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Abstract

Puncturable encryption (PE) provides security guarantees for selected
encrypted messages after secret key corruption, i.e. it provides forward
security. In this thesis, we analyse current data-structure-based PE
schemes. We extract relevant features and create a blueprint for new
data structures usable for PE. To possibly allow storage reduction we
introduce a new class of PE schemes which we call Dynamic Puncturable
Encryption (DPE) schemes. We present new construction ideas and pro-
vide a more in-depth analysis for new PE schemes based on DPE and
ratcheting. During the analysis of current approaches, we found re-
quirements such as a lower bound on the number of needed keys to
be able to achieve perfect correctness. Additionally, we proved that a
naı̈ve approach to PE achieves optimal storage bounds within O(n),
whereby n denotes the number of supported messages (tags), for its
class of PE schemes, and found that any scheme trying to achieve better
storage requirements compared to it needs to sacrifice some algorithm
efficiency or correctness.
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Chapter 1

Introduction

The concept of Puncturable Encryption (PE) was introduced by Green
and Miers in 2015 [10]. The basic idea of PE is to achieve encryption like in
any other common encryption scheme, but additionally it includes a punc-
turing algorithm which makes it possible to revoke decryption capabilities
of the key for selected messages the secret-key was punctured on. In the last
few years, a lot of research was done in the field related to puncturable en-
cryption, regarding possible applications of the concept as well as different
construction ideas. One of the main applications is to provide forward secu-
rity. The basic idea of forward secure encryption is to provide the guarantee
that a secret-key, which gets compromised by an adversary in the future, is
not able to decrypt messages encrypted in the past. The most trivial idea
to achieve forward security is to generate a new secret-key after a certain
predefined time elapsed. We call the time-space in which the secret-key
stays the same a window. Using this idea, a key that gets leaked now is only
able to decrypt all messages that were sent in the current window but can
not decrypt any messages sent in any timeslot before, therefore achieving
forward security. Using PE to achieve forward secrecy enables fine-grained
control over the decryption capabilities of the secret-key, up to the level of
revoking decryption capabilities on a per-message level.

One way of achieving fine-grained forward security using PE is to puncture
on ciphertexts. By puncturing on a ciphertext C, corresponding to the en-
cryption of a message M, one revokes the capability of the key to decrypt
C. This can be seen as puncturing the secret-key on the message M to pre-
vent its decryption. We will use the terms ´puncturing on a ciphertext´ and
´puncturing on a message´ interchangeably, whereby we mean the punc-
turing on a ciphertext notion for both. Another way to achieve fine-grained
forward security using PE is to puncture on tags associated to a message in-
stead of puncturing on individual ciphertexts. The concept then consists of
the idea that after puncturing a secret-key on a specific tag, no message as-
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1. Introduction

sociated with this tag can be decrypted with the punctured key. This allows
to remove the decryption capability for possibly multiple messages with one
puncture call. It is important to note that by using a per-message tag, this
concept is equivalent to puncturing on the messages themselves.

Recent research has shown a lot of different applications for Puncturable

Encryption both in a synchronous and asynchronous setting. From the idea
of providing general forward secrecy, PE can be used to achieve forward
security in asynchronous messaging systems. This was the main goal of
the research by Green and Miers [10]. They also suggested that the concept
can be used to securely delete files in cloud based storage, or by using the
idea of puncturing on tags instead of individual messages, one could revoke
decryption capabilities for all messages corresponding to a tag which could
correspond to a specific user or a certain topic.

Other ideas for applications of PE include the construction of forward-
secure 0-RTT key-exchange protocols [11, 12, 6, 1], protect against replay
attacks (as mentioned in [1]), construct backward-secure searchable encryp-
tion [14], achieve public-key watermarking schemes [4], ´forgetting´ data in
distributed systems [8], forward-secret proxy re-encryption [7], and making
IoT more secure by providing efficient forward secrecy for IoT devices [17].

A shortcoming of the PE schemes proposed thus far is that the secret-key
either grows with each puncture, or starts out very large. For construc-
tions based on perfect binary trees and Bloom filters it has been pointed out
that encryption/decryption can be rather inefficient. This thesis aims to im-
prove on the following aspects, required secret-key storage and algorithm
efficiency for encryption /decryption / puncturing, by exploring if data
structures could be used to store secret-key elements in ways that are both
storage efficient and allow for fast retrieval and deletion. One goal of this
thesis is to extract relevant features from the hitherto used data structures
to construct a blueprint which guides the search for new schemes. We try
to come up with new construction ideas which could beat a naı̈ve solution
in at least one aspect, i.e. storage requirements, speed, etc.

During the analysis of the data structures, we found requirements such
as needing at least one unique key for every supported tag to be able to
achieve perfect correctness or that it is only possible to achieve storage re-
duction through a hierarchical derivation of keys if we do not want to sac-
rifice perfect correctness. Additionally, we introduce a new family of punc-
turable encryption schemes, which we call Dynamic Puncturable Encryp-
tion schemes. Such schemes are able to extend the supported tag-space on
demand and could therefore support a potentially unbounded set of tags.
Finally, we present two new schemes, one based on ratcheting and a naı̈ve
dynamic PE construction. Both beat a naı̈ve solution regarding the needed
storage whilst still providing fast algorithms in most scenarios.
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Naturally, there are also ways of constructing PE which do not rely on data
structures. Examples include the use of puncturable pseudo-random func-
tions (PPRF) [1, 4], using distributed key-distribution and key encapsulation
techniques [13], using an adaptation of Fully-Key Homomorphic Encryp-
tion (FKHE), called Delegetable Fully-Key Homomorphic Encryption

(DFKHE) [15], and general constructions out of any public-key encryption
scheme [14]. In the following we focus on the constructions that make use of
explicit data structures, since our goal is to explore data structures to store
secret-key elements to achieve compact storage and efficient algorithms.
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Chapter 2

Preliminaries

Before we can start analysing current PE constructions, we need to define
some common notation and assumptions which will be used in the rest of
the thesis. The provided definitions for symmetric encryption and public-
key encryption, and their correctness and security, act as foundations for the
upcoming definitions of PE.

2.1 Abbreviations

PE Puncturable Encryption

SPE Symmetric Puncturable Encryption

PkPE Public-key Puncturable Encryption

FuPE Fully Puncturable Encryption

DPE Dynamic Puncturable Encryption

DSPE Dynamic Symmetric Puncturable Encryption

FS Forward Security/Forward-Secure

MSK Master Secret Key

HBE Hierarchy Based Encryption

BF Bloom Filter

BFE Bloom Filter Encryption

PBT Perfect Binary Tree

0-RTT Zero Round Trip Time

IoT Internet of Things

ind-cpa Indistinguishability under Chosen-Plaintext Attack
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2. Preliminaries

ind-cca Indistinguishability under Chosen-Ciphertext Attack

CPBTPE Chained Perfect Binary Tree Puncturable Encryption

DPBTPE Dynamic Perfect Binary Tree Puncturable Encryption

BFEPEPC
Bloom Filter Encryption based Puncturable Encryption
with Perfect Correctness

CBFEPE Chained Bloom Filter Encryption based Puncturable Encryption

PPRF Puncturable Pseudo-Random Function

FKHE Fully-Key Homomorphic Encryption

DFKHE Delegetable Fully-Key Homomorphic Encryption

SE Symmetric Encryption

PkE Public-key Encryption

2.2 Notation and Conventions

We shortly provide the relevant syntax we use in our definitions. Given a
deterministic algorithm A, we denote by b ← A(x) assigning the output
of A, on input x, to the variable b. Additionally, we use x ← y to denote
copying the value of a variable or set y to x. In contrast, if A is a probabilistic
algorithm, b←$ A(x) denotes the assignment of the output of A, on input x,
to the variable b. Similarly, if B is a set, we denote the picking of a random
sample out of the set B by b←$ B. Using |x|we denote the length of x. Is x an
array, then |x| corresponds to the number of entries. If x is a message, then
|x| is measured in bits and if x is a number, then |x| denotes the absolute
value of x.

By negl(λ) we describe a negligible function in the security parameter λ.
We use the following definition for negligible functions:

Definition 2.1 We call a function µ : N→ R negligible, if for every c ∈ N there
exists a natural number n0, such that for all x > n0 we have that |µ(x)| < 1

xc .

In this thesis, we will often use the term data structure for PE. By this, we
mean specifically ´a data structure holding the various secret-key (public-
key) components which make up the secret-key (public-key) of a PE scheme´.

2.2.1 Assumptions

For the theoretical construction of our schemes, we assume all the algo-
rithms to receive only tags in the supported tag-space. If this is not the case,
the encryption and decryption algorithms will fail and return ⊥, while the
puncturing algorithm just returns the unchanged secret key. We assume the
same to happen for any other kind of unexpected input.
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2.3. Symmetric Encryption

For all constructions we assume to use sequence numbers as tags, i.e. a tag-
space supporting n tags consist of the sequence numbers {0, 1, 2, . . . , n− 1}.

In this thesis we consider different classes of PE schemes:

• Non-hierarchical, perfectly correct PE schemes:

PE schemes based on non-hierarchical data structures achieving per-
fect correctness.

• Non-hierarchical, non-perfectly correct PE schemes:

PE schemes based on non-hierarchical data structures not achieving
perfect correctness.

• Hierarchical, perfectly correct PE schemes:

PE schemes based on hierarchical data structures achieving perfect
correctness.

• Hierarchical, non-perfectly correct PE schemes:

PE schemes based on hierarchical data structures not achieving perfect
correctness.

• Dynamic PE schemes:

PE schemes based on dynamic puncturable encryption as introduced
in chapter 7.

For the definition of perfect correctness we refer to chapter 3 and for the
definition of a hierarchical data structure in the context of PE we refer to
section 6.2.

2.3 Symmetric Encryption

The formal definition of a standard symmetric encryption scheme provides
the basis for the definitions of SPE schemes.

2.3.1 Syntax

Definition 2.2 A Symmetric Encryption (SE) scheme with message-spaceM,
secret-key-spaceK and ciphertext-space C, consists of a triple of algorithms (SE.KeyGen,
SE.Enc, SE.Dec) with the following syntax:

• SK←$ SE.KeyGen(λ): Given a security parameter λ the SE.KeyGen al-
gorithm outputs a secret-key SK ∈ K.

• C ← SE.Enc(SK, M): Given a secret-key SK ∈ K and a message M ∈ M,
SE.Enc outputs the encrypted message C ∈ C.

7



2. Preliminaries

• M ← SE.Dec(SK, C): Given a secret-key SK ∈ K and a ciphertext C ∈ C,
SE.Dec outputs the decrypted message M.

2.3.2 Correctness

Definition 2.3 We say a symmetric encryption scheme given by (SE.KeyGen,
SE.Enc, SE.Dec) is correct, if for all M ∈ M and for all SK←$ SE.KeyGen(λ)
we have that

Pr[M == SE.Dec(SK, SE.Enc(SK, M))] = 1

2.4 Public-key Encryption

Similar to symmetric encryption, we provide the definition of a standard
public-key encryption scheme as a basis for the definitions of a PkPE scheme.

2.4.1 Syntax

Definition 2.4 A Public-key Encryption (PkE) scheme with message-space
M, secret-key-space K1, public-key-space K2 and ciphertext-space C, consists of
a triple of algorithms (PkE.KeyGen, PkE.Enc, PkE.Dec) with the following syn-
tax:

• (PK, SK)←$ PkE.KeyGen(λ): Given a security parameter λ the PkE.KeyGen

algorithm outputs a public-key PK ∈ K2 and secret-key SK ∈ K1.

• C ← PkE.Enc(PK, M): Given a public-key PK ∈ K2 and a message M ∈
M, PkE.Enc outputs the encrypted message C ∈ C.

• M← PkE.Dec(SK, C): Given a secret-key SK ∈ K1 and a ciphertext C ∈ C,
PkE.Dec outputs the decrypted message M.

2.4.2 Correctness

Definition 2.5 We say a public-key encryption scheme given by (PkE.KeyGen,
PkE.Enc, PkE.Dec) is correct, if ∀ M ∈ M and ∀ (PK, SK)←$ PkE.KeyGen(λ)
we have that

Pr[M == PkE.Dec(SK, PkE.Enc(PK, M))] = 1

2.5 Security

To get a basis for the security definitions for PE schemes, we provide game-
based security notions for both indistinguishability under chosen-plaintext
attacks (ind-cpa) as well as indistinguishability under chosen-ciphertext at-
tacks (ind-cca) for SE schemes as well as PkE schemes.
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2.5. Security

We use the following definitions for games and the advantage of an adver-
sary playing a game.

Definition 2.6 We denote a game X using scheme Y by GX
Y (λ), where λ denotes

the security parameter. Further, we denote the fact that a game GX
Y (λ) produces an

output z by z⇐ GX
Y (λ).

Definition 2.7 AdvX
Y (A, λ) denotes the advantage an adversary A has when

playing a game X using scheme Y. We define it by

AdvX
Y (A, λ) = 2

∣∣∣∣Pr
[

True⇐= GX
Y (λ)

]
− 1

2

∣∣∣∣ .

Note that we scale the advantage by subtracting 1
2 . We do this because all

games we will define have binary outputs (either True or False). Therefore,
an adversary who randomly guesses the output value will achieve an ad-
vantage of 0. In addition, we multiply the scaled absolute value by 2 such
that the maximum advantage is 1.

2.5.1 Symmetric IND-CPA

The game begins by choosing a random bit b which later on decides which
message we are going to encrypt. In a next step we initialize the key by
running the SE.KeyGen algorithm on a security parameter λ. Now the ad-
versary takes over, which is modelled as a program A, taking no inputs, but
having access to the SE.Enc algorithm through a subroutine Challenge
which we call the Challenge Oracle. This subroutine takes as input two
messages M0 and M1 of same length, i.e. |M0| = |M1|, and returns a cipher-
text C. We require that both messages are elements of the messages-space
M. The game is formally described in figure 2.1.

The adversary A wins the game Gind-cpa
SE (λ) if the output b∗ matches the

randomly selected bit b. Using Definition 2.7 we arrive at

Advind-cpa
SE (A, λ) = 2

∣∣∣∣Pr
[

True⇐= Gind-cpa
SE (λ, n)

]
− 1

2

∣∣∣∣ .

We are now able to formally define ind-cpa security for a SE scheme as
follows:

Definition 2.8 We consider a symmetric encryption scheme ind-cpa secure, if
there exists a negligible function negl : N→ R such that

Advind-cpa
SE (A, λ) ≤ negl(λ).

9



2. Preliminaries

Game Gind-cpa
SE (λ)

1 b←$ {0, 1}
2 SK←$ SE.KeyGen(λ)

3 b∗←$AChallenge(·,·)()

4 Return b == b∗

Challenge(M0,M1):

5 C←$ SE.Enc(SK,Mb)

6 Return C

Figure 2.1: Game formalizing ind-cpa security of a SE scheme.

Game Gind-cca
SE (λ)

1 CT ← ∅

2 b←$ {0, 1}
3 SK←$ SE.KeyGen(λ)

4 b∗←$AChallenge(·,·)
Dec(·) ()

5 Return b == b∗

Challenge(M0,M1):

6 C←$ SE.Enc(SK,Mb)

7 CT ← CT ∪ {C}
8 Return C

Dec(C):

9 if C ∈ CT : Return ⊥
10 M← SE.Dec(SK, C)
11 Return M

Figure 2.2: Game formalizing ind-cca security of a SE scheme.

2.5.2 Symmetric IND-CCA

To arrive at chosen-ciphertext security (ind-cca) for SE we need to adapt the
game given in figure 2.1 to allow an adversary to decrypt chosen ciphertexts.
To include this functionality, we provide a new subroutine Dec, called the
Decryption Oracle. Using this new oracle, the adversary can decrypt any
ciphertext C, unless C corresponds to a message encrypted by the adversary
using the Challenge subroutine1. Otherwise, the game follows the same
principle as Gind-cpa

SE (λ, n). We call this game Gind-cca
SE (λ, n) and formally

define it in figure 2.2. Following definition 2.7 we define the advantage of
an adversary A playing Gind-cca

SE (λ) by

Advind-cca
SE (A, λ) = 2

∣∣∣∣Pr
[

True⇐= Gind-cca
SE (λ)

]
− 1

2

∣∣∣∣ .

This now allows us to formally define the ind-cca security as follows:

1This is to prevent the trivial attack of decrypting the ciphertext received by the Chal-
lenge subroutine to guess b with probability 1.
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2.5. Security

Game Gind-cpa
PkE (λ)

1 b←$ {0, 1}
2 (PK, SK)←$ PkE.KeyGen(λ)

3 b∗←$AChallenge(·,·)(PK)
4 Return b == b∗

Challenge(M0, M1):

5 C←$ PkE.Enc(PK, Mb)

6 Return C

Figure 2.3: Game formalizing ind-cpa security of a PkE scheme.

Definition 2.9 We say a Symmetric Puncturable Encryption scheme is ind-
cca secure, if there exists a negligible function negl : N→ R such that

Advind-cca
SE (A, λ) ≤ negl(λ).

2.5.3 Asymmetric IND-CPA

The game used for asymmetric ind-cpa security works as follows. First we
sample a random bit b which later on decides which message gets encrypted
in all subsequent calls of the Challenge subroutine. In a next step, we use
the game parameters λ, whereby λ is a security parameter, to generate the
public-key PK and the secret key SK. Now the adversary is run, having
access to the public-key as well as the challenge subroutine. The access to PK
allows an adversary to encrypt any message, therefore an encryption oracle
is not necessary in this game. The challenge subroutine works similarly as
the one in the symmetric game. The adversary submits two messages M0
and M1 from the message-space M of same length, i.e. |M0| = |M1|. The
subroutine returns the ciphertext C corresponding to the encryption of Mb.
In a last step, the adversary makes a guess b∗ of the randomly sampled bit
b. He wins if b == b∗ and looses otherwise. The game is formally described
in figure 2.3. We define the advantage of an adversary playing this game by

Advind-cpa
PkE (A, λ) = 2

∣∣∣∣Pr
[

True⇐= Gind-cpa
PkE (λ)

]
− 1

2

∣∣∣∣ .

and arrive at the following definition regarding ind-cpa security of a PkE
scheme:

Definition 2.10 We say a public-key encryption scheme is ind-cpa secure, if there
exists a negligible function negl : N→ R such that

Advind-cpa
PkE (A, λ) ≤ negl(λ).

