
Quantumania: Three Quantum
Attacks on AES-OTR’s

Confidentiality and a Quantum
Key-Recovery Attack on OPP

Bachelor Thesis

Melanie Jauch

March 26, 2023

Advisors: Prof. Dr. Kenny Paterson, Varun Maram

Applied Cryptography Group
Institute of Information Security

Department of Computer Science, ETH Zürich

Abstract

The impact of quantum computers on symmetric-key cryptography has
long been considered to be low due to Grover’s algorithm, which only
improves attacks on primitives such as block ciphers by a quadratic
speed up. However, in recent works, the quantum security of certain
block cipher modes of operation has been broken in polynomial time
in a setting where the adversary has access to a quantum encryption
oracle, i.e., is allowed to make encryption queries in a quantum su-
perposition of states. In particular, in this model works by Maram et
al. (ToSC 2022) and Chang et al. (Symmetry 2022) have shown how
to break unforgeability ((E/U)UF-qCMA security) and confidentiality
(IND-qCPA security) of OCB, and unforgeability of the AES-OTR au-
thenticated encryption (AE) modes respectively.

However, the confidentiality of AES-OTR and the quantum security
of other OCB-like modes of operation, such as OPP, have not been
addressed. This is where this thesis steps in and presents the first
quantum key recovery attack on OPP and for the first time breaks the
IND-qCPA security of AES-OTR in three different settings: Since AES-
OTR comes with two different ways for authenticating associated data
(AD), we present an attack for each of them. To complete the analysis,
we restrict the mode and consider it as a pure AE scheme (i.e., it does
not use AD) and break IND-qCPA security once again.

i

Contents

Contents iii

1 Introduction 1
1.1 Our Contributions . 4

2 Preliminaries 7
2.1 Notation . 7
2.2 Quantum Algorithms . 8

2.2.1 Simon’s Algorithm . 8
2.2.2 Deutsch’s Algorithm . 9

2.3 Definitions . 10

3 Quantum Cracks in the AES-OTR Encryption Armor 13
3.1 Specifications of AES-OTR . 13
3.2 Prior Quantum Attacks on AES-OTR 17

3.2.1 Finding Collisions when Associated Data Processed in
Parallel . 18

3.2.2 Finding Collisions when Associated Data Processed in
Serial . 19

3.3 IND-qCPA Insecurity of AES-OTR with Parallel Associated
Data Processing . 21
3.3.1 On the Necessity of the Assumption τ = n 24

3.4 IND-qCPA Insecurity of AES-OTR with Serial Associated Data
Processing . 25
3.4.1 On the Quantum Accessibility of the Function f2 . . . 27

3.5 IND-qCPA Insecurity of AES-OTR when Nonces are Chosen
Adaptively . 30

3.6 Refining the EUF-qCMA Attacks on AES-OTR 35
3.6.1 AD Processed in Parallel 35
3.6.2 AD Processed in Serial 36

iii

Contents

4 The Key (-Recovery) Issue of OPP 37
4.1 Specifications of OPP . 37
4.2 Quantum Key-Recovery Attack on OPP 39

4.2.1 Consequences . 43
4.2.2 Comparison with Quantum Key-Recovery Attack on

MEM in [KLLN16] . 43

Bibliography 45

iv

Chapter 1

Introduction

With the rise of the development of quantum computers, the security of
cryptographic systems faces new attack threats, including a speed up of
existing attacks. Opposed to using binary digits (bits) as classical comput-
ers do, quantum computers are based on calculations with quantum bits
(qubits), that can exist in many different states at the same time. As a con-
sequence, quantum computers exceed the abilities of a classical computer
and thus commonly used public-key cryptosystems, that rely on the hard-
ness of computing factorization and discrete logarithms, would suffer from
devastating attacks that are based on Shor’s algorithm [Sho99].

The threat of quantum computers is being addressed by a new research area
called post-quantum cryptography. There it is assumed, that the adversary has
access to a quantum computer. This setting has gained a lot of attention dur-
ing the last years and the desire of using quantum-resistant cryptographic
algorithms arose. This desire has been approached by a six year compe-
tition of NIST in an effort for standardizing such algorithms. A first con-
clusion has been made and four algorithms for public-key encryption, key
establishment and digital signatures have been selected for standardisation
[ACD+22]. Regardless, the competition did not reach its final conclusion yet
and a lot of analysis is to be made.

Coming to the symmetric-key cryptography setting, the impact of quantum
computers has been assumed to be significantly less severe. Due to Grover’s
algorithm [Gro96], it was believed that attacks on symmetric-key primitives
such as block ciphers would only improve by a quadratic speed up. Natu-
rally one could assume, that it is enough to just simply double the key size
of the affected primitives in order to restore the same level of security as
before. In spite of that, it has soon been realized that it is not sufficient to
just consider the quantum security of standalone primitives such as block
ciphers. Since block ciphers are only able to encrypt plaintexts one block at
a time, they are usually used in the form of so called modes of operation that

1

1. Introduction

allow the user to encrypt plaintext of arbitrary lengths. These modes are
designed and extended upon the security of its underlying block cipher and
can achieve several desired security goals such as confidentiality, integrity
and authenticity depending on requirement. As modes of operation are fur-
ther developing the use of block ciphers, they also pose new possibilities
for designing innovative attacks. Following this, it is important to analyze
the quantum security of modes of operation as well to ensure that security
persists.

It is to be noted that there exists a difference between post-quantum and
quantum security: opposed to the post-quantum setting, where the adver-
sary has quantum access only to public oracles such as hash functions, the
quantum security setting goes one step further and assumes that the ad-
versary also has quantum access to secret keyed encryption or decryption
oracles. This is referred to as making quantum encryption queries (resp.
quantum decryption queries, in case of decryption oracles), which essen-
tially means that an adversary can ask for the encryption of quantum states
that are quantum superpositions of messages and receives superpositions
of ciphertexts as an answer. However, the practicality of this model is still
currently debated (e.g. in [KLLN16, BBC+21, ABKM22, JST21, BHN+19])
and to be determined. The quantum superposition model still led to inter-
esting observations and devastating attacks on modes of operation such as
CBC, CFB, CTR and XTS as described in [ATTU16] as well as CBC-MAC,
and GCM as described in [KLLN16, BBC+21]. These attacks break the se-
curity guarantees of confidentiality (IND-CPA security) and unforgeability
((E/U)UF-CMA security). To do so, the classical definitions of IND-CPA
security and (E/U)UF-CMA security have been extended to a setting where
the adversary is allowed to make quantum encryption queries. These no-
tions are therefore referred to as IND-qCPA and (E/U)UF-qCMA security.

More recently, the IND-qCPA security of the OCB modes has been ana-
lyzed in [MMPR22]. As the OCB modes, namely OCB1 [RBBK01], OCB2(f)1

[Rog04] and OCB3 [KR11] are widely influential and well-studied authenti-
cated encryption modes, they extended upon the already existing analysis
on quantum forgery attacks in [KLLN16, BBC+21, BLNS21], that essentially
break EUF-qCMA security of the OCB modes using Simon’s [Sim97] al-
gorithm and Deutsch’s algorithm [Deu85], in order to study the modes’
IND-qCPA security as well. Simon’s algorithm is a quantum period finding
algorithm which is a frequently used tool when it comes to analyzing block
cipher modes in a quantum setting. On the other hand, Deutsch’s algorithm
is able to solve a certain black box problem with a single query, whereas a
classical computer would need two. The authors of [MMPR22] came to the

1OCB2 has been broken classically by [IIMP19] and OCB2f is a patched version proposed
by the authors.

2

conclusion that despite all of the OCB modes being classically IND-CPA se-
cure, these modes are (apart from OCB2(f) with ”empty” associated data) in
fact not IND-qCPA secure by applying the above mentioned quantum algo-
rithms. More surprisingly they were able to proove that OCB2 is IND-qCPA
secure when it is used in the restricted setting of empty associated data.

Another mode of operation is the Offset Two-Round (OTR) mode instantiated
with AES as its underlying block cipher (AES-OTR) [Min16]. AES-OTR was
a third-round candidate of the CAESAR competition [CAE19] that aimed to
devise a portfolio of secure authenticated encryption schemes that are suit-
able for widespread application. It is a nonce-based authenticated encryp-
tion with associated data (AEAD) scheme that offers two different ways for
associated data processing. Interestingly, this mode is closely related to the
OCB modes as it shares similar structures. In the classical setting it has been
shown to offer provable security guarantees [Min16] under the assumption
that AES is a pseudorandom function. Naturally, the question arises if this
security can be confirmed in a quantum setting. However, recent work in
[LCP22] proposed an approach to attack the EUF-qCMA security that is also
based on the quantum superposition model and uses Simon’s algorithm, in-
dicating that AES-OTR is not quantum secure. Having said that, confiden-
tiality of AES-OTR has not been addresses at all. This leads us to pose the
question:

Is the AES-OTR mode IND-qCPA secure?

Of course AES-OTR being vulnerable to forgery attacks rules out the mode
being used as a secure AE scheme in a quantum setting. Nevertheless, an-
alyzing IND-qCPA security is still a question of interest, as it gives further
insight to the mode. In an attempt to fix the mode it then either requires
minimal changes to fix the issues regarding authenticity, if the mode already
guarantees confidentiality, or it needs a more drastic update to salvage the
mode as a whole when there are attacks on confidentiality.

There exist even more block cipher modes that are closely related to the OCB
modes including the Offset Public Permutation (OPP) mode. OPP essentially
tries to generalize OCB3 by replacing the underlying block cipher by an
efficiently invertible public permutation and a different form of masking. It
ensures fast encryption and full parallelization. Therefore, it is of integral
interest to study the quantum security of this mode as well. However, none
of the aforementioned works analyze OPP as a mode at all, which motivates
us to ask the following question:

Is the OPP mode quantum secure?

3

1. Introduction

1.1 Our Contributions

In this thesis, we make contributions to answer the above formulated ques-
tions concerning the quantum security of both AES-OTR and OPP modes.
We do this by presenting attacks for both modes and thus make signifi-
cant progress in filling the gap of analyzing the quantum security of impor-
tant OCB-like modes of operation in the quantum superposition model. We
point out that our work is the first to look into the quantum security of OPP
and the first attempt at breaking the confidentiality of AES-OTR as these
points of interest have not been addressed in any prior work to the best of
our knowledge. Our results are listed below:

AES-OTR is NOT IND-qCPA secure. In Chapter 3 we present the first
IND-qCPA attacks against AES-OTR. We first consider the setting of a weak
adversary where the nonces used by the challenger to answer encryption
queries in the IND-qCPA security game are generated uniformly at random
and the adversary has no influence in choosing them. We adapted this
setting from the analysis on OCB in [MMPR22]. We consider AES-OTR with
both parallel and serial processing of associated data and exploit exactly the
way AES-OTR authenticates AD.

On a high level, the attack breaking IND-qCPA security for parallel AD pro-
cessing uses Simon’s algorithm as well as Deutsch’s algorithm to gain raw
block cipher access. Having raw block cipher access, we are able to compute
the encryption of any input message with respect to the underlying block
cipher without knowing the secret key. Using this we are able to formu-
late our IND-qCPA attack. This setting is similar to the attack strategies in
[MMPR22] that break confidentiality of the OCB modes. However, we are
able to pinpoint an issue that arises in their attack on OCB2 with AD that has
not been addressed properly. This also concerns AES-OTR. To be precise,
we have to take into account whether the tag produced by AES-OTR encryp-
tion is truncated or not. Our work treats both cases accordingly and upon
contacting the authors of [MMPR22] regarding this issue, they confirmed
that they implicitly assumed to work with untruncated tags. If the tags are
truncated, we have to distinguish two cases: if only a constant amount of
bits are truncated out, then the same attack still applies when we perform
an additional step of guessing the missing bits. If it is not constant however,
this approach does not work as it is inefficient.

We highlight, that our attack breaking IND-qCPA security of AES-OTR
for serial processing of AD is different from the ones in [MMPR22] and
our attack where AD is processed in parallel. Here, we immediately gain
raw block cipher access applying only Simon’s algorithm and do not need
Deutsch’s algorithm to achieve this. Our attack is therefore more powerful,
as it needs less steps to break the same security notion. To the best of our
knowledge, no prior application of Simon’s algorithm in the quantum crypt-

4

1.1. Our Contributions

analysis literature was able to achieve this strong notion of raw block cipher
access with respect to the considered cryptosystem.

To complete the analysis of AES-OTR, we consider a setting where the
scheme is used as a pure AE scheme, i.e. the AD is always assumed to
be empty. For our attack to succeed, we have to assume a setting in which
the adversary is allowed to choose the classical nonces adaptively and hand
them to the challenger. The challenger then has to respond to encryption
queries in the IND-qCPA security game using these nonces. This setting is
the same as considered in [MMPR22, Section 4.4] with respect to their attack
against OCB2 as a ”pure” AE scheme. What makes our attack a non-trivial
extension to the above attack on OCB2, is that for AES-OTR there is an addi-
tional formatting function applied to the nonce before it is AES-encrypted.
We thus have to perform an additional step that increases the overall com-
plexity of our attack.

Refined Attacks on EUF-qCMA Security of AES-OTR. As a side contribu-
tion of this thesis, we refine the attacks on EUF-qCMA Security of AES-OTR
in [LCP22] when associated data is processed in both parallel and serial.
These attacks use the same properties of the associated data and utilize the
same methods as in our IND-qCPA attacks and therefore follow in a straight
forward way.

