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Abstract

CRLite is an efficient fail-closed method to verifiy the revocation status
of certificates used by TLS. It was introduced in 2017 at the IEEE Sym-
posium on Security and Privacy and is currently deployed by Mozilla
in the nightly version of Firefox. CRLite uses a probabilistic data struc-
ture called a Bloom filter cascade to construct a compact representation
of the known revoked certificates. This data structure uses a hash func-
tion and a set of false positive probabilities. The purpose of this thesis
is to introduce methods for the selection of a hash function and a set of
false positive probabilities to improve certain properties of the Bloom
filter cascade underlying CRLite.

To select an adequate hash function this thesis introduces a method to
evaluate the performance of hash functions for their use in the Bloom
filter cascade underlying CRLite. We proceed by introducing a param-
eter selection framework to select a set of false positive probabilities
that minimizes certain properties of the cascade. This framework uses
an optimization function that considers the size, the creation time and
the time to perform set-membership queries with the cascade.

The experiments we conducted within this thesis lead us to recommend
the cryptographic hash function SHA3 256 and a set of 27 false positive
probabilities to improve the performance of Mozilla’s implementation
of CRLite.
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Chapter 1

Introduction

Every day millions of users and corporations send tons of data over the
internet. This data increasingly includes sensitive information such as credit
card numbers, passwords and other private details that could cause harm
if they ended up in the wrong hands. For this reason cyber security has
become a major topic in the scientific community and a lot of effort went
into the development of protocols and mechanisms to protect the users in
the cyberspace.

Nowadays a great proportion of the web’s traffic is secured through the
Hypertext Transfer Protocol Secure (HTTPS) [26]. HTTPS uses the Transport
Layer Security (TLS) [27] protocol to ensure authentication, confidentiality
and integrity of web based communication channels. TLS itself relies on the
Web’s Public Key Infrastructure (PKI) in the form of digital certificates to
perform two crucial functions, namely the encryption of data in transit and
the authentication of the communicating parties.

One crucial facet of the Web’s PKI is the ability to revoke certificates that
are no longer trustworthy. Eventhough certificate revocation is of great im-
portance for the security guarantees of HTTPS is often overlooked, thereby
introducing new threats to users by giving them a false sense of security.
This is due to the fact that all of the proposed methods for verifying the
revocation status of certificates have issues reaching from massive overhead
in website loading times to the introduction of threats to the users privacy
[18].

To tackle the challenge of disseminating certificate revocation information
without the introduction of massive overheads or privacy concerns James
Larisch et al suggested a mechanism called CRLite [16], which is currently
deployed by Mozilla. CRLite uses a probabilistic data structure called a
Bloom filter cascade to construct a compact representation of the revoked
certificates and then broadcasting this filter to all browsers. A Bloom filter

1



1. Introduction

cascade can answer set-membership queries in constant time and therefore
only adds a small overhead to website loading times. After downloading it
the filter can be queried locally and therefore does not threaten the privacy
of the useres by revealing their browsing behavior to third parties.

For the construction of a Bloom filter cascade one has to choose an adequate
hash function and a set of false positive probabilities. Those choices will
influence the size of the resulting cascade, the time it takes to create the
cascade and the time needed to verify the revocation status of a certificate
using the cascade. It is of great interest to minimize all the mentioned prop-
erties since they all have great impact on the introduced overheads and the
added security guarantees of CRLite. The size will determine the needed
bandwidth to push the filter to all browsers. The creation time will greatly
influence the period in which one can publish a new filter and thereby the
time window in which a compromized certificate can be used to cause harm.
The time needed to verify the revocation status of a certificate with the filter
will determine the overhead in web site loading times.

The choice of the hash function used for the construction of the filter influ-
ences all three properties we are interested in minimizing. Mozilla chooses
the hash function for its CRLite implementation mainly focusing on the
speed. This is in line with the choice recommended by the paper intro-
ducing CRLite.

For the set of false positive probabilities, Mozilla decided to follow the sug-
gestion from the paper introducing CRLite. The authors recommend the use
of two different false positive probabilities 0< p1, p <1. The first is used for
the first layer of the cascade and the latter for all other layers. This strategy
was recommended by James Larisch et al because their analysis showed that
it produces a filter cascade with a size that is competitive with the theoretical
lower bound.

The purpose of this thesis is to introduce methods for the selection of the
hash function and a set of false positive probabilities for the Bloom filter
cascade underlying CRLite. Those methods take all three properties -namely
the size, the creation time and the time to verify a certificate- into account
and can be extended to consider other properties if desired.

In Chapter 2 we introduce hash functions, Bloom filter and Bloom filter
Cascades. In Chapter 3 we present the cornerstones on which HTTPS is built
and explain the treats that can be introduced by omitting the verification of
the revocation status of certificates. We then present the currently available
methods for certificate revocation and explain the overheads and threats
to the useres privacy that occur when using those methods. At the end
of this chapter we present the fail-closed certificate revocation verification
system called CRLite. In Chapter 4 we present a strategy to evaluate the
performance of different hash functions in order to determine a suitable one
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for the Bloom filter cascade underlying CRLite. In Chapter 5 we present
a parameter selection framework for the selection of a set of false positive
probabilities that allows for more than two false positive values and focuses
on minimizing various properties of the cascade. We will also present and
discuss the results we obtained by using this method to minimize the size,
the creation time and the time to verify a certificate with the cascade.
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Chapter 2

Background

2.1 Cryptographic hash functions

A Hash function is a computationally efficient function that maps some bi-
nary input string of variable length to a binary output string of fixed length.
The output of a hash function is called the hash value or the digest. The idea
behind hash functions is that the hash value is a compact representation of
the input string. A cryptographic hash function [10], often also called one-
way hash function, is a hash function that fullfills the three properties listed
below to some degree. The recommended degree to which the properties
need to be fulfilled evolves over time. There always might be applications
that do not require the recommended degree of one or all three properties.
However, this needs to be properly justified.

1) Collision resistance: It is computationally infeasable to find two dif-
ferent inputs x and y that result in the same hash value hash(x) =
hash(y).

2) Preimage resistance: Given a hash value h it is computationally in-
feasable to find an input string x such that hash(x) = h. This property
is also often referred to as the one-way property.

3) Second preimage resistance: Given an input string x it is computa-
tionally infeasable to find a second input string y that will result in the
same hash value hash(x) = hash(y)

The degree to which a hash function fulfills those properties is measured
by the amount of computing power one has to spend in order to ”break”
them with high probability. The collision resistance of a cryptographic hash
function is expected to be half the length of the hash value. The expected
preimage resistance is the length of the produced hash value. The second
preimage resistance is also expected to be the equal to the length of the pro-
duced hash value, but for some hash functions this property also depends
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2. Background

on the input length. For example the hash function SHA 256 produces a
hash value of 256bits and therefore has an expected collision resistance of
128bits, an expected preimage resistance of 256bits and an expected second
preimage resistance of 256bits.

2.1.1 Building paradigms for cryptographic hash functions

Merkle-Damgard Construction

The Merkle-Damgard constrction method uses a collision resistant one-way
compression function that can be applied to a fixed length input to construct
a collistion resistant hash function that can be applied to inputs of arbitrary
length. Ralph Merkle [20] and Ivan Damgard [9] independetly proved that
this construction scheme is sound under the assumption that a used com-
pression function is collision resistant and an appropriate padding scheme
is used. First the padding scheme is applied to the input message and the
binary encoding of the message length is appended. This is done to obtain
a message with a length that is a multiple of some fixed number. The com-
pression function is then iteratively applied to fixed sized chuncks of the
padded message and the output value of the previous compression round.
The first iteration of the compression function uses a fixed initialization vec-
tor and the output of the last iteration is the final hash value [28].

HAIFA Construction

The Hash Iterative Framework (HAIFA) is a modified version of the Merkle-
Damgard construction which was proposed by Dunkelman and Biham [7].
It consists of the same steps as the Merkle-Damgard construction but it uses
some additional input parameters in each iteration of the compression func-
tion. These parameters are a salt value and the number of bits hashed so far.
This method preserves all important security properties and avoids some
generic attacks of the Merkle-Damgard construction but suffers from degra-
dation in efficiency [28].