11
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Game Gind-cca
PkE (λ)

1 b←$ {0, 1}
2 CT ← ∅

3 (PK, SK)←$ PkE.KeyGen(λ)

4 b∗←$AChallenge(·,·)
Dec(·) (PK)

5 Return b == b∗

Dec(C):

6 if C ∈ CT : Return ⊥
7 M← PkE.Dec(SK, C)
8 Return M

Challenge(M0, M1):

9 C←$ PkE.Enc(SK, Mb)

10 CT ← CT ∪ {C}
11 Return C

Figure 2.4: Game formalizing ind-cca security of a PkE scheme.

2.5.4 Asymmetric IND-CCA

In the same way we extended Gind-cpa
SE (λ) to Gind-cca

SE (λ) we will now extend
Gind-cpa

PkE (λ) to a new game called Gind-cca
PkE (λ). To arrive at this extension,

we need to add a new oracle Dec, called the Decryption Oracle. Using
this oracle, the adversary has access to the PkE.Dec algorithm. The game
follows the same structure as the ind-cpa game, but additionally we initialize
a control set CT at the start of the game. The new oracle, the adversary can
use, works as follows. On input a ciphertext C, it returns the message M
corresponding to the decryption of C given the current secret key, if C 6∈ CT .
The Challenge Oracle works in the same way it does in the ind-cpa game,
but additionally adds the outputted ciphertext C to the control set CT 2. At
the end, the adversary makes a guess b∗ to indicate which bit b we might
have used to encrypt the message(s) in the Challenge subroutine and wins
if b == b∗ (see figure 2.4). We define the advantage of an adversary playing
this game by

Advind-cca
PkE (A, λ) = 2

∣∣∣∣Pr
[

True⇐= Gind-cca
PkE (λ)

]
− 1

2

∣∣∣∣ ,

and arrive at the following definition regarding ind-cca security of a PkE
scheme:

Definition 2.11 We say a public-key encryption scheme is ind-cca secure, if there
exists a negligible function negl : N→ R such that

Advind-cca
PkE (A, λ) ≤ negl(λ).

2This prevents a trivial attack.
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Chapter 3

Puncturable Encryption

Based on the definitions of SE and PkE we are now able to formally define
symmetric PE (SPE) and public-key PE (PkPE). Our definitions are inspired
by the original definitions introduced by Green and Miers [10] and adapted
to the ideas given in the definitions from Sun et al. [13], to also allow punc-
turing on an unbounded number of tags. Further, we will only provide
the definitions for tag-based puncturable encryption. By using one tag for
one message only, the definitions will be equivalent to the puncturing on
a message approach, since by puncturing on the message specific tag we
revoke the decryption capability for only the corresponding message, there-
fore resulting in the same decryption capabilities as if we punctured on the
message itself.

3.1 Symmetric Puncturable Encryption

Definition 3.1 A tag-based Symmetric Puncturable Encryption (SPE) scheme
with tag-space T , message-spaceM, key-space K, and ciphertext-space C, consists
of a tuple of four algorithms (SPE.KeyGen, SPE.Enc, SPE.Dec, SPE.Punct) with
the following syntax:

• SK0←$ SPE.KeyGen(λ, n, params): Given a security parameter λ and a
maximum number of tags n, where n ∈ N ∪ {∞} and ´∞´ corresponds to
an unbounded number of tags, as well as an array params holding additional
parameters if needed, the SPE.KeyGen algorithm outputs an initial secret
key SK0 ∈ K.

• C←$ SPE.Enc(SKi, M, τ): On input a secret key SKi ∈ K, a message
M ∈ M and a tag τ ∈ T , the SPE.Enc algorithm outputs a ciphertext
C ∈ C ∪ {⊥}, where ⊥ indicates that the encryption failed.

• M ←SPE.Dec(SKi, C, τ): Given a secret-key SKi ∈ K, a ciphertext C ∈ C,
and a tag τ ∈ T , corresponding to C, the SPE.Dec algorithm outputs M ∈

13



3. Puncturable Encryption

{M} ∪ {⊥}, where ´⊥´ indicates that the decryption failed.

• SKi ←SPE.Punct(SKi−1, τ): Takes as input a secret-key SKi−1 ∈ K and a
tag τ ∈ T and outputs a (new1) secret-key SKi ∈ K.

Using our definition given above, we define perfect correctness of a SPE
scheme as follows:

Definition 3.2 We say that a tag-based Symmetric Puncturable Encryption

scheme given by (SPE.KeyGen, SPE.Enc, SPE.Dec, SPE.Punct) with tag-space
T , message-spaceM, key-space K, and ciphertext-space C achieves perfect correct-
ness, if ∀λ, ∀n ∈ N ∪ {∞}, and ∀τ ∈ T , SK0←$ SPE.KeyGen(λ, n, params),
and C←$ SPE.Enc(SKi, M, τ), where M ∈ M, C ∈ C, and i ∈ {0, . . . , n} we
have that

• Pr[M == SPE.Dec(SK0, SPE.Enc(SK0, M, τ), τ)] = 1

• For all sequences of SPE.Punct calls SKi ←SPE.Punct(SKi−1, τi), for i =
1 to n, we have that Pr[M == SPE.Dec(SKi, C, τ)] = 1, if τ 6∈ ⋃

i
τi.

Additionally, we define a less strict correctness notion which we call relaxed
correctness, allowing for a negligible correctness error.

Definition 3.3 We say that a tag-based Symmetric Puncturable Encryption

scheme given by (SPE.KeyGen, SPE.Enc, SPE.Dec, SPE.Punct) with tag-space
T , message-spaceM, key-space K, and ciphertext-space C achieves relaxed correct-
ness, if ∀λ, ∀n ∈ N ∪ {∞}, and ∀τ ∈ T , SK0←$ SPE.KeyGen(λ, n, params),
and C←$ SPE.Enc(SKi, M, τ), where M ∈ M, C ∈ C, and i ∈ {0, . . . , n}, there
exists a negligible function negl : N→ R such that

• Pr[M == SPE.Dec(SK0, SPE.Enc(SK0, M, τ), τ)] = 1

• For all sequences of SPE.Punct calls SKi ←SPE.Punct(SKi−1, τi), for i =
1 to n, we have that Pr[M == SPE.Dec(SKi, C, τ)] = 1− negl(λ), if τ 6∈⋃
i

τi, i.e. we allow for a negligible correctness error introduced by puncturing

calls2.

3.2 Public-key Puncturable Encryption

Definition 3.4 A public-key Puncturable Encryption (PkPE) scheme based
on tags with tag-space T , message-spaceM, secret-key-space K1, public-key-space
K2, and ciphertext-space C, consists of a tuple of four algorithms (PkPE.KeyGen,
PkPE.Enc, PkPE.Dec, PkPE.Punct) with the following syntax:

1On unexpected input, the unchanged secret-key gets returned.
2This means it is possible to not be able to decrypt messages associated to an unpunc-

tured tag τ.
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3.2. Public-key Puncturable Encryption

• (PK, SK0)←$ PkPE.KeyGen(λ, n, params): Given a security parameter λ
and a maximum number of tags n, where n ∈N∪{∞} and ´∞´ corresponds
to an unbounded number of tags as well as an array params holding addi-
tional parameters if needed, the PkPE.KeyGen algorithm outputs an initial
secret-key SK0 ∈ K1 and a public-key PK ∈ K2.

• C←$ PkPE.Enc(PK, M, τ): On input a public-key PK, a message M ∈ M
and a tag τ ∈ T , the PkPE.Enc algorithm outputs the ciphertext C ∈ C ∪
{⊥}, where ⊥ indicates that the encryption failed.

• M ←PkPE.Dec(SKi, C, τ): Given a secret-key SKi ∈ K1, a ciphertext C ∈
C, and a tag τ ∈ T , corresponding to C, the PkPE.Dec algorithm outputs
M ∈ {M} ∪ {⊥}, where ´⊥´ indicates that the decryption failed.

• SKi ←PkPE.Punct(SKi−1, τ): Takes as input a secret-key SKi−1 ∈ K1 and
a tag τ ∈ T and outputs a (new) secret-key SKi ∈ K1.

Next, we formally define perfect correctness of a PkPE scheme.

Definition 3.5 We say that a tag-based public-key Puncturable Encryption

scheme given by (PkPE.KeyGen, PkPE.Enc, PkPE.Dec, PkPE.Punct) with tag-
space T , message-spaceM, secret-key-spaceK1, public-key-spaceK2, and ciphertext-
space C achieves perfect correctness, if for all λ, ∀n ∈N∪ {∞}, and for all τ ∈ T ,
(PK, SK0)←$ PkPE.KeyGen(λ, n, params), and C←$ PkPE.Enc(PK, M, τ), where
M ∈ M and C ∈ C, we have that

• Pr[M ==PkPE.Dec(SK0, PkPE.Enc(PK, M, τ), τ)] = 1

• For all sequences of PkPE.Punct calls SKi ←PkPE.Punct(SKi−1, τi), for
i = 1 to n, we have that Pr[M == PkPE.Dec(SKi, C, τ)] = 1, if τ 6∈ ⋃

i
τi.

Additionally, we define relaxed correctness for a public-key PE scheme as
follows:

Definition 3.6 We say that a tag-based public-key Puncturable Encryption

scheme given by (PkPE.KeyGen, PkPE.Enc, PkPE.Dec, PkPE.Punct) with tag-
space T , message-spaceM, secret-key-spaceK1, public-key-spaceK2, and ciphertext-
space C achieves relaxed correctness, if for all λ, ∀n ∈N∪ {∞}, and for all τ ∈ T ,
(PK, SK0)←$ PkPE.KeyGen(λ, n, params), and C←$ PkPE.Enc(PK, M, τ), where
M ∈ M and C ∈ C, there exists a negligible function negl : N→ R such that

• Pr[M ==PkPE.Dec(SK0, PkPE.Enc(PK, M, τ), τ)] = 1

• For all sequences of PkPE.Punct calls SKi ←PkPE.Punct(SKi−1, τi), for
i = 1 to n, we have that Pr[M == PkPE.Dec(SKi, C, τ)] = 1− negl(λ),
if τ 6∈ ⋃

i
τi.
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3. Puncturable Encryption

3.3 Security

Based on the security definitions presented in 2.5 we provide game-based
security notions for ind-cpa and ind-cca security for both symmetric and
public-key puncturable encryption schemes. Since PE schemes have an ad-
ditional attribute, the number of supported tags n, we need to adapt our
game and advantage definitions as follows:

Definition 3.7 We denote a game X using scheme Y by GX
Y (λ, n), where λ denotes

the security parameter and n denotes the maximum number of tags. Further, we
denote the fact that a game GX

Y (λ, n) produces an output z by z⇐ GX
Y (λ, n).

Definition 3.8 AdvX
Y (A, λ, n) denotes the advantage an adversary A has when

playing a game X using scheme Y. We define it by

AdvX
Y (A, λ, n) = 2

∣∣∣∣Pr
[

True⇐= GX
Y (λ, n)

]
− 1

2

∣∣∣∣ .

3.3.1 Symmetric IND-CPA including FS

We need to adapt the game described in Figure 2.1 to also allow puncturing
and to give the adversary access to the punctured key at a certain time in
the game. We include these functionalities by defining three subroutines,
namely Punct, which we will call the Puncturing Oracle, Corr, which
we call the Corruption Oracle, and a Challenge subroutine, Challenge.
All three subroutines will be described in more detail in the following de-
scription of the game, which we will call Gfs-ind-cpa

SPE (λ, n). Our game follows
a similar construction idea to the one describe by Susilo et al. [15] and the
one by Sun et al. [13].

Analogously to the ind-cpa game, the game starts by choosing a random bit
b followed by running the SPE.KeyGen algorithm to initialize the key SK0.
Then the adversary A is run, having access to the Puncturing Oracle,
Punct, the Corruption Oracle, Corr, as well as the Challenge subrou-
tine. Using Punct the adversary can puncture the key on an arbitrary tag
τ ∈ T whereby the Puncturing Oracle keeps track of the number of punc-
turings performed as well as maintaining a list of tags, PT , on which the
key is already punctured on. We initialize PT ← ∅ at the start of the game.
At any point during the game, the adversary may decide to call Corr. The
game rejects corruption if the current secret-key is not punctured on all tags
used in calls of the Challenge subroutine before. Otherwise, it returns
the most recent punctured key SKi to the adversary and sets the control set
CS to the current PT set. Using the Challenge subroutine, the adversary
submits two messages M0, M1 ∈ M of same length and a target tag τ ∈ T .
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3.3. Security

Game Gfs-ind-cpa
SPE (λ, n)

1 b←$ {0, 1}
2 PT ← ∅; CS ← ∅; ChalT ← ∅

3 corrupted← False; i← 0

4 SK0←$ SPE.KeyGen(λ, n, params)

5 b∗←$APunct(·),Corr()
Challenge(·,·,·) ()

6 Return b == b∗

Challenge(M0, M1, τ):

7 if corrupted and (τ 6∈ CS): Return ⊥
8 ChalT ← ChalT ∪ {τ}
9 C←$ SPE.Enc(SKi, Mb, τ)

10 Return C

Punct(τ):

11 i← i + 1

12 SKi ← SPE.Punct(SKi−1, τ)

13 PT ← PT ∪ {τ}
14 Return

Corr():

15 if ChalT 6⊆ PT : Return ⊥
16 corrupted← True
17 CS ← PT
18 Return SKi //current key

Figure 3.1: Game formalizing fs-ind-cpa security of a SPE scheme.

If after calling the Corruption Oracle τ 6∈ CS the challenge gets rejected
directly 3. Otherwise, we encrypt message Mb, for the randomly sampled
bit b at the start of the game, under the tag τ and return the ciphertext to the
adversary. As a last step the adversary makes a guess b∗ to indicate which
message we might have chosen to encrypt during the challenge(s) and wins
if b == b∗. This game is formally described in figure 3.1. Using definition
3.8, we define the advantage an adversary has while playing this game as
follows:

Advfs-ind-cpa
SPE (A, λ, n) = 2

∣∣∣∣Pr
[

True⇐= Gfs-ind-cpa
SPE (λ, n)

]
− 1

2

∣∣∣∣ .

From it follows the definition of a fs-ind-cpa secure SPE scheme:

Definition 3.9 We consider a Symmetric Puncturable Encryption scheme
fs-ind-cpa secure, if there exists a negligible function negl : N→ R such that

Advfs-ind-cpa
SPE (A, λ, n) ≤ negl(λ).

At this point we want to mention that to be sure a message encrypted un-
der a tag τ cannot be decrypted by anyone in the future, both sides of the
communication need to puncture the secret-key on tag τ4.

3This prevents trivial attacks after an adversary has called the Corruption Oracle.
4This is the case since we use symmetric encryption, and therefore both sides of a com-

munication hold the same key. Note that this is true for all SPE schemes.
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3. Puncturable Encryption

Game Gfs-ind-cca
SPE (λ, n)

1 b←$ {0, 1}; ChalT ← ∅

2 PT ← ∅; CS ← ∅; CT ← ∅

3 corrupted← False; i← 0

4 SK0←$ SPE.KeyGen(λ, n, params)

5 b∗←$APunct(·),Corr()
Dec(·,·),Challenge(·,·,·)()

6 Return b == b∗

Dec(C, τ):

7 if C ∈ CT : Return ⊥
8 M← SPE.Dec(SKi, C, τ)

9 Return M

Challenge(M0, M1, τ):

10 if corrupted and (τ 6∈ CS): Return ⊥
11 ChalT ← ChalT ∪ {τ}
12 C←$ SPE.Enc(SKi, Mb, τ)

13 CT ← CT ∪ {C}
14 Return C

Punct(τ):

15 i← i + 1

16 SKi ← SPE.Punct(SKi−1, τ)

17 PT ← PT ∪ {τ}
18 Return

Corr():

19 if ChalT 6⊆ PT : Return: ⊥
20 corrupted← True
21 CS ← PT
22 Return SKi //current key

Figure 3.2: Game formalizing fs-ind-cca security of a SPE scheme.

3.3.2 Symmetric IND-CCA including FS

Using the same ideas we used to extended Gind-cpa
SE (λ) to Gind-cca

SE (λ), we
extend Gfs-ind-cpa

SPE (λ, n) to Gfs-ind-cca
SPE (λ, n) by adding the Decryption Oracle.

The game is given in figure 3.2.

We arrive at the following notion of the advantage an adversary has while
playing the game.

Advfs-ind-cca
SPE (A, λ, n) = 2

∣∣∣∣Pr
[

True⇐= Gfs-ind-cca
SPE (λ, n)

]
− 1

2

∣∣∣∣ .

From it follows the fs-ind-cca security of a SPE scheme.

Definition 3.10 We say a Symmetric Puncturable Encryption scheme is
fs-ind-cca secure, if there exists a negligible function negl : N→ R such that

Advfs-ind-cca
SPE (A, λ, n) ≤ negl(λ).
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3.3. Security

3.3.3 Asymmetric IND-CPA including FS

To extend Gind-cpa
PkE (λ) to include forward security, we need to provide the

adversary access to the PkPE.Punct algorithm as well as grant it access
to the current secret-key at some point in the game. We achieve this in
the same way we achieved it in the symmetric case by providing two new
oracles, namely the Puncture Oracle, Punct, as well as the Corruption

Oracle, Corr. We call this new game Gfs-ind-cpa
PkPE (λ, n) and parametrize it

by a security parameter λ and a maximum number of tags n.