A Quantum Key-Recovery Attack on OPP. We present the first quantum
key-recovery attack on OPP in Chapter 4. This mode is therefore completely
broken in the quantum superposition model. Our attack is conducted in
the weakest setting similar to our attacks on AES-OTR, where the nonces
are chosen uniformly at random by the challenger. In contrast to AES-OTR
being based on a block cipher that may only be inverted knowing the key,
OPP is built upon an efficiently invertible public permutation. We are able
to show that this property actually is the key issue of OPP and allows us to
formulate the key recovery attack. On a high level, we are able to recover
the permutation of a value that incorporates the key by using only a single
quantum encryption query in an application of Simon’s algorithm. Hence,
we gain knowledge of the key by simply inverting the permutation. Even
if OPP is an AEAD scheme, our attack is focused solely on the encryption
part, meaning that OPP is used as a pure AE scheme. This is in contrast to
our attacks on AES-OTR in the same adverserial setting, where we exploit
the way AD is processed.

Applicability to related modes. When choosing the modes of operation
to analyze in this thesis we also came across OCB-hc and OTR-hc (half-
checksum) [IM19]. There, the half-checksum method is introduced, which
sets the checksum to be the xor of the n/2 most significant bit of the plain-
text blocks instead of the checksum being the xor of all plaintext blocks.
Further, they use masking which is dependent on the nonce and the tag is

5

1. Introduction

truncated by n/2 bits, which makes it only half of the original tag size. The
modes therefore share a lot of similar structures with the OCB and AES-OTR
modes and it is a valid hypothesis that variations or combinations of attacks
in [KLLN16, BBC+21, BLNS21, MMPR22] breaking unforgeability and con-
fidentiality of the OCB modes, as well as attacks presented in this thesis may
be applicable in a similar fashion.

6

Chapter 2

Preliminaries

2.1 Notation

Denote by {0, 1}∗ the set of all finite-length bit strings and {0, 1}8∗ the set
of all finite-length byte strings. We let the parameters n, k, τ, κ ≥ 0 define
the block length, the size of the key, tag, and nonce respectively. For b ∈ N

we let [b] := {1, ..., b}. Given x, y ∈ {0, 1}∗, the concatenation of x and y
is denoted as x||y. We let the length of x in bits be denoted as |x| and
we define |x|b := max{1, ⌈X/b⌉}. We use the symbols ⊕,≪,≫,≪,≫ to
denote bit-wise XOR, left-shift, right-shift, left-rotation and right-rotation,
respectively.

Further, we define the following padding function that, for a given input X,
extends it to a desired length m

pad0
m : {0, 1}≤m → {0, 1}m, X 7→ X||0m−|X|

and for 0 ≤ |X| < m, we write X = X||10m−|X|−1 as the 10∗ padding.

By msbl(x) we mean the sequence of first l left-most bits of the bit sting x
and for any non-negative integer q, let bin(q, m) denote the standard m-bit
encoding of q.

We want to highlight the difference in notation for the encryption functions
used for AES-OTR in Chapter 3 and for OPP in Chapter 4. By OTR-EK,·(·)
we indicate the encryption algorithm of AES-OTR with an underlying block
cipher (AES to be precise) encryption function EK with key K. On the other
hand we use OPP-E(K, ·) to denote the encryption algorithm of OPP with
key K that uses a public permutation instead of a block cipher.

In the context of AES-OTR we use notations such as 2X, 3X or 7X for an
n-bit string X. Following [Min16], we here interpret X as a coefficient vector
of the polynomial in GF(2n). So by 2X we essentially mean multiplying

7

2. Preliminaries

the generator of the field GF(2n), which is the polynomial x, and X over
GF(2n). This process is referred to as doubling. Similarly, 2iX denotes i-times
doubling X and we denote 3X = X ⊕ 2X as well as 7X = 22X ⊕ 2X ⊕ X.
Field multiplication over GF(2n) for n = 128 can be implemented as

2X =

{
X ≪ 1 if msb1X = 0.
(X ≪ 1)⊕ 012010000111 if msb1X = 1.

We omit the details here and refer to [Min16] for further details.

2.2 Quantum Algorithms

In this section we present two algorithms we will use in Chapter 3 and 4
to formulate our attacks. More specifically, we use Simon’s and Deutsch’s
algorithm, which are quantum algorithms, that enable us to recover some
values that are important in order for our attacks to succeed. We adapt the
specification of Simon’s algorithm from [KLLN16] and Deutsch’s algorithm
from [MMPR22].

2.2.1 Simon’s Algorithm

Simon’s algorithm is a quantum algorithm that is able to solve the following
problem referred to as Simon’s problem. This algorithm is the key element of
most of our attacks.

Definition 2.1 (Simon’s Problem) Given quantum access to a Boolean function
f : {0, 1}n → {0, 1}n (called Simon’s function) for which it holds: ∃s ∈ {0, 1}n :
∀x, y ∈ {0, 1}n

f (x) = f (y) ⇐⇒ y ∈ {x, x⊕ s},

the goal is to find the period s of f .

This problem of course can be solved in a classical setting by searching for
collisions as well. It is known that the time needed to solve this problem is
Θ(2n/2), when we are given classical access to the function f . We assume
here, that access to an input function is made by querying it. (A classical
query oracle is given by a function x 7→ f (x).) However, when we are able
to query the function f quantum-mechanically, and we are thus allowed
to make queries of arbitrary quantum superpositions of the form |x⟩|0⟩ 7→
|x⟩| f (x)⟩, Simon’s algorithm can solve this problem with query complexity
O(n).

On a high level, Simon’s algorithm is able to recover a random vector y ∈
{0, 1}n in a single quantum query to f that is orthogonal to the period s, i.e.
y · s = 0. This subroutine is repeated O(n) times such that one obtains n− 1
independent vectors where each is orthogonal to s with high probability.

8

2.2. Quantum Algorithms

Therefore s can be recovered by solving the corresponding system of linear
equations using basic linear algebra using O(n) quantum queries to the
function f . For more detail on the subroutine, we refer to [KLLN16].

We want to highlight that Simon’s algorithm is able to recover a vector that
is orthogonal to s in a single quantum query to f . This is important for our
attacks in Sections 3.5 and 4.2. There, Simon’s function does not only take
a single input x ∈ {0, 1}n, but n inputs xi ∈ {0, 1}n for i ∈ [n]. If now f is
periodic with period si in each of the inputs xi, f has period (s1, ..., sn). The
vector y = (y1, ..., yn) ∈ {0, 1}n2

, yi ∈ {0, 1}n, recovered in one application
of the subroutine in Simon’s algorithm, is now orthogonal to each of the
periods si, i.e. yi · si = 0 ∀i ∈ [n].

Unwanted Collisions. It is possible, that apart from the period s of f that
exists by construction of f , there might me numerous more collisions than
those of the form f (x) = f (x⊕ s). We refer to those as ”unwanted periods”.
Note, that if this number is too large, then Simon’s algorithm might not be
able to always recover the right vectors y and the system of linear equations
might not be of full rank after O(n) queries. However, [KLLN16] showed
that even if f admits some unwanted periods of the form f (x) = f (x ⊕ t)
for some t /∈ {0, s}, Simon’s algorithm is still able to recover s as long as

max
t∈{0,1}n\{0n,s}

Prx[f (x) = f (x⊕ t)] <
1
2

.

As we will show, this condition is always satisfied for our attacks.

2.2.2 Deutsch’s Algorithm

Deutsch’s algorithm is a tool to solve the following problem.

Definition 2.2 Given quantum access to a Boolean function f : {0, 1} → {0, 1},
the goal is to decide whether f is constant, i.e. f (0) = f (1), or f is balanced, i.e.
f (0) ̸= f (1).

The algorithm can solve this problem with a single quantum query to f with
success probability 1. To be precise, Deutsch’s algorithm is able to compute

f (0)⊕ f (1) =

{
0 if f is constant.
1 if f is balanced.

using a single quantum query to f . Note, that any algorithm with classical
access to f would need two queries to decide this problem with the same
success probability.

9

2. Preliminaries

2.3 Definitions

In this section we present quantum security definitions used in the following
chapters as well as the definitions for some cclassical primitives we will
encounter. We adapt the definitions as presented in [MMPR22].

Our analysis on AES-OTR will mainly focus on breaking IND-qCPA security
defined below, as [LCP22] already claims to break existential unforgeability.
However, we will refine their attacks in Subsection 3.6 by extending on our
IND-qCPA attacks.

Note, that we are able to formulate a key recovery attack for OPP. As key
recovery is usually quite severe, we will discuss the implications this has on
all of the security notions below.

We begin by defining a nonce-based authenticated encryption with associated data
(AEAD) scheme as both AES-OTR and OPP are one.

Definition 2.3 (Nonce-based AEAD scheme) A nonce-based AEAD scheme is a
tuple of probabilistic polynomial-time algorithms Π = (Enc,Dec) with a key space
K = {0, 1}k such that

Enc(K, N, A, M): This algorithm takes as input a key K, a nonce N, as-
sociated data (AD) A and a message M. It produces as an output a
ciphertext C and a tag T. We write (C, T)← EncK(N, A, M).

Dec(K, N, A, C, T): This algorithm takes as input a key K, a nonce N, AD
A, a ciphertext C and a tag T and outputs a message M or ⊥. We
write DecK(N, A, C, T) to denote this output.

The AEAD scheme needs to satisfy correctness, which is given, if for any N, A and
M we have

Pr[DecK(N, A, EncK(N, A, M)) = M] ≥ 1− ϵ,

∀K ∈ K and ϵ > 0 is negligible.

Below, we define three quantum security notions for an AEAD scheme.

Definition 2.4 (IND-qCPA with random nonces) A nonce-based AEAD scheme
Π = (Enc, Dec) is indistinguishable under quantum chosen-plaintext attack (IND-
qCPA secure) with random nonces, if there is no efficient quantum adversary A that
is able to win the following security game, except with probability at most 1

2 + ϵ
where ϵ > 0 is negligible.

10

2.3. Definitions

Key generation: A random key K ← K and a random bit b← {0, 1} are
chosen by the challenger.

Queries: In any order the adversary A is allowed to make two types of
queries:

• Encryption queries: The challenger first randomly chooses a
nonce N ← {0, 1}κ and forwards it to A. The adversary now
can choose a message-AD pair (M, A), possibly in superposi-
tion, and the challenger encrypts (N, A, M) with the classical
nonce N and returns the output (C, T) to A.

• Challenge query: The challenger picks a random nonce
N ← {0, 1}κ once more and gives it to the adversary. Af-
terwards, A chooses two same sized classical message-AD pairs
(M0, A), (M1, A) and forwards them to the challenger which in
turn encrypts (N, A, Mb) with the previously chosen classical
nonce N. The output (C∗, T∗) is again given to A.

Guess: The adversary outputs a bit b′ and wins if b = b′.

Let p be the probability that A wins the above game. Then its IND-qCPA advantage
with respect to the AEAD scheme Π is given by AdvIND-qCPA

Π (A) =
∣∣p− 1

2

∣∣. So Π
is said to be IND-qCPA secure under randomly chosen nonces if AdvIND-qCPA

Π (A)
of any polynomial-time quantum adversary A is negligible.

Definition 2.5 (EUF-qCMA with random nonces) A nonce-based AEAD scheme
Π = (Enc, Dec) is existentially unforgeable under quantum chosen message attack
(EUF-qCMA secure) under randomly chosen nonces, if there is no efficient quantum
adversary A that is able to win the following security game, except with negligible
probability.

Key Generation: A random key K ← K.

Queries: The adversary A is allowed to make encryption queries of the
following form:

• Encryption queries: The challenger first randomly chooses a
nonce N ← {0, 1}κ and gives it to A. Now, the adversary
chooses a message-AD pair (M, A), possibly in superposition,
and the challenger encrypts (N, A, M) with the previously cho-
sen classical nonce N and returns the output (C, T) to A.

Forgeries: Let q be the number of encryption queries the adversary made.
Now A produces q + 1 classical tuples (N, A, C, T) with any nonces
N of its own choice. The adversary wins, if for each tuple it holds
DecK(N, A, C, T) ̸=⊥.

11

2. Preliminaries

Definition 2.6 (UUF-qCMA with random nonces) A nonce-based AEAD scheme
Π = (Enc, Dec) is universally unforgeable under quantum chosen message at-
tack (UUF-qCMA secure) under randomly chosen nonces, if there is no efficient
quantum adversary A that is able to win the following security game, except with
negligible probability.

Key Generation: A random key K ← K.

Challenge: First, the challenger randomly picks a nonce N∗ ← {0, 1}κ

and a message-AD pair (M∗, A∗) from its corresponding spaces. A
then gets forwarded the tuple (N∗, A∗, M∗) from the challenger.

Queries: The adversary A is allowed to make encryption queries of the
following form:

• Encryption queries: The challenger randomly chooses a nonce
N ← {0, 1}κ and gives it to A. Now, the adversary chooses a
message-AD pair (M, A), possibly in superposition, and the
challenger encrypts (N, A, M) with the previously chosen clas-
sical nonce N and returns the output (C, T) to A.

Forgeries: A outputs a classical tuple (C∗, T∗) after making a poly-
nomial number of encryption queries. The adversary wins if
DecK(N∗, A∗, C∗, T∗) = M∗.

It is important to note, that regarding the definition of IND-qCPA security
we are only allowed to make quantum queries to the encryption oracle for
encryption queries. The challenge queries need to be classical values. How-
ever, we are allowed to make these two types of queries in any order and
are allowed to output our guess bit b′ at any point.

The difference between EUF-qCMA security and UUF-qCMA security es-
sentially is that for the former the adversary has to output one forgery more
than the amount of encryption queries it made and in the latter it has to
produce a specific forgery corresponding to a given set of nonce, AD and
message.

12

Chapter 3

Quantum Cracks in the AES-OTR
Encryption Armor

The AES-OTR block cipher mode emerged from the Offset Two-Round (OTR)
mode [Min14] as a part of the CAESAR competition [CAE19] and is based
on the AES block cipher as proposed in [Min16]. It is a nonce based authen-
ticated encryption with associated data (AEAD) scheme and provides two
methods for associated data processing. AES-OTR has a provable security
in the classical setting under the assumption that AES is a pseudorandom
function as argued in [Min16].