Sponge Construction

The sponge construction [15] is a iterative method to obtain a hash function
with variable length input and arbitrary output length. Key component is a
transformation or permutation function that operates of fixed-length input.
After the message is padded this construction continues in two phases:

1) Absorbing Phase: Fix sized chuncks of the padded input message are
XORed into the internal state interleaved with applications of the underlying
function. When all input chuncks are processed the squeezing phase begins.
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2) Sqeezing Phase: Fixed sized chuncks of the internal state are iteratively
returned interleaved with applications of the underlying function. The re-
turned stream of bits serves as the hash value.

2.1.2 Secure Hash Algorithms:

The Secure Hash Algorithms are a group of standardized cryptographic
hash functions. They are published by the National Institute of Standards
and Technology (NIST) as a U.S. Federal Information Processing Standard
(FIPS). The first Secure Hash Algorithm was published in May 1993 [22] and
is often reffered to as SHA0. It was developed by NIST in corporation with
the NSA as part of the Digital Signature Algorithm [6]. SHA0 was withdrawn
shortly after publication without an official reasoning. In 1995 NIST pub-
lished a revised version of SHA0 [23] which introduces an additional rotate
operation in the message expansion and is commonly referred to as SHA1

[6]. SHA0 and SHA1 produce a message digest of 160bits and are based on
a Merkle-Damgard construction. SHA1 was widely deployed and viewed
as the standard for collision resisitant hashing but it was later shown that
one could find collisons via a birthday attack using 280 evaluations of the
function in expectance [6]. In 2005 Xiaoyun Wang et al presented a new
technique to find collisions in SHA1 with 269 evaluations of the function [30].
In 2002 NIST published the specifications of the SHA2 family [24].

SHA2 The SHA2 family consists of 4 different hash functions, namely SHA 224,
SHA 256, SHA 384 and SHA 512 which produce a hash value equal to their
respective suffixes. SHA 224 and SHA 384 are derived from SHA 256 and
SHA 512 by truncating the final output. They are based on a Merkle-Damgard
construction and use a Davies-Meyer compression function. Their crypto-
graphic strenghths are summarized in Table 2.1.

SHA3 In 2006 NIST organized a hash function competition to create a new
hash standard. The winner of this contest was annonced in 2015 and is now
known as the SHA3 family [12]. The family consists of four cryptographic
hash functions called SHA3 224, SHA3 256, SHA3 384 and SHA3 512. They
each produce a hash value equal to their suffixes. They are complemented
by two extendable-output functions (XOFs) called Shake128 and Shake256

which can produce an infinite output stream. Unlike their predecessors they
are based on a sponge construction and internally use the KECCAK-f cryp-
tographic permutation designed by Guido Bertoni, Joan Daemen, Michael
Peeters and Gilles Van Assche [3]. Their cryptographic strengths are sum-
marized in Table 2.1.
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2. Background

Function Output Size Collision Preimage 2nd Preimage

SHA 1 160 <80 160 160-L(M)
SHA 224 224 112 224 min(224,256-L(M))
SHA 256 256 128 256 256-L(M)
SHA 384 384 192 384 384
SHA 512 512 256 512 512-L(M)
SHA3 224 224 112 224 224
SHA3 256 256 128 256 256
SHA3 384 384 192 384 384
SHA3 512 512 256 512 512
Shake128 d min(d/2, 128) ≥min(d,128) min(d,128)
Shake256 d min(d/2, 256) ≥min(d,256) min(d,256)

Table 2.1: Cryprographic strength of SHA hash functions. Numbers were
taken from [12] Table 4.

2.1.3 Siphash

Siphash [4] is a family of add-rotate-xor based pseudorandom functions that
were introduced in 2012 by Jean-Philippe Aumasson and Daniel J. Bernstein.
It is optimzed for short inputs and it’s target applications include network
traffic authentication and hash-table lookups. Siphash uses a 128bit key and
produces a 64bit output for a variable length input. During the compression
and the finalization rounds Siphash iterates a simple round function called
SipRound. This functions consists of four additions, four xors and six rota-
tions, interleaved with xors of the intermediate message blocks. Siphash c d

uses c iterations of the round function during the compression step and d it-
erations during the finalization step. The recommended versions of Siphash
for the best performance are Siphash 2 4 and Siphash 4 8 for more conser-
vative security properties. Siphash is cryptographically strong but since it
does not provide collision resistance it is not cryptographically secure.

2.1.4 Blake

The initial Blake [5] hash function family was proposed by Jean-Philippe
Aumasson et al and was submitted to the NIST hash function competition
in 2008. It was one of the three finalists and uses a HAIFA construction.
The family consists of four distinct hash functions called Blake-224, Blake-
256, Blake-384 and Blake-512. They each produce a hash value equal to
their suffixes. In 2012 the Blake2 family was introduced which consists of
two hash functions called Blake2b and Blake2s which produce a hash value
of 512bits and 256bits. They are complemented by two extendable-output
function called Blake2bp and Blake2sp [1]. The cryptographic strength of
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2.2. Bloom Filter

Function Output Size Collision Preimage 2nd Preimage

Blake-256 256 128 256 256
Blake-512 512 256 512 512
Blake2s 256 128 256 256
Blake2b 512 256 512 512

Table 2.2: Cryprographic strength of Blake hash functions. Numbers were
taken from [2].

the Blake functions are summarized in Table 2.2.

2.2 Bloom Filter

A Bloom Filter [8] is a probabilistic data structure which can be used to
construct a compact representation for a set of elements. This representation
allows queries for insertion and for set-membership with constant time. The
price of compactness and constant time is the introduction of uncertainty.
The way a Bloom filter is constructed allows for queries to have a certain
false positive probability, meaning that the query returns the element is in
the set even though it is not. A false negative on the other hand is not
possible.

A Bloom Filter consists of a bitarray b of size m and a set of hash functions
{h1(), ..., hk()}. Initially all m bits of the bitarray are set to 0. In order to insert
an element e, we first calculate the k hash values of e h1(e), ..., hk(e). We use
those hash values as an index for the bitarray and set the corresponding
bit-cells to 1. To answer a query for set-membership for an element e′, we
calculate the k hash values for e′ and again use them as an index into the
bitarray. If all the corresponding cells are set to 1, the query returns that e′

is contained in the set. If at least one cell is set to 0, it returns that e’ is not
contained. A set-membership query for an element that was inserted into
filter will always correctly return true. For an element that was not inserted,
there remains a certain probability that each of its k hash values collides
with those of some other inserted elements. In this cast the membership
query would return that the elements is in the set eventhough it is not. This
probability is called the false positive probability of the filter. Figure 2.3
gives a visualization of Bloom Filters and Figure 2.2 shows the pseudocode
for the creation of a Bloom Filter used in Mozilla’s CRLite implementation.

Normally, when using a Bloom Filter, the false positive probability p is set
as a design constraint which represents the tradeoff between uncertainty
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2. Background

and size of the resulting filter. A certain false positive probability p can be
achieved by setting the size m of the bitarray and the number of hash func-
tions k accordingly. It was shown that for a given false positive probability
p the size of the resulting Bloom filter can be minimized by setting

k = log2(1/p) (2.1)

m = (r ∗ ln(1/p))/(ln(2))2 ≈ 1.44 ∗ |R| ∗ log2(1/p) (2.2)
as explained in [21]. The derivation of those formulas make the assumtions
that m and r are large, that log2(1/p) is close to integral and that the used
hash functions hi are perfectly uniform. Now let us also make the assump-
tion that all set-membership queries come from a finite known set U and we
want to use a Bloom Filter to distinguish whether an element is in the set
R ⊆ U or in S = U \ R. The problem is if a set membership query returns
that an element was inserted in the filter, we cannot be sure if it is a true
positive or a false positive. But since the expected number of false positives
is E(| f p|) = p ∗ |S| we can see that the set of true positives plus the set of
false positives is in expectation strictly smaller than the initial set U for a
probability p < 1:

E[| f p|] + |R| = p ∗ |S|+ |R| < |S|+ |R| = |U|
This observation leads us to the idea that one could use a second Bloom
Filter to distinguish between the true positives and the false positives. We
can then use a third filter to distinguish the true and false positives of the
second filter and so on. Since the sizes of the used sets keep decreasing in
expectation at each layer, we will at some point reach a layer where there
are no more false positives. And this insight brings us to the topic of Bloom
Filter Cascades or Multi Level Bloom Filter.
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2.2. Bloom Filter

a Insert element into a Bloom filter
1: procedure insert(b,elem,{h1(), ..., hk()}))
2: for hi() in {h1(), ..., hk()} do
3: index ← hi(elem) mod |b|
4: b[index] = 1
5: end for
6: return b

b Set-membership query

1: procedure contains(b,elem,{h1(), ..., hk()}))
2: for hi() in {h1(), ..., hk()} do
3: index ← hi(elem) mod |b|
4: if b[index] == 0 then
5: return False
6: end if
7: end for
8: return True

Figure 2.1: Pseudocode for the set-membership query and the insert
operation for a Bloom filter. The Input parameters are b:= the bitarray of
the Bloom filter, elem:=The element to insert or perform set-membership
query, {h1(), ..., hk()}:= The set of hash functions to use. The Output of a) is
the updated bitarray and b) returns a boolean value indicating if the
element is in the Bloom filter or not.