The game again starts by sampling a random bit b to decide which mes-
sage(s) gets encrypted by the Challenge subroutine. We then initialize
some control variables such as the sets PT and CS , a boolean corrupted,
and a counter i. We then use the PkPE.KeyGen algorithm on the parameters
λ and n to generate the public-key as well as the initial secret-key. Then the
adversary is run, having access to the Challenge subroutine, the Puncture

Oracle, and the Corruption oracle. The Challenge subroutine works
in the same way as it does in the asymmetric ind-cpa game, but addition-
ally the challenge gets rejected after corruption if τ 6∈ CS . The Puncture

Oracle, on input a tag τ ∈ T increases the counter i and calculates the
new secret-key SKi using the PkPE.Punct algorithm on SKi−1 and τ. We
then add τ to the set of punctured tags PT and return. The Corruption

Oracle takes no inputs. The first time it gets called it sets the control vari-
able corrupted to true, copies the set of punctured tags PT to the control set
CS and returns the current secret-key SKi to the adversary. All subsequent
calls of this subroutine will return ⊥. At the end of the game, the adversary
makes a guess b∗ for the random bit b and wins if b == b∗. The game is
formally described in figure 3.3. We define the advantage of an adversary
playing this game by

Advfs-ind-cpa
PkPE (A, λ, n) = 2

∣∣∣∣Pr
[

True⇐= Gfs-ind-cpa
PkPE (λ, n)

]
− 1

2

∣∣∣∣ .

and arrive at the following definition regarding fs-ind-cpa security of a PkPE
scheme:

Definition 3.11 We say a public-key Puncturable Encryption scheme is
fs-ind-cpa secure, if there exists a negligible function negl : N→ R such that

Advfs-ind-cpa
PkPE (A, λ, n) ≤ negl(λ).

3.3.4 Asymmetric IND-CCA including FS

By providing a Corruption Oracle, Corr, and a Puncturing Oracle,
Punct, we extend the Gind-cca

PkE (λ) game to also include forward security to
arrive at a new game which we call Gfs-ind-cca

PkPE (λ, n). The game is formally
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3. Puncturable Encryption

Game Gfs-ind-cpa
PkPE (λ, n)

1 b←$ {0, 1}
2 PT ← ∅; CS ← ∅; ChalT ← ∅

3 corrupted← False; i← 0

4 (PK, SK0)←$ PkPE.KeyGen(λ, n, params)

5 b∗←$APunct(·),Corr()
Challenge(·,·,·) (PK)

6 Return b == b∗

Challenge(M0, M1, τ):

7 if corrupted and (τ 6∈ CS): Return ⊥
8 ChalT ← ChalT ∪ {τ}
9 C←$ PkPE.Enc(PK, Mb, τ)

10 Return C

Punct(τ):

11 i← i + 1

12 SKi ← PkPE.Punct(SKi−1, τ)

13 PT ← PT ∪ {τ}
14 Return

Corr():

15 if ChalT 6⊆ PT : Return ⊥
16 corrupted← True
17 CS ← PT
18 Return SKi //current key

Figure 3.3: Game formalizing fs-ind-cpa security of a PkPE scheme.

described in figure 3.4. We define the advantage of an adversary playing
this game by

Advfs-ind-cca
PkPE (A, λ, n) = 2

∣∣∣∣Pr
[

True⇐= Gfs-ind-cca
PkPE (λ, n)

]
− 1

2

∣∣∣∣
and arrive at the following definition regarding fs-ind-cca security of a PkPE
scheme:

Definition 3.12 We say a public-key Puncturable Encryption scheme is
fs-ind-cca secure, if there exists a negligible function negl : N→ R such that

Advfs-ind-cca
PkPE (A, λ, n) ≤ negl(λ).

3.4 Relevant features and special orderings

To be able to compare different PE schemes, we briefly state which features
we consider most relevant and introduce some special puncturing orders
which may occur in real world applications and for which certain schemes
may achieve benefits.

The goal of new PE schemes would then be to achieve a better performance
compared to a baseline achieved by a naı̈vely constructed PE scheme regard-
ing these features. A scheme performing especially well for a special order-
ing hints at possibly good performance for special applications. Performing
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Game Gfs-ind-cca
PkPE (λ, n)

1 b←$ {0, 1}; ChalT ← ∅

2 PT ← ∅; CS ← ∅; CT ← ∅

3 corrupted← False; i← 0

4 (PK, SK0)←$ PkPE.KeyGen(λ, n, params)

5 b∗←$APunct(·),Corr()
Dec(·,·),Challenge(·,·,·)(PK)

6 Return b == b∗

Dec(C, τ):

7 if C ∈ CT : Return ⊥
8 M← PkPE.Dec(SKi, C, τ)

9 Return M

Challenge(M0, M1, τ):

10 if corrupted and (τ 6∈ CS): Return ⊥
11 ChalT ← ChalT ∪ {τ}
12 C←$ PkPE.Enc(PK, Mb, τ)

13 CT ← CT ∪ {C}
14 Return C

Punct(τ):

15 i← i + 1

16 SKi ← PkPE.Punct(SKi−1, τ)

17 PT ← PT ∪ {τ}
18 Return

Corr():

19 if ChalT 6⊆ PT : Return ⊥
20 corrupted← True
21 CS ← PT
22 Return SKi //current key

Figure 3.4: Game formalizing fs-ind-cca security of a PkPE scheme.

well in regard to almost all features would result in a good candidate for
general applications using PE.

3.4.1 Features

Relevant features which make up the efficiency of a PE scheme are the fol-
lowing:

• Storage space:

How much space is needed to store the secret-key and how does it
change over time, i.e. growing, shrinking, remaining constant.

• Computation time:

We compare the speed of the involved algorithms, i.e. encryption, de-
cryption, puncturing and key extension for dynamic schemes (intro-
duced in chapter 7) where necessary.

21
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• Tag support:

Does the construction support a limited amount of tags, or can the
tag-space be unbounded.

• Correctness:

We differentiate between perfect and relaxed correctness. A scheme
with perfect correctness guarantees that decryption under a supported
but unpunctured tag is always possible, while in a scheme with relaxed
correctness it is possible for decryption to fail despite never puncturing
on the associated tag.

• Special case benefits:

We check if a construction performs especially well under a special
ordering of encryption and puncture calls.

3.4.2 In order puncturing

Definition 3.13 A sequence of puncture calls is called In Order if we puncture on
the tags in the exact same order in which we used them the first time for encryption.
This means if we puncture on a tag τi before we puncture on a tag τj we also used
τi to encrypt a message before we used τj. This must hold for all combinations of
tags τi and τj.

3.4.3 Puncturing before next encryption

Definition 3.14 If a sequence of puncture calls is in order and at any point in time
there is at most one tag τ which is used for encryption but not punctured, we call
the scenario ´puncturing before next encryption´.

3.4.4 Quasi-Perfect Ordering

We call a sequence of encryption, decryption, and puncture calls Quasi-
Perfect if the tags get punctured in order with respect to a window of size
w, whereby we allow for local reorderings inside the window. We mean by
this that the tags can be used and punctured in arbitrary order inside the
current window.

In figure 3.5 we illustrate what such a quasi-perfect order could look like.
Assume τ2 is the first non-punctured tag, i.e. we already punctured on τ0
and τ1. Using a window of size w = 5, encryption, decryption and punc-
turing is allowed for all tags inside the window (depicted by gray nodes).
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��ZZτ0 ��ZZτ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9

Figure 3.5: Illustration of quasi-perfect order with window size w = 5.

Once we puncture on τ2 the window advances to the first non-punctured
tag in the sequence (as illustrated in figure 3.6). Assume we puncture on τ5,
τ3, and τ2 in this order, the window will move forward once we punctured
on τ2 until it reaches τ4 since it is the first non-punctured tag.

��ZZτ0 ��ZZτ1 ��ZZτ2 ��ZZτ3 τ4 ��ZZτ5 τ6 τ7 τ8 τ9

Figure 3.6: Illustration of window movement in quasi-perfect order with window size w = 5.
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Chapter 4

The Näıve Solution

Before we start analysing hitherto used PE schemes and think about new
constructions, we present the naı̈ve way of constructing PE. This naı̈ve con-
struction gives us a baseline we try to beat with our new construction ideas.

To construct the naı̈ve scheme we use black-box encryption schemes, i.e. we
assume to have access to an encryption scheme and provide additional func-
tionality to turn it into a PE scheme. The use of such black-box encryption
schemes allows us to provide frameworks based on different data structures,
which then can be combined with an arbitrary encryption scheme to arrive
at a PE scheme. These frameworks then allow to adapt the scheme to indi-
vidual needs by choosing an appropriate black-box scheme. We can use this
idea not only for the naı̈ve solution but also for other constructions of PE
schemes.

4.1 Main construction idea

The main idea of the naı̈ve solution is to use one key per tag. Using this
simple idea one can implement PE rather easily but sacrifices efficiency in a
general setting. By using one key pair for each tag, we arrive at a public-key
PE scheme. We will now describe these schemes in more detail.

Initialization

The initialization for a scheme supporting n tags consists of generating one
key component for each tag and storing it at the corresponding position
inside a secret-key array.

Encryption and Decryption

Encryption (decryption) takes the secret-key array as input. To encrypt (de-
crypt) under a tag τ, the key component associated to τ is fetched from the
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array and used to encrypt (decrypt) the message.

In figure 4.1 we illustrate key component retrieval for encryption (decryp-
tion). Assuming we want to encrypt message M under the tag τ2, we fetch
the secret-key SK2 by accessing the secret-key array at the position indicated
by τ2.

0 1 2 . . .

τ0 τ1 τ2 . . .

SK0 SK1 SK2 . . .

Encrypt(M, τ2)

Figure 4.1: Illustration of key component retrieval in the näıve approach for tag τ2.

Puncturing

To puncture on a tag, we delete its corresponding secret-key component and
are therefore unable to decrypt any message encrypted under the punctured
tag. We illustrated the effect of puncturing on the underlying data structure
in figure 4.2.

0 1 2 . . .

τ0 τ1 τ2 . . .

SK0 ��
�HHHSK1 SK2 . . .

Figure 4.2: Example for puncturing on tag τ1 in the näıve approach.

4.2 Theoretical construction

We start by providing the theoretical construction of the naı̈ve PE scheme for
symmetric encryption. In the next section, we describe how the algorithms
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need to be extended to work in a public-key scenario.

4.2.1 Symmetric encryption

Key generation

Our key generation algorithm (in this case the initialization of the scheme) is
parametrized by the number of supported tags n and a security parameter λ.
It then performs the following steps. It initializes an array which will hold
the n precomputed key components. Then it uses the SE.KeyGen function
of our black-box encryption scheme to precompute the n key components
and stores them in the array. Note that now the mapping from sequence
number to key component is fixed and cannot change any more. Finally, we
return the array holding the n precomputed key components.

Algorithm 1 Key Generation for naı̈ve SPE
1: function KeyGen(λ, n, [])
2: SK ← Array of length n . Initialize array
3: for i from 0 to n− 1 do . Precompute key components
4: SK[i]←$ SE.KeyGen(λ)
5: end for
6: return SK
7: end function

Encryption

For encryption, we compute the number t, τ represents, and use the key
component at position t to encrypt the message. If we previously punctured
on τ the corresponding entry of the array will hold ⊥, and the encryption
will fail. The algorithm takes no additional arguments, i.e. params = ∅.

Algorithm 2 Encryption for for naı̈ve SPE
1: function Encrypt(SKi, M, τ)
2: t← getIndex(τ) . Compute index τ corresponds to
3: if SKi[t] == ⊥ then . Punctured on τ before
4: return ⊥
5: end if
6: C←$ SE.Enc(SKi[t], M) . Encrypt message
7: return C
8: end function
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Puncturing

Puncturing on a tag τ consists of replacing the entry corresponding to the
number τ represents by ⊥ and therefore effectively delete the secret-key
component associated to τ. At this point we want to mention again that to
be sure that a message encrypted using τ cannot be decrypted any more,
both sides of a communication need to puncture on τ.

Algorithm 3 Puncturing for naı̈ve SPE
1: function Puncture(SKi, τ)
2: t← getIndex(τ) . Compute index τ corresponds to
3: SKi[t]← ⊥ . Delete key component corresponding to τ
4: return SKi
5: end function

Decryption

The decryption algorithm works similarly to the encryption algorithm. We
access the key component at the position t, τ indicates, and use it to decrypt
our message. If we previously punctured on τ the entry storing the compo-
nent will hold ⊥. In this case, decryption will fail and the algorithm returns
⊥.

Algorithm 4 Decryption for naı̈ve SPE
1: function Decrypt(SKi, C, τ)
2: t← getIndex(τ) . Compute index τ corresponds to
3: if SKi[t] == ⊥ then . Punctured on τ before
4: return ⊥
5: end if
6: M← SE.Dec(SKi[t], C) . Decrypt message
7: return M
8: end function

4.2.2 Public-key encryption

Key generation

Instead of using a black-box symmetric encryption scheme, we use a black-
box public-key encryption scheme. On key generation, two key arrays get
initialized, one storing the secret-key components and the other storing the
public-key components respectively.
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Algorithm 5 Key Generation for naı̈ve PkPE
1: function KeyGen(λ, n, [])
2: SK ← Array of length n . Initialize SK array
3: PK ← Array of length n . Initialize PK array
4: for i from 0 to n− 1 do . Precompute key component pairs
5: (pk, sk)←$ PkPE.KeyGen(λ) . Generate key component pairs
6: PK[i]← pk
7: SK[i]← sk
8: end for
9: return (PK, SK)

10: end function

Encryption

Instead of using the secret-key component to encrypt the message, the public-
key component associate to the given tag is used in a public-key implemen-
tation1.

Algorithm 6 Encryption for naı̈ve PkPE
1: function Encrypt(PK, M, τ)
2: t← getIndex(τ) . Compute index τ corresponds to
3: C←$ PkPE.Enc(PK[t], M) . Encrypt message
4: return C
5: end function

Puncturing

As in the symmetric implementation, we delete the secret-key component
associated to the tag on a puncture call.

Algorithm 7 Puncturing for naı̈ve PkPE
1: function Puncture(SKi, τ)
2: t← getIndex(τ) . Compute index τ corresponds to
3: SKi[t]← ⊥ . Delete key component corresponding to τ
4: return SKi
5: end function

Decryption

Using the secret-key component indicated by the tag τ we decrypt an en-
crypted message if the key is not punctured on τ.

1Note that in the public-key scenario we do allow encryption on punctured tags. This has
the benefit of a consistent public-key, meaning we do not need to change it after initialization.
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Algorithm 8 Decryption for naı̈ve PkPE
1: function Decrypt(SKi, C, τ)
2: t← getIndex(τ) . Compute index τ corresponds to
3: if SKi[t] == ⊥ then . Punctured on τ before
4: return ⊥
5: end if
6: M← PkPE.Dec(SKi[t], C) . Decrypt message
7: return M
8: end function

4.3 Theoretical analysis

We first provide a short list of pros and cons of the construction before
providing a summary of the features achieved by the naı̈ve PE scheme in
figure 4.3, therefore creating a baseline for other constructions to beat.

The naı̈ve PE scheme achieves the following benefits:

• Fast encryption

• Fast decryption

• Fast puncturing

• Shrinking key size on puncturing:

Key size will be in Θ(u) where u denotes the number of unpunctured
tags.

• Achieves perfect correctness:

Because it uses one unique key component per tag.

Additionally, we get the following list of drawbacks:

• Key size is linear in the number of supported tags:

This is due to the one to one mapping of a key and a tag.

• No special order benefits

• No support for unbounded tag-space:

Since we need to fix the number of supported tags n on initialization,
we can only use n different tags. Therefore, an implementation sup-
porting n → ∞ is not possible since the KeyGen algorithm, called in
the initialization process, will not terminate for n = ∞.
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4.3.1 Feature summary

Variable Description
n Number of supported tags
u Number of unpunctured tags
t Runtime of black-box SE./PkPE.KeyGen() algorithm
e Runtime of black-box SE./PkPE.Enc() algorithm
d Runtime of black-box SE./PkPE.Dec() algorithm

Feature Naı̈ve SPE Naı̈ve PkPE
Secret-Key Storage
Initial Θ(n) Θ(n)
During use Θ(u) Θ(u)
Worst case Θ(n) Θ(n)
Best case Θ(u) Θ(u)
Computation time
KeyGen() O(nt) O(nt)
Encrypt() O(e) O(e)
Puncture() O(1) O(1)
Decrypt() O(d) O(d)
Tag support
Size of tag-space Bounded Bounded
Correctness
Achieves Perfect Perfect
Special case benefits
In order puncturing No benefits No benefits
Puncturing before next encryption No benefits No benefits
Quasi-perfect ordering No benefits No benefits

Figure 4.3: Baseline features achieved by the näıve construction.
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Chapter 5

Background and Related Work

In this thesis we try to improve the required secret-key storage and algo-
rithm efficiency of PE schemes. To achieve this goal, we explore different
hitherto used constructions and try to extract relevant features a data struc-
ture needs to provide to act as a basis of a PE scheme and try to answer
the question what a data structure needs to provide to allow compact stor-
age and what does it need to allow for fast retrieval and deletion of key
components.

Of specific interest to this is the construction by Derler et al. [6] who pro-
pose the use of Bloom filters to construct PE. Compared to prior construc-
tions they achieve shrinking secret-key size and constant size public keys.
By studying their scheme, we hope to be able to extract the properties of
a probabilistic data structure which can be used to decrease the storage
needed for the secret-key by compromising on perfect correctness.

A construction based on perfect binary trees [10, 1, 7] achieves small secret-
key storage by relying on a hierarchical derivation of individual key compo-
nents. By analysing this scheme, we hope to be able to extract the properties
of a ’hierarchical’ data structure which can be used to decrease the secret-key
storage but requires more time to derive the necessary key components.