However, in this chapter we will show that we can exploit the way AD is
processed in both cases, namely in parallel and serial, to break IND-qCPA
security. In this case, we assume a setting where the adversary has quantum
access to an encryption oracle and the nonces the challenger uses to answer
encryption queries are picked uniformly at random. We even go one step
further and break IND-qCPA security of AES-OTR considered as a pure AE
scheme, i.e., with empty AD. To do so, we consider a stronger adversarial
setting in which the adversary is allowed to pick the classical nonces adap-
tively. We will be extending upon techniques as utilized in [MMPR22].

3.1 Specifications of AES-OTR

We begin by describing the AES-OTR mode by following the specifica-
tions as proposed in [Min16] for the third round of the CAESAR com-
petition. Let n, k, τ, κ as labeled in Chapter 2, where k ∈ {128, 192, 256},
τ ∈ {32, 40, ..., 128} and κ ∈ {8, 16, ..., 120} are of a fixed length. Since AES-
OTR uses AES as its underlying block cipher, n = 128 is fixed as well and
we assume EK to denote the AES encryption function with key K. Also, the
lengths of both a plaintext M and associated data A are required to fulfill
|M|, |A| ∈ {0, 1}8∗ such that |M|8, |A|8 ≤ 264. We note that [Min16] provides

13

3. Quantum Cracks in the AES-OTR Encryption Armor

sets of recommended parameters which imply that for both instantiations
of AES-OTR either with AES-128 or AES-256 a 16-byte tag should be used.
This recommendation becomes relevant for our attack in Section 3.3. For
further details on the parameters we refer to [Min16].

Below, we provide a simplified description of AES-OTR in algorithmic and
pictorial description for both variants of processing AD, namely in parallel
(on the left) and in serial (on the right). To indicate how the AD is processed,
we use p for parallel and s for serial processing and write OTR-EK,p(N, A, M)
or OTR-EK,s(N, A, M) respectively. We omit the description of the decryp-
tion algorithm, as decryption is not relevant for our attacks. We again refer
to [Min16] for the details. To be more precise, Algorithm 3 corresponds to
the encryption part and Algorithms 5 and 6 describe the authentication part
of the AEAD scheme described in Algorithm 1 and 2 for parallel and serial
AD processing respectively. Note, that the encryption core of AES-OTR with
parallel (normal box) and serial (dashed box) AD processing only differ in
the way U is defined. Algorithm 4 outlines how the nonce N is formatted
before being incorporated into the mask U, used to encrypt the plaintext.
This formatting will play an important role for our attack in Section 3.5.

We provide a brief explanation of the encryption Algorithm 3. The plaintext
M is first decomposed in blocks of n bits M1||...||Mm ← M with a possibly
partial last block Mm. Two consecutive plaintext blocks M2i−1, M2i for i ≤
⌈m/2⌉ − 1 are encrypted by a two-round Feistel permutation with masks as

C2i−1 = EK(2i−1U ⊕M2i−1)⊕M2i

C2i = EK(2i−13U ⊕ C2i−1)⊕M2i−1

with U being an encrypted nonce that depends on the way AD is processed
(see Algorithm 3, Lines 2&3). The last plaintext block(s) is/are treated dif-
ferently depending on m. If m is even, a variation of the above encryption is
applied and otherwise a variation of CTR mode is applied. In particular, for
a single block message AES-OTR only encrypts it by xor-ing it with some
value depending on U. We will exploit this property for our IND-qCPA
attacks. Following this, the unauthenticated ciphertext is obtained.

The tag is computed by AES-encrypting the checksum of even plaintext
blocks (including a part of the last block) xor-ed with some mask yielding
a value TE. In the case of parallel AD processing, the tag is the truncation
of the xor of TE and TA, where TA is obtained by Algorithm 5. For AD
in serial, TE is already dependent on TA obtained in Algorithm 6 and only
needs to be truncated to the tag length. When the AD is empty then TA is
set to be 0n in both serial and parallel AD processing versions of AES-OTR.

We discuss the way associated data is processed to obtain the value TA in
Algorithms 5 and 6 in more detail in Sections 3.2.1 and 3.2.2 respectively.

14

3.1. Specifications of AES-OTR

Algorithm 1 OTR-EK,p(N, A, M)

1: (C, TE)← EF-PK,τ(N, M)
2: if A ̸= ε then
3: TA← AF-PK(A)
4: else TA← 0n

5: T ← msbτ(TE⊕ TA)
6: return (C, T)

Algorithm 2 OTR-EK,s(N, A, M)

1: if A ̸= ε then
2: TA← AF-SK(A)
3: else TA← 0n

4: (C, TE)← EF-SK,τ(N, M, TA)
5: T ← msbτ(TE)
6: return (C, T)

Algorithm 3 EF-PK,τ(N, M) ,

EF-SK,τ(N, M, TA)

1: Σ← 0n

2: U ← EK(Format(τ, N))

3:
U ← 2

(
EK(Format(τ, N))⊕ TA

)
4: L← U, L# ← 3U
5: M1||...||Mm ← M s.t. |Mi| = n
6: for i ∈ {1, ..., ⌈m/2⌉ − 1} do
7: C2i−1 ← EK(L⊕M2i−1)⊕M2i
8: C2i = EK(L# ⊕ C2i−1)⊕M2i−1
9: Σ← Σ⊕M2i

10: L← L⊕ L#, L# ← 2L# ▷ L = 2iU, L# = 2i3U
11: if m is even then
12: Z ← EK(L⊕Mm−1)
13: Cm ← msb|Mm|(Z)⊕Mm

14: Cm−1 ← EK(L# ⊕ Cm)⊕Mm−1
15: Σ← Σ⊕ Z⊕ Cm
16: L∗ ← L#

17: else if m is odd then
18: Cm ← msb|Mm|(EK(L))⊕Mm
19: Σ← Σ⊕Mm
20: L∗ ← L
21: if |Mm| ̸= n then TE← EK(32L∗ ⊕ Σ)
22: else TE← EK(7L∗ ⊕ Σ)
23: C ← C1||...||Cm
24: return (C, TE)

Algorithm 4 Format(τ, N)

return bin(τ mod n, 7)||0n−8−κ||1||N

15

3. Quantum Cracks in the AES-OTR Encryption Armor

Algorithm 5 AF-PK(A)

1: Ξ← 0n

2: Q← EK(0n)
3: A1||...||Aa ← A, s.t. |Ai| = n
4: for i ∈ {1, ..., a− 1} do
5: Ξ← Ξ⊕ EK(Q⊕ Ai)
6: Q← 2Q
7: Ξ← Ξ⊕ Aa
8: if |Aa| ̸= n then
9: TA← EK(3Q⊕ Ξ)

10: else TA← EK(32Q⊕ Ξ)
11: return TA

Algorithm 6 AF-SK(A)

1: Ξ← 0n

2: Q← EK(0n)
3: A1||...||Aa ← A, s.t. |Ai| = n
4: for i ∈ {1, ..., a− 1} do
5: Ξ← EK(Ai ⊕ Ξ)
6: Ξ← Ξ⊕ Aa
7: if |Aa| ̸= n then
8: TA← EK(2Q⊕ Ξ)
9: else

10: TA← EK(4Q⊕ Ξ)
11: return TA

EkFmtτ, N U EkFmtτ, N ⊕ ×2 U

TA
Figure 3.1: Computation of the U value in
the case of parallel AD processing

Figure 3.2: Computation of the U value in
the case of serial AD processing

Ek

M1

⊕
U

M2

⊕

Ek⊕
3U

⊕
C1 C2

Ek

M3

⊕
2U

M4

⊕

Ek⊕
2 · 3U

⊕
C3 C4

...

Ek

Mm−1

⊕
2l−1U

Z

Mm

⊕m
sb

Ek⊕pa
d

2l−13U

⊕

Cm−1 Cm

when m is even:

when m is odd:

Ek m
sb ⊕

Mm

2l−1U

Cm

Figure 3.3: Encryption core of AES-OTR. Note, that this is the same for parallel and serial AD
processing. Only the value U is different. Also, we have l = ⌈m/2⌉.

16

3.2. Prior Quantum Attacks on AES-OTR

Ek⊕Σ ⊕ msb T

TA32L∗ if |Mm| ̸= n
7L∗ if |Mm| = n

TE Ek⊕Σ msb T

32L∗ if |Mm| ̸= n
7L∗ if |Mm| = n

TE

Figure 3.4: Computation of the tag T in the
case of parallel AD processing.

Figure 3.5: Computation of the tag T in the
case of serial AD processing.

Figure 3.6: Here, Σ = M2 ⊕M4 ⊕ ...⊕Mm−2 ⊕ Z⊕ Cm and L∗ = 2l−13U when m is even and

Σ = M2 ⊕M4 ⊕ ...⊕Mm−1 ⊕Mm and L∗ = 2l−1U when m is odd. In both cases l = ⌈m/2⌉.
Note, that Mm and Cm possibly are only partial block and thus are padded with the 10∗ padding.

In the pictorial description of how the value TA in Algorithms 5 and 6 for
parallel and serial AD processing is computed, the value Q is used as part
of the masking and is defined as Q = EK(0n). Note, that Q is a constant
value and is independent of the nonce N. This is the key observation we
use in our attacks in Sections 3.3 and 3.4 that exploit the way AD is being
processed.

Ek Ek ... Ek ⊕
⊕Q

A1

⊕2Q

A2

⊕ ...

⊕2a−2Q

Aa−1

⊕

pad

Aa

⊕

2a−13Q if |Aa| ̸= n

2a−132Q if |Aa| = n

Ek TA
Ek Ek ... Ek ⊕

A1

⊕

A2

⊕

... Aa−1

⊕

pad

Aa

Ek TA

2Q if |Aa| ̸= n

4Q if |Aa| = n

Figure 3.7: Computation of the value TA of
the authentication core of AES-OTR with par-
allel AD processing with Q = EK(0n).

Figure 3.8: Computation of the value TA of
the authentication core of AES-OTR with se-
rial AD processing with Q = EK(0n).

3.2 Prior Quantum Attacks on AES-OTR

Prior work in [LCP22] already proposed an approach to attack the unforge-
ability of AES-OTR which uses quantum access to the encryption oracle and
applies Simon’s algorithm. The way associated data is processed and its
impact on the tag T (more specifically on the intermediate variable TA) is
exploited. We will use the same properties of TA to formulate our attacks
in order to break confidentiality. We here give a short description on said
properties and refer to [LCP22] for specific details.

On a high level, the processing of associated data, whether in parallel or
serial, enables the derivation of collisions for the intermediate variable TA,
which is utilized to compute the tag T. For convenience, we assume that the
last block of AD is always of full size to avoid having to treat it differently
in the analysis as padding would be applied otherwise. Additionally, for

17

3. Quantum Cracks in the AES-OTR Encryption Armor

the sake of convenience we introduce a subscript to the value TA in order to
keep track to which set of AD it belongs. E.g. for a set of associated data A
we set TAA = AF-PK(A).

3.2.1 Finding Collisions when Associated Data Processed in Par-
allel

We first consider the case when associated data is processed in parallel as
described in Algorithm 5 with output TA. Given a set of associated data A =
A1||A2||...||Aa, where Ai ∈ {0, 1}n ∀i ∈ [a], we define a set of intermediate
variables XA[i] for i ∈ [a− 1] as

XA[i] = EK(Ai ⊕ 2i−1Q)

such that

TAA = EK(XA[1]⊕ ...⊕ XA[a− 1]⊕ Aa ⊕ 2a−132Q).

Note, that even though the value Q is constantly being updated in Algorithm
5, we here consider Q to be a fixed value and set it to Q = EK(0n).

In Figure 3.9 below, the values corresponding to X[i] are illustrated.

EK EK ... EK

⊕Q

A1

⊕2Q

A2

⊕ ...

⊕2a−2Q

Aa−1

⊕

⊕

Aa

⊕

2a−132Q (|Aa| = n)

EK TA

X[1] X[2] X[a− 1]

Figure 3.9: Illustration of the newly defined variable X[i] used to construct collision for parallel
processing of AD. In contrast to Figure 3.7, there is no padding on the last AD block since it is
considered to be of size n.

For the given associated data A we can construct a second set of associated
data B = B1||...||Ba, A ̸= B which yields the same value TA after being
processed in parallel as follows: Define

B1 = A2 ⊕ 3Q
B2 = A1 ⊕ 3Q
Bi = Ai

18

3.2. Prior Quantum Attacks on AES-OTR

for i ∈ {3, ..., a}. Note, that 3Q = Q⊕ 2Q by definition (see Section 2.1). This
implies

XB[1] = EK(B1 ⊕Q) = EK(A2 ⊕ 3Q⊕Q) = EK(A2 ⊕ 2Q)

= XA[2]
XB[2] = EK(B2 ⊕ 2Q) = EK(A1 ⊕ 3Q⊕ 2Q) = EK(A1 ⊕Q)

= XA[1]
XB[i] = XA[i]

for i ∈ {3, ..., a} and therefore

TAB = EK(XB[1]⊕ XB[2]⊕ XB[3]⊕ ...⊕ XB[a− 1]⊕ Ba ⊕ 2a−132Q)

= EK(XA[2]⊕ XA[1]⊕ XA[3]⊕ ...⊕ XA[a− 1]⊕ Aa ⊕ 2a−132Q)

= TAA

More general, for given AD A like before, one can define for arbitrary p, q ∈
[a], p ̸= q and i ∈ [n], i ̸= p, q a new set of associated data B′ = B1||...||Ba as

B′q = Ap ⊕ 2p−1Q⊕ 2q−1Q

B′p = Aq ⊕ 2p−1Q⊕ 2q−1Q (3.2.1)

B′i = Ai.

It is not hard to see that with the same argument as before (which is the case
for p = 1 and q = 2), that TAB′ = TAA.