11



2. Background

Algorithm 1 Generate a Bloom filter

1: procedure generate Bloom filter(include set, p)
2: m← d1.44 ∗ |include set| ∗ log2(1/p)e
3: k← dlog2(1/p)e
4: bitarray = 0m

5: {h1(), ..., hk()} ← choose hashes(k)
6: for elem in include set do
7: b ← insert(bitarray, elem,{h1(), ..., hk}, m)
8: end for
9: return bitarray

Figure 2.2: Pseudocode for the generation of a Bloom filter. The Input
parameter is the include set:= The elements that should be inserted in the
filter. The Output is a Bloom filter in which the elements provided as input
were inserted.

a b

h1(a) h2(a) h1(b) h2(b)

a c d

h1(a)
h2(a)

h1(c) h2(c)
h1(d)

h2(d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 1 1

Figure 2.3: This Figure visualizes the insert and the lookup operation for a
Bloom Filter. We use a bitarray of size 20 and 2 hash functions {h1(), h2()}.
The elements {a, b} (top) get inserted into the bitarray. A
membership-query is performed for elements {a, c, d} (bottom). The
membership-queries result in a true positive for a, a true negativev for c
and a false positive for d.

2.2.1 Cascaded Bloom Filter

The idea of using multiple Bloom Filter in a Cascade BFC = [BF1, BF2, ...] can
be used to construct a compact representation for a set of elements which

12



2.2. Bloom Filter

supports set-membership queries without the possibility of a false positive.
However, this is only possible under the assuption that all set-membership
queries come from a finite set U which is known at creation time.

Constructing a Bloom Filter Cascade: If we want to construct a Bloom
Filter Cascade for a set R ⊆ U and a finite known set U, we start by con-
structing the first filter BF1. To do so, we pick a false positive rate p1 and set
the size m1 and the number of hash functions k1 of the filter according to the
Formulas 2.2 and 2.1. After we inserted all elements of R into the bitarray,
we proceed to do a set-membership query for all elements in S = U \ R. All
queries with a positive return value represent a false positive and we there-
fore add the elements that triggered them into the false positive set f p1.
Now we want to store the elements of f p1 in a second Bloom Filter BF2 and
we therefore initialize another Bloom Filter BF2 with m2 and k2 according to
p2 and the Formulas for optimal k ( 2.1) and m ( 2.2). Aftwerwards we pro-
ceed to add all the elements of f p1 to the bitarray. The purpose of the second
filter is to be able to distinguish whether and element e ∈ U for which the
set membership query to the first filter has a positive return value, is indeed
an element of R (true positive) or an element of S (false postive). Hence we
want the set membership query to the second filter to have a positive return
value for all elements in f p1 and a negative return value for all elements in
R. However there might be some elements from R that when queried to the
second filter result in a positive return value.

We can then use a third Bloom Filter BF3 to distinguish between the true
and the false positives of the second layer and another to distinguish the
true and false positives of the third filter and so on.

In essence, we use the i-th Bloom Filter BFi to distinguish between the true
and the false positives of the layer (i− 1). Hence we want to insert the false
positives of BFi−1 and use the true positives of layer (i − 1) to search for
false positives of layer i. We denote them as the include and exclude set for
filter i:

include seti = f pi−1

exclude seti = include seti−1

This process is repeated until we reach a filter with no false positives. At
that point we have eliminated the uncertainty of standard Bloom Filters and
have nevertheless obtained a compact representation for R which allows for
set-membership queries for all elements in U = R∪ S without the possibilty
of false positives or false negatives.

We know that if layer 1 contains e but layer 2 does not, e is in R. The way we
constructed the cascade this can be be generalized to all layers. We always
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2. Background

continue to look up e in all layers in order until we reach the first one that
does not contain e. Let us assume that the first layer that does not contain e
is layer i. We can then answer the query in the following way:

if i is odd ⇒ e is in S

if i is even ⇒ e is in R

If element e is included in all layers of the cascade then the answer depends
on n, the number of layers of the cascade:

i f n is odd⇒ e is in R

i f n is even⇒ e is in S

Figure 2.4 shows a visualization of the creation process and the set-membership
queries of Bloom filter cascades. Figure 2.5 shows the pseudocode for the
creation process of a Bloom filter.

R S

1 2

3

4

5

6

False positives

False positives

∅

(a) Creation process of a Bloom Filter
cascade. Solid arrows represent
insert operations, dashed arrows
represent set-membership queries to
find false positives. The indizes
show the order in which the steps
are executed.

element

contains()

contains()

contains()

S

R

SR

False

False

FalseTrue

True

True

(b) Set-membership query for a BFC.
We lookup the element in all filters
in order to determine the set it
belongs to.

Figure 2.4: Subfigure a) shows the creation process of a Bloom Filter
cascade. Subfigure b) shows the set-membership query of a Bloom Filter
cascade. The set R holds the elements that get inserted and S holds the
elements that are not inserted but can be queried for set-membership.
Figures were inspired by [16] Fig. 1 and 2.
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2.2. Bloom Filter

Algorithm 2 Generate a Bloom filter cascade

1: procedure generate BFC(include set, exclude set, {p1, ...}))
2: cascade← []
3: depth← 1
4: while |include set| > 0 do
5: cascadedepth ← generate Bloom Filter(include set, pdepth)
6: f p set← ∅
7: for elem in exclude set do
8: if contains(cascadedepth, elem) then
9: f p set.add(elem)

10: end if
11: end for
12: exclude set← include set
13: include set← f p set
14: depth← depth + 1
15: end while
16: return cascade

Figure 2.5: Pseudocode for the generation of a Bloom filter cascade. The
Input parameters are the include set and the exclude set for the first Bloom
filter in the Cascade. The Output is a Bloom filter cascade that allows
set-membership queries for all certificates in the provided input sets.
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Chapter 3

Certificate revocation and CRLite

3.1 The Web’s Public Key Infrastructure

Nowadays many websites and other internet applications require some se-
curitiy features for the underlying communication channel. The Hypertext
Transfer Protocol Secure (HTTPS) [26] uses Transport Layer Security (TLS)
[27] coupled with the Web’s Public Key Infrastructure (PKI) to create a com-
munication channel which provides authentication, confidentiality and in-
tergrity for 2 or more applications communicating over the web. The TLS
protocol iteself mostly relies on X.509 certificates, which have to be issued
and cryptographically signed by a trusted Certificate Authority (CA). The
certificate thereby binds an identity (domain name) to a public key by the
use of a digital signature. X.509 Certificates can be extended to also contain
a Policy Verifier which indicates that the CA has performed additional steps
to verify the identity of the issuer. Those certificates are called EV-certificates
(Extended Validation) and are meant to provide greater assurance to clients
that the issuer was properly verified. Each user has to chose a set of trusted
root CA’s. Those root CA’s can issue intermediate CA’s which in turn can
issue more intermediate CA’s and also leaf certificates. The owner of a leaf
certificate cannot issue any certificates. When the user tries to establish a
HTTPS connection with a web-site, the server sends a series of certificates
to the client. This series has to form a chain of trust which starts in one
of the root CA’s trusted by the client and ends in the leaf certificate of the
web-service you are trying to establish a connection with. The client verifies
that chain of trust and if all certificates check out, he can be sure that a mes-
sage signed with the private key of the leaf certificate comes indeed from
the owner of the certificate. To verify the chain of trust sent to the client,
he has to verify the signatures of the certificates, review the validity period,
and check whether the root CA is in his set of trusted root CA’s. The last
step of this verification process is to check whether one of the certificates in
the obtained chain of trust has been revoked [18].
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3.1.1 Certificate revocation:

A certificate which is no longer trustable prior to its expiration date can be
revoked by the issuing CA. The owner of the certificate can instruct the issu-
ing CA to revoke the certificate at any point in time. A certificate can become
untrustworthy for numerous reasons, such as a change in the useage of the
certificate or if the owner of the certificate becomes untrustworthy. But the
most important reason is if the private key of a certificate has been compro-
mized. If those cases occur and the certificate does not get revoked, all the
users will keep trusting the owner of the certificate until it reaches its expira-
tion date. An attacker could use such a untrustworthy but non-revoked cer-
tificate to perform effective Man-in-the-Middle and phishing attacks against
clients. If the certificate in question is an intermediate or a root certificate
whose private key was compromized, the attacker could even forge valid
vertificates for any domain he wishes. Therefore it is important that those
certificates get revoked and that the client checks the revocation status of the
certificates before establishing a connection. Currently there are two widely
adoped methods to check for the revocation status of a X.509 certificate:

Certificate Revocation List (CRL): A CRL is basically a list of tuples of the
form (serial number, revocation-timestamp, reason for revocation). These
tuples are then collectively signed by the CA that publishes the CRL. To
verify the revocation status of a certificate with this method, the user has
to download the CRL file and then check whether the serial number of
the certificate in question appears in the list. The main problem with this
method is that the client has to periodically download the information about
all revoked certificates, even if he is only interested in some. Since those
revocation lists can grow to sizes of > 70MB it will not only take a lot
of bandwidth to periodically download the latest CRL, but can become a
storage-problem on resource constrained devices like mobile phones.