5.1 PE based on Bloom Filter Encryption

Using Bloom filters to implement PE was originally proposed by Derler et
al. [6] and was also subject in more recent work [16, 3]. We use the original
construction as the main reference for the analysis.

A BFE-based PE scheme works in the following way. One decides on the
size of a Bloom filter, s, and a number of hash functions, k. Depending
on the number of supported tags, n, these choices affect the (possibly non-
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negligible) correctness error of the resulting scheme1. On initialization, one
key gets assigned to each Bloom filter entry. All these steps are performed
by the KeyGen algorithm of a BFE-based scheme.

To encrypt a message under a tag, one computes the hash values of the tag
using the k hash functions and then encrypts the message using the key
components associated to these entries in such a way that either one of the
key components could be used to decrypt the message. This functionality
makes up the Encrypt algorithm of the scheme.

Decryption of a ciphertext works by again calculating the hash values for
the involved tag and using the first key component found to decrypt the
message. This will be done using the Decrypt algorithm.

Puncturing on a tag τ works by deleting all key components associated to
the Bloom filter entries indicated by the k hash values of τ, making it im-
possible to decrypt any message encrypted using this tag. The functionality
is provided by the Puncture algorithm.

A BFE-based PE scheme provides efficient decryption and puncturing, has
a secret key that shrinks on puncture calls and provides a possible storage
reduction compared to the naı̈ve solution (later on we found out that this
assumption is not true).

We will now present the approach in more detail.

5.1.1 Construction

Initialization

To set up a BFE-based PE scheme, we first initialize an empty Bloom filter
of size s, where s denotes the number of different keys used, with corre-
sponding k hash functions h1, . . . , hk, where each hash function maps a tag τ
from the tag-space T to a number in {0, 1, . . . , s}, i.e. hi : T → {0, 1, . . . , s},
i = 1, . . . , k. The k hash functions get sampled uniformly at random from a
family of hash functions defined from the tag-space to the set {0, 1, . . . , s},
whereby we do not allow two hash functions to be the same. Note that de-
pending on how many hash functions are used and how many different key
components we provide, we get a trade-off between the storage size needed
and the probability that a collision occurs. Depending on the application,
one might find different values useful to guarantee an upper bound on the
collision probability for a certain number of tags we want to support. We
then associate one key component pair to each entry of the Bloom filter.
These associations will later on define which key components are used for
encryption and decryption of a message corresponding to a given tag. In-
stead of assigning a key component pair to each entry one could also just

1Since these parameters affect the false positive probability of the Bloom filter.
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assign one key component to one entry to arrive at a symmetric PE scheme.
In this description we consider a public-key implementation, but the high
level idea stays the same for a symmetric approach.

Encryption

To encrypt a message M under a tag τ we first compute the Bloom filter
entries corresponding to the tag using the k hash functions. We then en-
crypt the message using the k public-key components associated to the k
computed entries in such a way that we can decrypt the encrypted message
using an arbitrary one of the k secret-key components associated to τ. If one
of the entries is set to 1 we do not use this key component for encryption
(since it was deleted by a previous puncturing call, see Puncturing). Us-
ing ideas of Hierarchy Based Encryption (HBE) one can even achieve a
constant size public-key. For more details on this approach, we refer to the
original paper by Derler et al. [6].

In the simple example given in figure 5.1 τ corresponds to the BF entries
0, 2, and n. Therefore, the message M gets encrypted using the public-key
components PK0, PK2, and PKn and can later on be decrypted using any of
the secret-key components SK0, SK2, or SKn.

0 1 2 3 . . . n− 2 n− 1 n

0 0 0 0 . . . 0 0 0

PK0 PK1 PK2 PK3 . . . PKn−2 PKn−1 PKn

SK0 SK1 SK2 SK3 . . . SKn−2 SKn−1 SKn

Bloom Filter

PK/SK pair

τ

h1(
τ)

h2(τ)

h3 (τ)

Figure 5.1: Example of key component retrieval for BFE-based PE scheme using k = 3 hash
functions.
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Puncturing

The puncturing algorithm can be implemented rather easily since it just
removes all key component pairs associated to the Bloom filter entries of
the tag punctured on. In addition to the deletion, we set the corresponding
bits inside the Bloom filter to 1 to indicate that the corresponding secret-key
component was removed.

The simple example in figure 5.2 shows how puncturing on a tag τ works.
We set the Bloom filter entries 0, 2 and n, corresponding to τ, to 1 and delete
the secret-key component SK0, SK2 and SKn.

0 1 2 3 . . . n− 2 n− 1 n

1 0 1 0 . . . 0 0 1

PK0 PK1 PK2 PK3 . . . PKn−2 PKn−1 PKn

��
�HHHSK0 SK1 �

��HHHSK2 SK3 . . . SKn−2 SKn−1 ��
�HHHSKn

Bloom Filter

PK/SK pair

τ

h1(
τ)

h2(τ)

hk (τ)

Figure 5.2: Example of puncturing on a tag τ using a BFE-based PE with k = 3 hash functions.

Decryption

Decryption follows the same principle as the encryption described above.
Given a ciphertext C and a tag τ we compute the Bloom filter entries corre-
sponding to τ and use the secret-key component corresponding to the first
0 entry we find to decrypt C.

This procedure is illustrated in figure 5.3 below. Since the BF entry 0, cor-
responding to h1(τ), is 1, we cannot use SK0 to decrypt C. Therefore we
use SK2 to decrypt the message since it is the first 0 entry of our computed
hashes2.

2Note that decryption using SKn would also be possible. Which one of the possible
secret-keys gets used for decryption is highly dependent on the implementation of the
scheme.
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0 1 2 3 . . . n− 2 n− 1 n

1 0 0 0 . . . 0 0 0

PK0 PK1 PK2 PK3 . . . PKn−2 PKn−1 PKn

��
�H
HHSK0 SK1 SK2 SK3 . . . SKn−2 SKn−1 SKn

Bloom Filter

PK/SK pair

τ

h1(
τ)

h2(τ)

hk (τ)

Figure 5.3: Example for decryption on a tag τ using a BFE-based PE with k = 3 hash functions.

5.1.2 Theoretical analysis

Providing highly efficient decryption and puncturing (p.1, [6]) and a shrink-
ing key size are the main potential benefits behind the idea of a BFE-based
PE scheme. During our analysis, we found that, although providing a
shrinking secret-key, a BFE-based PE scheme cannot outperform the naı̈ve
solution regarding secret-key storage. We will now describe the reasons why
in a little more detail.

Storage problem

In figure 5.4 we illustrated the initial secret-key storage needs of a BFE-
based PE scheme usinge k = 5 hash functions, achieving an upper bound
on the false positive probability of the Bloom filter of p = 0.5, and the
naı̈ve solution. As we can see the naı̈ve solution requires less storage than
a BFE-based scheme for every tag-space size. The gap between the two
approaches increases, the smaller we choose p (as can be seen in A.1). To
help understand these results, we present the calculation on an example.

• The naı̈ve approach:

In the naı̈ve approach one needs to store one key component pair for
each supported tag. This means that the required storage is linear
in the number of supported tags n. Using 256-bit keys and a tag-
space T with |T | = 10000 we end up with a secret-key storage of
256b · 10000 = 2.56Mb.

• The BFE-based approach:
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Figure 5.4: Secret-key storage comparison of a BFE-based PE scheme achieving an upper bound
on the false positive probability of the Bloom filter of p = 0.5 using k = 5 hash functions and
the näıve solution. Both schemes are using 256-bit secret-keys.

The secret-key storage in a BFE-based approach depends on the num-
ber of keys needed to guarantee the upper bound p of the false positive
probability of the Bloom filter. After inserting e elements into a Bloom
filter of size s using k hash functions, the false positive probability is
given by

p =

(
1−

(
1− 1

s

)ek
)k

.

Using this equation we can derive the number of bits, s, a Bloom filter
must have, given a maximum false positive rate of p, the number of
inserted elements e and a number of hash functions k.

s = − 1
ke
√

1− k
√

p− 1

Since the false positive probability of the Bloom filter is maximized
after inserting all n elements, we calculate the following size s of the
Bloom filter to guarantee an upper bound of p = 0.5 on the false
positive probability using n = 10000 and k = 5:

s = − 1
5·10000
√

1− 5
√

0.5− 1
≈ 24457

We therefore end up with a secret-key storage, assuming 256-bit keys,
of 256b · 24457 ≈ 6.26Mb.

It is important to note that since we delete up to k key components on a
puncturing call in a BFE-based scheme, the needed storage decreases faster
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compared to the naı̈ve solution. But since for many applications the worst
case storage needs are an essential feature, we conclude that a BFE-based
scheme cannot outperform a naı̈ve solution in that regard.

Based on our description of a BFE-based PE scheme and taking the storage
analysis into account, we can extract the following features:

• Shrinking secret-key:

After puncturing on a tag, the secret-key can never increase but mostly
even shrinks.

• Constant size public-keys:

Using IBE, the construction described by Derler et al. [6] achieves con-
stant size public-keys3.

Additionally, we can extract the following list of drawbacks:

• Non-zero false positive probability:

Due to the nature of a Bloom filter it is possible to puncture on a tag τ
by calling the puncture algorithm on different tags τ′ 6= τ. This leads
to a possibly non-negligible correctness error.

• No perfect correctness

Because of the non-zero false positive probability caused by the pos-
sible collisions of tags, a BFE-based PE scheme is not able to achieve
perfect correctness.

• No gains from special orders:

Neither in order puncturing nor puncturing before next encryption
nor a quasi-perfect puncturing order changes the efficiency or needed
storage.

• Number of needed keys:

As shown, a BFE-based scheme requires a bigger initial key-storage
compared to the naı̈ve solution. Additionally, the secret-key size tends
to get large for small upper bounds on the false positive probability
(as shown in A.1).

• No support for unbounded tag-space:

Due to its design, it is not possible to define a BFE-based PE scheme
which supports an unbounded number of tags without getting a high
correctness error (tending to 1).

3Using IBE we can also achieve constant size public-keys in a naı̈ve construction.
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A complete summary of the features achieved by a BFE-based PE scheme
as well as comparison to the naı̈ve solution is presented in figure 5.5. We
can see that the naı̈ve solution outperforms a BFE-based scheme regard-
ing all features analysed. It is important to note that for certain choices of
p and k, it is theoretically possible to achieve a size s < n for the Bloom
filter, but this requires p to be unacceptably large (around 75%). Also we
want to mention that the authors presented an implementation achieving
constant size public-keys by making use of IBE in the original paper [6].
Using ´identities´ as tags, one can construct a naı̈ve PE scheme using IBE
which would achieve the same secret-key storage as the original naı̈ve so-
lution and would also have the benefit of constant-size public-keys. The
main functional difference to such a construction would be that a BFE-based
scheme is able to support arbitrary tags due to the use of hash functions.
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Feature summary and comparison to näıve approach

Variable Description
n Number of supported tags
u Number of unpunctured tags
t Runtime of black-box PkPE.KeyGen() algorithm
e Runtime of black-box PkPE.Enc() algorithm
d Runtime of black-box PkPE.Dec() algorithm
p Upper bound on the false positive probability of the Bloom filter
k Amount of hash functions used
h Time needed to compute one hash value
s Size of the Bloom filter: s = − 1

ke
√

1− k√p−1

Feature BFE-based PE Naı̈ve PkPE

Secret-Key Storage
Initial Θ(s) Θ(n)
During use O(s) Θ(u)
Worst case Θ(s) Θ(n)
Best case O(s) Θ(u)
Computation time
KeyGen() O(st) O(nt)
Encrypt() O(hke) O(e)
Puncture() O(hk) O(1)
Decrypt() O(hkd) O(d)
Tag support
Size of tag-space Bounded Bounded
Correctness
Achieves Non-negligible Perfect
Special case benefits
In order puncturing No benefits No benefits
Puncturing before next encryption No benefits No benefits
Quasi-perfect ordering No benefits No benefits

Figure 5.5: Features achieved by a BFE-based PE scheme compared to the näıve PkPE scheme.
For each feature the better performing scheme is marked green and the worse performing one is
marked red.
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5.2 Perfect Binary Tree PE

PBT-based PE was used in many different papers [10, 1, 7] which we use as
reference for the following analysis.

A PBT-based PE schemes stores the key components associated to the sup-
ported tags as leaves of a perfect binary tree. On initialization, one computes
a ´root key´ which functions as the root of the tree. Additionally, we need a
function f , which maps a tag to its corresponding leaf. To be able to derive
the leaves from the root key we also need two one-way functions fl and fr,
which given a key K from the key-space K calculate a new key K′ ∈ K,
whereby fl is used to compute the left child and fr is used to compute the
right child respectively.

Encryption (decryption) of a message under a tag τ works by first using f
to find the leaf associated to τ and then use the functions fl and fr to derive
its key component from the root key. We then can use it to encrypt (decrypt)
the message.

To puncture on a tag τ the leaf storing the key component associated to
τ and all nodes which could be used to derive the leaf, including the root
key, get deleted. To still be able to derive the key components associated to
unpunctured tags, all children of deleted non-leaf nodes get stored.

Such a PE scheme is able to reduce the needed storage space compare to
the naı̈ve approach by not needing to store all key components due to the
hierarchical derivation of the leaf nodes. Additionally, it can achieve good
performance for some special orderings of puncture calls.

We now present a more detailed description of the approach.

5.2.1 Construction

Initialization

To initialize a PBT-based PE scheme, one first needs to decide on how many
tags the scheme should support. We denote the number of supported tags by
n = 2a. In a next step, one calculates a Master secret-key MSK, which will be
the root of the tree. MSK is the initial secret-key generated by KeyGen(λ, n),
whereby λ defines the length of the key, i.e. 128 bit, 256 bit, etc. In addition,
we need to choose two one-way functions fl and fr, which given a key
K from the key space K calculate a new key K′ ∈ K, whereby fl is used
to compute the left child and fr is used to compute the right child of a
node respectively. The n different key components used for encryption and
decryption correspond to the keys inside the leaves of the tree. Additionally,
we define a function f , which given a tag assigns it to its corresponding leaf
node. Depending on the output of f , fl and fr are used to derive the secret-
key component.
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Encryption

To encrypt a message M ∈ M under a tag τ one first calculates the leaf
corresponding to τ using f . For a tree supporting n = 2a tags, the key can
be calculated from the MSK using O(a), a = log2(n), calls of the functions fl
and fr. Note that a is the worst case time needed to access a key component,
since after puncturing we will use intermediate nodes as starting points.
Using the derived key component, one can encrypt the message.

In figure 5.6 one can see a simple example on how we get an encryption key.
Let n = 4, assume the tag space T = {0, 1}2 be the set of all bit strings of
length two, and let f : {0, 1}2 → {0, 1}2 be the identity function. Given a
tag τ = 01 we use f to get the path through the tree, i.e. f (τ) = τ = 01.
We then use fl and fr to derive the intermediate nodes, whereby we use fl
if the current bit is 0 and fr if the current bit is 1. Once arrived at the leaf
node, we use its key component, in this case SK1, to encrypt the message.

For better understanding, we provide a pseudocode implementation of the
encryption algorithm (see 5.2.1).

MSK

L1 R1

SK0 SK1 SK2 SK3

f l(M
SK)

fr (L
1 )

Figure 5.6: Example for key component retrieval for a tag τ using PBT-based PE with n = 4.

Puncturing

Revoking decryption capabilities for all messages encrypted using a tag τ
consists of the following steps, the puncturing algorithm has to perform.
Most intuitively, we need to delete the secret-key component. To achieve
this, we do not only need to remove the leaf corresponding to the key com-
ponent, but also all nodes which could be used to derive the component.
This also includes the root of the tree. To still be able to access the other
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Algorithm 9 Encryption
1: function Encrypt(MSK, τ, M)
2: b1b2 ← f (τ) . get bit string corresponding to τ
3: if b1 == 0 then
4: SKb1 ← fl(MSK)
5: else . b1 == 1
6: SKb1 ← fr(MSK)
7: end if
8: if b2 == 0 then
9: SKτ ← fl(SKb1)

10: else . b2 == 1
11: SKτ ← fr(SKb1)
12: end if
13: C ← Enc(SKτ, M)
14: return C
15: end function

key component, not corresponding to τ, we need to store all children of the
nodes we deleted in the first step.

The simple example in figure 5.7 shows how an execution of the punctur-
ing algorithm on a tag τ affects the underlying tree structure. Assuming τ
corresponds to the secret-key component SK1. Therefore, by puncturing on
τ we need to delete all nodes which could be used to derive SK1 (deletion
indicated by crossing out the node). In this case these are the nodes MSK,
L1, and SK1. In addition, we now need to store the nodes SK0 and R1 (de-
picted in bold) to still be able to derive all other secret-key components. As a
result, the storage space needed to derive the secret-key components grows
after puncturing.

MSK

L1 R1

SK0 SK1 SK2 SK3

f l(M
SK)

fr (L
1 )

Figure 5.7: Example for puncturing on a tag τ using PBT-based PE with n = 4.
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Decryption

Decryption of a message M encrypted under a tag τ follows a similar pro-
cedure as encryption. If the key is not punctured on τ we can retrieve
the decryption key in the same way as we retrieved the encryption key for
encryption described in Figure 5.6. If we punctured on the tag, the key re-
trieval will fail, since all nodes, using which we could have determined the
key component, are deleted.

5.2.2 Theoretical analysis

Due to its hierarchical structure and the resulting need of storing interme-
diate nodes after puncture calls, a PBT-based PE scheme is able to achieve
storage benefits compared to the naı̈ve solution but is also sensitive to dif-
ferent puncturing orders. In the following, we describe how certain special
orders affect the resulting secret-key storage of the approach.

• In order puncturing:

Assuming the first tag corresponds to the leftmost (rightmost) and the
last tag to the rightmost (leftmost) leaf of the tree, we end up storing
at most log2(n) nodes in a scheme supporting n tags. The same can
be achieved if we puncture on the tags in reversed order (see A.2 for
intuition). For the same reason, we can achieve this storage bound in
a puncturing before next encryption ordering.