3.2.2 Finding Collisions when Associated Data Processed in Serial

We now consider the case when associated data is processed in serial as
described in Algorithm 6 with output TA. For a given set of AD A =
A1||...||Aa with Ai ∈ {0, 1}n, we want to produce a second set of AD B =
B1||...||Ba−1, where A ̸= B, such that TAA = TAB.

Again, we define some intermediate variables XA[i] for i ∈ [a− 1] as:

XA[1] = A1

XA[j] = Aj ⊕ EK
(
XA[j− 1]

)
XA[a] = 4Q⊕ Aa ⊕ EK

(
XA[a− 1]

)
for j ∈ {2, ..., a− 1} and Q = EK(0n) such that

TAA = EK
(
XA[a]

)
.

In Figure 3.10 we demonstrate the definition of X[i].

19

3. Quantum Cracks in the AES-OTR Encryption Armor

Ek Ek ... Ek ⊕

A1

⊕

A2

⊕

... Aa−1

⊕

Aa

Ek TA

4Q (|Aa| = n)
X[1]

X[2] X[a− 1] X[a]

Figure 3.10: Illustration of serial processing of associated data with indication of the variable
X[i]. Again, there is no padding applied since |Aa| = n.

We construct a second set of associated data B = B1||...||Ba−1, where

B1 = A2 ⊕ EK(A1)

Bi = Ai+1

for i ∈ {2, ..., a − 1}. We claim that this causes the TA values to coincide.
We want to show that XA[j] = XB[j− 1]∀j ∈ [a] in a proof by induction on
2 ≤ j ≤ a− 1 and first observe that

XA[2] = A2 ⊕ EK
(
XA[1]

)
= A2 ⊕ EK(A1) = XB[1].

We now assume XA[j] = XB[j− 1] as the induction hypothesis. It holds

XA[j + 1] = Aj+1 ⊕ EK
(
XA[j]

)
= Bj ⊕ EK

(
XB[j− 1]

)
= XB[j].

Here the second equality uses the induction hypothesis and the definition
of B. Thus, we may conclude by induction that

XB[a− 1] = 4Q⊕ Ba−1 ⊕ EK
(
XB[a− 2]

)
= 4Q⊕ Aa ⊕ EK

(
XA[a− 1]

)
= XA[a].

And therefore we get

TAB = EK
(
XB[a− 1]

)
= EK

(
XA[a]

)
= TAA. (3.2.2)

This means that for any given AD A = A1||...||Aa, the above constructed AD
B produces the same TA value.

More general, one can construct the second set of associated data as B′ =
Ap ⊕ EK(XA[p− 1])||Ap+1||...||Aa for an arbitrary p ∈ {2, ..., a}. Using the
notation introduced above, it is easy to see that this also yields TAA = TAB′

∀p ∈ {2, ..., a}.

20

3.3. IND-qCPA Insecurity of AES-OTR with Parallel Associated Data Processing

Notice that the observations on the TA values made in Subsection 3.2.1 and
3.2.2 are made in the classical setting only. We now come back to the dis-
cussion of the quantum aspect of the attacks presented in [LCP22]. At a
high level, after having made these observations in the classical setting, they
use Simon’s algorithm with respect to the quantum accessibility of the en-
cryption oracle to generate such collisions. These collisions are then used to
construct forgeries in order to break EUF-qCMA security.

3.3 IND-qCPA Insecurity of AES-OTR with Parallel As-
sociated Data Processing

In this section, we show that AES-OTR is insecure in the IND-qCPA setting
with random nonces when it is used as an AEAD scheme with associated
data processed in parallel. We exploit the way how AD is processed as de-
scribed in Subsection 3.2.1, by finding collisions for the output value TA of
Algorithm 5 used to compute the tag, as well as the fact that the encryp-
tion algorithm essentially performs a one-time pad encryption when given
a single-block message.

As a general attack strategy, we want to create a periodic function f1, whose
period can be computed using Simon’s algorithm. We want Simon’s func-
tion f1 to capture the property as described in Subsection 3.2.1, using a simi-
lar approach as described in [MMPR22, Section 4.3] for breaking IND-qCPA
security of OCB2. Note, that the way OCB2 authenticates AD in [MMPR22,
Figure 3] is (up to multiplication with constants) essentially the same as for
AES-OTR in Algorithm 5. Thus, we can follow a very similar argument.

We define f1 : {0, 1}n → {0, 1}τ

f1(A) = OTR-EK,p(N, A||A||0n, ε).

As the plaintext is chosen to be empty, the ciphertext is empty as well which
is the reason the quantum encryption oracle OTR-EK,p(N, ·) returns a tag of
length τ only. We notice that in the context of Simon’s algorithm the do-
main and the co-domain of Simon’s function are required to be of the same
dimension. Since the size of the tag τ is possibly less than n, we techni-
cally need to append an additional n− τ bits of zeros (or any other fixed bit
string of size n− τ). Importantly, this does not change the periodicity of f1,
as these bits are fixed. For the sake of convenience however, we refrain from
appending them in each step of the analysis of f1.

Also, Algorithm 3 treats the case where m = 0 is even and |Mm| ̸= n, which
produces output TE = EK(33U ⊕ 0n), where U = EK(Format(τ, N)). With

21

3. Quantum Cracks in the AES-OTR Encryption Armor

these observations, we notice that f1 has period s = 3Q = Q⊕ 2Q since

f1(A) = msbτ(TA⊕ TE)

= msbτ

(
EK

(
2232Q⊕ EK(A⊕Q)⊕ EK(A⊕ 2Q)

)
⊕ TE

)
= msbτ

(
EK

(
2232Q⊕ EK(A⊕Q⊕ 2Q⊕ 2Q)⊕ EK(A⊕ 2Q⊕Q⊕Q)

)
⊕ TE

)
= msbτ

(
EK

(
2232Q⊕ EK(A⊕ 3Q⊕ 2Q)⊕ EK(A⊕ 3Q⊕Q)

)
⊕ TE

)
= f1(A⊕ s).

Following the arguments made in [MMPR22, Section 3.1], using a single
quantum query to the encryption oracle OTR-EK,p(N, ·), the function f1 can
be computed in superposition. We need this to be done in a single quantum
query, as the nonce N changes with each quantum query made to the oracle.
We thus can apply Simon’s algorithm to f1, which computes a vector y ∈
{0, 1}n that is orthogonal to the period s = 3Q = 3EK(0n). Notice that
there do not exist any ”unwanted periods” as defined in Subsection 2.2.1
with overwhelming probability, since we can apply the same reasoning as
in [KLLN16, Section 5.3] using that AES is a PRP.

It is important that the period is independent of the nonce N, such that de-
spite the nonce changing with each quantum query, Simon’s algorithm still
returns a random vector y orthogonal to the fixed period. This means, after
recovering O(n) such independent orthogonal vectors y, we can recover the
value 3Q = 3EK(0n) and thus the value EK(0n) as well with O(n) quantum
queries to the AES-OTR encryption oracle.

For the rest of this section, we assume that AES-OTR is instantiated using the
recommended parameter sets from [Min16]. In particular, we assume that
the size of the tag is 16-bytes, i.e., τ = n. This assumption is necessary for
our attack to succeed. We will further discuss this assumption in Subsection
3.3.1 after having presented the attack.

As a next step towards breaking IND-qCPA security we want to gain raw
block cipher access i.e. the ability to compute EK(inp) for any given input
inp ∈ {0, 1}n. To realize this, we use Deutsch’s algorithm like done in
[MMPR22] as follows.

Having recovered the value Q = EK(0n), define two fixed single-block asso-
ciated data inputs α0 = 32Q and α1 = 32Q⊕ inp for any given input inp ∈
{0, 1}n. We continue by considering the n functions f (i) : {0, 1} → {0, 1},

f (i)(b) = ith bit of {OTR-EK,p(N, αb, ε)} (3.3.1)

22

3.3. IND-qCPA Insecurity of AES-OTR with Parallel Associated Data Processing

for a random nonce N and empty message. Here again, the output of OTR-
EK,p(N, ·) is only the tag of length τ = n, as the message is kept empty.
Following the argument in [MMPR22], we can compute f (i)(b) in superpo-
sition with a single quantum query to the AES-OTR encryption oracle by
also truncating out the unneeded n− 1 bits of the output of OTR-EK,p(N, ·).
This gives us the ability to apply Deutsch’s algorithm on f (i) and recover
the value

f (i)(0)⊕ f (i)(1) = ith bit of{TE⊕ EK(α0 ⊕ 32Q)}
⊕ ith bit of{TE⊕ EK(α1 ⊕ 32Q)}

= ith bit of{EK(0n)⊕ EK(inp)} (3.3.2)

with a single quantum query, where TE = EK(33U ⊕ 0n) as argued above.
Thus, by applying Deutsch’s algorithm to each of the n functions f (i), we
are able to recover all n bits of

(
EK(0n)⊕ EK(inp)

)
and from this, since we

already know EK(0n), we can recover EK(inp). It is worth pointing out, that
despite the nonce N changes with each application of Deutsch’s algorithm,
we are still able to recover

(
EK(0n)⊕ EK(inp)

)
since it is independent of N.

As a result of the observations above, we can now sketch our IND-qCPA
attack against AES-OTR with parallel AD processing:

1. Recover the value 3Q and thus the value EK(0n) using O(n) quantum
queries with Simon’s algorithm as discussed above.

2. Pick arbitrary but different single-block messages M0 and M1 and de-
fine the associated data to be empty, i.e. A = ε. We now give these
values as an input to the challenger and record the nonce N which is
used to encrypt Mb as well as the output (C∗, T) of the challenger.

3. Using Deutsch’s algorithm 2n times (or equivalently using raw block
cipher access twice) as described above, we compute the value

V = EK

(
EK

(
Format(τ, N)

))
using a total of 2n quantum queries. Here, we use the nonce N the
challenger used to encrypt the challenge query.

4. Output the bit b′′ = b′ if C∗ = V ⊕Mb′ .

It remains to show that our attack outputs the correct bit b′′:

To see this, we notice that for a single-block message M and empty AD the
output of the encryption oracle is the ciphertext-tag pair (C∗, T) where

C∗ = msb|M|
(
EK(L)

)
⊕M

with L = EK(Format(τ, N)) following the description of Algorithm 3. Since
the attack relies on recomputing exactly the value used to encrypt Mb in a
one-time pad-like manner, the attack succeeds with high probability.

23

3. Quantum Cracks in the AES-OTR Encryption Armor

3.3.1 On the Necessity of the Assumption τ = n

Even if AES-OTR is recommended to be instantiated using untruncated tags
as mentioned in Section 3.3, we want to discuss the consequences if this is
not the case.

Before we gained raw block cipher access in Section 3.3, we assumed that
τ = n. This is important because AES-OTR is designed to output the value
T = msbτ(TE⊕ TA) as the tag of the corresponding plaintext-AD pair. If
the plaintext is empty as it is defined for Function 3.3.1, but τ < n instead, as
a consequence the tag only gives us the first τ bits of TE⊕ TA by definition.
This means that Equation 3.3.2 would now be

f (i)(0)⊕ f (i)(1) = ith bit of
{

msbτ

(
EK(0n)⊕ EK(inp)

)}
for i ∈ [τ] and thus instead of recovering EK(inp) we would only be able to
recover msbτ(EK(inp)) by following the same reasoning as above.

This difference affects our attack, as the ability to compute the value V in
Step 3 is based on having raw block cipher access to all of the n bits of the
(inner) EK(Format(τ, N)) value, because we need to apply the raw block
cipher access again to this value (of now only τ bits) to compute V. Thus,
we cannot compute V as straight forward as before, as we are missing in-
formation on the last n− τ bits. We can now distinguish two cases: either
n− τ = O(1) or n− τ = O(n).

In the first case, only a constant amount of bits are truncated out from the tag
and we can salvage the IND-qCPA attack by just brute-forcing all possible
values of EK(Format(τ, N)), which means considering all possibilities of
missing bits.

Indeed, let’s choose M0 and M1 such that their first τ bits are different. This
means that the first τ bits of their ciphertext will be different as well because
we are in the case of one-time pad encryption here. Assume now that we
incorrectly guess the remaining bits of EK(Format(τ, N)) and call this value
W. Then, we produce a value Ṽ = msbτ(EK(W)) using raw block cipher
access again. But then msbτ(M0) ⊕ Ṽ ̸= msbτ(C∗) and msbτ(M1) ⊕ Ṽ ̸=
msbτ(C∗). This means we can go on and repeat this process with our next
guess for Ṽ. Eventually, we will guess the correct bits and exactly one of
the above computations will hold with equality. We here are also assuming
that there are no false positives, which is a valid assumption since EK is AES
which is a PRP. This procedure of course increases the complexity of our
attack, but asymptotically, the run-time is still polynomial.

For the second case, we cannot adapt the attack as easily as in the first
scenario, since we are truncating out a non-constant amount of bits that
makes brute-forcing all possible values inefficient.

24

3.4. IND-qCPA Insecurity of AES-OTR with Serial Associated Data Processing

We want to point out that the IND-qCPA attack on OCB2 in [MMPR22, Sec-
tion 4.3] also runs into the very same issue but it isn’t addressed accordingly.
This issue was confirmed by the authors in [MMPR22] and that they indeed
consider only untruncated tags in their attacks [Mar23].

3.4 IND-qCPA Insecurity of AES-OTR with Serial As-
sociated Data Processing

The aim of this section is to break IND-qCPA security of AES-OTR used as
an AEAD scheme with random nonces but now with associated data pro-
cessed in serial by Algorithm 6. We again exploit the way AD is processed,
where we described the required observation in Subsection 3.2.2.

