned in the inequality above

47

A. Proof of Theorem 3.8

describes the event that adversary B queries the random oracle G on the
input m∗b , i.e. on the input for which B is given an encryption.

The other message m∗1−b is independent from B’s view. Let BADG be the
event of B nevertheless querying G on m∗1−b.

We will now improve on the bound for Pr[QUERY] that is given in [Höv21b].

First notice that because m∗1−b is independent from B’s view and by defini-
tion we have the following two equations

Adv IND-CPA
PKE (D) =

∣∣∣∣Pr[b = b′]− 1
2

∣∣∣∣ (A.2)

Pr[BADG] ≤ qG + qP

|M| (A.3)

From the way the adversary D is defined in the proof, we can calculate its
advantage in all cases:

Pr[b = b′ | QUERY ∧ BADG] =
1
2

Pr[b = b′ | QUERY ∧ BADG] = 1

Pr[b = b′ | QUERY ∧ BADG] = 0

Pr[b = b′ | QUERY ∧ BADG] =
1
2

Combining these equations yields:

Pr[b = b′ | BADG] = 1
2

Pr[QUERY | BADG] (A.4)

Pr[b = b′ | BADG] = Pr[QUERY | BADG] + 1
2

Pr[QUERY | BADG]

=
1
2

Pr[QUERY | BADG] + 1
2

(A.5)

48

And with a final calculation, we can bound the advantage of D:

Adv IND-CPA
PKE (D) (A.2)

=

∣∣∣∣Pr[b = b′]− 1
2

∣∣∣∣
=

∣∣∣∣Pr[b = b′ | BADG]Pr[BADG] + Pr[b = b′ | BADG]Pr[BADG]− 1
2

∣∣∣∣
(A.4),(A.5)

=

∣∣∣∣(1
2

Pr[QUERY | BADG] + 1
2

)
Pr[BADG]

+

(
1
2

Pr[QUERY | BADG]
)

Pr[BADG]− 1
2

∣∣∣∣
=

∣∣∣∣1
2
(Pr[QUERY]− Pr[BADG])

∣∣∣∣
≥ 1

2
(Pr[QUERY]− Pr[BADG])

(A.3)
≥ 1

2
Pr[QUERY]− qG + qP

2|M|

And so we get the following bound for Pr[QUERY]:

Adv IND-CPA
PKE (D) + qG + qP

2|M| ≥
1
2

Pr[QUERY]

which is tighter than the bound provided in the two papers [HHK17, Höv21b]
by a factor of 2 in the additive term.

Plugging the improved bound for Pr[QUERY] back into (A.1) finishes our
proof. □

49

Bibliography

[AAC+22] Gorjan Alagic, Daniel Apon*, David Cooper, Quynh Dang,
Thinh Dang, John Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl
Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robin-
son, and Daniel Smith-Tone. Status Report on the Third Round
of the NIST Post-Quantum Cryptography Standardization Pro-
cess. Technical report, National Institute of Standards and Tech-
nology, 2022. available at https://doi.org/10.6028/NIST.IR.
8413.

[AASA+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David
Cooper, Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller,
Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson,
and Daniel Smith-Tone. Status Report on the Second Round
of the NIST Post-Quantum Cryptography Standardization Pro-
cess. Technical report, National Institute of Standards and Tech-
nology, 2020. available at https://doi.org/10.6028/NIST.IR.
8309.

[ABC+20] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Car-
los Cid, Jan Gilcher, Tanja Lange, Varun Maram, Ingo
von Maurich, Rafael Misoczki, Ruben Niederhagen, Ken-
neth G. Paterson, Edoardo Persichetti, Christiane Peters, Pe-
ter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai,
Martin Tomlinson, and Wen Wang. Classic McEliece. Tech-
nical report, National Institute of Standards and Technol-
ogy, 2020. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-3-submissions.

[BP18] Daniel J. Bernstein and Edoardo Persichetti. Towards KEM
Unification, 2018. available at https://cr.yp.to/papers/

tightkem-20180528.pdf.

51

https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.6028/NIST.IR.8309
https://doi.org/10.6028/NIST.IR.8309
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://cr.yp.to/papers/tightkem-20180528.pdf
https://cr.yp.to/papers/tightkem-20180528.pdf

Bibliography

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple en-
cryption and a framework for code-based game-playing proofs.
In Serge Vaudenay, editor, Advances in Cryptology – EURO-
CRYPT 2006, volume 4004 of Lecture Notes in Computer Science,
pages 409–426, St. Petersburg, Russia, May 28 – June 1, 2006.
Springer, Heidelberg, Germany. doi:10.1007/11761679_25.

[CDH+20] Cong Chen, Oussama Danba, Jeffrey Hoffstein, An-
dreas Hulsing, Joost Rijneveld, John M. Schanck, Peter
Schwabe, William Whyte, Zhenfei Zhang, Tsunekazu Saito,
Takashi Yamakawa, and Keita Xagawa. NTRU. Tech-
nical report, National Institute of Standards and Technol-
ogy, 2020. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-3-submissions.

[CJL+16] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene
Peralta, Ray Perlner, and Daniel Smith-Tone. Report on Post-
Quantum Cryptography. Technical report, National Institute of
Standards and Technology, 2016. available at http://dx.doi.
org/10.6028/NIST.IR.8105.

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of prac-
tical public-key encryption schemes secure against adaptive
chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–
226, 2003.

[DKR+20] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha
Roy, Frederik Vercauteren, Jose Maria Bermudo Mera,
Michiel Van Beirendonck, and Andrea Basso. SABER. Tech-
nical report, National Institute of Standards and Technol-
ogy, 2020. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-3-submissions.