• Quasi-perfect ordering:

Assuming a window size of w, where w << n and n denotes the num-
ber of supported tags, i.e. the number of leaves the tree has. We now
look at the sub-tree T′ of our main tree, whereby T′ is the smallest tree
which includes all nodes in w as its leaves. To derive all nodes in T′ we
need a storage of at most O(w) since we could store each leaf node by
itself 4. Combining this observation with the upper bound achieved if
we puncture in order, one can see that we increase the needed storage
by O(w) at max in a quasi-perfect ordering. In conclusion, we can
bound the needed storage space by O(log2(n) + w).

• Worst-case:

We achieve the worst-case storage requirement by puncturing on every
second leaf in the tree. This results in needing to store the left n

2 leaves
of the tree.

We can extract the following features achieved by a PBT-based PE scheme:

4Note that this will never happen in a real implementation. Therefore O(w) gives an
upper bound for the needed storage.
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• Hierarchical structure:

Allows for storage reduction compared to the naı̈ve solution.

• Achieves perfect correctness:

Because the approach provides one unique key component for every
supported tag.

• Benefits from special orderings:

Special puncturing orders allow the approach to safe secret-key stor-
age compared to the naı̈ve solution.

Additionally, the approach has the following drawbacks:

• Hierarchical structure:

Leads to varying secret-key storage (can increase and decrease). Re-
sults in longer time needed to access a key, therefore affecting the
runtime of encryption, decryption and puncturing.

• No support for unbounded tag-space:

Since we need to define the number of supported tags, n, in the initial-
isation of a PBT based PE scheme to define the function f which maps
a tag to its corresponding key, an implementation with n → ∞ is not
possible.

A summary of all features and a comparison to the naı̈ve solution is pro-
vided in figure 5.8. The PBT-based scheme not only achieves benefits from
special puncturing orders which allows it to save on secret-key storage, but
also achieve a better worst case storage requirement compared to the naı̈ve
scheme. Due to the hierarchical way in which we derive the key compo-
nents associated to a tag, the efficiency of the encryption, decryption and
puncturing algorithm is reduced.

46



5.2. Perfect Binary Tree PE

Feature summary and comparison to näıve approach

Variable Description
n Number of supported tags
u Number of unpunctured tags
t Runtime of black-box SE.KeyGen() algorithm
e Runtime of black-box SE.Enc() algorithm
d Runtime of black-box SE.Dec() algorithm
w Window size for quasi-perfect ordering

Feature PBT-based PE Naı̈ve SPE

Secret-Key Storage
Initial O(1) Θ(n)
During use O( n

2 ) Θ(u)
Worst case Θ( n

2 ) Θ(n)
Best case Θ(log2(n)) Θ(u)
Computation time
KeyGen() O(t) O(nt)
Encrypt() O(e + log2(n)) O(e)
Puncture() O(log2(n)) O(1)
Decrypt() O(d + log2(n)) O(d)
Tag support
Size of tag-space Bounded Bounded
Correctness
Achieves Perfect Perfect
Special case benefits
In order puncturing Storage: O(log2(n)) No benefits
Puncturing before next encryption Storage: O(log2(n)) No benefits
Quasi-perfect ordering Storage: O(log2(n) + w) No benefits

Figure 5.8: Features achieved by a PBT-based PE scheme compared to the näıve SPE scheme.
For each feature the better performing scheme is marked green and the worse performing is
marked red.
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Chapter 6

Blueprint

From the hitherto proposed constructions (presented in chapter 5) we ob-
served that one can abstract a modal approach to building PE which makes
the data structure used to build the key explicit. To be more precise, the data
structure stores the various secret (public) key components which make up
the secret (public) key of the scheme, whereby each component of the se-
cret (public) key is a secret (public) key of an underlying encryption scheme
which is used in a black-box fashion. By defining how we can access indi-
vidual key components and remove them on puncture calls1, we provide a
framework based on a data structure which can be combined with differ-
ent encryption schemes to arrive at a PE scheme. Such combinations can
be used to adapt the used scheme even more to a specific application. For
instance, using the naı̈ve construction one can use a black-box encryption
scheme which provides fast encryption and decryption, therefore speeding
up the runtimes of the algorithms.

Part of the aim of this project was to construct a blueprint which could be
used to filter out good candidate data structures for novel constructions of
PE. However, during the analysis of different constructions, we discovered
that very little is needed from the data structure itself. It suffices that keys
can be stored and securely deleted. Instead, we found a requirement for a
scheme to be able to achieve perfect correctness. Namely, the scheme needs
to provide one unique key component for every supported tag (detailed ex-
planation in section 6.1). This new discovery led to a more in-depth analysis
of the key storage of PE schemes, and we found that regarding secret-key
storage, the naı̈ve solution is optimal for its class of perfectly correct, non-
hierarchical PE schemes. As a result, we concluded that a new scheme can
only achieve better storage requirements compared to the naı̈ve solution by
either not providing one unique key component for every supported tag,
i.e. sacrificing perfect correctness, or not store all key components at the

1Where we assume the deletion to be secure.
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same time, as in a PBT-based approach. We describe our findings in more
detail in section 6.2.

6.1 Perfect correctness requirement

Achieving perfect correctness can be a crucial requirement for certain appli-
cations. We found a requirement for data-structure-based PE schemes which
needs to be fulfilled for it to be able to achieve perfect correctness. Namely,
it needs to provide at least one unique key component for every supported
tag.

The intuition behind this requirement is as follows: To achieve perfect cor-
rectness a PE scheme must be able to decrypt any message encrypted under
an unpunctured tag τ. If we assume τ has no unique key component, it is
possible to puncture on τ by puncturing on all other tags τi which share a
key component with τ.

This means that for any PE scheme achieving perfect correctness the required-
secret key storage will be linear in the number of supported tags in the worst
case.

Theorem 6.1 A PE scheme using a tag-space T achieves perfect correctness if and
only if it provides at least one unique key component for every tag τ ∈ T .

Proof (⇐) Proof by contradiction:

Assume there exists a PE scheme using tag-space T and key-space K achiev-
ing perfect correctness but not providing at least one unique key component
for every tag τ ∈ T .

This means there exists a tag τ′ ∈ T such that τ′ has no unique key com-
ponent. As a result, there has to exist a set T̂ ⊆ T \ {τ′} such that the set
of key components K′ ⊆ K associated to τ′ is a subset of the set of key
components Ki associated to the tags τi ∈ T̂ , i.e. K′ ⊆ ⋃τi∈T̂ Ki.

By puncturing on all tags τi ∈ T̂ we delete all key components in the set⋃
τi∈T̂ Ki and since the set of key components associated to τ′ is a subset of

this set, i.e. K′ ⊆ ⋃τi∈T̂ Ki, all key components associated to τ′ get deleted,
resulting in a secret-key punctured on τ′ without ever puncturing on τ′.
This means the scheme does not achieve perfect correctness.

We therefore arrive at a contradiction which proves our statement.

(⇒) Proof by contradiction:

Assume there exists a PE scheme using tag-space T and key-space K pro-
viding at least one unique key component for every tag τ ∈ T but not
achieving perfect correctness.

50



6.2. Storage reduction requirement

From this follows that for all tags τi ∈ T the set of key components Ki ⊆
K associated to it contains at least one unique key component, i.e. ∀τi ∈
T , |Ki \

⋃
τj∈T \{τi}Kj| ≥ 1.

Since we assumed that the scheme does not achieve perfect correctness, there
exists a tag τ′ and a set T̂ ⊆ T \ {τ′} such that by puncturing on all tags
τi ∈ T̂ we also puncture on τ′. This means the set of key components K′
associated to τ′ has to be a subset of the union of the set of key components
associated to the tags τi ∈ T̂ , i.e. K′ ⊆ ⋃

τi∈T̂ Ki. And we therefore have
|K′ \⋃τj∈T̂ Kj| = 0.

We again arrived at a contradiction which proves our statement.

Since we have proven both directions, we can conclude that a PE scheme
using a tag-space T achieves perfect correctness if and only if it provides at
least one unique key component for every tag τ ∈ T . �

6.2 Storage reduction requirement

Efficiently reducing the required storage space of a PE scheme is one of the
main goals for new constructions. This makes it even more interesting that
we found a requirement necessary to achieve storage reduction compared
to the naı̈ve solution.

Theorem 6.2 A PE scheme based on data structures with perfect correctness, sup-
porting n tags can only achieve better key storage requirements compared to the
naı̈ve scheme for the same tag-space, if its underlying data structure is hierarchical.

Remark:

• In the context of PE we consider a data structure to be hierarchical
if it does not store all key components for all supported tags after
initialization. For instance, we consider the Bloom filter underlying
a BFE-based scheme to be non-hierarchical where in contrast the tree
underlying a PBT-based approach is considered to be hierarchical2.

Proof Proof by contradiction:

Assume we have a PE scheme which achieves perfect correctness and better
storage requirements compared to the naı̈ve approach, but its underlying
data structure is not hierarchical.

From theorem 6.1 it follows that such a scheme needs to provide at least n
unique key components. Since we assumed the scheme to be not hierarchical

2If the data structure stores some kind of seed values from which the key components
get derived we consider it hierarchical if it does not store all seed values for all supported
tags after initialization.
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it needs to store n unique key components which results in a required key
storage of at least n ∗ s bits, where s denotes the size of one key component,
i.e. the storage S for the secret-key in this scheme is S ≥ n ∗ s.

The naı̈ve approach supporting n tags stores exactly one key component for
each tag, therefore requiring N = n ∗ s bits to store the secret-key.

We can see that we arrive at a contradiction since we assumed S < N and
derived S ≥ n ∗ s = N.

Therefore, we conclude that our initial assumption is false, what proves our
statement. �

Remark:

• Dynamic PE schemes (introduced in chapter 7) can also reduce the
required storage space in certain scenarios, since they allow to extend
the supported tag-space if needed. Note however that at any point
in time a dynamic PE scheme, currently supporting ni tags, can only
achieve better storage requirements compared to the naı̈ve approach
supporting ni tags, if its underlying data structure is hierarchical as is
proven by this theorem.

Corollary 6.3 A PE scheme based on data structures with perfect correctness, sup-
porting n tags can only achieve better key storage requirements compared to the
naı̈ve scheme by trading algorithm efficiency for it, i.e. at least one of the algorithms
(encryption decryption or puncturing) will always be slower compared to the one of
the naı̈ve solution for some tags.

Proof Proof by contradiction:

We have a PE scheme which achieves perfect correctness, supports n tags
and achieves better key storage requirements then the naı̈ve solution. As-
sume the algorithms of this scheme, i.e. encryption, decryption and punctur-
ing, are always at least as efficient as the algorithms from the naı̈ve scheme.

Our scheme needs to be based on a hierarchical data structure (as shown
in theorem 6.2) and therefore there exist at least two tags τ1 and τ2 in the
supported tag-space T whose associated key components are not directly
stored inside the data structure but get derived from a shared ’seed value’3.
For instance, any two tags and the root-key in a PBT-based scheme. Let’s
consider the following three cases:

3If only one such tag τ exists, it would mean that we store a ’seed value’ from which we
can derive the key associated to τ with the property that the seed value requires less storage
than the computed key component. This would mean any message encrypted using τ is less
secure, since an adversary would only need to brute-force the smaller seed value instead of
the longer key component. For the same reason, the ’seed value’ must be shared by the two
tags.

52



6.2. Storage reduction requirement

• Encryption using τ1 or τ2:

To encrypt a message under either τ1 or τ2 forces the derivation of
the associated key component. This requires the application of some
function f on the stored ’seed value’ for at least one time. Assuming
the computation of f for a particular value needs z > 0 time we need
Θ(z + e) time to encrypt a message under the tag, whereby e denotes
the time needed to encrypt a message using the black-box encryption
scheme.

• Decryption using τ1 or τ2:

Similar to encryption, decryption requires the derivation of the asso-
ciated key component. Assuming the black-box decryption algorithm
has a runtime of d, we end up needing Θ(z + d) time to decrypt the
message.

• Puncturing on τ1 or τ2:

Puncturing on either one of the two tags requires the deletion of the
stored ’seed value’. Since we assumed our scheme to achieve perfect
correctness, we need to derive the key component associated to the
other tag prior to the deletion of the seed value. Therefore, puncturing
one of these two tags requires Θ(z) time.

We assumed encryption, decryption and puncturing to be at least as efficient
as the algorithms of the naı̈ve solution, i.e. run in Θ(e), Θ(d) and O(1)
respectively. We have shown that for some tags the algorithms need time
Θ(z + e), Θ(z + d), and Θ(z) and therefore arrive at a contradiction.

This means our initial assumption is wrong, what proves our statement. �

Corollary 6.4 Any non-hierarchical data-structure-based PE scheme achieving per-
fect correctness needs to store at least u unique key components during its use, if u
denotes the current number of unpunctured tags.

Proof This statement follows directly from theorem 6.1 and theorem 6.2. �

Corollary 6.5 Any non-hierarchical data-structure-based PE scheme achieving per-
fect correctness cannot beat the naı̈ve solution regarding key storage and algorithm
efficiency, i.e. the naı̈ve scheme is optimal for this class of PE schemes.

Proof We prove the statement directly:

The optimality of the secret-key storage follows directly from theorem 6.2
and corollary 6.4.

The runtime of both the encryption and decryption algorithm depends on
the black-box encryption scheme used. Assuming encrypting and decrypt-
ing take time e and d respectively, a successful encryption (decryption) needs
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at least e (d) time. We therefore arrive at a lower bound of Ω(e) and Ω(d)
for the runtime of the encryption and decryption algorithm, respectively.
An encryption (decryption) call for a punctured tag returns in constant time
in the naı̈ve scheme. In conclusion, we can see that the runtime of the en-
cryption and decryption algorithm in the naı̈ve approach are optimal.

Since puncturing is possible in constant time in the naı̈ve solution, it also
achieves an optimal runtime for the puncturing algorithm. �

6.3 Consequence for new constructions

Our discoveries showed that new constructions need to provide at least one
unique key component for every supported tag to achieve perfect correct-
ness. Hence, to be able to achieve better storage bounds for the secret-key
than linear in the number of supported tags a novel construction needs to
be hierarchical, and therefore sacrifice algorithm efficiency, or give up on
perfect correctness.

The search for novel construction therefore becomes the quest of finding
a good trade-off between algorithm efficiency, required secret-key storage
space and correctness. How good such a trade-off is will depend a lot on
the application. For instance, we may not care about a small correctness
error if we instead can achieve highly efficient algorithms and small storage
requirements.

We now explore the secret-key storage, algorithm efficiency trade-off by con-
sidering ways in which a PE scheme can support unlimited tags (messages)
while still having bounded key storage.
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Chapter 7

Dynamic Puncturable Encryption

As shown in corollary 6.3 a PE scheme can only achieve better key storage
requirements compared to the naı̈ve solution if it trades some algorithm
efficiency for it. This in addition to the optimality of the naı̈ve solution for
its class of PE schemes (as shown in corollary 6.5) means the search for new
data structures suitable for PE construction becomes the quest of finding
the optimal trade-off between storage reduction, algorithm efficiency and
correctness.

To help us find data structures which achieve good trade-offs, we introduce a
new class of PE schemes which we call Dynamic Puncturabel Encryption

(DPE) schemes. The main idea behind DPE schemes is to initially only
support a small part of the entire tag-space and extend it, and therefore the
secret-key, once we used up all tags and require new ones. This allows us to
save storage space while still providing rather efficient algorithms.

7.1 Syntax, correctness and security

To introduce this functionality, we extend the definition of a PE scheme with
a new algorithm called KeyExt, the key extension algorithm. We arrive at
the following definition:

Definition 7.1 A tag-based Dynamic Symmetric Puncturable Encryption

(DSPE) scheme with tag-space T , message-spaceM, key-space K, and ciphertext-
space C, consists of a tuple of five algorithms (DSPE.KeyGen, DSPE.Enc, DSPE.Dec,
DSPE.Punct, DSPE.KeyExt) with the following syntax:

• SK0←$ DSPE.KeyGen(λ, n, params): Given a security parameter λ and an
initial number of tags n, where n ∈ N ∪ {∞} and ´∞´ corresponds to an
unbounded number of tags as well as an array params holding additional
parameters if needed, outputs an initial secret-key SK0 ∈ K.
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7. Dynamic Puncturable Encryption

• C←$ DSPE.Enc(SKi, M, τ): On input a secret-key SKi ∈ K, a message
M ∈ M and a tag τ ∈ T , outputs a ciphertext C ∈ C ∪ {⊥}, where ⊥
indicates that the encryption failed.

• M ←DSPE.Dec(SKi, C, τ): Given a secret-key SKi ∈ K, a ciphertext C ∈
C, and a tag τ ∈ T , corresponding to C, outputs M ∈ {M} ∪ {⊥}, where
´⊥´ indicates that the decryption failed.

• SKi ←DSPE.Punct(SKi−1, τ): Takes as input a secret-key SKi−1 ∈ K and
a tag τ ∈ T and outputs a (new) secret-key SKi ∈ K.

• SKi ←DSPE.KeyExt(SKi, params): On input a secret-key SKi and an array
of potentially needed additional arguments, outputs a extended version of the
secret-key SKi.

Note that not all DSPE schemes need an explicit key extension algorithm.
Schemes based on hierarchical data structures can implement the key ex-
tension implicitly in the encryption, decryption and puncturing algorithms,
therefore not needing a key extension algorithm.