Similar to the attack above, we define a periodic function f2 whose period
can be computed using Simon’s algorithm. In this case however, as a con-
sequence of our choice of f2, computing the period of the function already
gives us raw block-cipher access. This is in contrast to the IND-qCPA attack
in [MMPR22, Section 4.3] and our previous attack in Section 3.3 as well,
where we first recover EK(0n) and then gain raw block-cipher access via
Deutsch’s algorithm. In this section, Simon’s function is defined in a very
different fashion than before, as the function can distinguish two different
cases depending on an input bit b and treat them accordingly. This affects
either having one or two blocks of associated data as an input to the quan-
tum encryption oracle respectively. We therefore also need to argue why we
actually have quantum access to Simon’s function we define below. This is
done by coming up with a suitable quantum circuit where it is important
that the circuit only uses a single quantum query to the encryption oracle. At
this point however, we make the assumption that we have quantum access
to Simon’s function and are able to compute it with a single quantum query
to the quantum encryption oracle. We emphasize this due to the changing
nonces as described in Section 3.3. We validate this assumption and further
discuss the quantum accessibility as well as the issue of having to achieve
this with a single quantum query in Subsection 3.4.1.

We realize gaining raw block cipher access by choosing an arbitrary B ∈
{0, 1}n (for which we want to know its encryption EK(B)) and set Simon’s
function to be f2 : {0, 1}n+1 → {0, 1}τ,

f2(b||A) =

{
OTR-EK,s(N, B||A, ε) if b = 0
OTR-EK,s(N, A, ε) if b = 1

where b ∈ {0, 1} is a single bit and A ∈ {0, 1}n represents one block of
associated data of size n. We follow the same reasoning as in Section 3.3
to omit adding the additional n + 1− τ bits so that the dimensions of the

25

3. Quantum Cracks in the AES-OTR Encryption Armor

domain and the co-domain are the same. Note that here f2 gives us a value
in {0, 1}τ, since the ciphertext is empty as a result of the plaintext being
chosen as empty. More precisely, for a general set of associated data D and
empty plaintext we get by Algorithm 3 and Algorithm 2 that

OTR-EK,s(N, D, ε) = msbτ

(
EK

(
332

(
TAD ⊕ EK

(
Format(τ, N)

))))
where TAD = AF-SK(D). This implies that the period s of f2 only de-
pends on the function AF-SK(D). Therefore, we define a new function
g : {0, 1}n+1 → {0, 1}n,

g(b||A) =

{
AF-SK(B||A) if b = 0
AF-SK(A) if b = 1

We claim that g, and therefore f2 as well, has period s = 1||EK(B). Indeed:

g
(
0||A⊕ 1||EK(B)

)
= g

(
1||A⊕ EK(B)

)
= AF-SK

(
A⊕ EK(B)

)
= AF-SK(B||A) = g(0||A) (3.4.1)

g(1||A⊕ 1||EK(B)) = g(0||A⊕ EK(B)) = AF-SK(B||A⊕ EK(B))

= EK

(
4Q⊕ A⊕ EK(B)⊕ EK(B)

)
= EK(4Q⊕ A)

= AF-SK(A) = g(1||A) (3.4.2)

where Q = EK(0n) and for Equations 3.4.1 we used the property of the TA
values described in Subsection 3.2.2 (for comparison, set A1 = B and A2 = A
then TAA1||A2

= TAA2⊕EK(A1) as described in Equation 3.2.2.). For Equations
3.4.2 we used the definition of Algorithm 6.

Under the assumption that we can in fact compute f2 in superposition us-
ing a single quantum query to the encryption oracle OTR-EK,s(N, ·), we can
apply Simon’s algorithm to f2. Hence, with a similar argument as in Section
3.3 we can recover the value s = 1||EK(B) and thus the value EK(B) for any
B ∈ {0, 1}n with O(n) quantum queries. It is important to mention that the
period s is again independent of the nonce. So even though the nonce, and
hence f2 changes with each quantum query, Simon’s algorithm still returns
a random vector orthogonal to the fixed period s = 1||EK(B) in each of the n
iterations. We conclude that this grants us raw block-cipher access without
having to use Deutsch’s algorithm like in the attack described in Section 3.3.

Unlike our IND-qCPA attack in Section 3.3, this attack succeeds with high
probability even if the tags were truncated. This is justified because in
the previous section truncation only became an issue when we applied
Deutsch’s algorithm. Here, we do not use Deutsch’s algorithm but Simon’s
algorithm only. Since the function f2 is still periodic as its periodicity is

26

3.4. IND-qCPA Insecurity of AES-OTR with Serial Associated Data Processing

unaffected by the truncation of the tag, running Simon’s algorithm does not
run into any issues.

Now we can again sketch an IND-qCPA attack against AES-OTR but this
time with serial AD processing:

1. Pick arbitrary but different single-block messages M0 and M1 and de-
fine the AD to be empty. We give these values as an input to the
challenger and record the nonce N which was used to encrypt either
M0 or M1 as well as the output (C∗, T) of the challenger.

2. Compute the value

V = EK

(
2 · EK

(
Format(τ, N)

))
using 2O(n) quantum encryption queries via two applications of Si-
mon’s algorithm

(
using the raw block-cipher access twice as discussed

above, once for B1 = Format(τ, N) and then for B2 = 2B1
)
.

3. Output the bit b′′ = b′ if Mb′ = C∗ ⊕V.

To see that the above attack succeeds we note that for a single-block message
M of size n and empty AD we have

OTR-EK,s(N, ε, M)
∣∣∣
C
= EK

(
2 · EK

(
Format(τ, N)

))
⊕M.

where by |C we indicate truncating out the tag T. This is essentially a one-
time pad encryption with mask V. Since we are able to compute V, we also
recover the correct bit b′′.

3.4.1 On the Quantum Accessibility of the Function f2

It remains to argue that we actually have quantum access to the function
f2 with a single query to the encryption oracle each time we query f2. We
need this to be done in a single quantum query as the nonce N changes
with each quantum query made to the oracle. This is done by coming up
with a suitable quantum circuit that describes f2. It turned out to be quite
challenging to come up with a circuit that only uses a single query to the
encryption oracle because f2 has this case distinction, where in one case
the function gives two blocks of AD to the oracle and in the other it only
sends a single AD block. Therefore we first present two circuits that do
not meet the required properties, one that uses two quantum encryption
queries and another with a first failed attempt to use only one such query.
The former will also showcase why we need it to be done with a single
query. Afterwards, we present one right way to achieve this.

Quantum circuit using two AES-OTR quantum encryption oracle gates.
The circuit uses the two AES-OTR quantum encryption oracle unitary gates

27

3. Quantum Cracks in the AES-OTR Encryption Armor

U(i)
OTR-EK,s

for i = 1, 2 and one so called Fredkin gate (as described e.g. in
[TRK14, Section 2.2]), which is a controlled swap gate.

The former encryption gates model access to the AES-OTR quantum en-
cryption oracle OTR-EK,s(N, ·, ε) where one takes only a single block of AD
as input and the other takes two:

U(1)
OTR-EK,s

|X⟩|Y⟩ = |X⟩|Y⊕OTR-EK,s(N, X, ε)⟩

or
U(2)

OTR-EK,s
|X⟩|Y⟩|Z⟩ = |X⟩|Y⟩|Z⊕OTR-EK,s(N, X||Y, ε)⟩

for arbitrary n-bit strings X, Y, Z.

On the other hand the Fredkin gate, upon input basis state (b, I1, I2) with b a
single bit, produces output (b, O1, O2) where O1 = b̄I1 + bI2, O2 = bI1 + b̄I2.
So the gate essentially swaps the inputs when b = 1 and does nothing
if b = 0. We make use of this gate to select either f2(0||A) or f2(1||A)
depending on the input bit. Note, that the function f2 output register is the
second register from the bottom.

|b⟩

|B⟩

|A⟩

|0n⟩ U
(1
)

O
T

R
-E

K
,s

U
(2
)

O
TR

-E
K

,s

|0n⟩

|B⟩

|A⟩
|OTR-EK,s(N1, B||A, ε)⟩

|OTR-EK,s(N2, A, ε)⟩

|b⟩

| f2(b||A)⟩

| f2(b̄||A)⟩

Figure 3.11: The quantum circuit implementing the function f2 using two quantum queries via

the gates U(i)
OTR-EK,s

for i = 1, 2.

However, this design of the quantum circuit demonstrates the problem of
using two quantum queries to the encryption oracle OTR-EK,s(N, ·) when
wanting to compute f2. Indeed, assume that we compute f2 using this
quantum circuit. Since the quantum encryption oracle is called twice, the
challenger used two random nonces N1 and N2, which are distinct with high
probability, for each of the queries (as indicated in Figure 3.11). Now let us
take a closer look at the periodicity argument:

f2(0||A⊕ 1||EK(B)) = f2(1||A⊕ EK(B)) def
= OTR-EK,s(N2, A⊕ EK(B), ε)

̸= OTR-EK,s(N1, B||A, ε)
def
= f2(0||A)

28

3.4. IND-qCPA Insecurity of AES-OTR with Serial Associated Data Processing

and

f2(1||A⊕ 1||EK(B)) = f2(0||A⊕ EK(B)) def
= OTR-EK,s(N1, B||A⊕ EK(B), ε)

̸= OTR-EK,s(N2, A, ε)
def
= f2(1||A).

Note, that the only reason this does not hold with equality is that different
nonces N1 and N2 were used with high probability. Otherwise we would
have equality following the argument from Equations 3.4.1 and 3.4.2. This
is the reason why we cannot use more than one quantum encryption query
in the quantum circuit for f2.

An unsuccessful attempt at designing a quantum circuit using a single
AES-OTR quantum encryption oracle gate. We here show another attempt
at a quantum circuit that uses only a single UOTR-EK,s gate, but fails to com-
pute f2 due to a different issue. The idea was to just swap the states |A⟩ and
|B||A⟩ with a Fredkin gate before an application of the gate UOTR-EK,s .

|b⟩

|A⟩

|B||A⟩

|0n⟩

|b⟩

U
O

TR
-E

K
,s

| f2(b||A)⟩ (?)

Figure 3.12: The (wrong) quantum circuit implementing the function f2 using a single quantum
query via the gate UOTR-EK,s . With the question mark indicating the incorrectness.

Where this circuit falls short is already at the controlled swap gate. This
is because the swap gate can only operate on inputs that are of the same
length, as the swapping is done as a bitwise operation. By notating the
circuit like this, only the first n bit of the state |B||A⟩ are swapped with the
state |A⟩. Thus, the gate UOTR-EK,s would either have |B||A⟩ as an input state
(case b = 0) or |A||A⟩ as input state (case b = 1) which obviously is not
the way f2 is intended to operate. Therefore the intent to swap the |A⟩ and
|B||A⟩ cannot be conducted like this.

Furthermore we run into dimension issues with the UOTR-EK,s gate. As each
gate of a quantum circuit can be described with a unitary matrix, a matrix
handling the |A⟩ state would need to have dimension 2n× 2n and dimension
3n× 3n in the case of the |B||A⟩ state which of course is not possible at the
same time.

29

3. Quantum Cracks in the AES-OTR Encryption Armor

How to correctly get quantum access to f2. We now present a way on how
to get quantum access to f2 using a single quantum encryption query. To
achieve this, we have to modify the quantum encryption oracle queries in a
slight way: we add an additional n-qubit input register which encodes the
length of our message. By doing so, the encryption oracle knows how many
bits of the message it should actually encrypt. Thus, we also need to define
f2 in a different manner:

f2(b||A) =

{
OTR-ẼK,s(N, bin(2n, n)||B||A, ε) if b = 0.
OTR-ẼK,s(N, bin(n, n)||A||0n, ε) if b = 1.

Note, that this way both |bin(2n, n)||B||A⟩ and |bin(n, n)||A||0n⟩ are 3n
qubit states and hence can be swapped (as discussed above). In this case,
when the encryption oracle gets such an input, it first parses the first n
qubits of the query to figure out how many blocks of the input have to be
encrypted. For b = 0 it just takes B||A as an input but if b = 1 then it ignores
the remaining 0n block of the query and only encrypts A. The corresponding
quantum circuit therefore looks as follows:

|b⟩

|n||A||0n⟩

|2n||B||A⟩

|0n⟩

|b⟩

U
O

TR
-Ẽ

K
,s

| f2(b||A)⟩

Figure 3.13: The quantum circuit implementing the function f2 using a single quantum query
via the gate UOTR-ẼK,s

. Note, that we indicate the n-bit encoding of n and 2n with bold letters.

Note that the output of the second register is set to |n||A||0n⟩ if b = 0 and
|2n||B||A⟩ if b = 1. For the third register it is the other way round.

3.5 IND-qCPA Insecurity of AES-OTR when Nonces
are Chosen Adaptively

So far, our IND-qCPA analysis of AES-OTR relied on exploiting the pro-
cessing of AD in either parallel or serial manner. We now want to break
confidentiality by considering AES-OTR as a pure AE scheme. To do so, we
consider a stronger adversary that can adaptively pick the nonces (in a non
repeating manner) and hand it to the challenger. The challenger then has to

30

3.5. IND-qCPA Insecurity of AES-OTR when Nonces are Chosen Adaptively

respond to encryption queries in the IND-qCPA security game using these
nonces. We adapt the attack model from [MMPR22, Section 4.4], as well as
the general strategy.

The strategy in this case is to recover the value U = EK(Format(τ, N)) for
a randomly chosen nonce N using Simon’s algorithm and picking a new
nonce based on the recovered value. The challenger then has to use this
newly picked nonce to answer the challenge query which enables us to per-
form an IND-qCPA attack. However, the formatting of the nonce causes our
attack to be a non-trivial extension to the one in [MMPR22]: before pick-
ing the new nonce, we have to check whether U has a desired format and
if this is not the case, we have to repeat the recovery step. Observe, that
here compared to our attacks in Sections 3.3 and 3.4, the value we want to
recover is dependent on the nonce N. So the strategy to use O(n) quantum
oracle queries in an application of Simon’s algorithm with respect to a func-
tion as used in the previous section would not work. The reason is that if
Simon’s function has a period depending on U, then in each step of Simon’s
algorithm, we would recover a vector orthogonal to a different value of the
period. This issue arises because the nonce changes with every query and
hence, U and the corresponding period also change. To resolve this obstacle,
we define a function with numerous independent periods and an input that
consists of multiple plaintext blocks (specifically, 4n blocks). By using this
approach, that is inspired by the attack presented in [BBC+21, Section 3.2]
(and [MMPR22, Section 4.4]), we can overcome the challenge of changing
nonces, as we describe in this section.