Onlince Certificate Status Protocol (OCSP): OCSP was designed to avoid
the overhead of Certificate Revocation Lists. With OCSP a client can generate
a HTTP request to a CA, to query it for the revocation status of a single
certificate’s serial number. The CA then returns a signed response for the
certificates current revocation status. This method brings a potential privacy
risk as it reveals the browsing behavior of the client to the queried CA. In
addition, the OCSP request will increase the loading time of a webservice by
its roundtrip time. To avoid this problem the OCSP Stapling extension was
introduced, which allows the server to cache the OCSP responses for the
certificates in its chain of trust and include them in the TLS handshake with
the client. Therefore the clients recieve the servers certificate and the OCSP
response at the initialization of the connection and do not have to query a
third party themselves. This extension also avoids the privacy concerns since
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the third party would now be queried by the server and therefore could not
infer who accessed the service.

Revocation checking in practice: We explained above that the threats that
occur by not checking for the revocation status of certificates are immediate
and that there are methods in place to do so.

In March 2020 George Huston conducted a test where he used Let’s En-
crypt to generate a valid certificate and then revoked it. He then used
various browsers to connect to a site that uses this revoked certificate to
observe their behaviour. On Windows 10 the browseres Chrome (version
80.0.3987.132) and Opera (version 67) did not detect the revocation and con-
nected to the website. On Android 10 all tested browsers, namely Chrome
(version 80.0.3987.132), Firefox (version 68.6.0) and Opera (version 56.1),
failed to detect the revocation of the certificate [13].

Apart from the reasons we explained above (storage, privacy, latency) this is
mostly due to the fact that all existing systems adopt a fail-open model. A
fail-open model means that if they cannot determine the revocation status
of a certificate, (e.g. if the browser cannot resolve the domain name of the
CRL server or the OCSP server is down), they simply view the certificate as
valid. Therefore an attacker can simply block all revocation status requests
and thereby disable the whole revocation checking mechanism. A fail-closed
solution would assume a certificate to be invalid if its revocation status can’t
be determined and would therefore be more secure, but browser vendors
argue that implementing it that way with the currently available methods
would lead an unacceptable level of failures for the client. To address these
problems Mozilla has deployed a mechanism called CRLite which we will
explain in the next section [16].

3.2 CRLite

CRLite [16] is a system for revocation checking that proactively pushes all
certificate revocations to all browsers instead of relying on a pull model
where clients download the revocation information on-demand. It was pre-
sented in 2017 at the IEEE Symposium on Security and Privacy by James
Larisch et al [16]. The following section summarizes how CRLite works,
what challenges it addresses and how the parameters for the Bloom filter
cascade were chosen. For more details we refer to the original paper. CR-
Lite consists of a server-side system and a client-side system.

Server-side: VanderSloot et al have shown that > 99% of all TLS certificates
existing in the web can be obtained by using full IPv4 scans on port 443 and
Google’s CT logs [29]. The server-side uses those methods to periodically
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aggregate information for all obtainable TLS certificates. It then extracts
the OCSP and the CRL responders from those certificates, downloads all
extracted CRL’s and queries the respective OCSP responders to determine
the revocation status of the certificates. It therefore divides the set of all
obtained TLS certificates U into two mutual exclusive sets of valid certifi-
cates S and revoked certificates R. We explained in Section 2.2 that under
those conditions one can construct a compact representation for those sets
which allows for set-membership queries with a definite answer through a
Bloom Filter Cascade. The set of revoked certificates will be inserted in the
first Bloom filter and is denoted as R. The set of valid certificates is used to
search for false positives in the first Bloom filter and will be denoted as S

Client-side: The client-side downloads the Bloom Filter Cascade constructed
by the server-side and can then query it locally to determine the revocation
status of the certificates it encounters.

This method of checking certificate revocation adresses six challenges:

1) Efficiency: During April 2022 CRLite included around 175Million cer-
tificates and the resulting size of the resulting Bloom filter cascade was
about 6.8MB.

2) Timeliness: CRLite constructs a new filter 4 times per day.

3) Fail-closed: CRLite contains all revocations and the filter cascade is
stored locally which eliminates the problem of unreachability of the
responder and therefore allows the client to adopt a fail-closed model
without an unreasonable amount of connection failures.

4) Privacy: After downloading the filter cascade clients can query it lo-
cally and therefore don’t reveal their browsing behaviour to any third
party.

5) Deployability: CRLite does not require any changes to the current
TLS system nor any additional steps by the CA’s and can therefore
easily be integrated into any browser today.

6) Auditability: CRLite provides cryptographically signed logs which
allow any client to audit/verify the filter it downloads.

False Positive Rates: For the construction of a Bloom Filter cascade, one
has to chose a certain error rate for every filter in the cascade. Mozilla
deployed the strategy using one false positive probability p1 for the first
layer and a second false positive probability p for all subsequent layers as
suggested by the paper introducing CRLite. The authors suggested to use

p1 = |R| ∗
√

0.5
|S| (3.1)
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in order to get an expected include-set size for layer 2 of size |R| ∗ √p.
Therefore the ratio between the expected include set size and the exclude
set size for layer 2 is

√
p. For p they suggest a false positive probability of

0.5 in order to maintain the same ratio between the expected include set size
and the exclude set size throughout all layers:

E[|includei|]/|excludei| = E[| f pi−1|]/|excludei| =
√

p

This strategy was propsed because their analysis has shown that it will result
in a Filter Cascade with a size that is competetive with the theoretical lower
bound. Other criteria like creation time and number of hashes were not
considered for the choice of the false positive probabilities [16].

Hash functions and rounding: CRLite does not use a set of hash functions
but only one specific hash function. To obtain different hash values on differ-
ent layers, it uses a concatenation of the hash number 1, ..., k and the current
layer as a seed. To obtain integer values for the size of the bitarray and the
number of hash functions CRLite uses the ceil function.
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Chapter 4

Hash function selection for CRLite

The choice of the hash function to use, for the creation of the filter, is of great
importance. Not only can this choice introduce or avoid security risks, but
it will influence all 3 major properties of the filter creation, we are trying to
optimize. Namely the size, the creation time and the lookup time.

4.1 Current Implementation

The current implementation of CRLites uses Murmerhash3 for the construc-
tion of the filter. Murmerhash3 was chosen simply because it is designed
for speed. Other hash functions were tested, but none were faster and ap-
parently no other criteria, like cryptographic properties, were considered
[16].

4.2 Important properties

In order to avoid security risks in the future, we will only consider crypto-
graphic hash functions.

A great amount of the time needed to create the filter, or do a lookup in
the filter, is spent with calculating hashes. Therefore the lookup time and
the creation time are highly dependent on the speed of the used hash func-
tion, which is why Murmerhash3 was chosen in the first place. Hence we
also have great interest in picking a fast hash function, and will therefore
consider speed as the second criteria.

The last property we will consider is the uniformity of the hash functions,
which will have high impact on the size of the Bloom Filter. It was shown
that for a Bloom Filter, the optimal results in terms of size are achieved when
the optimized Bloom filter looks like a random bit string, meaning each bit
in the filter should be 0 or 1 with probability of 1/2. This distribution of

23
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1s and 0s could be achieved by using a fully uniform hash function during
the creation of the Bloom Filter [21]. In order to minimize the bandwidth
needed to download a new filter, we want our cascade to be as small as
possible, and hence we want our chosen hash function to be as uniform as
possible.