Using our definition given above, we define perfect correctness of a DSPE
scheme as follows:

Definition 7.2 A tag-based DSPE scheme given by (DSPE.KeyGen, DSPE.Enc,
DSPE.Dec, DSPE.Punct, DSPE.KeyExt) with tag-space T , message-space M,
key-space K, and ciphertext-space C achieves perfect correctness, if for all λ, for
all n ∈ N ∪ {∞}, and for all τ ∈ T , SK0←$ DSPE.KeyGen(λ, n, params) and
C←$ DSPE.Enc(SKi, M, τ), where M ∈ M, C ∈ C, and i ∈ {0, . . . , n} we have
that:

• ∃ a finite sequence of key extensions calls, SK0 ←DSPE.KeyExt(SK0, params),
such that Pr[M ==DSPE.Dec(SK0,DSPE.Enc(SK0, M, τ), τ)] = 1.

• ∃ a finite sequence of key extensions calls, SKi ←DSPE.KeyExt(SKi, params),
such that ∀ sequences of DSPE.Punc calls SKi ←DSPE.Punct(SKi−1, τi),
for i = 1 to n, we have that Pr[M ==DSPE.Dec(SKi, C, τ)] = 1, if
τ 6∈ ⋃

i
τi.

Remark:

• Note that the index i of the secret-key SKi denotes the number of punc-
turings performed. We do not increment i on an extension call.

Additionally, we define a relaxed correctness notion which we call relaxed
correctness that allows for a negligible correctness error as follows:

Definition 7.3 A tag-based DSPE scheme given by (DSPE.KeyGen, DSPE.Enc,
DSPE.Dec, DSPE.Punct, DSPE.KeyExt) with tag-space T , message-space M,
key-space K, and ciphertext-space C achieves relaxed correctness, if for all λ, for
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Game Gfs-ind-cpa
DSPE (λ, n)

1 b←$ {0, 1}
2 PT ← ∅; CS ← ∅; ChalT ← ∅

3 corrupted← False; i← 0

4 SK0←$ DSPE.KeyGen(λ, n, params)

5 b∗←$APunct(·),Extension(·)
Corr(),Challenge(·,·,·)()

6 Return b == b∗

Challenge(M0, M1, τ):

7 if corrupted and (τ 6∈ CS): Return ⊥
8 ChalT ← ChalT ∪ {τ}
9 C←$ DSPE.Enc(SKi, Mb, τ)

10 Return C

Punct(τ):

11 i← i + 1

12 SKi ← DSPE.Punct(SKi−1, τ)

13 PT ← PT ∪ {τ}
14 Return

Corr():

15 if ChalT 6⊆ PT : Return ⊥
16 corrupted← True
17 CS ← PT
18 Return SKi //current key

Extension(params):

19 SKi ←DSPE.KeyExt(SKi, params)
20 Return SKi

Figure 7.1: Game formalizing fs-ind-cpa security of a DSPE scheme.

all n ∈ N ∪ {∞}, and for all τ ∈ T , SK0←$ DSPE.KeyGen(λ, n, params), and
C←$ DSPE.Enc(SKi, M, τ), where M ∈ M, C ∈ C, and i ∈ {0, . . . , n}, there
exists a negligible function negl : N→ R such that:

• ∃ a finite sequence of key extensions calls, SK0 ←DSPE.KeyExt(SK0, params),
such that Pr[M ==DSPE.Dec(SK0,DSPE.Enc(SK0, M, τ), τ)] = 1.

• ∃ a finite sequence of key extensions calls, SKi ←DSPE.KeyExt(SKi, params),
such that for all sequences of DSPE.Punct calls SKi ←DSPE.Punct(SKi−1, τi),
for i = 1 to n, we have that Pr[M ==DSPE.Dec(SKi, C, τ)] = 1 −
negl(λ), if τ 6∈ ⋃

i
τi, i.e. we allow for a negligible correctness error intro-

duced by puncturing calls.

To define fs-ind-cpa the security of a DSPE scheme, we extend the game
from figure 3.1 to also allow for key extension using the key extension algo-
rithm. We present the new game in figure 7.1. Again using definition 2.7 we
define the advantage an adversary has while playing this game as follows:

Advfs-ind-cpa
DSPE (A, λ, n) = 2

∣∣∣∣Pr
[

True⇐= Gfs-ind-cpa
DSPE (λ, n)

]
− 1

2

∣∣∣∣ .

Using it we arrive at the following definition for a fs-ind-cpa secure DSPE
scheme:
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Game Gfs-ind-cca
DSPE (λ, n)

1 b←$ {0, 1}; ChalT ← ∅

2 PT ← ∅; CS ← ∅; CT ← ∅

3 corrupted← False; i← 0

4 SK0←$ DSPE.KeyGen(λ, n, params)

5 b∗←$APunct(·),Corr(),Extension(·)
Dec(·,·),Challenge(·,·,·) ()

6 Return b == b∗

Dec(C, τ):

7 if C ∈ CT : Return ⊥
8 M← DSPE.Dec(SKi, C, τ)

9 Return M

Challenge(M0, M1, τ):

10 if corrupted and (τ 6∈ CS): Return ⊥
11 ChalT ← ChalT ∪ {τ}
12 C←$ DSPE.Enc(SKi, Mb, τ)

13 CT ← CT ∪ {C}
14 Return C

Punct(τ):

15 i← i + 1

16 SKi ← DSPE.Punct(SKi−1, τ)

17 PT ← PT ∪ {τ}
18 Return

Corr():

19 if ChalT 6⊆ PT : Return: ⊥
20 corrupted← True
21 CS ← PT
22 Return SKi //current key

Extension(params):

23 SKi ←DSPE.KeyExt(SKi, params)
24 Return SKi

Figure 7.2: Game formalizing fs-ind-cca security of a DSPE scheme.

Definition 7.4 We consider a Dynamic Symmetric Puncturable Encryp-
tion scheme fs-ind-cpa secure, if there exists a negligible function negl : N→ R

such that
Advfs-ind-cpa

DSPE (A, λ, n) ≤ negl(λ).

By extending the game from figure 3.2 to allow for key extension, we arrive
at a game formalizing fs-ind-cca security for a DSPE scheme. The new game
is depicted in figure 7.2. We arrive at the follwing notions for the advantage
of an adversary has while playing the game.

Advfs-ind-cca
DSPE (A, λ, n) = 2

∣∣∣∣Pr
[

True⇐= Gfs-ind-cca
DSPE (λ, n)

]
− 1

2

∣∣∣∣ .

From it follows the fs-ind-cca security of a DSPE scheme.

Definition 7.5 We say a DSPE scheme is fs-ind-cca secure, if there exists a neg-
ligible function negl : N→ R such that

Advfs-ind-cca
DSPE (A, λ, n) ≤ negl(λ).
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7.2 Problems of DPE

One of the main challenges in constructing a DPE scheme is the question
of how to maintain the same state on both sides of a communication. We
illustrate the problem on a small example.

Alice and Bob communicate using a DSPE scheme. If Alice runs out of tags,
she uses the key extension algorithm of the scheme to extend the tag-space.
Assume she now sends two messages M1 and M2 under different, new tags
τ1 and τ2 after she extended the tag-space. The message corresponding to τ1
gets lost. Bob now receives a cyphertext associated to τ2. How does Bob now
know in which way he needs to extend the tag-space to derive the correct
key component for τ2? I.e. how does Bob know that the new key component
he derived is the one Alice used for τ2 and not the one for τ1?

A similar problem arises when messages arrive out of order, and it is not
easy to solve if one assumes we use arbitrary strings as tags.

Our solution to the problem is to only use DPE schemes whose tag-spaces
consist of sequence numbers. This way, in a DSPE scheme, we can use
deterministic algorithms on both sides of the communication which then
assign a newly derived key component to its tag1. Additionally, if messages
get lost or arrive out of order we can deduce how many intermediate keys
we need to derive. For example, if the current tag-space supports sequence
numbers {0, . . . , 100} and we receive a message associated to the tag 105,
we can derive the keys associated to the tags 101, 102, 103, 104 and 105 in
the correct order. Note that by extending the secret-key with many new
components at once could mitigate the problem of messages arriving out of
order, but i does not solve the problem of an adversary blocking all messages
associated to tags from a first extension and only letting through messages
associated to tag from a second extension.

7.2.1 Unsuitability for PkPE

Recall that the main idea behind dynamic PE schemes is to extend the secret-
key once we need to support more tags. By making the key extension al-
gorithm deterministic, such an extension can be performed by both parties
in a symmetric encryption scenario. This means that once the encrypting
party detects that it has run out of tags, it can extend the secret-key by itself,
encrypts the message using the newly derived secret-key and sends it to the
decrypting party which then detects that it needs to extend the secret-key
as well. Since both parties use the same deterministic extension algorithm,
they derive the same key components.

1One could think of a random number generator initialized with the same seed on both
sides of the communication. The first random number will then be assigned to the first tag
and so on.
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While this works for symmetric encryption, it cannot be applied to public-
key encryption. An encrypting party, detecting that the public-key needs
to be extended, cannot derive the new public-key by itself. Instead, it has
to message the decrypting party that an extension is required. It can then
extend the key and update its secret-key and the public-key accordingly.
This introduces problems, such as large overheads for encryption once key
extension is required. An adversary could repeatedly send extension re-
quests to keep the decrypting party busy computing new key components,
the message asking for key extension could be lost, corrupted or possibly
blocked by an adversary. In addition to all of that, it is difficult for the
decrypting party to monitor the public-key and detecting itself that exten-
sion is required. Since the public-key remains unchanged after a puncturing
call, the only way for the decrypting party to check if key extension is re-
quired, is to rely on the tags received with encrypted messages. Assuming
we use sequence numbers as tags, the decrypting party could store the high-
est sequence number received and depending on it, extend the public and
secret-key before we would run out. This then forces us with the problem of
the timing of such an extension, meaning how many tags can be used before
we extend the key. Let tl denote the number of unused tags when we call
the key extension. If one, or multiple, encrypting parties try to send m > tl
messages with different unused tags in a short amount of time, m − tl of
them can not be encrypted because there does not exist a key component
for their corresponding tags.

All this points led us to the decision that DPE is not well suited for public-
key cryptography, and we therefore decided to restrict our analysis to DSPE
schemes only.
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Chapter 8

New Construction Ideas

Using our new insights on requirements presented in chapter 6, we present
new ideas on how to construct PE schemes. For each proposal, we de-
scribe the high-level idea, list potential benefits over the naı̈ve solution, and
point out possible drawbacks of each approach. To conclude the chapter, we
present a list of (classes of) data structures which we classified as unsuited
for PE schemes and briefly describe the reasons for it this decision.

8.1 Puncturable Encryption based on Ratcheting

This scheme is based on the ratcheting technique used to achieve forward
secrecy in the Signal messaging protocol. We base our observation on the
formal security analysis done by Cohn-Gordon et al. [5]. The scheme falls
in the class of perfectly correct, hierarchical PE schemes.

To achieve forward secrecy, the high level idea behind the ratcheting mech-
anism is to use one key component for each tag. Although this sounds like
the idea used in the naı̈ve solution, the main difference lies in the way we
get the key components, i.e. in context of PE a ratcheting-based PE scheme
is hierarchical. The ratcheting mechanism uses a so-called Ratchet Key and
two one-way functions fmk and frk. The key generation algorithm generates
an initial ratchet key RK0. From this, a message key can be derived using
fmk, the message key function. On input a ratchet key RKi, fmk outputs a
message key MKi which is used as the secret-key for encrypting a message.

The message keys are single-tag in the sense that they are used to encrypt a
message only under a specific tag, namely the message key MKi is used to
encrypt the messages associated to the tag τi = i (recall that we assume to
be using sequence numbers as tags as described in section 2.2.1). To allow
encryption under more than a single tag, there is also a ratchet key function
frk, which on input a ratchet key RKi outputs the next ratchet key RKi+1.
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8. New Construction Ideas

To puncture on a tag τ = i the ratchet key RKi+1 needs to be derived and
the old ratchet key gets securely deleted. This forces the derivation of all
message keys MKj with j < i to still achieve perfect correctness and guar-
antees that MKi cannot be derived any more. If the currently stored ratchet
key is RKl with l > i no new ratchet key needs to be derived and the stored
message key MKi gets securely deleted.

Due to its hierarchical nature, it is possible to achieve key storage reduction
compared to the naı̈ve solution using this approach. A PE scheme based on
ratcheting could, especially for certain special puncturing orders, achieve far
better storage requirements while still providing reasonably fast algorithms.

Figure 8.1 shows how the underlying data structure for the ratchet mecha-
nism could look like if we used four different tags τ0, . . . , τ3 and punctured
on τ0 and τ3. One can see that after puncturing we are left with storing
MK1, MK2, and the current ratchet key RK4.

��
�H
HHRK0 ��

�H
HHRK1 ��

�H
HHRK2 ��

�H
HHRK3 RK4

���
��XXXXXMK0, τ0 MK1, τ1 MK2, τ2 ���

��XXXXXMK3, τ3

frk(RK0) frk(RK1) frk(RK2) frk(RK3)

fmk(RK0) fmk(RK1) fmk(RK2) fmk(RK3)

Figure 8.1: Illustration of the underlying data structure of a PE scheme based on ratcheting in
a state where we punctured on tag τ0 and τ3. Shown are all parts which have been part of the
scheme up until this state and how they got derived (using fmk and frk). All crossed-out boxes
indicate that the corresponding elements got deleted and are not part of the data structure any
more due to puncturing calls.

8.2 Chained Perfect Binary Tree Puncturable Encryp-
tion

By using a ratchet key we can derive root keys for PBTs which would allow
us to extend the supported tag-space of a PBT-based scheme dynamically,
therefore this scheme falls into the class of dynamic PE schemes. We would
start with one single PBT, which then functions as a standard PBT-based PE
scheme, and add a second PBT once we run out of key components. We
would therefore end up with a chain of trees which make up the secret-key
of this new scheme.

Such a scheme needs two one-way functions fmk and frk. The key generation
algorithm outputs an initial ratchet key RK0. From this, a ´root-key´ Root0
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8.3. Dynamic Perfect Binary Tree Puncturable Encryption

can be derived using fmk, the root-key function. On input a ratchet key RKi,
fmk outputs a root-key Rooti, which is used as the root of a PBT Ti as in the
original PBT-based scheme.

To allow more than one PBT to be used, there is also the ratchet key function
frk, which on input a ratchet key RKi outputs a new ratchet key RKi+1. After
each derivation of a new root Rooti a new ratchet key RKi+1 is derived and
the old version gets securely deleted.

By knowing how many tags each PBT supports (which is able to vary from
tree to tree) a tag τi = i can get assigned to the correct tree which then is used
to derive the corresponding key component as in a PBT-based approach
(recall we assumme to use sequence numbers as tags as described in section
2.2.1).

Puncturing on a tag functions as in the PBT-based approach after finding its
corresponding tree Tj.

Compared to a naı̈ve solution, such a chained PBT approach could allow
us to safe even more storage space, since we do not need to provide a tree
for the entire tag-space from the start. Additionally, since the individual
trees are smaller than one tree supporting the entire tag-space the involved
algorithms can run faster compared to the original approach. Additionally,
we would still be able to get storage benefits from special puncturing orders
as we do using the standard approach.

The illustration in Figure 8.2 shows how such a chained PBT approach could
look like. For both τ0 and τ1 the corresponding key is stored in the first tree
T0. The one corresponding to τl is stored in T2 and the one corresponding
to τm is in T4. If we would run out of key components, we would use RK4
to derive a new tree T4.

8.3 Dynamic Perfect Binary Tree Puncturable Encryp-
tion

This approach functions as the PBT-based approach does, except we store a
key component in every node of the tree. To do this we use a tree consisting
of ratchet keys which we could derive in the same way as we derive the keys
in a standard PBT-based approach, i.e. we use two one-way functions fl and
fr to derive the left and right child inside the tree. To access a key associated
to a tag we use these functions to derive the correct node inside the tree and
then use an additional function fmk to drive the actual message key from the
ratchet key, i.e. given a ratchet key RKi, fmk outputs the message key MKi
which is used as the secret-key for encrypting a message.

Encryption, decryption and puncturing therefore function in the same way
as they do in the PBT-based approach with the main difference that the
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Root0 Root1 Root2 Root3

τ0 τ1 τl τm

T0 T1 T2 T3

frk(RK0) frk(RK1) frk(RK2) frk(RK3)

fmk(RK0) fmk(RK1) fmk(RK2) fmk(RK3)

Figure 8.2: Illustration of the underlying data structures for a chained PBT-based approach
currently supporting 4 trees. Shown are all parts of the scheme up until this state and how they
got derived. Crossed out boxes indicate elements which have been used in the scheme but got
deleted.

key component could not only be stored in a leaf node. Puncturing, com-
pared to its functionality in the PBT-based approach, additionally requires
the derivation of the children of deleted leaf nodes.

Such an approach potentially supports big tag-spaces while still providing
rather efficient algorithms and a potentially smaller storage-space compared
to the naı̈ve solution and is an example of a dynamic PE scheme.

In figure 8.3 we illustrate how such a dynamic PBT-based scheme could look
like.

Further analysis of the idea showed that such a scheme performs rather
poorly regarding the required storage space. On a puncturing call, we need
to calculate and store the children of the punctured node, otherwise we
would not be able to derive all keys or extend the tag-support. This results
in an increase of one key after each puncturing call, i.e. the required storage
grows linearly in the number of puncturings performed.

Figure 8.4 illustrates how puncturing on a tag τ5, associated to a current leaf
node, effects the underlying tree structure of such a scheme. We compute
the children of the deleted node using fl and fr to allow further expansion
of the tree after puncturing. We mark all stored nodes in bold.
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RK0

RK1 RK2

RK3 RK4 RK5 RK6

SK1 = fmk(RK1)

f l(R
K0)

Figure 8.3: Illustartion of a dynamic PBT-based scheme. Shown, the message key (SK1) derived
from the ’root ratchet key’ RK0.
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SK0 = fmk(RK0)

SK2 = fmk(RK2)

fl(RK5) fr(RK5)

Figure 8.4: Example for puncturing on a ´leaf´ tag τ5 in a dynamic PBT-based scheme.