Note, that even though encryption of AES-OTR has some slight differences
when AD is processed in either parallel or serial, Algorithm 3 executes the
same steps where only the value U differs by a factor of 2 if the associated
data is kept empty. Thus, our attack works in both settings, but we treat the
parallel case here.

Let m ̸= 0 be even. Recall that for a message M = M1||...||Mm||0n with
Mi ∈ {0, 1}n ∀i ∈ [m] we get ciphertext C = C1||...||Cm||Cm+1 where

C2k−1 = EK

(
2k−1U ⊕M2k−1

)
⊕M2k

C2k = EK

(
2k−13U ⊕ C2k−1

)
⊕M2k−1

for k ∈ [m/2] are n-bit blocks as well. We set the last plaintext block to be
all zeros since this block is encrypted differently, and we only want to focus
on properties of the encryption of the first m blocks.

We define functions h2k−1 : {0, 1}n → {0, 1}n such that

h2k−1(M) = EK

(
2k−1U ⊕M

)
⊕M

31

3. Quantum Cracks in the AES-OTR Encryption Armor

for k ∈ [m/2] which correspond to the (2k − 1)-th ciphertext block C2k−1
when M2k−1 = M2k =: M. Further, by defining s := 2k−1U ⊕ 2kU we find
that

h2k−1(M⊕ s)⊕ h2(k+1)−1(M⊕ s) = EK
(
2k−1U ⊕M⊕ s

)
⊕ EK

(
2kU ⊕M⊕ s

)
= EK

(
2kU ⊕M

)
⊕ EK

(
2k−1U ⊕M

)
= h2(k+1)−1(M)⊕ h2k−1(M). (3.5.1)

So, if we define H2k−1,2(k+1)−1 : {0, 1}n → {0, 1}n as

H2k−1,2(k+1)−1(M) = h2k−1(M)⊕ h2(k+1)−1(M)

this function is in fact periodic with period s = 2k−1U ⊕ 2kU, as the above
calculations indicate.

With the function H2k−1,2(k+1)−1 we basically link four consecutive plaintext
blocks (more precisely we set M = M2k−1 = M2k = M2(k+1)−1 = M2(k+1))
in order to create a periodic function. We will further develop this idea by
first encrypting 4(n + 1) + 1 plaintext blocks followed by an application of
a linear function that captures exactly this observation.

Consider the function g : {0, 1}n(4(n+1)+1)+τ → {0, 1}n(n+1)

g(C1, ..., C4(n+1)+1, T) = (C1, C5 ⊕ C7, C9 ⊕ C11, ..., C4n+1 ⊕ C4n+3)

Here, the Ci’s are n-bit blocks and T is a τ-bit block. It is not hard to see that
g satisfies g(C⊕ C′) = g(C)⊕ g(C′) for any valid inputs C and C′ i.e. g is a
linear function.

We further define the function fN : {0, 1}n2 → {0, 1}n(n+1) such that

fN(M1, ..., Mn) = g ◦OTR-EK,p(N, ε, 04n||M4
1||...||M4

n||0n)

for some randomly chosen nonce N and empty AD1. Here, we included the
last plaintext block 0n since the last block (note, that we have an odd amount
of blocks) is treated differently by the encryption algorithm and we want to
avoid having to analyze encryption in this case. This choice allows us to just
ignore the last block of ciphertext as it is irrelevant for our attack. We can
also write fN in terms of the functions h2k−1 and H2k−1,2(k+1)−1 from above.
To be precise, it holds

fN(M1, ..., Mn) =
(
h1(0n), H5,7(M1), ..., H4n+1,4n+3(Mn)

)
. (3.5.2)

We proceed by claiming that fN has the n linearly independent periods
⟨si⟩i∈[n] with si = (si,1, ..., si,n) and si,j ∈ {0, 1}n, where

si =
(
(0n)i−1||22iU ⊕ 22i+1U||(0n)n−i

)
.

1Here, by M4
i we mean the concatenation of four copies of Mi.

32

3.5. IND-qCPA Insecurity of AES-OTR when Nonces are Chosen Adaptively

Hence, only the entry si,i is non-zero ∀i ∈ [n]. This is the crucial property
required for our attack to succeed, as we then are able to let fN be Simon’s
function to which we can apply Simon’s algorithm. Indeed, when we take
a look at fN(M1, ..., Mi ⊕ 22iU ⊕ 22i+1U, ..., Mn) it is enough to consider the
(i + 1)-st entry (as it is the only entry affected by the period si) given from
Equation 3.5.2 for which it holds

H4i+1,4i+3(Mi ⊕ si,i) = H4i+1,4i+3(Mi),

as we have shown in Equation 3.5.1 (with suiting choice of indices).

Hence we can follow the reasoning in [MMPR22, Section 4.4] and apply
[BBC+21, Lemma 2] that assures the ability to compute a linear function
of an output of a quantum oracle. Using this Lemma, we can compute
fN with a single quantum query to the OTR-EK,p(N, ·) oracle. Again, with
similar arguments as in [MMPR22] this in turn allows us to apply Simon’s
algorithm to fN where with a single quantum query we are able to recover
a vector y = (y1, ..., yn) ∈ {0, 1}n2

, yi ∈ {0, 1}n∀i ∈ [n] that is orthogonal to
each of the n periods ⟨si⟩i∈[n].

With overwhelming probability the algorithm successfully computes such a
vector y because we can apply a similar argument as in [BBC+21] to argue
that there do not exist any ”unwanted periods” in fN to which y could be
orthogonal to. To be precise, if we assume the existence of an unwanted
period s′ of fN with a probability greater than 1

2 , then at least one of the
H4i+1,4i+3 in Equation 3.5.2 would also admit an unwanted period s′4i+1,4i+3
with probability greater than 1

2n . But this is impossible as EK being AES
does not have a high-probability higher-order differential.

Hence, we can continue by solving the n equations we get from orthogonal-
ity

yi · (22iU ⊕ 22i+1U) = 0

for i ∈ [n] and we are thus able to recover the value U = EK(Format(τ, N)).
Using only a single quantum query to recover U is crucial. Indeed, if we
want to compute U = EK(Format(τ, N)) and we make a second quantum
encryption query, then the nonce changes to an independent N′. Hence, the
corresponding output of Simon’s algorithm with respect to the second quan-
tum encryption query depends on N′ but is (most likely) independent of N.
Therefore it is not cleat how the system of linear equations obtained with re-
spect to the second query (with independent nonce N′) helps in recovering
U = EK(Format(τ, N)).

Furthermore, as described in [MMPR22] we are also able to recover the
fixed first ciphertext block C1 = EK(U) by measuring the quantum register
corresponding to the output of fN as a part of Simon’s algorithm. It is

33

3. Quantum Cracks in the AES-OTR Encryption Armor

important that the plaintext block is fixed to 0n (or any other fixed classical
value), so that C1 is a classical value.

Using these values we can now formulate our IND-qCPA attack in a setting
with adaptively chosen nonces. Note however, that in difference to the at-
tack in [MMPR22], we need an additional step as here the value U differs
from the one used in OCB2: for AES-OTR there is an additional formatting
applied to the nonce N which does not exist for OCB2. This creates the
problem that we cannot just define our new nonce N∗ to be the recovered
value U as it was the case in the [MMPR22] attack. because it may not have
the correct format to satisfy C1 = EK(U) = EK(EK(Format(τ, N∗)) which
is what we need in order for our attack to work. We resolve this issue by
iterating the above steps for different initial nonces N, until we find one that
satisfies the desired condition. We will formalize this idea now:

1. For a randomly chosen nonce N we recover in a single quantum en-
cryption query the classical values U = EK(Format(τ, N)) and C1 =
EK(U) using Simon’s algorithm as described above.

2. Check if U is of the form

U = Format(τ, N′) = bin(τ mod n, 7)||0n−8−|N′|||1||N′

for some N′ ∈ {0, 1}8i where i ∈ [15]. If this condition is not satisfied,
we repeat step 1 for a different nonce N and else we continue with
step 3.

3. Choose the nonce N∗ to be N∗ = N′ such that we guarantee the corre-
sponding initial offset U∗ in the challenge query to be

U∗ = EK(Format(τ, N∗)) = EK(U) = C1

where C1 is the value we recovered in the first step.

4. Define m0 = U∗⊕U, m1 = 0n, where U is the value we recovered in the
first step with the desired format of step 2, and a random m′0 ∈ {0, 1}n

such that m0 ̸= m′0. Select the two 2-block messages as M0 = m0||m1
and M1 = m′0||m1 and A = ϵ for the challenge query.

5. Record the the response (C∗, T∗) from the challenger, where C∗ =
C∗1 ||C∗2 with C∗i ∈ {0, 1}n and output b′ = 0 if C∗2 = C1 and b′ = 1 else.

The attack succeeds because as a result of our choice of messages and nonce
for the challenge query the response (C∗, T∗) satisfies

C∗2 =

{
EK(U∗ ⊕m0)⊕m1 = EK(U) = C1 if M0 was encrypted.
EK(U∗ ⊕m′0)⊕m1 = EK(U∗ ⊕m′1) ̸= C1 if M1 was encrypted.

34

3.6. Refining the EUF-qCMA Attacks on AES-OTR

Note, that when we choose M0 and M1 to have two blocks of plaintext, they
are encrypted following the case in lines 11 to 14 of Algorithm 3.

Also, Step 2 succeeds with high probability. Indeed, if we assume that the
size of the nonce is κ = 120 (in general κ ∈ {8, 16, ..., 120}) we essentially
require the first 8 bits of U to be fixed to bin(τ mod n, 7)||1. This happens
with probability (1/2)8 and is even bigger when we allow κ ∈ {8, 16, ..., 120}
(note, that then in general n− κ bits need to be fixed). Therefore this step
eventually is successful.

3.6 Refining the EUF-qCMA Attacks on AES-OTR

We conclude the analysis on AES-OTR by refining the EUF-qCMA attacks
presented in [LCP22] on the mode with respect to our IND-qCPA attacks in
Sections 3.3 and 3.4. Following Definition 2.5 of EUF-qCMA security, after
having made q many encryption queries, the adversary has to produce q + 1
forgeries (N, A, C, T) with any nonces of its own choice.

3.6.1 AD Processed in Parallel

We sketch the EUF-qCMA attack on AES-OTR below assuming associated
data is processed in parallel:

1. Recover the value Q = EK(0n) usingO(n) quantum encryption queries
as outlined in Section 3.3.

2. Query the authenticated encryption C, T of M, A = A1||...||Ak for an
arbitrary message M and arbitrary but pairwise different blocks of AD
Ai such that (k

2) ≥ n + 2 and Ai ⊕ Aj ̸= 2i−1Q⊕ 2j−1Q ∀i, j ∈ [k], i ̸= j
and record the nonce N chosen by the challenger.

3. Output the forgeries (N, B(p,q), C, T), where N, C, T as above and asso-
ciated data B(p,q) = B1||...||Bk for all p, q ∈ [n], p ̸= q such that

B′q = Ap ⊕ 2p−1Q⊕ 2q−1Q

B′p = Aq ⊕ 2p−1Q⊕ 2q−1Q

B′i = Ai

for i ∈ [k] \ {p, q}.

We choose Ai ⊕ Aj ̸= 2i−1Q ⊕ 2j−1Q ∀i, j ∈ [k], i ̸= j because otherwise
B(i,j) = A and thus (N, B(i,j), C, T) = (N, A, C, T) would only be counted as
a single forgery. But given that there are (k

2) constraints, and roughly of the
order 2n choices for each Ai satisfying the above constraints, we can always
choose the above A = A1||...||Ak.

35

3. Quantum Cracks in the AES-OTR Encryption Armor

This attack is successful as we made n (quantum) +1 (classical) encryp-
tion queries and produce (k

2) ≥ n + 2 pairwise different sets of associated
data that all generate the same value TA as we described in Equations 3.2.1
in Subsection 3.2.1. Therefore following AES-OTR encryption when AD
is processed in parallel as described in Algorithm 1, it holds that OTR-
EK,p(N, B(p,q), M) = (C, T) for all p, q ∈ [k], p ̸= q.

3.6.2 AD Processed in Serial

In the setting of AD being processed in serial we sketch the EUF-qCMA
attack on AES-OTR below:

1. Choose some A1 ∈ {0, 1}n and compute EK(A1) via one application
of the raw block cipher access in O(n) quantum encryption queries as
outlined in Section 3.4.

2. Choose pairwise different A2,i ∈ {0, 1}n for i ∈ [n + 1] and for each
A(i) = A1||A2,i query the authenticated encryption Ci, Ti of Mi, A(i),
where Mi is an arbitrary message and record the corresponding nonce
Ni the challenger used.

3. Output the forgeries (Ni, A(i), Ci, Ti) and (Ni, EK(A1)⊕ A2,i, Ci, Ti) for
i ∈ [n + 1].

This attack is successful as we produce 2n + 2 forgeries having made 2n + 1
(quantum) encryption queries. The forgeries are valid, as half of them are
produced by the oracle and the other half are constructed following the ar-
guments in Subsection 3.2.2, where we argue that for any AD A = A1||A2,
the AD B = EK(A1)⊕ A2 produce the same value TA computed by Algo-
rithm 6. Therefore, following AES-OTR encryption when associated data
is processed in serial in Algorithm 2, it holds that OTR-EK,s(Ni, EK(A1) ⊕
A(2,i), M1) = (Ci, Ti) ∀i ∈ [n + 1].