4.3 Evaluating hash functions

Measuring the uniformity of a hash function is quite difficult. But we are
not actually interested in the uniformity itself, but in its influence on the
size. Hence instead of trying to quantify the uniformity of our considered
hash functions, we are going to generate some random certificate sets and
then use those hash functions to create a filter cascade. We then use the size
of those cascades to compare the performance of the hash functions.

Measuring the speed of a hash function on a CRLite-certificate, could be
done by simply using the average time it takes to compute the hash for
one certificate. We could obtain this value by generating a random set of
certificates and measuring the time it takes to compute the hashes for all
elements in the set. We then simply have to divide by the size of the set to
get the average hash time.

As explained above, the majority of the creation time and the lookup time is
spent calculating the hashes of the certificates for every layer. Therefore the
lookup time and the creation time for a filter, not only depend on the time
it takes to compute the hashes, but also on the number of hashes we have
to compute. To take this into account we will measure the time we spent
calculating hashes during the creation of the cascade and use this value to
compare the performance of the functions.

4.4 Generating random CRLite-certificates

Each certificate consists of an issuer’s subject public key info (spki) hash,
which represents the Certificate Authority that signed the certificate, and a
certificate serial number. As of December 2021, Firefox has 580 Certificate
Autorities enrolled in their CRLite system. For each certificate we generate,
we will pick one of those 580 spki hashes at random.

The serial number of a certificate has to fulfill certain properties but can
otherwise be freely chosen by the signing Certificate Authority.

” As per RFC 5280 §4.1.2.2, serial numbers MUST be unique, not greater
than 20 bytes long non-negative integer and at least 1 bit must be enabled in
first byte. If first byte is zero, this byte is truncated unless it is the only byte.
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This means the first byte must be in range 0x0÷0x7f with a whole integer
value up to 20 bytes. 0x00 0x00 0x01 serial number is truncated to 0x01. Var-
ious CA engines implement different serial number generation algorithms.
There is no restriction to CA’s on using sequential serial numbers, starting
with 0x00, 0x01, 0x02, etc. (excluding 0x80÷0xff range for most significant
byte) ” [25]. In 2008 a vulnerability in the Internet Public Key Infrastruc-
ture used to issue digital certificates for secure websites, was found and
exploited. This vulnerability took advantage of a weakness in the MD5 hash
function and thereby enabled the attackers to obtain a rogue Certification
Authority certificate which was trusted by all common web browsers. This
attack can only be used against Certification Authorities that enable us to
predict their future serial numbers by using sequentially generated serial
numbers [11]. For this reason nowadays most Certification Authorities use
cryptographically random serial numbers.

To chose the length of the serial numbers we want to use, we picked a
reference dataset and observed that most of the serial numbers used were
between 11 and 18 bytes long. Therefore for our certificates we will first
generate a random number between 11 and 18 and then generate a random
bytestring of that length to use as serial number.

Algorithm 3 Generating random CRLite certificates

1: procedure Generate random certificate(spki hash set)
2: random spki hash← Pick random(spki hash set)
3: serial number len← Pick random({11, ..., 18})
4: random serial number ← gen random bytes(serial number len)
5: return (random spki hash, random serial number)

Figure 4.1: Pseudocode for generating random CRLite certificates. The
Input parameter is spki hash set:= A set of subject public key hashes to use.
The Output is a randomly generated CRLite certificate.

4.5 Experimental setup and results

Before we can start our simulation we have to choose adequate sizes for
the sets of revoked and valid certificates. For the set of revoked certificates
we chose to use the number of revoked certificates that Mozilla included in
their cascade during December 2021, which is around 5.200.000. The false
positive probability on the first layer will ensure that the include set and the
exclude set of the second layer have an expected ratio of

√
p. Therfore the

size of the set of valid certificates will not influence the expected sizes for
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the include and exclude sets for the higher layers and neither the expected
number of layers the cascade has. To save time we therefore chose to not
use the number of valid certificates that Mozilla included during december
2021, but only one tenth of it. This number comes down to 15.600.000. We
will use the same set sizes for all experiments presented in this thesis.

Each simulation run consists of two steps:

1) Generate random certificate sets We begin by generating random sets
of revoked and valid certificates. This can be done through repeated calls to
the GENERATE RANDOM CERTIFICATE() function given in Figure 4.1. To use
less main memory we are going to store the valid certificate set on the disk.
For our choice of set sizes the include and exclude sets after the first layer
are small enough such that we can continue using only main memory for
the subsequent layer.

2) Creating Filter Cascades With the random sets generated, we can start
to create a cascade on this input, using every hash function we want to study
in turn. During the creation we will measure the time we spent caluclating
the hashes needed for it’s construction. When the creation of the cascade is
finished, we return the size of the cascade and the time measurements for
the hashes.
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Algorithm 4 Performance evaluation of hash functions

1: procedure Evaluate performance(hash set, num revoked, num valid)
2: revoked set← generate random cert set(num revoked)
3: valid f ile← generate random cert file(num valid)
4: p1 ← num revoked ∗

√
0.5

num valid
5: f pp set← {p1, 0.5, ..., 0.5}
6: for hashi in hash set do
7: sizei, total hash timei ← generate BFC(revoked set, valid f ile, f pp set, hashi)
8: end for
9: return size, total hash time

Figure 4.2: Pseudocode to evaluate the performance of different hash
functions for their use in the Bloom filter cascade underlying CRLite. The
Input parameters are hash set:=The set of hash functions to evaluate and
num revoked, num valid:= number of revoked and valid certificates to use
during construction of the BFC. The Output is the measurements of the
size of the resulting cascade and the time needed to calculate the hashes
during construction. We used the GENERATE BFC() function presented in
Figure 2.5 and added a fourth input parameter hashi, which represents the
hash funtion to use for the construction of the Bloom filters.

4.5.1 Result

(a) Comparison of size (b) Comparison of speed

Figure 4.3: Comparison of the measured properties of different hash
functions.

We conducted 1000 test runs of our simulator with the hash functions SHA 256,
SHA 384, SHA3 256, SHA3 384, Shake128, Shake256, Siphash 2 4 and Blake2b.
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We used the Siphash 2 4 implementation of the python csiphash library.
For all the other hash functions we used the implementation provided by
the hashlib python library.

The sizes of the resulting cascades and the time needed to calculate the
hashes during construction are plotted in Figure 4.3. Every black dot repre-
sents the average of 100 simulation runs and the red dots show the average
over all 1000 simulation runs. Every simulation run was done with a new
randomly generated set of certificates.

When examining Subfigure 4.3 a) we can see that on average SHA3 256

resulted in the cascade with the least bits and it also had the least variance in
terms of size. The second best hash function in terms of size of the resulting
cascade was Shake256 followed by Blake2b. In Subfigure 4.3 b) we can
see that the fastest hash on average was SHA 256 followed by SHA 384 and
SHA3 256. If one were to highly favorize the speed of the hash function we
recommend the use of SHA 256 since it was on average 30.579 seconds faster
than SHA3 256. But the cascades constructed with SHA3 256 had on average
611 bits less and we therefore recommend the use of SHA3 256 over SHA 256

for the use in the construction of the Bloom filter cascade underlying CRLite.
We will continue to use SHA3 256 for all following simulations in this thesis.
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Parameter selection for CRLite

In Subsection 2.2 we have shown that for a chosen error rate, one can cal-
culate the ideal values for the size of the filter and the number of hash
functions to use. The error probability is a design constraint of the filter
cascade and there is no proven ideal value for it.

It was shown that the strategy of using one error probability p1 for layer 1
and a second error probability p for all higher layers, will result in a filter
cascade with a size that is competitive with the proven lower bound for a
cascade. This strategy had slightly better results in terms of size than prior
work which assumes a single error probability for all levels [16].

This sparks the idea of using multiple different error probabilities to fur-
ther improve the properties of the resulting cascade. While prior work only
chose their values to minimize the size of the cascade, we will also consider
the time needed to create the cascade and the number of hashes needed to
create the cascade. The number of hashes calculated during the creation of
the cascade is always the same as the number of hashes one has to calculate
to perform a set-membership query for every certificate used during cre-
ation. Since most of the time it takes to perform a set-membership query
is spent with the calculation of the hashes, we will take this number as a
measurement for the time it takes to perform a set membership-query with
the cascade.