8.4 BFE-based Puncturbale Encryption with Perfect Cor-
rectness

Recall the construction of PE based on BFE in section 5.1. Due to the prob-
abilistic nature of a Bloom filter, we saw that the construction suffered from
a lack of perfect correctness. Here we present an idea of how the BFE-based
construction can be extended to achieve perfect correctness.
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The approach functions in the same way the original BFE-based approach
does, with the main difference being that we detect collisions prior to en-
cryption. This means we check if there already exist a set of tags which use
the same key components as our new tag τ, i.e. puncturing on them would
result in puncturing on τ. If this is the case, we add a special key compo-
nent for τ. We can therefore guarantee that we have at least one unique
key component for every supported tag and can therefore achieve perfect
correctness. The new scheme is therefore an example of a non-hierarchical,
perfectly correct PE scheme.

Although this approach achieves perfect correctness, further analysis showed
that it uses more storage space as the naı̈ve solution and additionally all in-
volved algorithms are slower compared to the ones from the naı̈ve approach.
We therefore conclude that such a scheme is not useful in practice.

8.5 Chained BFE-based Puncturable Encryption

A second idea to achieve perfect correctness with a BFE-based approach
would be to chain multiple Bloom filters together. We would again check
for a collision on the tags prior to encryption and if we encounter one we
would use the next Bloom filter in the chain and check again. This step gets
repeated until we encounter no collision and can encrypt our message. The
scheme would therefore be part of the class of dynamic PE schemes.

As for the first extension, this scheme does not only have slower algorithms
than the naı̈ve solution but also requires more storage space, and we there-
fore conclude that it is not suitable for practical use.

8.6 Bloom Filter Cascade Puncturable Encryption

A PE scheme making use of Bloom filter cascades could also achieve perfect
correctness by guaranteeing that for each tag, there exists one level in the
cascade in which we do not encounter a collision on all computed hash
values. The resulting scheme would be a non-hierarchical, perfectly correct
PE scheme.

As for the other two BFE-extension also, this approach suffers from slow
algorithms and needs more storage compared to the naı̈ve scheme.

8.7 Puncturable Encryption through Re-Encryption

As any other encryption scheme, puncturable encryption suffers from the
problem that any message could potentially be decrypted using brute force.
In this approach we try to use this fact to base our puncturing algorithm
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on, i.e. we relay on the amount of possible combinations to re-encrypt a
message to puncture on a tag. The main idea is as follows: We provide a
fixed number of keys k, SK0, . . . , SKk−1 and a ´reencryption number´ r. To
encrypt a message under a tag we associate r numbers, n0, . . . , nr−1, between
0 and k− 1 to the tag while keeping an order for these numbers. We then
encrypt the message first under SKn0 , the calculated ciphertext under SKn1

and so on until we encrypted iteratively using the keys SKn0 to SKnr−1 . To
then puncture on a tag, we remove the mapping from the tag to its sequence
of numbers as well as ´remove the way to derive the sequence´.

We now consider different key lengths used for encryption today and cal-
culate the number of needed re-encryptions to achieve a similar number of
possible combinations (see figure 8.5).

Key Length Number of used Keys
100 200 500 1000 2000 5000 10000

128 20 17 15 13 12 11 10
256 39 34 29 26 24 21 20
512 78 67 58 52 47 42 39

1024 155 134 115 103 94 84 78
2048 309 268 229 206 187 167 155
4096 617 536 457 412 374 334 309

Figure 8.5: Number of re-encryptions needed to achieve roughly the same number of possible
combinations, as there are keys of length Key Length, using a multiple encryption approach with
a defined number of used keys.

To achieve such a PE scheme, we need to find a way to assign a tag to a
sequence of numbers in a pseudo-random way, such that the mechanism
cannot be reversed. One idea to achieve this is to use an initial base vector
BV holding r random numbers between 0 and k− 1. We then use a ´matrix
like´ structure which will hold vectors corresponding to tags. To compute
the j-th key used to encrypt a message, we multiply the j-th entry of BV with
the j-th element of the column vector corresponding to the tag, stored in the
matrix, and take the result modulo k. The final number than corresponds to
the index of the j-th key used in the encryption sequence. An example of
this is shown in figure 8.6.

Such a PE scheme, which would fall into the class of dynamic PE schemes,
could potentially achieve better storage requirements as the naı̈ve solution,
since its set of key components remains constant. Further analysis showed
that this is not possible since now the arrays associated to the tags become
the ’new key components’ for this approach, i.e. if we for example only
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Figure 8.6: Example of encryption using r = 3 re-encryption rounds and k = 10 keys.

require 100 bits to store such an array we can only achieve the same security
as with a 100 bit single key as the number of combinations needed to be
tested to brute-force the scheme would be the same. This in addition to the
fact that both encrypting and decrypting would require more time in such
a scheme, led to the conclusion that a PE scheme based on re-encryption is
not suitable for use in practice.

8.8 Lambda-Structures

By chaining together multiple ratcheting-based PE schemes, we would end
up with a ´lambda-like´ structure and therefore another perfectly correct,
hierarchical scheme..

Such an approach could work well in a scenario in which we have multiple
communications, for which in every single one we puncture in order or in
quasi-perfect order. Assume we have c communications, if we puncture in
perfect order for each of these communications we would need to store c
keys. If we puncture on a tag, we can use a one-way function to derive the
next key in the sequence.

Assuming a quasi-perfect order for each communication with a window
size of wi for the i − th communication, we would need a storage space of
O(∑i wi).

Note that we could chain together any kind of PE scheme and could even
allow a mixture of different schemes, like chaining together ratcheting-based
schemes and PBT-based schemes.
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Scheme Class Goal Decision
Ratcheting Perfectly correct, hierarchical Storage reduction X
Chained BFE Dynamic Storage reduction ×
Dynamic PBT Dynamic Storage reduction ×
Perfectly correct BFE Perfectly correct, non-hierarchical Perfect correctness ×
Chained BFE Dynamic Perfect correctness ×
BF Cascade Perfectly correct, non-hierarchical Perfect correctness ×
Re-encryption Dynamic Storage reduction ×
λ-structures Perfectly correct, hierarchical Storage reduction X
Unbounded BFE Non-perfectly correct, non-hierarchical Unbounded tag-space ×
Dynamic Naı̈ve Dynamic Storage reduction X

Figure 8.7: Summary of newly explored PE schemes. For each approach we note its correspond-
ing class of PE schemes, the goal we hoped to achieve with the scheme and if it got discarded
(cross) or approved (checkmark).

8.9 BFE-based Puncturable Encryption with unbounded
tag support

If we adapt the original BFE-based PE scheme to instead of deleting keys
on a puncture call to replace them by a new one, we would end up with
an approach having the same correctness error as the original BFE-based
approach but with the added benefit that this scheme would support an
unbounded number of tags. Such a scheme would, as the original BFE-based
scheme, be non-hierarchical and not able to achieve perfect correctness.

Note that using this approach, we would lose the property of shrinking key
size after puncturing compared to the original approach. Additionally, we
would face the problem of deciding whether we are dealing with a new
key (replaced by a puncturing call) or the original key on decryption which
could greatly affect the efficiency of the decryption algorithm.

8.10 Dynamic Näıve Solution

Making the naı̈ve solution dynamic by additionally providing a key exten-
sion algorithm to allow extension of the supported tag-space could allow
saving on storage space by trading some algorithm efficiency for it, there-
fore providing a baseline to beat for new dynamic constructions. As the
name suggests this scheme would fall into the class of dynamic PE schemes.

8.11 Exploration Summary

In figure 8.7 we briefly summaries the goal of each new construction, note
the class of PE schemes the construction corresponds to, and denote whether
we decided such a scheme could be useful in practice. We can see that a
PE scheme based on ratcheting as well as the dynamic naı̈ve solution are
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the most promising new construction ideas and we therefore make a more
detailed analysis of these two approaches in chapter 9.

8.12 Discarded data structures

In this section we list data structures we considered for construction of a
PE scheme but decided not to use. We shortly describe the reasons why we
think these data structures (or classes of data structures) are not suitable to
implement a PE scheme.

8.12.1 Cuckoo Filters

Since cuckoo hashing (as described by N. Fleming [9]) changes the position
of elements in the hash table and therefore also in the cuckoo filter, it cannot
be used to assign a tag to its key component as it is done in the BFE-based
approach. Therefore, one could use a cuckoo filter to test if a tag is already
in use in a quite efficient way but needs to store the mapping from a tag to
its key component in some different way.

The only way we could think of on how to use the cuckoo filter directly to
store the mapping from a tag to its key component would be to fix the set of
tags and insert all of them in the cuckoo filter. After successfully inserting
all tags, we would use the key component associated to the entry the tag is
mapped to in the filter. Using this idea, one would end up with a one-to-
one mapping from each tag to a key component, and therefore basically the
naı̈ve solution.

In conclusion, a cuckoo filter may be a good solution for PE schemes which
need an efficient method to check for already punctured tags, but it is an
ineffective method to implement a PE scheme all by itself.

8.12.2 Morton Filters

Morton filters (as described by Breslow and Jayasena [2]) are optimized cuk-
coo filters, meaning they are faster and more space-efficient. Therefore, we
come to the conclusion that morton filters are not suitable for implementing
a PE scheme, for similar reasons we decided not to use cuckoo filters.

8.12.3 Counting Filters

Using counting filters, one could not only check if an element is part of a
set but also get info about how many times an item is in a set. The only
way we could think of on how to use the additional information provided
by a counting filter is, for example in a BFE-based approach, to check if all
keys associated to a new tag were already used before to encrypt messages
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8.12. Discarded data structures

under different tags. This then could lead to the problem that we puncture
on the new tag by calling the puncture algorithm on all the other tags (this
is the reason for the correctness error in the original BFE-based approach).
Since we can achieve such a collision detection with standard Bloom filters,
as described in 8.4 we decided to not further investigate in the possibility of
counting-filter-based PE schemes.

8.12.4 Self-balancing trees

Self-balancing trees, such as AVL-Trees, B-Trees, or Splay-trees, are not well
suited as an underlying data structure for a PE scheme. This is due to their
self-balancing property. The main intuition why trees are a suitable choice
to implement a PE scheme is their hierarchical structure, which allows for
compact storage. Since self-balancing trees reorder their elements to balance
them self, the hierarchical structure can change and therefore keys could not
be derived correctly any more.

8.12.5 Heaps

Since heaps, similar to self-balancing trees, reorder their elements, they can
not provide compact storage as it is done in a PBT-based approach. Storing
keys in nodes of a heap would require to store one key component for each
tag. We would end up with an optimized naı̈ve approach which could sup-
port an unbounded number of tags. Since there also exist a lot of other ideas
on how to extend the naı̈ve solution to support an unbounded number of
tags we conclude that a PE scheme based solely on heaps is inefficient.

Note that we could use heaps to organize the mapping from arbitrary string
tags to internally used tags, if one decides to support such tags. We then
could store the mapping from user-tag to internally used tag in a node of the
heap and give it an additional attribute such as creation time or a hierarchy
level. Based on this attribute, we then could define a max or min heap to
allow faster access to the correct key component of more recently used tags
etc.
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Chapter 9

Theoretical Constructions

From the new construction ideas presented in chapter 8 we decided that a
dynamic naı̈ve SPE scheme and a PE scheme based on ratcheting are the
most promising candidates to achieve benefits over the naı̈ve construction.
In this chapter we present a theoretical construction of both approaches and
based on it perform a theoretical analysis. We compare each approach to the
naı̈ve solution to get a direct comparison of their performance and highlight
for each feature which scheme performs better.

9.1 Dynamic Näıve SPE

The dynamic naı̈ve SPE scheme is a new naı̈ve construction of dynamic
PE. We adapted the original naı̈ve construction, presented in chapter 4, to
become a dynamic PE scheme, which we introduced in chapter 7.

This construction could save on secret-key storage since by being a dynamic
PE scheme it does not support the entire tag-space from the beginning and
therefore does not need to store all key components for all supported tags.
Additionally, the scheme borrows the efficiency of the naı̈ve scheme’s al-
gorithms for all tags which do not require key extension. Moreover, being
able to extend the secret key allows this scheme to theoretically support an
unbounded tag-space, which is not possible with hitherto used schemes.

In the following, we provide a more detailed description of the functionality
of the scheme. We only provide a construction for symmetric encryption
due to the problems which arise when using a DPE scheme for public-key
encryption (as described in section 7.2).

A dynamic naı̈ve SPE scheme initially supports a small tag-space Tinit with
|Tinit| = ninit, i.e. it initially supports ninit tags. Once it runs out of key com-
ponents it uses a key extension algorithm to add support for an additional
set of l tags.
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Initialization

Initialization works in the same way as in the original naı̈ve solution pre-
sented in chapter 4 with the main difference being that we only initialize the
scheme for ninit tags.

Algorithm 10 Key Generation for dynamic naı̈ve SPE
1: function KeyGen(λ, ninit, [])
2: SK ← Array of length ninit . Initialize array
3: for i from 0 to ninit − 1 do . Precompute key components
4: SK[i]←$ SE.KeyGen(λ)
5: end for
6: return SK
7: end function

Encryption, Decryption and Puncturing

Encryption, decryption and puncturing function in the same way as in the
original naı̈ve approach, but the algorithms additionally throw an error once
they detect that key extension is required.

Algorithm 11 Encryption for for naı̈ve dynamic SPE
1: function Encrypt(SKi, M, τ)
2: t← getIndex(τ) . Compute index τ corresponds to
3: if t ≥ |SKi| then . Require key extension
4: Error: Require key extension

5: return ⊥
6: end if
7: if SKi[t] == ⊥ then . Punctured on τ before
8: return ⊥
9: end if

10: C←$ SE.Enc(SKi[t], M) . Encrypt message
11: return C
12: end function
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Algorithm 12 Decryption for naı̈ve dynamic SPE
1: function Decrypt(SKi, C, τ)
2: t← getIndex(τ) . Compute index τ corresponds to
3: if t ≥ |SKi| then . Require key extension
4: Error: Require key extension

5: return ⊥
6: end if
7: if SKi[t] == ⊥ then . Punctured on τ before
8: return ⊥
9: end if

10: M← SE.Dec(SKi[t], C) . Decrypt message
11: return M
12: end function

Algorithm 13 Puncturing for naı̈ve dynamic SPE
1: function Puncture(SKi, τ)
2: t← getIndex(τ) . Compute index τ corresponds to
3: if t ≥ |SKi| then . Require key extension
4: Error: Require key extension

5: return ⊥
6: end if
7: SKi[t]← ⊥ . Delete key component corresponding to τ
8: return SKi
9: end function

Key extension

The key extension algorithm takes as input the current secret-key, a number
l, which denotes by how many key components extension is needed and a
security parameter λ. It then extends the current secret-key by computing l
new key components using the black-box key generation algorithm. Finally,
it returns the new secret-key.

Algorithm 14 Key extension for naı̈ve dynamic SPE
1: function KeyExt(SK, [l, λ])
2: s← |SK|
3: SKnew ← Array of length |SK|+ l
4: SKnew[0..s− 1]← SK . Copy current secret-key
5: for i from s to s + l − 1 do . Extend the key
6: SKnew[i]← SE.KeyGen(λ)
7: end for
8: return SKnew
9: end function
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9.1.1 Theoretical analysis

Compared to the standard naı̈ve SPE scheme, the dynamic version can re-
duce the required storage whilst still providing fast algorithms for all tags
which do not require key extension. Additionally, such a dynamic approach
can gain benefits from both a puncturing before next encryption and a quasi-
perfect ordering. For the first one, we only require to store O(max(ninit, l))
key components at any point in time. Since we technically only need one key
component in this scenario, choosing l = ninit = 1 would result in a scheme
requiring O(1) secret-key storage1. For a quasi-perfect ordering with win-
dow size w, we can reduce the storage to O(max(ninit, w + l)). This is the
case since we technically would only need to store w key components at
any point in time, but it is possible that certain tags of the current window
require key extension, therefore increasing the needed storage.

We conclude the following list of benefits:

• Fast encryption, decryption and puncturing:

For all tags which do not require key extension.

• Smaller secret-key size:

The required secret-key storage is at most as large as in the original
naı̈ve solution, and even smaller in most cases.

• Achieves perfect correctness

• Can achieve benefits from special puncturing orders

• Unbounded tag support:

An implementation for n→ ∞ is possible using this approach.

Additionally, we get the following list of drawbacks:

• Key size is linear in the current number of supported tags

• Slower algorithms for tags requiring key extension

• Non-deterministic key extension algorithm:

Since key extension relies on the randomized key extension algorithm
of the underlying SE scheme, an extended key would need to be se-
curely distributed to all other parties involved in the communication.
This is a major drawback of this approach.

We provide a full summary of the features achieved by this scheme as well
as a comparison to the original naı̈ve SPE solution (presented in chapter 4)

1In this scenario this approach is similar to a ratcheting-based PE scheme presented in
section 9.2.
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in figure 9.1. The dynamic naı̈ve SPE construction beats the original naı̈ve
construction in almost any aspect except for the efficiency of the encryption,
decryption and puncturing algorithms. It is important to note that these al-
gorithms are only less efficient compared to the algorithms from the original
naı̈ve solution for tags which require key extension. For all other tags, the
runtime of the algorithms is the same as in the naı̈ve SPE scheme.
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Feature summary and comparison

Variable Description
n Number of supported tags
ninit Number of initially supported tags
ncur Number of currently supported tags
u Number of unpunctured tags
ucur Number of unpunctured tags from the set of currently supported tags
l Number of newly supported tags after key extension
t Runtime of black-box SE.KeyGen() algorithm
e Runtime of black-box SE.Enc() algorithm
d Runtime of black-box SE.Dec() algorithm

Feature Naı̈ve DSPE Naı̈ve SPE

Secret-Key Storage
Initial Θ(ninit) Θ(n)
During use Θ(ucurr) Θ(u)
Worst case Θ(n) Θ(n)
Best case O(1) Θ(u)
Computation time
KeyGen() O(ninitt) O(nt)
Encrypt() O(e + lt) O(e)
Puncture() O(1 + lt) O(1)
Decrypt() O(d + lt) O(d)
Tag support
Size of tag-space Possibly unbounded Bounded
Correctness
Achieves Perfect Perfect
Special case benefits
In order puncturing No benefits No benefits
Puncturing before next encryption Storage: O(max(niniti, l)) No benefits
Quasi-perfect ordering Storage: O(max(ninit, w + l)) No benefits

Figure 9.1: Features achieved by the näıve dynamic SPE scheme compared to a standard näıve
SPE scheme. The better performing scheme is highlighted in green and the worse performing
one in red.
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9.2 Ratcheting

In contrast to the dynamic naı̈ve SPE scheme presented in section 9.1 a PE
scheme based on ratcheting could save on storage space due to its hierarchi-
cal structure. As a result of the way in which the individual message keys
get derived, a scheme based on ratcheting could work especially well in a
scenario where the tags get used up in sequence.