36

Chapter 4

The Key (-Recovery) Issue of OPP

The Offset Public Permutation Mode (OPP) was proposed in [GJMN15] and
[GJMN16] and it essentially tries to generalize OCB3 by replacing the un-
derlying block cipher by a public permutation and applying a different form
of masking. In this chapter we will show that using a public permutation
the way OPP does, actually leads to a devastating key recovery attack in the
quantum setting.

The attack uses a similar strategy as the one in Section 3.5 but instead of
recovering Ek(Format(τ, N∗)) and choosing a new nonce adaptively to break
IND-qCPA security, we are able to recover the value Ω := P(X||K) where P
is a efficiently invertible public permutation, X can be seen as a formatting
of the nonce and K is the key. In contrast to OTR being based on a block
cipher that may only be inverted knowing the key, we are here dealing with
a public permutation that can be inverted efficiently. This is the key issue of
OPP and the reason we are able to recover the key knowing Ω.

4.1 Specifications of OPP

In this chapter, it is assumed that the plaintexts we are dealing with always
have a size that is a multiple of the block length. As a consequence, it is
not necessary to treat the last block of the plaintext any differently in our
analysis, and furthermore we are also excluding the specifications for how
OPP encrypts plaintexts that do not meet this assumption. In the same
manner this also applies to the way we describe the processing of associated
data.

Let n, k, τ, κ as labeled in Chapter 2 such that κ ≤ n− k − 1. We begin by
describing the OPP mode as proposed in [GJMN15] in a simplified manner
that also maintains consistent labeling of variables in previous descriptions
of modes such as OTR.

37

4. The Key (-Recovery) Issue of OPP

A set of functions Φ = {α, β, γ} is given by α, β, γ : {0, 1}n → {0, 1}n,
α(x) = φ(x), β(x) = φ(x) ⊕ x and γ(x) = φ2(x) ⊕ φ(x) ⊕ x where for
x = x0||...||x15 and xi ∈ {0, 1}64 the function φ : {0, 1}1024 → {0, 1}1024 is
defined as

φ(x0, ..., x15) =
(
x1, ..., x15, (x0 ≪ 53)⊕ (x5 ≪ 13)

)
.

OPP uses the so called tweakable Even-Mansour construction MEM, where
a tweak space T of the form T ⊆ {0, 1}n−k ×N3, as outlined in [GJMN15,
Lemma 4], is considered. For further details about tweaks and tweakable
block ciphers we refer to [GJMN15] as this specific notion is not relevant for
the subsequent attack.

The encryption function Ẽ : {0, 1}k × T × {0, 1}n → {0, 1}n is then defined
as

Ẽ(K, X, ī, M) = P
(
δ(K, X, ī)⊕M

)
⊕ δ(K, X, ī)

where δ : {0, 1}k × T → {0, 1}n is called the masking function and for
ī = (i0, i1, i2) ∈N3 it is set to be

δ(K, X, ī) = γi2 ◦ βi1 ◦ αi0
(

P(X||K)
)

For convenience the shorthand notation Ẽī
K,X(M) = Ẽ(K, X, ī, M) is being

used in the algorithmic description of OPP.

It should be noted that P is a public permutation of which it is required
that P−1 can be computed efficiently, as its inverse is necessary to perform
decryption. In particular decryption is done as follows:

D̃(K, X, ī, C) = P−1(δ(K, X, ī)⊕ C
)
⊕ δ(K, X, ī).

Below, we present a simplified description of the OPP mode based on the
specification in [GJMN15]. We only provide a description of the encryption
and authentication part of the algorithm, as the details regarding decryption
are not relevant to our attack and are therefore omitted. To be precise, the
authentication part of OPP is described in Algorithm 9 and the encryption
part corresponds to Algorithm 8.

Algorithm 7 OPP-E(K, N, AD, M)

1: X ← pad0
n−κ−k(N)

2: C, S← OPPEnc(K, X, M)
3: T ← OPPAbs(K, X, AD, S)
4: return C, T

38

4.2. Quantum Key-Recovery Attack on OPP

Algorithm 8 OPPEnc(K, X, M)

1: M0||...||Mm−1 ← M, s.t. |Mi| = n
2: C ← ε
3: S← 0n

4: for i ∈ {0, ..., m− 1} do
5: Ci ← Ẽi,0,1

K,X (Mi)
6: C ← C||Ci
7: S← S⊕Mi

8: return C, Ẽm−1,2,1
K,X (S)

Algorithm 9 OPPAbs(K, X, A, S)

1: A0||...||Aa−1 ← A, s.t. |Ai| = n
2: S′ ← 0n

3: for i ∈ {0, ..., a− 1} do
4: S′ ← S′ ⊕ Ẽi,0,0

K,X (Ai)

5: return msbτ(S′ ⊕ S)

4.2 Quantum Key-Recovery Attack on OPP

In this attack, we employ the same techniques as in Section 3.5, which were
adapted from the methods in [MMPR22] for breaking IND-qCPA security of
AES-OTR with adaptively chosen nonces. However, in this case we are able
to recover the key instead. Our attack is focused solely on the encryption
part, so OPP it is used as a pure AE scheme, and does not make use of the
way associated data is processed. This is in contrast to our previous attacks
in Sections 3.3 and 3.4 as there we could exploit the fact that AD processing
was not dependent on a nonce but rather on the constant value Q = Ek(0n).
In the case of OPP this is different because the nonce is used in the associated
data processing, as the value P(X||K) where X = pad0

n−κ−k(N) is dependent
on the nonce N (see Algorithm 7). Since the nonce changes with each call to
the encryption oracle, OPP never processes a fixed set of AD the same way.
This is the reason we can’t apply Simon’s algorithm (which calls the oracle
multiple times) in the same manner.

Before we formulate the attack itself, we observe a crucial property of the
xor of two consecutive ciphertext blocks considered as a function of its
corresponding plaintext blocks. Define Ω = P(X||K) and recall that OPP
encrypts the i-th plaintext block Mi as Ci = P(δ(K, X, (i, 0, 1)) ⊕ Mi) ⊕
δ(K, X, (i, 0, 1)) where δ(K, X, (i, 0, 1)) = φi+2(Ω) ⊕ φi+1(Ω) ⊕ φi(Ω). We
now define functions fi : {0, 1}n → {0, 1}n such that

fi(M) = P
(
δ(K, X, (i, 0, 1))⊕M

)
⊕ δ(K, X, (i, 0, 1)),

39

4. The Key (-Recovery) Issue of OPP

which correspond to the i-th ciphertext block Ci considered as a function of
its underlying plaintext block M. Further, by defining s := φi+3(Ω)⊕ φi(Ω)
we see that

fi(M⊕ s)⊕ fi+1(M⊕ s)

= P
(

φi+2(Ω)⊕ φi+1(Ω)⊕ φi(Ω)⊕M⊕ s
)

⊕ P
(

φi+3(Ω)⊕ φi+2(Ω)⊕ φi+1(Ω)⊕M⊕ s
)
⊕ φi+3(Ω)⊕ φi(Ω)

= P
(

φi+3(Ω)⊕ φi+2(Ω)⊕ φi+1(Ω)⊕M
)

⊕ P
(

φi+2(Ω)⊕ φi+1(Ω)⊕ φi(Ω)⊕M
)
⊕ φi+3(Ω)⊕ φi(Ω)

= fi+1(M)⊕ fi(M)

So if we define Fi,i+1 : {0, 1}n → {0, 1}n as Fi,i+1(M) = fi(M)⊕ fi+1(M) we
see from the above calculations that Fi,i+1(M⊕ s) = Fi,i+1(M), i.e., Fi,i+1 is a
periodic function with period s = φi+3(Ω)⊕ φi(Ω).

The idea is now to apply a linear function to 2n + 1 ciphertext blocks to
capture this observation and create a periodic function that itself contains
n copies of the periodic function Fi,i+1 from above. To do so consider the
function g : {0, 1}(2n+1)n+τ → {0, 1}(n+1)n

g(C0, C1, ..., C2n, t) = (C0, C1 ⊕ C2, ..., C2n−1 ⊕ C2n).

Here, the Ci’s are n-bit blocks and t is a τ-bit block. It is not hard to see that
g is in fact a linear function - i.e., it satisfies g(C ⊕ C′) = g(C)⊕ g(C′) for
any valid inputs C and C′. Furthermore let f̃N : {0, 1}n2 → {0, 1}(n+1)n such
that

f̃N(M1, ..., Mn) = g ◦OPP-E(K, N, ε, 0n||M1||M1||M2||...||Mn||Mn) (4.2.1)

for some randomly chosen nonce N and empty associated data. We can
also reformulate f̃N in terms of the functions fi and Fi,i+1 from above. To be
precise, it holds

f̃N(M1, ..., Mn) =
(

f0(0n), F1,2(M1), ..., F2n−1,2n(Mn)
)
. (4.2.2)

Moreover, we have included an all-zero plaintext block at the beginning,
which will be useful later on for verifying correctness of the recovered key.

The crucial property required for the success of the attack is that f̃N has n
linearly independent periods ⟨si⟩i∈[n] where

si =
(
(0n)i−1||φ2i+2(Ω)⊕ φ2i−1(Ω)||(0n)n−i

)
.

40

4.2. Quantum Key-Recovery Attack on OPP

This directly follows from the observation on the periodicity of Fi,i+1 and
the fact that each pair of the two consecutive ciphertext blocks C2i−1 and C2i
for i ∈ [n] encrypt the same plaintext block Mi but with different mask δ.

Following the same argument as in Section 3.5, we can apply [BBC+21,
Lemma 2] which assures the ability to compute a linear function of a quan-
tum oracle’s output. Therefore, we can compute f̃N with a single quan-
tum query to the OPP-E(K, N, ·) oracle. Once more, we can apply Simon’s
algorithm to f̃N which, with a single quantum query, recovers a vector
y = (y1, ..., yn) ∈ {0, 1}n2

with yi ∈ {0, 1}n ∀i ∈ [n] that is orthogonal to
each of the periods si. The algorithm successfully computes such a vector
with overwhelming probability as there do not exist any ”unwanted peri-
ods” to which y could be orthogonal to.

We justify this claim by building upon the argument presented in [BBC+21,
Section 3.2], which treats the absence of ”unwanted periods” in a very sim-
ilar attack on a variant of OCB. We recall that OCB uses a block cipher
instead of a public permutation like it is the case for OPP, so we need to ad-
just the reasoning to the setting of a public permutation. If we assume the
existence of an unwanted period s̃ of f̃N with a probability greater than 1

2 ,
then at least one of the Fi,i+1 in Equation 4.2.2 would also have to admit an
unwanted period s̃i,i+1 with probability greater than 1

2n . We now draw upon
the reasoning presented in [KLLN16, Section 3.2], which shows the non-
occurrence of higher order differentials in the Even-Mansour construction.
More accurately, Fi,i+1 admitting such an unwanted period is equivalent to
saying that P admits a high-probability higher-order differential. But these
only happen with negligible probability for a random choice of P according
to [KLLN16]. This argument makes sure that the probability for unwanted
periods to appear is bounded and thus Simon’s algorithm computes a vector
y as described above with overwhelming probability.

By orthogonality of y we get n equations of the form

yi ·
(

φ2i+2(Ω)⊕ φ2i−1(Ω)
)
= 0. (4.2.3)

Before we can proceed, we recall that for x = x0||...||x15 and xi ∈ {0, 1}64 the
function φ is defined as

φ(x0, ..., x15) =
(
x1, ..., x15, (x0 ≪ 53)⊕ (x5 ≪ 13)

)
As described in [GJMN15] we see that the function φ is in fact a linear map
and it therefore can be represented by a matrix M. Following this, Equation
4.2.3 is equivalent to

yi ·
(

M2i+2 ·Ω⊕M2i−1 ·Ω
)
= 0 (4.2.4)

41

4. The Key (-Recovery) Issue of OPP

Knowing M and using associativity of matrix multiplication, we are able to
solve the n Equations in 4.2.4 and thus recover the value Ω = P(X||K). But
since P is a public permutation and its inverse is assumed to be computable
efficiently due P−1 being needed for decryption, we can just apply P−1 to Ω
and we thus are able to acquire X||K. In particular, we gain possession of
the key K.

Observe, that in addition when running Simon’s algorithm, we recover the
fixed classical value of the first ciphertext block C0 = Ẽ0,0,1

K,X (0n) when we
measure the quantum register corresponding to the output of f̃N as part of
our application of Simon’s algorithm. It is important that we fix the value
to 0n (or any other arbitrary fixed classical value of length n also works) in
order for C0 to be a classical value.

We sketch our key-recovery attack below:

1. Given access to a quantum encryption oracle of OPP for a random
nonce N, i.e., OPP-E(K, N, ε, ·), we recover with a single quantum en-
cryption query the classical values Ω = P(X||K) and C0 = Ẽ0,0,1

K,X (0n)
as discussed above. In particular, we recover the classical value of the
key K.

2. We perform a sanity check on the key: using Ω we recompute the
encryption C̃ of the one-block plaintext 0n with respect to the same
key K and nonce N as used in the above encryption oracle query as

C̃ = P
(

φ2(Ω)⊕ φ(Ω)⊕Ω
)
⊕ φ2(Ω)⊕ φ(Ω)⊕Ω.

Check that C0 = C̃. If this turns out to be false we repeat step 1., else
we are certain to have recovered the right key K.

It remains to argue why this attack is successful.

We perform a sanity check in order to assure correctness of the key K. This
is where the first ciphertext block is useful. Indeed, having recovered the
key K as described above, we can now just recompute the encryption of 0n,
again with respect to the same key-nonce pair (K, N) as in the provided
encryption oracle, as

C̃ = P
(
δ(K, X, (0, 0, 1))⊕ 0n)⊕ δ(K, X, (0, 0, 1))

= P
(

φ2(Ω)⊕ φ(Ω)⊕Ω
)
⊕ φ2(Ω)⊕ φ(Ω)⊕Ω

where Ω = P(X||K) and X = pad0
n−κ−k(N). If now C̃ = C0, i.e. the encryp-

tion of the oracle and our manual computation coincide, we can be sure that
we recovered the right key K. Else, we can just repeat the attack until the
assertion returns to be true.