5.1 Naive Brute Force search

With infinite computing power and infinite memory, brute force searching
the best parameters for all layers in a CRLite filter cascade would be no
problem. One could do so by generating a random set of certificates and
then create a cascade with it, for all possible combinations of error proba-
bilities. After repeating this process a number of times, we pick the set of

29



5. Parameter selection for CRLite

error probabilities that on average resulted in the cascade which fullfilled
our preferences towards the properties of the cascade the best. In the non-
theoretical world the available amount of computing power and memory is
always limited. Searching the interval [0.2,0.7] with a stepsize of 0.02 for 20
layers would require us to create 2520 cascades. Even if we could create a
cascade in 1 microsecond, this would take at least 2.882 ∗ 1014 years. Since
this would clearly exceed the time frame of this thesis we will consider this
approach infeasable.

5.2 Layer by Layer search

The approach described in the following section is inspired by the strategy
suggested by James Laritsch et al. Instead of searching all possible combi-
nations of parameters, we will try to optimize the false positive probabilities
layer by layer. We will use the p1 suggested in the paper introducing CRLite
and will therefore start our parameter search at layer two. After we selected
an adequate false positive probability for layer two we will continue our
search for the probabilties for the higher layers one after another.

Optimization function f(): To pick an adequate false positive probability
for each layer we introduce an optimization function that takes the size, the
creation time and the number of hashes used during creation into account.
This function can be extended to also consider other properties -like the
number of layers- one wishes to minimize.

We first create a number of cascades with different sets of false positive prob-
abilities and measure the number of hashes used, the creation time and the
size of the resulting cascade. We then average the obtained measurements
and store them in an avg array, one per the property of interest.

To compare the cascades with different false positive probabilities we calcu-
late the percentage increase from the minimal obtained value for all of our
three measurements. We do so by first subtracting the minimial value from
all measurements in the array and then dividing by it.

percent propertyi( f pp) =
avg propertyi[ f pp]−min(avg propertyi)

min(avg propertyi)
(5.1)

Putting all the obtained percentage arrays in one plot will show us the pos-
sible tradeoffs of the different false positive probabilities. We then proceed
to calculate the weighted sum of those percentages.
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f ( f pp) =w1 ∗ percent size( f pp)+
w2 ∗ percent hashes( f pp)+
w3 ∗ percent time( f pp)+

∑ wi ∗ percent propertyi( f pp)

(5.2)

For our experiments we want to view the size, the number of hashes and
the creation time as equally important and not consider other criteria. We
therefore use w1 = w2 = w3 = 1 and wi = 0 for i > 3. We then select the
false positive probability that resulted in the minimal value of our optimiza-
tion function. To put emphasis on a property/properties one simply has to
adjust the corresponding weight.

First Iteration: In the following description we are going to use the nota-
tion p1

i for the false positive probability we selected for layer i. For the false
positive probability we are using on layer j during our optimization process
we will use the notation pj.

During the search for an adquate p1
i we are going to create the first (i− 1)

layers of a cascade with the false positive probabilities we already selected
for those layers. For every cascade we create we use a random set of valid
and revoked certificates as described in Section 4.5.

pl = p1
l f or l = 2, ..., (i− 1)

For each false positive probability we want to consider f ppcandidate we copy
the first (i − 1) layers and continue the creation of the cascade with the
probabilities

ph = f ppcandidate f or h = i, ..., n

After we created a number of cascades we use the optimization function to
select p1

i and continue searching for p1
i+1. This process can be described by

the pseudocode given in Figure 5.1. Once we chose a set of false positive
probabilities for n layers, we will take them as a starting point to further
improve the chosen set by reiterating all layers one after another.
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Algorithm 5 First iteration

1: procedure First iteration(n, num reps, set sizes)
2: for i = 2,...,n do
3: for num reps do
4: cert sets1 ← Generate random cert sets(set sizes)
5: start cascade, cert setsi ← generate lower layers([p1

1, ..., p1
i−1], cert sets1)

6: for f ppcandidate do
7: f pp set← [ f ppcandidate, ..., f ppcandidate]
8: data[ f ppcandidate]← continue creation( f pp set, start cascade, cert setsi)
9: end for

10: end for
11: p1

i ← optimization function(data)
12: end for
13: return {p1

2, ..., p1
n}

Figure 5.1: Pseudocode for the first iteration of our framework. The Input
parameters are n:= the number of layers to search, num reps:=the number
of simulation runs to conduct for the selection of p1

i and set sizes:= the
number of valid and revoked certificates to use. The Output is the set of n
false positive probabilities that resulted in the minimum value of the
optimization function.

j-th iteration: We will now use the notation pj
i for the false positive proba-

bility we selected for layer i during the j-th iteration. When searching for pj
i

we will create the first (i− 1) layers of a cascade with the error probabilities
we selected for those layers during the current iteration.

pl = pj
l f or l = 2, ..., (i− 1)

We will then continue the creation of the cascade with pi = f ppcandidate for
every f ppcandidate we want to inclue in our search. The difference to the first
iteration is that we will use the false positive probabilities we chose during
the preceeding iteration for all the higher layers

ph = pj−1
h f or h = (i + 1), ..., n
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Algorithm 6 j-th iteration

1: procedure Reiteration(n, {pj−1
2 , ..., pj−1

n }, num reps, set sizes)
2: for i = 2,...,n do
3: for num reps do
4: cert sets1 ← Generate random cert sets(set sizes)
5: start cascade, cert seti ← generate lower layers([pj

1, ..., pj
i−1], cert sets)

6: for f ppcandidate do
7: f pp set← [ f ppcandidate, pj−1

2 , ..., pj−1
n ]

8: data[ f ppcandidate]← continue creation( f pp set, start cascade, cert seti)
9: end for

10: end for
11: pj

i ← optimization function(data)
12: end for
13: return {pj

2, ..., pj
n}

Figure 5.2: Pseudocode for the subsequent iterations of our framework.
The Input parameters are n:= the number of layers to search,
{pj−1

2 , ..., pj−1
n }:= the n false positive probabilities that were selected in the

previous iteration, num reps:=the number of simulation runs to conduct for
the selection of pj

i and set sizes:= the number of valid and revoked
certificates to use. The Output is the set of n false positive probabilities that
resulted in the minimium value of the optimization function.

Performance evaluation: After each iteration we will evaluate the perfor-
mance of the selected false positive probabilities through a slightly adaped
version of the optimization function. We do so by creating a number of
cascades with the newly selected and the ”original” false positive probabil-
ities suggested by James Larisch et al. For this comparison we will use the
full sized data set, meaning we will use 5.200.000 revoked certificates and
156.000.000 valid certificates. We measure the number of hashes used, the
creation time and the size of the created cascades. We then proceed to aver-
age the obtained measurements and calculate the percentage changes of the
cascades with the selected false positive probabilities in comparison with
the ”original” false positive probabilities.

percent propertyi({pj
2, ..., pj

n}) =
avg propertyi[{0.5, ...}]− avg propertyi[{pj

2, ..., pj
n}]

avg propertyi[{0.5, ...}]
(5.3)
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We then summarize the performance of our newly selected false positive
probabilities in one value by calculating the weighted sum of the percentage
changes.

per f ({pj
2, ..., pj

n}) = ∑ wi ∗ percent propertyi({pj
2, ..., pj

n})

For this calculation one should use the same weights as in Formula 5.2
of the optimization function for the corresponding properties. We therefore
use wi = 1 for the size, the creation time and the number of hashes used dur-
ing the creation. If the performance of the j-th iteration did not improve in
comparison with the (j−1)-th iteration, we stop the reiteration process. We
then return the set of false positive probabilities of the (j−1)-th iteration and
recommend them for creation of the Bloom filter cascade underlying CR-
Lite. The whole process of our Layer by Layer search can be implemented
through the pseudocode in Figure 5.3.

Algorithm 7 Iterative parameter selection framework

1: procedure Layer by Layer search(n, num reps, set sizes)
2: {p1

2, ..., p1
n} ← First iteration(n, num reps, set sizes)

3: j← 1
4: repeat
5: j← j + 1
6: {pj

2, ..., pj
n} ← Reiteration(n, {pj−1

2 , ..., pj−1
n }, num reps, set sizes)

7: until per f ({pj
2, ..., pj

n}) > per f ({pj−1
2 , ..., pj−1

n })
8: return {pj−1

2 , ..., pj−1
n }

Figure 5.3: Pseudocode for the parameter selection framework. The Input
parameters are n:= the number of layers to search, num reps := the number
of simulation runs to conduct for the selection of the false positive
probability of one layer and set sizes:= the number of valid and revoked
certificates to use. The Output is the set of n false positive probabilities that
had the best performance evaluation.