Recall, the main idea behind the ratcheting approach is to derive a key asso-
ciated to a tag from a ratchet key. We now present a theoretical construction
and analysis of this approach. We assume to have access to two one-way
functions fmk and frk which map a ratchet key to a message key and a new
version of the ratchet key respectively. Additionally, we assume sequence
numbers as the used tags, therefore the number of supported tags n directly
defines the supported tag-space.

Key Generation

To initialize the scheme, we run the key generation algorithm. It takes a
security parameter λ, a number of supported tags n and no additional argu-
ments as input. It then initializes the ratchet key , RK, making use of the key
generation algorithm of the black-box symmetric encryption scheme. Ad-
ditionally it initializes the state variable ratchetN which stores the current
version number of the ratchet key. In a next step it initializes an empty array,
KA, of size n, in which later on the keys are stored. Finally, it returns the
secret-key consisting of KA, RK and rachetN.

Algorithm 15 Key Generation
1: function KeyGen(λ, n, [])
2: RK←$ SE.KeyGen(λ) . Initialize version 0 ratchet key
3: rachetN ← 0
4: KA← Empty array of size n
5: return {KA, RK, ratchetN}
6: end function

Encryption

To encrypt a message M under a tag τ the algorithm first computes the
sequence number corresponding to τ. It then checks if it is higher or lower
than the current ratchet key version stored in ratchetN. If it is lower we
check the KA entry corresponding to the tag and either encrypt the message
with the key stored there, or if we previously punctured on the tag and
the entry holds ⊥, encryption fails. Otherwise, i.e. the sequence number
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is higher than the ratchet key version number, we iteratively use frk on the
current ratchet key until we reach the ratchet key version corresponding to
the tags sequence number and use fmk to derive the message key, which the
algorithm then uses to encrypt the message. Finally, it returns the encrypted
message2.

Algorithm 16 Encryption
1: function Encrypt(SK, M, τ)
2: t← getIndex(τ) . Compute index τ corresponds to
3: if t < ratchetN then
4: key← KA[t] . Access key component
5: if key == ⊥ then . Previously punctured on the tag
6: return ⊥
7: else
8: C ← SE.Enc(key, M)
9: end if

10: else . Need to derive the key component
11: temp← ratchetN
12: RKtemp ← RK
13: while temp < t do
14: RKtemp ← frk(RKtemp) . Evolve temporary ratchet key
15: temp← temp + 1
16: end while
17: key← fmk(RKtemp) . Derive encryption key
18: C ← SE.Enc(key, M)
19: end if
20: return C
21: end function

Puncturing

Puncturing on a tag τ can happen in two different ways. Either the sequence
number corresponding to the tag is smaller than the current ratchet key
version, i.e. if we did not previously puncture on the same tag there is a
key stored inside KA at the position indicated by the tag, in which case we
remove the key from KA. Otherwise, the sequence number corresponding
to the tag is larger than the ratchet key version, in which case we need to
evolve the ratchet key until its version number is higher than the sequence

2Note that we store the current ratchet key version as well as all messages keys for
unpunctured tags τi whose corresponding sequence numbers ti have the property that ti <
ratchetN.
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number corresponding to the tag and while doing this compute the keys
for all tags corresponding to a sequence number between ratchetN and the
one of the tag to be punctured on3. The algorithm then returns the new
secret-key with updated values for KA, ratchetN and RK.

Algorithm 17 Puncturing
1: function Punct(SK, τ)
2: t← getIndex(τ) . Compute index τ corresponds to
3: if t < ratchetN then
4: KA[t]← ⊥ . Delete key component
5: else . Need to extend the key
6: temp← ratchetN
7: while temp < t do
8: RK ← frk(RK) . Evolve ratchet key
9: temp← temp + 1

10: KA[temp]← fmk(RK) . Derive and store key component
11: end while
12: KA[t]← ⊥ . Remove key component corresponding to the tag
13: RK ← frk(RK) . Evolve ratchet key
14: end if
15: ratchetN ← t + 1
16: return {KA, RK, ratchetN}
17: end function

Decryption

The decryption algorithm works in the same way as the encryption algo-
rithm does, with the only difference being that it uses the black-box decryp-
tion function instead of the encryption one.

9.2.1 Theoretical analysis

Due to its design, the secret-key storage of a PE scheme based on ratcheting
only grows once we puncture on a tag whose corresponding sequence num-
ber is higher than the current ratchet-key-number ratchetN. This means if
we never puncture at all, the secret-key storage will never grow.

In both an in order puncturing and a puncturing before next encryption sce-
nario we can achieve constant storage since in both cases we only need to
store one ratchet key and the ratchet-key-number. In the puncturing before

3This is to guarantee perfect correctness.
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Algorithm 18 Decryption
1: function Decrypt(SK, C, τ)
2: t← getIndex(τ) . Compute index τ corresponds to
3: if t < ratchetN then
4: key← KA[t] . Access key component
5: if key == ⊥ then . Previously punctured on the tag
6: return ⊥
7: else
8: M← SE.Dec(key, C)
9: end if

10: else
11: temp← ratchetN
12: RKtemp ← RK
13: while temp < t do
14: RKtemp ← frk(RKtemp) . Evolve temporary ratchet key
15: temp← temp + 1
16: end while
17: key← fmk(RKtemp) . Derive decryption key
18: M← SE.Dec(key, C)
19: end if
20: return M
21: end function

next encryption case, this can lead to slow algorithms since the time needed
to derive the correct key grows the further away the sequence number cor-
responding to the tag gets. Such a problem does not occur in a puncturing
before next encryption scenario, in which the used key can always be de-
rived using the current ratchet key.

In a quasi-perfect ordering with window size w, we can achieve the same
best and worst case storage requirements and algorithm runtimes as in a
ratcheting-based PE scheme supporting n = w tags.

We arrive at the following list of benefits:

• Smaller secret-key size:

In most cases the required secret-key storage is smaller compared to
the naı̈ve solution, and in the worst case it will be at most as large as
in a naı̈ve scheme.

• Achieves perfect correctness

• Unbounded tag support

An implementation using n→ ∞ is possible using this approach.

• Achieves benefits from special puncturing orders
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9.2. Ratcheting

Additionally, we get the following drawbacks:

• High dependency on puncturing order:

The required secret-key storage as well as the runtime of the involved
algorithms highly depend on the puncturing order.

• Slower encryption, decryption and puncturing:

Due to the additional step of deriving the message key from the ratchet
key the runtimes of the encryption, decryption and puncturing algo-
rithms is even in the best case slower compared to the algorithms of
the naı̈ve solution.

We provide a full summary of the features achieved by this scheme as well
as a comparison to the original naı̈ve SPE solution (presented in chapter
4) in figure 9.2. As we can see, a ratcheting-based PE scheme can beat
the naı̈ve solution in almost all aspects. Its main drawback lies in the less
efficient runtimes of the encryption, decryption and puncturing algorithms,
although this result was to be expected as any PE scheme which is able to
achieve better storage requirements compared to the naı̈ve solution must
have less efficient algorithms (as we proved in corollary 6.3).
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Feature summary and comparison

Variable Description
n, u Number of supported tags, number of unpunctured tags
ratchetN Current ratchet-key-number
ucur Number of unpunctured tags with sequence numbers t < ratchetN

f Time needed to compute new ratchet key or message key,
i.e. compute frk() or fmk()

seqτ Sequence number corresponding to tag τ
w Window size of quasi-perfect ordering
t, e, d Runtime of black-box SE.KeyGen(), SE.Enc(), SE.Dec() algorithm
z seqτ − ratchetN

Feature Ratcheting-based SPE Naı̈ve SPE

Secret-Key Storage
Initial O(1) Θ(n)
During use Θ(ucur) Θ(u)
Worst case Θ(n) Θ(n)
Best case O(1) Θ(u)
Computation time
KeyGen() O(t) O(nt)
Encrypt() O(max(1, z + 1) ∗ f + e) O(e)
Puncture() O(max(1, 2z + 1) ∗ f ) O(1)
Decrypt() O(max(1, z + 1) ∗ f + d) O(d)
Tag support
Size of tag-space Possibly unbounded Bounded
Correctness
Achieves Perfect Perfect
Special case benefits
In order puncturing Storage: O(1) No benefits

Puncturing before next encryption

Storage: O(1)
Encryption: O( f + e)

Puncturing: O( f )
Decryption: O( f + d)

No benefits

Quasi-perfect ordering

Storage: O(w)
Encryption: O(w ∗ f + e)

Puncturing: O(w ∗ f )
Decryption: O(w ∗ f + d)

No benefits

Figure 9.2: Features achieved by the SPE scheme based on ratcheting compared to näıve SPE.
The better performing scheme is highlighted in green and the worse performing one in red.
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Chapter 10

Discussion and Conclusion

We wanted to investigate how to find new constructions of PE and tried to
come up with at least one new PE scheme which can beat the naı̈ve solution
in some regard. To this end, we analysed hitherto used schemes and the
naı̈ve solution and tried to extract relevant features from their underlying
data structures to establish a blueprint which could be used to help find
new constructions.

The analysis of hitherto used schemes in chapter 5 showed that a data struc-
ture does not need to provide much to be able to suit as a basis for a PE
scheme. Providing key storage and a mechanism to delete key components
is enough to function as a basis for a PE scheme.

This led to a closer investigation on how certain features for new schemes
could potentially be improved compared to the naı̈ve solution (presented
in chapter 6). Since encryption, decryption and puncturing are possible in
constant time in the naı̈ve scheme, we focused on possibilities which could
allow for storage reduction. The research led to a necessary requirement for
a PE scheme to reduce storage space compared to the naive solution while
still achieving perfect correctness, namely needing to by hierarchical. We
also found that to be able to achieve perfect correctness, a PE scheme needs
to provide at least one unique key component for every supported tag.

By trying to effectively reduce storage whilst maintaining reasonably fast
algorithms, we came up with a new class of PE schemes which we called
dynamic PE schemes (presented in chapter 7). The main difference between
a standard PE scheme and a dynamic one is that dynamic schemes do not
support the entire tag space for the beginning, i.e. after initialization the
scheme supports only ninit tags, where ninit < n and n denotes the size of the
entire tag-space. Such dynamic schemes also allow support of theoretically
unbounded tag-spaces, which is not possible with hitherto constructions.

Based on our new knowledge about PE schemes we came up with new
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ideas on how to construct PE presented in chapter 8. From these ideas we
selected the two most promising candidates, naı̈ve DSPE and ratcheting, and
presented a theoretical implementation and analysis of the approaches (see
chapter 9). We found that both schemes are able to achieve better storage
requirements compared to the naı̈ve solution.

10.1 Discussion

Our two new constructions, naı̈ve DSPE and PE based on ratcheting, are
both able to outperform the storage requirements of the naı̈ve solution by
trading some algorithm efficiency for it. How good this trade-off ends up
being highly depends on the puncturing order. Especially the ratcheting-
based PE scheme is sensitive to changes in the puncturing order. Our analy-
sis showed that such a scheme works especially well if we puncture in order
or in a quasi-perfect order. Therefore, a ratcheting based PE scheme works
well in applications in which we are likely to encounter such puncturing
orders.

We provide a comparison between the naı̈ve solution, the hitherto used con-
structions, BFE-based and PBT-based, as well as our two new constructions
in figure 10.1. We can see that a PBT-based and a ratcheting-based PE
scheme have the best initial storage requirement, namely both only store
one single key, whereas a BFE-based scheme has the worst initial storage
requirement. During use, the dynamic naı̈ve solution and the ratcheting-
based scheme outperform the other schemes. Their storage only depends
on the number of punctured tags from their currently supported set of tags.
These two schemes are also able to achieve the best best case storage bound.

The naı̈ve solution remains unbeaten regarding algorithm efficiency for en-
cryption, puncturing and decryption. Only the PBT-based scheme, the naı̈ve
DSPE scheme and the ratcheting-based scheme can achieve a better runtime
for the key generation algorithm, whereby the PBT-based and the ratcheting
based schemes achieve the best possible runtime (since they only need to
initialize one key).

In the figure we also see that the ratcheting-based approach can profit the
most from special cases. This is due to its high sensitivity to the order of
puncturing calls. Also, we can see that a BFE-based scheme cannot outper-
form the naı̈ve solution in any case.

For all presented constructions, we assumed to be using sequence numbers
as tags. An analysis on how to efficiently associate arbitrary strings to tags is
out of scope for this thesis. We restricted ourselves to PE schemes based on
data structures. Also, we did not include any special analysis regarding fully
puncturable encryption, as introduced by Derler et al. [7], which introduces a
notion of positive puncturing calls.
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Realizing the storage reduction achieved by the presented schemes is not an
easy thing to do in practice due to the complexity of secure deletion. One
would need to perform regular ´clean-ups´, either based on time passed or
on the number of puncturings performed, to take advantage of the reduced
key size. How this can efficiently be achieved is out of scope of this thesis.

Variable Description
n Number of supported tags
ninit Number of initially supported tags, ninit < n
ncur Number of currently supported tags , ncur ≤ n
u Number of unpunctured tags
ratchetN Current ratchet-key-number

ucur1
Number of unpunctured tags from the set of currently
supported tags

ucur2
Number of unpunctured tags with sequence numbers
t < ratchetN

f Time needed to compute new ratchet key or message key,
i.e. compute frk() or fmk()

seqτ Sequence number corresponding to tag τ
w Window size of quasi-perfect ordering
l Number of newly supported tags after key extension

p Upper bound on the false positive probability of the
Bloom filter

k Amount of hash functions used
h Time needed to compute one hash value
s Size of the Bloom filter, s = − 1

ke
√

1− k√p−1

t Runtime of black-box SE./PkPE.KeyGen() algorithm
e Runtime of black-box SE./PkPE.Enc() algorithm
d Runtime of black-box SE./PkPE.Dec() algorithm
z seqτ − ratchetN
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10.2 Important Features, DSPE Conclusion and Future
Work

Our analysis of hitherto used schemes showed that a data structure does
not need to provide much to be able to suit as a basis for a PE scheme.
Namely, any structure providing key storage and a mechanism to delete
key components can be used to implement a PE scheme.

More interesting are the requirements we found to achieve certain benefits.
To be able to reduce the secret-key storage and preserve perfect correctness
one needs to use a hierarchical data structure and to guarantee perfect cor-
rectness a PE scheme needs to provide at least one unique key component
for every supported tag. These two discoveries led to the conclusion that
the naı̈ve PE scheme is optimal regarding required storage space and algo-
rithm efficiency for its class of non-hierarchical, non-dynamic PE schemes,
achieving perfect correctness. We also showed that any PE scheme which
achieves perfect correctness and better storage requirements compared to
the naı̈ve solution has to have less efficient algorithms for encryption, de-
cryption and/or puncturing due to the need to first derive some key com-
ponent(s) before encryption / decryption / puncturing can take place.

The new class of dynamic PE schemes we introduced is able to achieve
storage benefits without using hierarchical data structures by not supporting
the entire tag-space form the beginning, but rather increase it on demand.
This introduces a hierarchy between initially supported tags and later on
added ones. Therefore, any dynamic PE scheme can be considered to be
hierarchical even if the underlying data structure is not (for example the
naı̈ve DSPE scheme).

As a continuation of this project, we would construct real implementa-
tions of our theoretically constructed schemes and analyse their perfor-
mance in simulated scenarios. Additionally, analysing different use cases
for PE to single out the most common puncturing orders could help find
new application-specific schemes with good performance.

We conclude that further research should focus on dynamic PE and schemes
based on hierarchical data structures and focus on achieving the best pos-
sible trade-off between storage reduction and algorithm efficiency, whilst
keeping application specific performance in mind.
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Appendix

A.1 BFE vs. näıve storage comparison

In the following plots (A.1) we compare the initial secret-key storage re-
quired for the naı̈ve solution and a BFE-based PE scheme for different upper
bounds on the false positive probability p of the Bloom filter and different
amount of involved hash functions k.

A.2 In order puncturing in PBT based PE

The following example serves as an intuition on why the key size can be
bounded by log2(n) while doing in order puncturing in a Perfect Binary
Tree Puncturable Encryption scheme. We puncture from ´left to right´ and
indicate the nodes we need to store at the current iteration by colouring
them grey. Nodes that get deleted after a puncturing call get crossed out.
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Figure A.1: Secret-key storage comparison of a BFE-based PE scheme achieving an upper bound
on the false positive probability of the Bloom filter of p using k hash functions and the näıve
solution. Both schemes are using 256-bit secret-keys.
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A.2. In order puncturing in PBT based PE

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7

Un-punctured tree for n = 8 tags. Punctured on the first tag τ0.

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7

Punctured on τ0 and τ1. Punctured on τ0, τ1, and τ2.

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7

Punctured on τ0, τ1, τ2, and τ3. Punctured on τ0, τ1, τ2, τ3, and τ4.

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7

Punctured on τ0, τ1, τ2, τ3, τ4, and τ5. Punctured on τ0, τ1, τ2, τ3, τ4, τ5, and τ6.

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7

Punctured on all tags.
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