42

4.2. Quantum Key-Recovery Attack on OPP

With the included sanity check, we are certain to recover the key K at some
point, as step one of our attack involves an application of Simon’s algorithm
that already succeeds with high probability thanks to the non-existence of
”unwanted periods” as argued before.

4.2.1 Consequences

Key-recovery is already devastating on its own but we still want to discuss
some of the implications. After recovering a key K using a single quantum-
query – for which we do not need to know the underlying nonce N – we
can subsequently encrypt or decrypt arbitrary messages or ciphertexts on
our own provided we know the corresponding nonce to be used.

Note that in view of the IND-qCPA, EUF-qCMA and UUF-qCMA security
definitions in [MMPR22] the challenger always forwards a randomly cho-
sen nonce to the adversary which it then uses to answer the adversary’s
quantum encryption queries. Thus, after just a single quantum encryption
query – where we do not need to know the random nonce N – to recover
the key K, we are able to perform decryption of challenge ciphertexts to
break IND-qCPA security or to produce forgeries of arbitrary message and
associated data pairs to break both EUF- and UUF-qCMA security. Note,
that these attacks also apply in a setting where the nonces are chosen by the
challenger after the adversary submits the encryption queries. This implies
that the adversary can no longer make encryption queries adaptively after
gaining knowledge of the the nonce N by choosing the queries depending
on said nonce. This makes our attacks even stronger.

4.2.2 Comparison with Quantum Key-Recovery Attack on MEM
in [KLLN16]

To conclude the discussion on OPP, we want to mention that there does al-
ready exist a quantum key-recovery attack on the Even-Mansour construc-
tion first described in [KM12] and further discussed in [KLLN16, Section
3.2]. We want to highlight the novelty of our quantum key-recovery attack
on OPP with respect to the existing attacks on Even-Mansour based schemes
(as OPP itself uses the Even-Mansour construction). We first give a short re-
cap on the attack as described in [KLLN16].

Starting from the block cipher

Ek1,k2(M) = P(M⊕ k1)⊕ k2

where P is some public permutation, [KLLN16, Section 3.2] shows that ei-
ther there exists a classical distinguishing attack (though this case is negligi-
ble with random P), or, using Simon’s algorithm, we are able to successfully

43

4. The Key (-Recovery) Issue of OPP

recover k1. This is done by applying Simon’s algorithm to the periodic func-
tion defined by

f : {0, 1}n → {0, 1}n

f (M) = Ek1,k2(M)⊕ P(M) = P(M⊕ k1)⊕ P(M)⊕ k2

where f (M⊕ k1) = f (M). As a result, k1 is recovered in n quantum queries.
It is important to highlight that, in this particular case of the isolated Even-
Mansour construction, both k1 and k2 are keys of a fixed value. If we com-
pare this to the setting of OPP, we have that k1 = k2 = δ(K, X, (i, 0, 1)) =
φi+2(Ω)⊕ φi+1(Ω)⊕ φi(Ω) with Ω = P(X||K) and X = pad0

n−κ−k(N). The
OPP setting is more complex as there encryption is dependent on a nonce
N, which changes with each call to the encryption oracle. As a result, the
value of f , and even more importantly the period k1 of f , would change in
each of the n iterations during an application of Simon’s algorithm. This is
why we cannot just extend the attack on MEM in [KLLN16] to OPP, as in
each application it would recover a vector y orthogonal to a different period.
Recall that in our quantum key-recovery attack in Section 4.2 we overcame
this issue as we only use one single quantum query to the OPP-E(K, N, ·)
oracle to compute the periodic function f̃N in 4.2.1 in order to recover Ω and
thus the key K using Simon’s algorithm.

To emphasize, the main difference between our attack and the existing one
is twofold. Firstly, we are focusing on the authenticated encryption setting,
which includes changing nonces that make the straight forward application
of Simon’s algorithm infeasible. Secondly, our attack is more efficient in
terms of numbers of queries, as it only requires one single quantum encryp-
tion query, whereas the existing attack requires n queries.

44

Bibliography

[ABKM22] Gorjan Alagic, Chen Bai, Jonathan Katz, and Christian Ma-
jenz. Post-quantum security of the even-mansour cipher. In
Orr Dunkelman and Stefan Dziembowski, editors, Advances in
Cryptology – EUROCRYPT 2022, Part III, volume 13277 of Lecture
Notes in Computer Science, pages 458–487, Trondheim, Norway,
May 30 – June 3, 2022. Springer, Heidelberg, Germany.

[ACD+22] Gorjan Alagic, David Cooper, Quynh Dang, Thinh Dang,
John M. Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl A. Miller,
Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson,
Daniel Smith-Tone, and Daniel Apon. Status report on the third
round of the nist post-quantum cryptography standardization
process, 2022-07-05 04:07:00 2022.

[ATTU16] Mayuresh Vivekanand Anand, Ehsan Ebrahimi Targhi,
Gelo Noel Tabia, and Dominique Unruh. Post-quantum secu-
rity of the CBC, CFB, OFB, CTR, and XTS modes of operation.
In Tsuyoshi Takagi, editor, Post-Quantum Cryptography - 7th Inter-
national Workshop, PQCrypto 2016, pages 44–63, Fukuoka, Japan,
February 24–26, 2016. Springer, Heidelberg, Germany.

[BBC+21] Ritam Bhaumik, Xavier Bonnetain, André Chailloux, Gaëtan
Leurent, Marı́a Naya-Plasencia, André Schrottenloher, and Yan-
nick Seurin. QCB: Efficient quantum-secure authenticated en-
cryption. In Mehdi Tibouchi and Huaxiong Wang, editors, Ad-
vances in Cryptology – ASIACRYPT 2021, Part I, volume 13090
of Lecture Notes in Computer Science, pages 668–698, Singapore,
December 6–10, 2021. Springer, Heidelberg, Germany.

[BHN+19] Xavier Bonnetain, Akinori Hosoyamada, Marı́a Naya-Plasencia,
Yu Sasaki, and André Schrottenloher. Quantum attacks with-

45

Bibliography

out superposition queries: The offline Simon’s algorithm. In
Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryp-
tology – ASIACRYPT 2019, Part I, volume 11921 of Lecture Notes
in Computer Science, pages 552–583, Kobe, Japan, December 8–12,
2019. Springer, Heidelberg, Germany.

[BLNS21] Xavier Bonnetain, Gaëtan Leurent, Marı́a Naya-Plasencia, and
André Schrottenloher. Quantum linearization attacks. In Mehdi
Tibouchi and Huaxiong Wang, editors, Advances in Cryptology –
ASIACRYPT 2021, Part I, volume 13090 of Lecture Notes in Com-
puter Science, pages 422–452, Singapore, December 6–10, 2021.
Springer, Heidelberg, Germany.

[CAE19] Caesar: Competition for authenticated encryption: Security, ap-
plicability, and robustness, 2012-2019. Last accessed 23 March
2023, https://competitions.cr.yp.to/caesar.html.

[Deu85] D. Deutsch. Quantum theory, the Church-Turing principle and
the universal quantum computer. Proceedings of the Royal Society
of London Series A, 400(1818):97–117, July 1985.

[GJMN15] Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel
Neves. Improved masking for tweakable blockciphers with
applications to authenticated encryption. Cryptology ePrint
Archive, Paper 2015/999, 2015. https://eprint.iacr.org/

2015/999.

[GJMN16] Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel
Neves. Improved masking for tweakable blockciphers with ap-
plications to authenticated encryption. In Marc Fischlin and
Jean-Sébastien Coron, editors, Advances in Cryptology – EURO-
CRYPT 2016, Part I, volume 9665 of Lecture Notes in Computer Sci-
ence, pages 263–293, Vienna, Austria, May 8–12, 2016. Springer,
Heidelberg, Germany.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for
database search. In Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing, STOC ’96, page 212–219, New
York, NY, USA, 1996. Association for Computing Machinery.

[IIMP19] Akiko Inoue, Tetsu Iwata, Kazuhiko Minematsu, and Bertram
Poettering. Cryptanalysis of OCB2: Attacks on authenticity and
confidentiality. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology – CRYPTO 2019, Part I, volume
11692 of Lecture Notes in Computer Science, pages 3–31, Santa

46

https://competitions.cr.yp.to/caesar.html
https://eprint.iacr.org/2015/999
https://eprint.iacr.org/2015/999

Bibliography

Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg,
Germany.

[IM19] Akiko Inoue and Kazuhiko Minematsu. Parallelizable authen-
ticated encryption with small state size. In Kenneth G. Pater-
son and Douglas Stebila, editors, SAC 2019: 26th Annual Interna-
tional Workshop on Selected Areas in Cryptography, volume 11959 of
Lecture Notes in Computer Science, pages 618–644, Waterloo, ON,
Canada, August 12–16, 2019. Springer, Heidelberg, Germany.

[JST21] Joseph Jaeger, Fang Song, and Stefano Tessaro. Quantum key-
length extension. In Kobbi Nissim and Brent Waters, editors,
TCC 2021: 19th Theory of Cryptography Conference, Part I, vol-
ume 13042 of Lecture Notes in Computer Science, pages 209–239,
Raleigh, NC, USA, November 8–11, 2021. Springer, Heidelberg,
Germany.

[KLLN16] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and Marı́a
Naya-Plasencia. Breaking symmetric cryptosystems using quan-
tum period finding. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology – CRYPTO 2016, Part II, volume
9815 of Lecture Notes in Computer Science, pages 207–237, Santa
Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg,
Germany.

[KM12] Hidenori Kuwakado and Masakatu Morii. Security on the
quantum-type even-mansour cipher. 2012 International Sympo-
sium on Information Theory and its Applications, pages 312–316,
2012.

[KR11] Ted Krovetz and Phillip Rogaway. The software performance of
authenticated-encryption modes. In Antoine Joux, editor, Fast
Software Encryption – FSE 2011, volume 6733 of Lecture Notes
in Computer Science, pages 306–327, Lyngby, Denmark, Febru-
ary 13–16, 2011. Springer, Heidelberg, Germany.

[LCP22] Xiangru Wang Lipeng Chang, Yuechuan Wei and Xiaozhong
Pan. Collision forgery attack on the aes-otr algorithm under
quantum computing. Symmetry, 2022. https://doi.org/10.

3390/sym14071434.

[Mar23] Varun Maram. Private communication, 2023.

[Min14] Kazuhiko Minematsu. Parallelizable rate-1 authenticated en-
cryption from pseudorandom functions. In Phong Q. Nguyen

47

https://doi.org/10.3390/sym14071434
https://doi.org/10.3390/sym14071434

Bibliography

and Elisabeth Oswald, editors, Advances in Cryptology – EU-
ROCRYPT 2014, volume 8441 of Lecture Notes in Computer Sci-
ence, pages 275–292, Copenhagen, Denmark, May 11–15, 2014.
Springer, Heidelberg, Germany.

[Min16] Kazuhiko Minematsu. Aes-otr v3.1. Third-Round Candi-
date Submission to CAESAR Competition, 2016. https://

competitions.cr.yp.to/round3/aesotrv31.pdf.

[MMPR22] Varun Maram, Daniel Masny, Sikhar Patranabis, and Srinivasan
Raghuraman. On the quantum security of OCB. Cryptology
ePrint Archive, Report 2022/699, 2022. https://eprint.iacr.

org/2022/699.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz.
OCB: A block-cipher mode of operation for efficient authenti-
cated encryption. In Michael K. Reiter and Pierangela Sama-
rati, editors, ACM CCS 2001: 8th Conference on Computer and
Communications Security, pages 196–205, Philadelphia, PA, USA,
November 5–8, 2001. ACM Press.

[Rog04] Phillip Rogaway. Efficient instantiations of tweakable blockci-
phers and refinements to modes OCB and PMAC. In Pil Joong
Lee, editor, Advances in Cryptology – ASIACRYPT 2004, volume
3329 of Lecture Notes in Computer Science, pages 16–31, Jeju Is-
land, Korea, December 5–9, 2004. Springer, Heidelberg, Ger-
many.

[Sho99] Peter W. Shor. Polynomial-time algorithms for prime factoriza-
tion and discrete logarithms on a quantum computer. SIAM
Review, 41(2):303–332, 1999.

[Sim97] Daniel R. Simon. On the power of quantum computation. SIAM
Journal on Computing, 26(5):1474–1483, 1997.

[TRK14] Himanshu Thapliyal, N. Ranganathan, and Saurabh Kotiyal. Re-
versible Logic Based Design and Test of Field Coupled Nanocomputing
Circuits, pages 133–172. 06 2014.

48

https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://eprint.iacr.org/2022/699
https://eprint.iacr.org/2022/699

	Contents
	Introduction
	Our Contributions

	Preliminaries
	Notation
	Quantum Algorithms
	Simon's Algorithm
	Deutsch's Algorithm

	Definitions

	Quantum Cracks in the AES-OTR Encryption Armor
	Specifications of AES-OTR
	Prior Quantum Attacks on AES-OTR
	Finding Collisions when Associated Data Processed in Parallel
	Finding Collisions when Associated Data Processed in Serial

	IND-qCPA Insecurity of AES-OTR with Parallel Associated Data Processing
	On the Necessity of the Assumption = n

	IND-qCPA Insecurity of AES-OTR with Serial Associated Data Processing
	On the Quantum Accessibility of the Function f2

	IND-qCPA Insecurity of AES-OTR when Nonces are Chosen Adaptively
	Refining the EUF-qCMA Attacks on AES-OTR
	AD Processed in Parallel
	AD Processed in Serial

	The Key (-Recovery) Issue of OPP
	Specifications of OPP
	Quantum Key-Recovery Attack on OPP
	Consequences
	Comparison with Quantum Key-Recovery Attack on MEM in C:KLLN16

	Bibliography