5.3 Implementation details

To utilize the resources available to us better we performed some optimiza-
tions to the code above. Those optimizations will be described in the follow-
ing paragraphs.
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Reduce read and write operations: When we search for pi we observe that
the include set and the exclude set for layer i (denoted cert setsi in Figure 5.1
and 5.2) are the same for all false positive probabilities we want to test. If
we continue the creation of the cascade from layer i for every false positive
probability in series, we have to repeatedly load those two sets into memory
for every cascade we create. This effect remains for all certificates that we
use on a certain layer in more than one cascade. To reduce the needed
memory operations we want to create the layers of all cascades in parallel
such that we have to load each certificate only once for every layer. We will
maintain two 2-dimensional binary reference arrays to keep track of which
certificates are still in the include set / exclude set of every cascade. At every
layer we go through the include set once and use the reference array to add
the right elements to each cascade. We then go through the exclude set
once and use the second reference array to search for false positives. If a
certificate is included in the exclude set of a cascade but does not trigger a
false positive, we set the corresponding entry in the reference array to f alse.
We thereby updated the reference array from the exclude set to a reference
array of the false positives. Since the include set of layer i is the exclude set
of layer (i + 1) and the false positives of layer i are the include set of layer
(i + 1) we can now swap both sets and the corresponding reference arrays
and continue on the next layer in the same manner.

To avoid continuously loading certificates that are no longer included in any
cascade we will maintain a counter that indicates how many certificates of
the sets are still in use. Whenever this counter reaches a certain threshold
we delete the certificates that are no longer used from the set and update
the corresponding reference array.

Use multiple intervals: For our experiments of the Layer by Layer search
introduced in Section 5.2 we decided to test the false positive probabilities
in the interval [0.2, 0.7] with a stepsize of 0.0002. This would require us to
test 2500 false positive values for every pj

i we want to select. Creating this
many cascades in parallel would not only take too long for the time frame of
this thesis but also take 17GB of memory to hold the cascades and 3GB to
hold the reference arrays. We therefore decided to search this interval using
3 consecutive runs for the selection of every pj

i . During the first run we will
search the interval [0.2, 0.7] with a stepsize of 0.02. We will then analyze
the data by hand and pick an adequate interval to search during the second
run with a stepsize of 0.002. We will then pick an interval that contains the
minimum of our optimization function to search during the third and final
run with the desired stepsize of 0.0002. After the third run is completed we
will set pj

i to the false positive probability that resulted in the minimum of
our optimization function.
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5. Parameter selection for CRLite

Further implementation details The creation time is highly dependent on
whether the include sets and exclude sets are stored on the disk or in main
memory and on the underlying hardware that is used. For our implemen-
tation we decided to store them on the disk for the first few layers to reduce
the needed main memory. Therefore the majority of the creation time of our
implementation is used for the read and write operations of the certificates.
To obtain more general results in terms of the creation time, we decided to
exclude the loading times of the certificates in our creation time measure-
ments. Our creation time measurements therefore consider the time it takes
to add a new filter to a cascade, the time it takes to insert all elements in the
include set and the time it takes to search for false positives.

5.4 Final results

5.4.1 Experimental setup

All experiments in thesis thesis were carried out using Euler, a high-performance
cluster service administered by the ETH Zürich. The implementation of the
models presented were written in Python. For the Bloom filter cascade we
used the implementation of J.C.Jones and Mark Goodwin [14] and utilized
the structs and functions from the moz crlite lib provided on the Github
repository of Mozilla [17].

5.4.2 First Iteration

With the process descibed in the Section 5.2 and the optimizations described
in Section 5.3, we did the first iteration for 27 layers. We chose to not include
the 28-th layer in our search to avoid the possibility of overfitting to the last
layer. If one wanted to search for the most adequate probabilities for more
than 27 layers, one simply has to increase the size of the set of revoked
certificates. Presenting the results for all layers would take too much space
and we therefore chose to show some representative data that suffices to
show the development of the data throughout the first iteration and the
choices we made. We chose to show the data we obtained for p1

2 and p1
25.
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5.4. Final results

First run:

(a) Individual percentage
changes

(b) Value of the optimization
function

Figure 5.4: First iteration, Second layer, First simulation run

(a) Individual percentage
changes

(b) Value of the optimization
function

Figure 5.5: First iteration, 25-th layer, First simulation run

The Subfigures 5.4 a) and 5.5 a) show the percentage changes compared
to the minimal obtained value for the size, the number of hashes and the
creation time. We can clearly see that the influence of the false positive
rate on the size decreases with increasing layers. This is due to the fact
that the first few layers of a cascasde contribute the most to the the size of
the full cascade. Meanwhile the creation time and the number of hashes
can still be greatly influenced even in the last few layers. The Figures 5.4
b) and 5.5 b) show us the value of the optimization function introduced
in Section 5.2. In Figure 5.4 b) we can find 2 false positive probabilities
that would be suitable for further investigation and 5.5 b) shows that for
the higher layers there seems to be only one false positive probability of
interest. For the layers 2− 8 the optimization function reached its minimum
at 0.26. We nevertheless chose to further investigate the interval around 0.5.
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5. Parameter selection for CRLite

This choice was made because only one property (creation time) reached it’s
global minimum at 0.26 but the other two properties reached their global
minimum at 0.5.

Second run:

(a) Individual percentage
changes

(b) Value of the optimization
function

Figure 5.6: First iteration, Second layer, Second simulation run

(a) Individual percentage
changes

(b) Value of the optimization
function

Figure 5.7: First iteration, 25-th layer, Second simulation run

Figure 5.6 b) and 5.7 b) show us the value of the optimization function of
the second run for layer 2 and layer 25. Throughout the first iteration the
minimum of the optimization function was always between 0.5 and 0.502.
We therefore always chose the interval [0.4986, 0.5034] for our third and final
run.
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Third run:

test

(a) Individual percentage
changes

(b) Value of the optimization
function

Figure 5.8: First iteration, Second layer, Third simulation run

(a) Individual percentage
changes

(b) Value of the optimization
function

Figure 5.9: First iteration, 25-th layer, Third simulation run

After the third run had finished for a layer i, we set p1
i to the false positive

probability that resulted in the smallest value of our optimization function.
For p2 we selected 0.5009 and for p25 we selected 0.5016. The false positive
probabilities we selected for all layers during the first iteration are summa-
rized in Table 5.1.
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5. Parameter selection for CRLite

p1
2 p1

3 p1
4 p1

5 p1
6 p1

7 p1
8 p1

9 p1
10

0.5009 0.501 0.5008 0.501 0.5006 0.5002 0.5002 0.5002 0.5002

p1
11 p1

12 p1
13 p1

14 p1
15 p1

16 p1
17 p1

18 p1
19

0.5004 0.5002 0.5006 0.5008 0.5002 0.5012 0.5004 0.501 0.5002

p1
20 p1

21 p1
22 p1

23 p1
24 p1

25 p1
26 p1

27

0.501 0.5004 0.5012 0.501 0.5016 0.5016 0.5016 0.503

Table 5.1: Selected false positive probabilities during the first iteration.

Performance evaluation:

(a) Percentage change in size (b) Percentage change in number
of hashes

(c) Percentage change in creation
time

(d) Value of the adapted
optimization function

Figure 5.10: Summary of the percentage changes in size, number of hashes
used, creation time and the value of the adapted optimization function of
our selected false positive probabilities in comparison with the false
positive probabilities suggested by James Larisch et al.

After we completed the first iteration we did 10000 performance evaluations
for the false positive rates we chose during the first iteration as described in
Section 5.2.
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Each dot in the Figures 5.10 a), b), c) represents the percentage change
in size, number of hashes used and the creation time of our choice of false
positive probabilities in comparison with the false positive probabilities sug-
gested by James Larisch et al. One can see that our choice of false positive
probabilities improved the number of hashes used for creation by 0.01158%
on average and the creation time by 0.06626%. We increased the size of the
cascade on average by 0.001826% and therefore improved the value of the
optimization function by 0.0761%

5.4.3 Subsequent Iterations

For the reiteration process we used the same steps and reasoning for select-
ing the intervals and final false positive probabilities as we described for the
first iteration. When we search for the best pj

i during the j-th iteration we
use the pj

2, ..., pj
i−1 we chose during the current iteration to create the first

i − 1 layers. We then continue the creation with pi = f ppcandidate for every
f ppcandidate we want to include in our search. The only difference to the first
iteration is that we don’t use pi for all the higher layers. Instead we use the
values we chose during the preceeding iteration.

ph = pj−1
h for h = i + 1, i + 2, ...