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration
of asymmetric and symmetric encryption schemes. Jour-
nal of Cryptology, 26(1):80–101, January 2013. doi:10.1007/

s00145-011-9114-1.

[GMP22] Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anony-
mous, robust post-quantum public key encryption. In Orr
Dunkelman and Stefan Dziembowski, editors, Advances in
Cryptology – EUROCRYPT 2022, Part III, volume 13277 of Lec-
ture Notes in Computer Science, pages 402–432, Trondheim, Nor-
way, May 30 – June 3, 2022. Springer, Heidelberg, Germany.
doi:10.1007/978-3-031-07082-2_15.

52

https://doi.org/10.1007/11761679_25
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
http://dx.doi.org/10.6028/NIST.IR.8105
http://dx.doi.org/10.6028/NIST.IR.8105
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/978-3-031-07082-2_15

Bibliography

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for
database search. In 28th Annual ACM Symposium on Theory of
Computing, pages 212–219, Philadephia, PA, USA, May 22–24,
1996. ACM Press. doi:10.1145/237814.237866.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A
modular analysis of the Fujisaki-Okamoto transformation. In
Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th The-
ory of Cryptography Conference, Part I, volume 10677 of Lec-
ture Notes in Computer Science, pages 341–371, Baltimore, MD,
USA, November 12–15, 2017. Springer, Heidelberg, Germany.
doi:10.1007/978-3-319-70500-2_12.

[Höv21a] Kathrin Hövelmanns. personal communication, March 2021.

[Höv21b] Kathrin Hövelmanns. Generic constructions of quantum-resistant
cryptosystems. doctoralthesis, Ruhr-Universität Bochum, Uni-
versitätsbibliothek, 2021. doi:10.13154/294-7758.

[Höv22] Kathrin Hövelmanns. personal communication, March 2022.

[MVDJ18] Vasileios Mavroeidis, Kamer Vishi, Mateusz D., and Audun
Jøsang. The impact of quantum computing on present cryp-
tography. International Journal of Advanced Computer Science
and Applications, 9(3), 2018. URL: https://doi.org/10.14569%
2Fijacsa.2018.090354, doi:10.14569/ijacsa.2018.090354.

[SAB+20] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas,
Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Gregor Seiler, and Damien Stehlé.
CRYSTALS-KYBER. Technical report, National Institute
of Standards and Technology, 2020. available at https:

//csrc.nist.gov/projects/post-quantum-cryptography/

round-3-submissions.

[Sho99] Peter W. Shor. Polynomial-time algorithms for prime factoriza-
tion and discrete logarithms on a quantum computer. SIAM Re-
view, 41(2):303–332, 1999. arXiv:https://doi.org/10.1137/

S0036144598347011, doi:10.1137/S0036144598347011.

[Sho04] Victor Shoup. Sequences of games: a tool for taming com-
plexity in security proofs. Cryptology ePrint Archive, Report
2004/332, 2004. https://eprint.iacr.org/2004/332.

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa.
Tightly-secure key-encapsulation mechanism in the quantum

53

https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.13154/294-7758
https://doi.org/10.14569%2Fijacsa.2018.090354
https://doi.org/10.14569%2Fijacsa.2018.090354
https://doi.org/10.14569/ijacsa.2018.090354
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
http://arxiv.org/abs/https://doi.org/10.1137/S0036144598347011
http://arxiv.org/abs/https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://eprint.iacr.org/2004/332

Bibliography

random oracle model. In Jesper Buus Nielsen and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018,
Part III, volume 10822 of Lecture Notes in Computer Science, pages
520–551, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Hei-
delberg, Germany. doi:10.1007/978-3-319-78372-7_17.

[Xag22] Keita Xagawa. Anonymity of NIST PQC round 3 KEMs. In
Orr Dunkelman and Stefan Dziembowski, editors, Advances in
Cryptology – EUROCRYPT 2022, Part III, volume 13277 of Lecture
Notes in Computer Science, pages 551–581, Trondheim, Norway,
May 30 – June 3, 2022. Springer, Heidelberg, Germany. doi:

10.1007/978-3-031-07082-2_20.

[Yas21] Kenji Yasunaga. Replacing Probability Distributions in Secu-
rity Games via Hellinger Distance. In Stefano Tessaro, ed-
itor, 2nd Conference on Information-Theoretic Cryptography (ITC
2021), volume 199 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 17:1–17:15, Dagstuhl, Germany, 2021. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. URL: https:

//drops.dagstuhl.de/opus/volltexte/2021/14336, doi:10.
4230/LIPIcs.ITC.2021.17.

54

https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-031-07082-2_20
https://doi.org/10.1007/978-3-031-07082-2_20
https://drops.dagstuhl.de/opus/volltexte/2021/14336
https://drops.dagstuhl.de/opus/volltexte/2021/14336
https://doi.org/10.4230/LIPIcs.ITC.2021.17
https://doi.org/10.4230/LIPIcs.ITC.2021.17

	Contents
	Introduction
	Our Work
	Open Questions and Round 4

	Preliminaries
	Notation
	Public-Key Encryption
	KEM
	Security Games
	Lemmas

	Analysis of NIST Finalists
	NTRU
	Modified Um transformation
	Security of NTRU

	Classic McEliece
	CRYSTALS-KYBER and SABER
	Assumptions
	Instantiations
	Slightly improved version of [HHK17, Theorem 3.2]
	Security of the KS transform
	Security of the concrete schemes

	Summary of Results

	Proof of Theorem 3.8
	Bibliography