The Tables 5.2 and 5.3 show the false positive probabilities we selected
during the subsequent iterations.

p2
2 p2

3 p2
4 p2

5 p2
6 p2

7 p2
8 p2

9 p2
10

0.502 0.5028 0.5028 0.5016 0.5016 0.5022 0.503 0.5028 0.5028
p2

11 p2
12 p2

13 p2
14 p2

15 p2
16 p2

17 p2
18 p2

19

0.503 0.5014 0.501 0.5008 0.5014 0.5012 0.5002 0.5014 0.5002
p2

20 p2
21 p2

22 p2
23 p2

24 p2
25 p2

26 p2
27

0.503 0.5014 0.5008 0.5008 0.5016 0.5016 0.5034 0.509

Table 5.2: Selected false positive probabilities during the second iteration.
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p3
2 p3

3 p3
4 p3

5 p3
6 p3

7 p3
8 p3

9 p3
10

0.503 0.5022 0.5016 0.5022 0.5022 0.5016 0.5024 0.5008 0.501
p3

11 p3
12 p3

13 p3
14 p3

15 p3
16 p3

17 p3
18 p3

19

0.5012 0.5008 0.5014 0.5008 0.5014 0.501 0.5014 0.5008 0.5014
p3

20 p3
21 p3

22 p3
23 p3

24 p3
25 p3

26 p3
27

0.5018 0.5004 0.5012 0.501 0.5014 0.5036 0.5034 0.5018

Table 5.3: Selected false positive probabilities during the third iteration.

Performance evaluation of subsequent iterations:

(a) Second iteration (b) Third iteration

Figure 5.11: Value of the adapted optimization function for the second and
third iteration.

Size Hashes Time perf()

2nd itr 0.0048827 −0.0332697 −0.2351988 −0.2635858
3rd itr −0.0021632 −0.0335049 −0.8473088 −0.8829769

Table 5.4: Percentage changes and the value of the performance evaluation
for the second and third iteration in comparison to the false positive
probabilities suggested by James Larisch et al. Values are given in percent.

Table 5.4 shows that the first three iterations of our model resulted in lower
values of the performance evaluation in comparison with the preceeding
iteration. The third iteration had improved all three considered properties in
comparison with the false positive probabilities suggested by James Larisch
et al. The false positive probabilities we selected in the fourth iteration did
not perform better than the set we chose during the third iteration and we
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5.4. Final results

therefore stopped the reiteration process.

Discussion of results

During the first iteration of our model we selected a set of false positive
probabilities that were all higher than the false positive probabilities sug-
gested by James Larisch et al and are currently used by Mozilla. In our
performance evaluation the set we thereby selected had decreased the cre-
ation time and the number of hashes used during creation but increased
the size. We observed that this iteration selected the lowest false positive
probabilities of all iterations for the layers below the 14-th.

The second iteration increased all of the selected false positive probabilities
up to the 14-th layer. For the remaining layers (14-27) this iteration increased
6 of the selected false positive probabilities, kept 5 at the same value and
decreased 3 without a clear pattern. The set we thereby selected further re-
duced the creation time and the number of hashes used during creation but
it had also further increased the size of the resulting cascade in comparison
with the first iteration.

The third iteration incremented 9 of the false positive probabilities selected
during the second iteration, decremented 14 and kept 3 at the same value.
There was no noticeable pattern in the changes of the selection. The set
we thereby selected further decreased the creation time and the number of
hashes used in comparison with the second iteration. Most interestingly this
set of false postive probabilities had additionally decreased the average size
of the resulting cascade in comparison with the false positive probabilities
suggested by Larisch et al.

After the first simulation run of the first iteration we had found two false
positive probabilities that resulted in a local minima of our optimization
function. These values were 0.26 and 0.5. We assume that the minima oc-
cured around these two values because log2(1/p) is here the closest to an
interger value. The more the selected values deviate from an interger value
the more rounding is involved in setting the number of hash functions and
the number of bits used in every Bloom filter in the cascade. The atten-
tive reader might observe that similar holds for the value 0.125 which was
not presented in this thesis. Before we performed our experiments we con-
ducted three iterations of our model on a reduced test set. The data we
obtained showed that there was indeed a third local minimum in the con-
sidered properties around the value 0.125. We chose to omit this region
in our final test since none of the considered properties had a global min-
imum and we therefore concluded that this value is not a viable candidate
for optimizing the performance of the Bloom filter cascade in any way.
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Chapter 6

Conclusion

At the beginning of this thesis we presented an efficient fail-closed method
for verifying the revocation status of certificates called CRLite. It was de-
veloped by James Larisch et al and is currently deployed by Mozilla. When
implementing this method one has to select an adequate hash function and
a set of false positive probabilities for the creation of the underlying Bloom
filter cascade. The choice of those parameters and the hash function has
great impact on the overheads introduced and the reliability of the system.
In this thesis we presented formal methods to select adequate parameters in
order to improve the performance of CRLite.

Hash function selection In Chapter 4 we have introduced a method to
evaluate the performance of hash functions. This method quantifies two
properties of hash functions when using them for the construction of the
Bloom filter cascade underlying CRLite.

We conducted 1000 test runs to compare 8 cryptographic hash functions.
Mozilla chose to use the non-cryptographic Murmurhash3 in their imple-
mentation of CRLite. This choice was made because of its speed and their
back-up plan is to use the cryptographic hash function SHA 256. The results
we obtained supports the choice of their back-up hash function since it was
the fastest one in our test suite. But our model also considers the uniformity
of hash functions via the size of the resulting cascade. The unified results we
obtained lead us to recommend the use of SHA3 256 over SHA 256 for the use
in CRLite. SHA3 256 was the third fastest hash function in our test suite and
we come to the conclusion that it is more suitable to replace Murmerhash3
because it had the best and most consistent performance in terms of the size
of the resulting cascade.

Parameter selection In Chapter 5 of this thesis we introduced an iterative
parameter selection framework. The framework can be used to select a set
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6. Conclusion

of false postive probabilities for the construction of the Bloom filter cascade
underlying CRLite. Previous work selected the false positive probabilities
only under consideration of the size of the resulting cascade. The purpose
of our framework is to select false positive probabilities that improve the
performance of the Bloom filter cascade, not only in terms of size but also
under consideration of the creation time and the number of hashes used
during creation. The optimization function we use to select adequate false
positive probabilities treated the creation time, the number of hash functions
used during creation and the size of the resulting cascade as equally impor-
tant. The function can be adjusted towards different preferences towards
those three properties and also to take additional properties into account.

In this thesis we have applied the presented framework to the Bloom fil-
ter cascade underlying CRLite. We thereby selected a set of 27 false posi-
tive probabilities and conducted 10000 performance evaluations of this false
positive set. The results we obtained showed that the parameters we chose
on average improved all three properties we focused on when comparing
with the parameters suggested by James Larisch et al and currently used
by Mozilla. This result proves that the framework we presented is a valid
method to further reduce the overheads introduced by the use of CRLite for
certificate revocation verification.

We suggest the following areas for further reasearch:

1) How does adjusting the optimization function towards different pref-
erences change the false positive probabilities that the presented frame-
work selects?

2) Could the properties of the cascade be improved by using different
rounding techniques for the calculation of the size and the number of
hash functions used for every Bloom filter?

3) Can the parameter selection framework we presented also be used to
optimize the parameters of modified data structures e.g. cascaded
cuckoo filers [19]?
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curity Analysis and Comparison of the SHA-3 Finalists BLAKE, Grøstl,
JH, Keccak, and Skein. In AFRICACRYPT, 2012.

[3] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche.
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[25] Vadims Podāns. ADCS certificate serial number generation algorithms
– a comprehensive guide. https://www.pkisolutions.com/adcs-certificate-
serial-number-generation-algorithms-a-comrehensive-guide/, 2020.

[26] Eric Rescorla. HTTP Over TLS. RFC 2818, 2000. https://www.

rfc-editor.org/info/rfc2818.

[27] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446, 2018. https://www.rfc-editor.org/info/rfc8446.

[28] Harshvardhan Tiwari. Merkle-Damgård Construction Method and Al-
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